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5 Data and Pattern Analysis in Infection Studies in Zebrafish

5.1 Introduction

Tuberculosis is a serious disease and a significant part of the world population is infected.
Unfortunately, effective treatment is still difficult due to bacteria resistance. In order
to elucidate which genes are responsible for infection, the behavior of the tuberculosis
bacteria Mycobacterium tuberculosis needs to be analyzed. In our study this behavior is
modeled by a close relative — the Mycobacterium marinum (MM ). The MM is hosted
in cold blooded animals. For our study the zebrafish is used as a host. Zebrafish makes
a good model for analysis as its immune system is in many ways comparable to human.
The zebrafish larvae can be obtained in large numbers and studied by HT imaging (cf.
Chapters 2, 3).

Infection of the zebrafish with MM is characterized by the presence of granulomas.
Granulomas are clusters of immune cells and bacteria indicating infection. They can be
visualized with fluorescent agents.

In order to determine which genes of MM are involved in formation of granulomas we
obtained a dataset of 1000 random mutants of the MM bacteria and screened for those
mutants that were not able to efficiently infect zebrafish larvae [54]. In this manner 30
mutants have been identified that were unable to infect larvae (cf. [55]).

In order to gain more insight in the progression of MM infection it is required to
analyze infection spread in the host, c.q. the zebrafish, over a certain period of time.
This requires the following questions to be answered:

(1 ) Is there a pattern in the organization of granuloma clusters in certain tissues?

(2 ) Does appearance differ for certain bacterial mutants?

This analysis is accomplished with the HT imaging as described in Chapters 4. For
each zebrafish a brightfield and fluorescence microscopy image is acquired. The analysis
included localization of the zebrafish shape and qualitative estimation of the granuloma
cluster size and spread. Consequently, no quantitative data could be retrieved. The
results are presented by means of different types of custom designed infographics.

We have designed and implemented an automated framework for shape retrieval and
cluster analysis [43]. This framework has been applied to large scale HT applications
[54].

The basis of the software framework is an algorithm for shape retrieval to automati-
cally find the zebrafish shape(s) in the image. The algorithm uses deformable template
matching [23] and labels the regions for further analysis. This approach made it possible
to analyze the infection amount per fish in an automated fashion (cf. Chapter 4).

Proof of Principle: Wild-type versus Mutant 714

As a proof of principle, a study for the detailed analysis was performed to find a strategy
for analysis. As an initial test case mutant 714 was chosen; this is one of the 30 mutants
which is not successful in infecting the fish. We are focusing on the question: can the size
of the granuloma clusters be analyzed from the infected fish? In addition, we compare
similarity in larvae infected with the wild-type MM and mutant 714.
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5.2 Analysis of High Throughput Zebrafish Infections Screens Based on Approach 2

Figure 5.1: A brightfield image may contain up to 3 shapes of the zebrafish larva.

In depth Analysis: Wild-type versus a List of Mutants

After the proof of principle from the first assessment we apply our algorithm for in depth
analysis of a larger set of mutants. We compare the results of infection to the readout for
the wild-type. The following mutants indicated by a number were part of our analysis:
262, 308, 414, 415, 421, 423, 431, 730, 748, 801, 817, 885, 941 and 943. In order to
process this amount of data an objective test was needed.

Microscopy

Images were taken in batches of 30 wells. Each batch contained sibling zebrafish larvae.
Images were acquired with a Leica DC500 microscope. The general layout of an exper-
iment takes 3 zebrafish larvae per well. As a result a single image can contain up to 3
individuals.

For each well, both brightfield and fluorescent images were acquired. The brightfield
image contains the zebrafish shape, while the fluorescent image contains the signal at
granuloma locations. An example of such images for a single well is presented in Figure
5.1 and 5.2 (cf. Chapters 2, 3). As can be seen the fluorescent images have very low and
different intensity values. By inspecting the images, it is not difficult to conclude that
consistent manual analysis therefore will be very difficult and imprecise.

