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6 Discussion

6.1 Pattern Recognition in Computer Vision

In Chapters 2 and 3 we have presented three different approaches to retrieve a prede-
fined biological shape from an input image. All approaches were based on deformable
templates. The approaches were designed in such a way so that they could be used with
in the HTS pipeline of zebrafish embryos. The methods needed to be able to retrieve
shapes that are created as a result from different experiments, were subject to different
light conditions and microscope settings. We have tried different representations of the
zebrafish template.

First we have tried splitting the template into n vertical (to the zebrafish median
axis) sub-templates that represent the boundary of the object. Subsequently the sub-
templates were found one by one. As preprocessing step we have used an edge based
representation. The edges were matched to each sub template. A mayor drawback was
a high computational complexity due to a high amount of pixel comparisons within the
image matrix space. This complexity could be reduced by applying a pyramid approach
(lower resolution images) and introducing constraints to the location and orientation of
the embryos within the image. One of the constraints that reduces computation time
would be positioning the individuals with their head located left and their tail in the
right part of the image in relation to the starting point. Since the zebrafish embryos
differed in length, the size constraints of sub templates would complicate the analysis of
differently shaped individuals.

Accordingly, we have tried using a variable number of sub templates, yet still with a
fixed thickness. The prototype template that we proposed was represented as a bitmap
that defines size limits for each sub template. It can easily be adapted to the needs of
the application while the same algorithm is used.

Instead of looking at the edge data we considered filled contours. The same drawback
as with the previous representation was that the shape was represented as a fixed max-
imal and minimal thickness at different shape locations, which excludes shapes that are
slightly bigger or smaller from being matched.

We also introduced a shape normalization step. This was done by a straightening of
the retrieved deformed shape based on the prototype template shape. This normalization
step enabled comparison of differently deformed zebrafish embryos. However, due to the
fixed thickness of sub-templates spatial analysis within individuals that differed in length
were still difficult to compare.

In the third approach we represented the individuals based on their characteristic
regions, rather than dividing into sub templates. This allowed for a better recognition
of the individuals. The regions were found based on anchor points and during the
search a higher order representation was used instead of pixel data. In this manner the
computation time was reduced significantly and the problem of connected shapes was
solved. Additionally, the constraint of locating embryos from left to right was lifted.
Since the regions are recognized it is possible to do a more in depth analysis on certain
regions of interest and compare the different shapes regardless of their deformation or
length difference.

In order to localize a deformed template within the image space we examined a Genetic
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6.2 Software Development

Algorithm and a Dynamic Programming approach. First choice was the Genetic Algo-
rithm due to its possibility to search for an optimal solution in large search spaces. This
approach was feasible, yet in some cases algorithm could be trapped in a local optimum
and was fairly slow due to high number of variables that were adjusted. In the third
approach straightforward depth first graph searching could be used. This was motivated
by the fact that the search graphs were relatively simple and thus no optimization was
required. In cases where the graph is more complex a Dynamic Programming or another
similar approach can be applied; such could be the case when images contain a large
amount of different shapes.

The final version of the algorithm we propose does not rely on initial localization
of the shape and therefore does not require any manual intervention or analysis. The
framework can be easily adapted to work with other shapes, in the life sciences or in
other fields that require accurate and robust shape retrieval. Further analysis of the
object and the straightening thereof is part of future work.

A comparison of the result for the same image using the three algorithms is given in
Figure 6.1.

6.2 Software Development

We have developed ZFA, a software solution that includes the interface and a processing
unit, based on the algorithm that is presented in Chapter 3 (Approach 3).

Our solution is successful at recognizing the zebrafish larva shape and analyzing the
infection within the larvae and is robust as it can be adapted to recognizing other shapes.
The measurements that are performed on the infection are: localization, infection cluster
size, infection cluster amount and average infection cluster intensity.

ZFA has proven its value as a software solution for the analysis in a HT screening
pipeline.

6.3 Statistical Analysis

We have used the framework that we have developed for automated granuloma cluster
recognition in order to analyze the spatial distribution in zebrafish larvae. As a proof
of concept we have analyzed the data for the zebrafish larva infected with the wild-type
Mycobacterium marinum (MM) and some of its mutants.