5.2 Analysis of High Throughput Zebrafish Infections Screens
Based on Approach 2

The images are the input for the analysis framework ZFA (cf. Chapter 4). As algorithm
for the pattern recognition we used Approach 2 (cf. Section 2.3). First, the zebrafish are
localized and the result is used as a mask for the fluorescent image. Within the mask
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5 Data and Pattern Analysis in Infection Studies in Zebrafish

Figure 5.2: A fluorescent image containing the signal of granuloma spread. For visual-
ization purposes the contrast is enhanced. The image contains specific (A)
and non specific (B) staining as well as systemic noise.

a threshold value is determined. Finally the data is analyzed and written to a comma
separated file.

The data set we have used for the analysis consisted of 189 infected zebrafish larvae.
The larvae were divided into 3 groups: not infected larvae NI (5), infected with My-
cobacterium marinum wild-type MM (67) and those infected with the 714 mutant 714M
(117).

For the infection approximately the same amount of bacteria was used; the volume
was plated on 7H10 plates. At injection the zebrafish were 6 days old. The infection has
progressed for 5 days, after this the imaging was performed.

5.2.1 Brightfield Imaging: Shape Localization and Annotation

The ZFA determines a region of interest (ROI) and provides annotation of the relevant
areas. A deformable template is used for the retrieval of the zebrafish shapes. In order
to be able to detect different regions of the fish, the template was divided into 11 regions
(or slices in Section 2.3) counting from head to tail (numbered from 0 to 10). We have
chosen for division into 11 parts, as it is empirically established that this amount of
parts allows best for annotating the shape as well as doing spatial analysis. In Figure
5.3 the graphical representation of a prototype template used for our experiments is
shown. Enumerations (i) with values 0 and 1 are considered as the head regions, 2 till
4 as the trunk regions and the remaining parts as the tail regions. This division of
the larva in regions has been successfully used in other applications [63]. The injection
point for infection is located at approximately region 5 [11] and this can be used for the
analysis.
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5.2 Analysis of High Throughput Zebrafish Infections Screens Based on Approach 2

Figure 5.3: Graphical representation of the prototype template used for our experiments.
The vertical bars divide the zebrafish into regions. The template is created
from averaging a test set of 20 training shapes

Figure 5.4: Graphical output of the framework overlaid on the original image for the top
fish in the image. The light gray line denotes the shape mask contour and
the white regions indicate the presence of granuloma formation. This image
is created in an automated fashion.

5.2.2 Fluorescent Imaging: Analysis

For the actual measurement of clusters fluorescent images were used and related to the
mask size, obtained from the brightfield images. The NI group is expected to have no
infection at all and thus the level of their maximal fluorescent signal is considered as
noise level n. No infection / granuloma formation is present in NI, therefore this group
was only used to obtain reference for a noise level. In the other groups all signal below n
is considered noise, while all signal above n represents granuloma presence. This signal
is analyzed per fish and written to a csv file as shown in Table 5.1. The notions will be
explained in the sequel.

5.2.3 Output and Dataset Creation

Output of the analysis software is created in the form of an overlay image containing
the detected zebrafish and the infection as shown in Figure 5.4, together with a csv file
(cf. Chapter 4).

Clusters of bacteria are labeled and for each of the clusters the surface area is deter-
mined. The infection is present in clusters:

Definition 1. ClusterCount is the amount of clusters present throughout the entire
zebrafish larva, denoted by CC. A single cluster is defined as a connected collection of
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5 Data and Pattern Analysis in Infection Studies in Zebrafish

Field name Explanation

TotalArea Total shape area

ClusterCount CC Amount of clusters in the larva

ClusterSize CS Area covered by all clusters

ClusterCountAt[i] CC[i] Like CC but for a single template region

ClusterSize[i] CS[i] Like CS but for a single template region

Table 5.1: Fields contained in the output csv per larva, i to the template region number
(0 to 10) as described in Section 5.2.1.

pixels of which every pixel is covering an area that is classified as infection. The image
pixels are classified as infection in an automated fashion as described in Section 4.3.2.
Background pixels are automatically excluded from the analysis.

The total area of the spread is the sum over all clusters:

Definition 2. ClusterSize is the total area covered by the infection throughout the
entire zebrafish larva, denoted by CS. Area is expressed in units that represent the
amount of pixels that are classified as infection. This classification was performed in an
automated fashion as described in Section 4.3.2. Background pixels are automatically
excluded from the analysis.

From the template we define 11 regions and a cluster is always assigned to the region
center with closest geometrical distance [43].

5.2.4 Analysis and Results

In this section an analysis of the results is presented. First the distribution of the clusters
is discussed and second a relation to the amount of infection is derived from the data.

Distribution of Cluster Amount

In our study we set out to analyze the relationship between mutant and wild-type with
respect to the amount of clusters and spatial distribution. To that end we compare the
average number of clusters (feature Cluster Count,CC[i]) between MM and 714M (cf.
Figure 5.5).

Definition 3. Cluster Count[region] is the amount of clusters present in a certain region
(or slice), denoted by CC[i]. A cluster is defined as a connected collection of pixels of
which every pixel is covering an area that is classified as infection.

The image pixels are classified as infection in an automated fashion as described in
Section 4.3.2. Background pixels are automatically excluded from the analysis.

From the initial measurements this distribution does not seem to be conclusive. This
is due to the fact that the mean was taken from a dataset with a certain scatter. This
scatter is shown in Figure 5.6.
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5.2 Analysis of High Throughput Zebrafish Infections Screens Based on Approach 2

Figure 5.5: Spatial comparison of the average amount of clusters for MM and 714M in
relation to the zebrafish template with a 95% confidence interval.

Figure 5.6: Scatter plot of the amount of clusters in each case of the test set used.

We are interested in the distribution of the granuloma clusters and in order to ana-
lyze the different batches in the same way we normalize the CC[#] over the total CC.
The normalization is performed for each individual case and subsequently the mean is
calculated. In Figure 5.7 the results are depicted.

Definition 4. Normalized Cluster Count [region] is the normalized CC[i] feature, de-
noted by CCn[i]. Normalization is done over the total amount of clusters throughout
the entire zebrafish larva region: CCn[i] = CC[i]/CC

From the graph we can observe thatMM and 714M have the same behavior. The mean
and the 95% confidence interval suggest that the two distributions can be considered as
similar. Additionally we assume, after inspection of a Q–Q plot, that the data for each
variable has a normal distribution. Our null hypothesisH0 states that, under assumption
that the two groups are independent, their variances are equal. We therefore apply
Levene’s Test for Equality of Variances to the CCn[i], 0 < i < 10. The results are
shown in Table 5.2.

From the Levene’s test we obtain the value of p, that stands for significance. If
p > 0.05 then the null hypothesis is accepted. For zebrafish regions 1, 3, 4, 5, 8, 10 the
hypothesis is accepted, the corresponding variances are equal (marked with * in Table
5.2). For regions 0, 2, 6, 7 and 9 the variances significantly differ. Finally, we performed
the independent samples t-test. Based on the results from Levene’s test we know which
variances significantly differ; in Table 5.3 only the correct assumptions are listed.
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Figure 5.7: Spatial comparison of the normalized amount of clusters for MM and 714M
with a 95% confidence interval as compared to the zebrafish template.

Region H0 Var p value

CCn[0] = 0.017

CCn[1] = 0.218 *

CCn[2] = 0.010

CCn[3] = 0.526 *

CCn[4] = 0.512 *

CCn[5] = 0.221 *

CCn[6] = 0.011

CCn[7] = 0.042

CCn[8] = 0.488 *

CCn[9] = 0.046

CCn[10] = 0.662 *

Table 5.2: Levene’s Test for Equality of Variances for Cluster CountCCn[i]. Equal vari-
ances are marked with *.
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5.2 Analysis of High Throughput Zebrafish Infections Screens Based on Approach 2

Region Var t Sig. (2t) Mean Diff Std. Err Diff

CCn[0] ¬ 0.014 0.989 0.000 0.014

CCn[1] = 0.244 0.808 0.006 0.023

CCn[2] ¬ −0.909 0.365 −0.024 0.027

CCn[3] = 0.417 0.677 0.005 0.013

CCn[4] = 2.216 0.028 0.020 0.009 *

CCn[5] = −0.844 0.400 −0.018 0.022

CCn[6] ¬ −1.225 0.222 −0.015 0.013

CCn[7] ¬ 0.815 0.416 0.005 0.007

CCn[8] = 2.093 0.038 0.013 0.006 *

CCn[9] ¬ 1.603 0.112 0.008 0.005

CCn[10] = 0.270 0.787 0.000 0.001

Table 5.3: t-test for Equality of Means. Significant difference in the mean value is marked
with *.