As a first assessment we compared the behavior of granuloma of the wild-type bacteria
to the behavior of the mutant 714 strain. Mutant 714 was chosen as it was one of the
mutants that did not make the fish ill and this assessment was used as a proof of concept
for further investigation of other mutants. A statistical analysis on the spread of bacteria
was performed and information on the spread of granuloma was derived. Since the MM
tends to make the fish more sick it makes sense that overall more granuloma clusters
are found in the wild-type infected fish. However, if we look at the normalized spread
of infection it behaves approximately the same; it either stays at the site of injection or
it moves towards the head of the larva. For the Mycobacterium marinum it seems that
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6 Discussion

Figure 6.1: Shape retrieval results. The same input image is used for all three approaches
(Approach 1 till 3 from top to bottom).
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6.4 Conclusion

the infection is likely to migrate towards the head compared to the 714 mutant; in the
714 mutant it is established that the majority of the infection stays at the injection site.

In the second assessment we compared a large dataset of different mutant strains to
the wild-type and to each other. Moreover, other measurement parameters could be
considered in the analysis due to a more precise approach for retrieving the shape and
its regions. Locations of interest such as the heart region and the injection point region
could be retrieved. However, not all the mutants could be directly compared to the
wild-type as they were not normally distributed. Those that were have been compared
to each other and to the wild-type. Detailed results are provided in Section 5.4.

6.4 Conclusion

Here we present our final conclusions regarding our study of automation for High Through-
put at the organismal level. We have applied our method to an important model organ-
ism, the zebrafish. With the development of our approach we made it possible to gain
useful biological knowledge that used to be gathered manually in a High throughput
fashion, which makes it a key activity within the field of bio-informatics.

We have shown and compared different deformable template based approaches that
have been used for the pattern recognition step in the software. We have made it possible
to automatically localize and annotate the shapes of the zebrafish larvae. The silhou-
ettes that were identified serve as a mask to measure and analyze the fluorescent signal
corresponding with the bacteria; if multiple fluorescent channels are used, other analysis
can be accomplished with the same mask. In the case of zebrafish larvae, the current
approach is sufficient for an analysis on spread through global regions in the zebrafish.
However, in order to do an even more in depth analysis on infection spread, localization
of certain organs within the fish or the determination of zebrafish age, we would require
more characteristics than the silhouette. A silhouette representation does not suffice for
that purpose since it is only describing the outside of the organism while inner infor-
mation is left out. In this case an analysis of the brightfield signal within each mask
can contribute with informative features. As an example we have experimented with
a framework for the automated determination of the developmental stage of zebrafish
embryos. A machine learning approach uses both silhouette and brightfield data from
within the mask for feature extraction. In a preliminary setup we have set up a machine
learning pipeline taking into account all signal in the brightfield image; the results are
promising and indicate the feasibility of the approach (cf. Nezhinsky et al. [41], Figure
6.2).

We have discussed the construction and the evaluation of a workflow which we have
embedded in a user interface to support the work with the algorithms described in this
thesis in a high-throughput setting. So, during the development process prototypes of
our software were already used for a real life problem. This evolutionary approach turned
out to be successful. The reason for this successful design lies in the fact that evaluation
and requirements were obtained from the intended user group which was involved in the
development from the beginning and who were the intended end-users.
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6 Discussion

Figure 6.2: Overview of the proposed framework for automatic zebrafish embryo devel-
opmental stage determination.

The application of our software is described with a real life case study involving My-
cobacterium marinum infection. The resulting data was analyzed for infection patterns.
These patterns were related to the annotated areas within the zebrafish and therefore
previously this kind of analysis was hampered due to the limitations given by manual
analysis. With our algorithms the images could be processed in a High Throughput
fashion and thus large amount of features could be generated from the input images.
Using statistics on these features we were able to discover interesting differences in the
organization and amounts of granuloma clusters for different bacterial mutants. By ob-
taining these results we have shown the need for such automation processes and smart
software for these kind of screening applications.
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