We observe that there is a significant difference (meaning significance < 0.05) in the
mean value for regions 4 and 8 (marked with * in Table 5.3). Preliminary conclusions
are as follows. In the head the highest proportion of clusters is found, followed by the
injection site. Globally the distribution is the same for both MM and 714M. Excep-
tions are region 4, adjacent to the injection site, and region 8 where a significant larger
distribution of the clusters of MM bacteria is found compared to 714M.

Distribution of the Amount of Infection

Next, we analyze the relation between mutant and wild-type in the area covered by
granulomas:

Definition 5. Cluster Size [region] is the total area covered by the infection in region
i, denoted by CS[i]. The area is expressed in units that represent the amount of pixels
covering the region of interest within in the input images.

The image pixels are classified as infection in an automated fashion as described in
Section 4.3.2. Background pixels are automatically excluded from the analysis.

In Figure 5.8 a graph, with 95% confidence, is depicted of the comparison of the
average area of infection between MM and 714M.

Again, as with the cluster count, we normalize the CS[i] over the total CS for both
MM and 714M and compare the results in Figure 5.9.

Definition 6. Normalized Cluster Size [region] is the normalized CS[i] feature, denoted
by CSn[i]. Normalization is done over the total area covered by the infection throughout
the entire zebrafish larva region: CSn[i] = CS[i]/CS.

From the graph in Figure 5.9 it seems that the mean and the distribution are similar
for some regions and different for others; i.e., 1, 4, 5 seem to have a very different mean.
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Figure 5.8: Spatial comparison of the average CS[i] for MM and 714M in comparison
to the zebrafish template.

Figure 5.9: Spatial comparison of the normalized average total cluster size for MM and
714M.
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5.2 Analysis of High Throughput Zebrafish Infections Screens Based on Approach 2

Region H0 Var p value

CSn[0] = 0.266 *

CSn[1] = 0.807 *

CSn[2] = 0.025

CSn[3] = 0.690 *

CSn[4] = 0.001

CSn[5] = 0.002

CSn[6] = 0.388 *

CSn[7] = 0.255 *

CSn[8] = 0.907 *

CSn[9] = 0.036

CSn[10] = 0.274 *

Table 5.4: Levene’s test for equality of variances for total normalized Cluster Size CSn[i],
i is the region id.

Again, our null hypothesis states that, under the assumption that the two groups are
independent, the variances are equal. We apply Levene’s Test for Equality of Variances
to the CS[i], 0 < i < 10. The results are shown in Table 5.4.

For regions 0, 1, 3, 6, 7, 8 and 10 the significance is > 0.05 and thus our hypothesis is
accepted. In Figure 5.9, it can be seen that the differences in the mean are considerable
though the variances for MM and 714M remain the same.

To determine the difference of the mean values we use the knowledge gained from the
Levene’s test to do the independent samples t-test. The results are shown in Table 5.5.

We observe there is a significant difference in the mean value for regions 1, 4 and 5
(marked with * in Table 5.5). This result is in correspondence with the initial observation
of Figure 5.9 in which these means seemed rather different. The preliminary conclusions
from these findings are the following. The larger part of the infection migrates towards
the head of the zebrafish. The second largest part of infection, however, remains at the
injection site. In wild-type infected fish (MM ), a larger proportion of clusters is located
in the head compared to the 714M mutant; i.e., significant difference of the mean while
the variance is equal.

5.2.5 Conclusions

We have used a novel framework for automated granuloma cluster recognition in order
to analyze the spatial distribution in zebrafish larvae. As a proof of concept we have
analyzed the data for the zebrafish larva infected with the wild-type Mycobacterium
marinum and a MM mutant 714M.

From a statistical analysis of the data we can derive information on the spread of gran-
ulomas. In fish infected with the wild-type Mycobacterium marinum a higher amount of
granuloma clusters is found. However, if we look at the normalized spread of infection
it behaves approximately the same; it either stays at the site of the injection or it moves
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Region Var t Sig. (2t) Mean Diff Std. Err Diff

CSn[0] = 0.016 0.987 0.000 0.021

CSn[1] = 2.065 0.040 0.073 0.035 *

CSn[2] ¬ −1.739 0.084 −0.046 0.027

CSn[3] = 0.517 0.606 0.006 0.012

CSn[4] ¬ 2.176 0.032 0.041 0.019 *

CSn[5] ¬ −2.102 0.037 −0.060 0.029 *

CSn[6] = −0.850 0.397 −0.018 0.022

CSn[7] = −0.305 0.761 −0.003 0.009

CSn[8] = 0.558 0.578 0.004 0.007

CSn[9] ¬ 1.443 0.151 0.004 0.003

CSn[10] = −0.528 0.598 0.000 0.001

Table 5.5: t-test for Equality of Means for the normalized Cluster Size feature. Signifi-
cant difference in the mean value is marked with *.

towards the head of the larva. For the wild-type Mycobacterium marinum it seems that
the infection is more likely to migrate towards the head compared to the 714 mutant;
in the 714 mutant it is established that the majority of the infection remains located
at the injection site. The percentage of the amount of clusters per region is distributed
approximately in the same way for both groups in this test.

In the following sections this approach is further elaborated with more mutants and
a larger dataset. Moreover, other measurement parameters are to be considered in the
analysis. Large volumes of data will allow to do predictions from the measurements
using machine learning approaches.

5.3 Analysis of High Throughput Zebrafish Infections Screens
Based on Approach 3

In the previous section we have analyzed the infection spread within the zebrafish larvae.
In this section a pilot analysis is shown for Approach 3 that is described in Chapter 3. We
repeated the experiment of Section 5.2. Again, we have chosen mutant 714 (714M ), as it
is reported as one of the 30 mutants which does not make the fish ill. As a result of this
study we could, indeed, find certain characteristic patterns in granuloma cluster spread
and size for both MM and 714M. The acquisition is accomplished though imaging. For
each zebrafish, a brightfield and fluorescence microscopy image is acquired (Figure 5.1
and 5.2). Until recently, these images were analyzed manually. The analysis included
localization of the zebrafish shape in a brightfield image and qualitative estimation of
the granuloma cluster size and spread from a paired fluorescent image. The fluorescent
signal is often of low intensity and noisy and therefore manual analysis is difficult and
will not result in objective evaluation.

We have designed and implemented a framework for automated shape retrieval and
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5.3 Analysis of High Throughput Zebrafish Infections Screens Based on Approach 3

cluster analysis [43] (cf. Chapter 2). The recognition algorithm was based on a de-
formable template matching [23, 16] approach that distributes the zebrafish shape into
vertical sub regions (slices). Besides our own work this framework has also been applied
in large scale applications [54]. However, this algorithm used for zebrafish detection had
certain drawbacks: the algorithm was slow due to high complexity of template matching
[23]; the slices were fixed-width vertical regions that did not discriminate between the
top and the bottom of the shape.

The results obtained with Chapter 2 have resulted in the development of another
algorithm based on Anchor Regions. This is described in Chapter 3. By the use of
this algorithm it is possible to distribute the zebrafish shapes into certain characteristic
(Figure 5.10) but not size fixed regions. This algorithm is more true to nature, it can
better deal with the large biological variation in shape and size of the zebrafish larvae
(Figure 3.1).

Brightfield Imaging: Shape Localization and Annotation

In our previous analysis of infection spread we used Approach 2 as described in Chapter 2
to localize the zebrafish shape and divide it into 11 regions counting from head to tail.
This allowed for annotating the shape as well as doing spatial analysis. For this study we
have abandoned this approach and developed a new template matching algorithm that
localizes the zebrafish shapes without the computationally complex sub-region search
approach.

This novel algorithm is based on mathematical morphology and probability theory.
The algorithm estimates the location of the head, body and tail region of the zebrafish
larvae and its orientation. This is done by distributing the template into possible sub
templates, that are representing these regions. A probability tree is created to find an
optimal shape resembling a zebrafish, cf. Chapter 3. Due to the rotation invariance of
the algorithm the zebrafish larvae do not need to be aligned in a certain way. In Figure
3.14 the example of an output of the novel algorithm is shown.

Fluorescent Imaging: Analysis

The fluorescent signal is analyzed per fish mask, as it was found in the previous step. No
granuloma formation is present at the not infected group NI, therefore this group was
only used to obtain an intensity value that represents the noise level threshold n. All
signal below n is considered noise, while signal above n represents granuloma presence.

The larva is modeled in 5 regions, listed in Table 5.6. The division into regions is
an estimation and is proposed based on possible regions of interest. The detection of
the regions is done in an automated fashion by Approach 3 (by choosing a prototype
template that consists of head, body and tail regions).

This result is presented in an infographic in Figure 5.10. The use of this kind of
infographics is to illustrate and summarize the data gained from the statistical analysis
in a very clear way. This way of data visualization will be used throughout this chapter.
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Area Name Notation

HEAD H

BODY TOP BT

BODY BOTTOM BB

TAIL TOP TT

TAIL BOTTOM TB

Table 5.6: Automatic region assignment.

Figure 5.10: Graphical representation of the separation of a zebrafish into distinguished
regions.

Output and Dataset Creation

Output is created in the form of an overlay image as in Figure 3.14, containing the
retrieved zebrafish shape with the infection in the overlay and an entry in the csv file
containing the granuloma spread in each of the regions; i.e., H, BT, BB, TT, TB, cf.
Table 5.6. The granuloma spread for each region i is described by the amount of Clusters
in a region, CC[i], Definition 3, and the total amount of Infection in each region, CS[i],
Definition 5. Hence, we introduce the feature Average Cluster Size:

Definition 7. Average Cluster Size [region] is the average area covered by the infection
in a single cluster at region i, denoted by ACS[i]. The area is expressed in units that
represent the amount of pixels covering the region of interest within in the input images.
The image pixels are classified as infection in an automated fashion as described in 4.3.2.
Background pixels are automatically excluded from the analysis. Per region Average
Cluster Size [region] is calculated by: ACS[i] = CS[i]/CC[i].

5.3.1 Analysis and Results

In our study we set out to analyze the relationship between mutant and wild-type in the
amount of clusters, spatial distribution and the cluster size. Note, that it is impossible
to directly compare the amount of infection between different regions, since the regions
are of different size. However it is possible to compare each region between the wild-type
and the 714 mutant.
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5.3 Analysis of High Throughput Zebrafish Infections Screens Based on Approach 3

Figure 5.11: Spatial comparison of the mean amount of infection for MM and 714M in
relation to the zebrafish regions.

Amount of Infection

First we compare the Cluster Size, CS[i], Definition 5, measured as a numerical density
in each region, compared between MM and 714M (cf. Figure 5.11).

At this point this distribution is not conclusive. This is due to the fact that MM
make the fish more ill and thus overall produces more granulomas compared to 714M.
The mean amount of infection throughout the entire fish is 4558.24 (standard deviation
��M = 569.51) for MM and 825.69 (��M = 102.74) for 714M. The amount of infection in
wild-type (MM ) is roughly 5 times higher compared to 714M.

In order to analyze the different batches in the same way we consider the normalized
Cluster Size feature, CSn[i], Definition 6. The normalization is done for each individual
case and subsequently the mean is calculated. In Figure 5.12 the results are depicted.

From the graph we can observe that MM and 714M have approximately the same
behavior. The mean and the 95% confidence interval suggest, that the two distribu-
tions in H, BT and TT can be considered similar. In BB (body bottom) and TB (tail
bottom) the distribution behaves differently. Let us consider this in more detail. Our
null hypothesis states that, under the assumption that the two groups are independent,
their variances are equal. We therefore apply Levene’s Test for Equality of Variances to
the CSn[i], iε{H,BT,BB, TT, TB}, followed by the independent samples t-test. Based
on the results from Levene’s test we know which variances significantly differ. We ob-
serve that there is a significant difference for the total amount of infection (respectively
Sig.2t = 0.011 and Sig.2t = 0.018 ) in the mean value for regions BB and TB (variance
not equal).

Amount of Granuloma Clusters

We compare the average number of clusters, Definition 3, (variable CC[]) between MM
and 714M (cf. Figure 5.13).
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Figure 5.12: Comparison of spatial distribution of the normalized mean amount of infec-
tion (CSn[i]) for MM and 714M in relation to the zebrafish regions with a
95% confidence interval.

Figure 5.13: Comparison of spatial distribution of the mean amount of clusters for MM
and 714M in relation to the zebrafish regions.
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Figure 5.14: Comparison of spatial distribution of the normalized mean amount of clus-
ters for MM and 714M in relation to the zebrafish regions.

Throughout the entire fish for MM the CC[i] is higher than for 714M. MM has a
mean amount of 161.94 (��M = 18.00) throughout the entire fish and 714M has a mean
amount of 46.40 (��M = 4.13). The amount of clusters in MM is about 3 times higher
than in 714M. This makes it difficult to compare the relative behavior of granuloma
clusters. Therefore let us consider the normalized clusters amount CCn[i], Definition 4,
in Figure 5.14.

From the graph we can observe that MM and 714M have approximately the same
behavior. We analyze the graph in more detail by testing equality of variances and mean
equality of each region, in the same way as described previously and find no significant
difference in the mean values.

Average Size of Granuloma Clusters

We also look at the average size of the granuloma clusters, ACS[i], Definition 7. Figure
5.15 shows the average cluster sizes for different regions of the zebrafish. We analyze the
graph in more detail by testing equality of variances and mean equality of each region,
in the same way as described previously. We observe that there is a significant difference
(respectively Sig.2t = 0.000 and Sig.2t = 0.009 ) in the mean value for BB and TB
regions (variance not equal).

Results

In all regions of the zebrafish for MM the amount of infection is higher than the 714M
with larger granulomas.

The same percentage of the granulomas in both MM and 714M are located in the
head region. A larger percentage of the granulomas of the MM than 714M are located
in the body bottom region.

A higher percentage of the granulomas of the 714M then MM are located in the tail
bottom region. In Figure 5.16 a graphical representation of the form of an infographic
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Figure 5.15: Comparison of spatial distribution of the average cluster sizes (ACS[]) for
MM and 714M in relation to the zebrafish regions.

Figure 5.16: Graphical representation of the amount of infection. There is always more
MM infection than 714M ; in the image this is illustrated by a wider bar.
The percentages of their presence in certain regions are different; this trend
is depicted through level height.

of these results is shown.

MM has a higher amount of clusters than 714M in all regions of the zebrafish (overall
the amount of clusters is 3 times higher). There is no significant difference in cluster
spread pattern for MM and 714M.

In most regions the relative cluster sizes are not significantly different (though MM
tends to have larger clusters). The exceptions are the body bottom and the tail bottom
area, where MM gives significantly larger clusters than 714M.

As a result of using Approach 3 instead of Approach 2 we could consider infection
behavior in regions of interest. This resulted in more true to nature analysis that could
be directly comprehended by the users.
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5.4 In Depth Analysis of High Throughput Zebrafish Infections
Screens

For a more in depth analysis of the data we consider a dataset that was created during 11
experiments performed on infection by different mutants of the Mycobacterium marinum
strains visualized with fluorescence in mCherry red.

We analyze the data to find statistically relevant differences in behavior. We attempt
to relate the result to biology. Analysis is performed on the same selection of mutants.

Mutants that were considered during the experiments were the following: 262, 308,
414, 415, 421, 423, 431, 730, 748, 801, 817, 885, 941, 943.

The following mutants were attenuated for early granuloma formation (infection levels
were less than 50% of the E11 (wild-type) infection ([55, 64]): 262, 308, 421, 431, 730,
748 and 801 (cf. [55, 66]).

For mutants 748 and 801 it is known that both have a mutation in the genes from
the ESX-1 region. Genes from the ESX-1 region are being knocked down in order to see
which gene influence the virulence.

Mutant strains with knocked out genes that are involved in cell wall bio-synthesis
(cf. [55], p64) are: 262, 431 and 730. Mutant strains 262 and 431 showed a substan-
tial increased susceptibility to rifampicin (cf. [55, 65]). Other mutant strains are not
specifically annotated and their specific functional profile is not known.

5.4.1 Experiments

The data that has been provided is separated into 11 experiments. Cases in each ex-
periment are provided as images, i.e., a readout entails a brightfield image and a corre-
sponding fluorescent image.

For retrieval, each experiment is identified by the user that took the images and a time
stamp at the date the experiment was performed. The number of samples, i.e. zebrafish,
that were exposed to the mutants differs per experiment.

5.4.2 Analysis and Results

We set out to analyze the difference in infectious behavior of the different mutants and
attempt to discover distinguishable characteristics between the different mutants. We
have established a more fine grained set of features that we measure; these are listed in
Table 5.7.

5.4.3 Total amount of Infection

As a first comparison we consider the total area covered by the infection CS, Definition
5, measured for each mutant type.

Definition 8. Cluster Size per mutant is defined as average CS of all mutant m bacteria
infected larva, denoted by CSM [m].
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Variable Description

CS Definition 5

CC Definition 3

ClusterRegion CS/CC (Average size of one cluster)

HClusterSize Area covered by infection in the larva Head area

BClusterSize Area covered by infection in the larva Body area

TClusterSize Area covered by infection in the larva Tail area

HClusterSizeN HClusterSize/CS

BClusterSizeN BClusterSize/CS

TClusterSizeN TClusterSize/CS

IPClusterSize Area covered by infection in the larva Injection Point area

HRClusterSize Area covered by infection in the larva Heart area

IPClusterSizeN IPClusterSize/CS

HRClusterSizeN HRClusterSize/CS

Table 5.7: Different variables that can be taken into account and their description.

It is preferred to compare each mutant infection pattern to the infection by the wild-
type (E11 or MM ). We separate the data into groups, grouped by mutant id without
considering the experiment number. The first step is to test each group for normality.
Therefore we consider two well-known tests of normality, the Kolmogorov-Smirnov Test
and the Shapiro-Wilk Test. The sample size for each mutant is sometimes low (< 50),
therefore the Shapiro-Wilk Test seems more appropriate, as it is typically suitable for
handling both small and large sample sizes. We have tested the distributions per mutant
for all experiments for being normally distributed by applying a Shapiro-Wilk Test. The
results show that none of the mutant data was normally distributed. In Figure 5.17 this
can be seen through inspection of the mean and the standard deviation. Explanation
for the lack of not normally distributed values is the following: the amount of injected
infection and imaging conditions were different for each experiment. A solution is to
normalize the values per mutant per experiment.

The next step would be to normalize the groups one by one and then combine them
back into one whole. The infection amount is normalized per experiment over the mean
amount of infection of the wild-type in that experiment:

Definition 9. Normalized Cluster Size per mutant is the normalized CSM [m] feature
per mutant m bacteria infected larva, denoted by CSMn[m]. Normalization is done over
the wild-type infected fish of a single experiment: CSMn[m] = CSM [m]/CSM [MM ].

The resulting dataset, again, contained no normally distributed variables. In order to
be able to compare each mutant to the wild-type we checked the (not normal) distribu-
tions for similarity by the nonparametric Mann-Whitney test. Distributions similar to
normalized E11 that were found were: 423, 885, 943. Suggested results are the following:

• Mutant 423 shows no significant difference in amount of infection as compared to
the wild-type (according to a combination of all experiments).
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Figure 5.17: Graphical representation of the ClusterSize as it was measured for different
mutants.

• Mutant 885 shows no significant difference in amount of infection as compared to
the wild-type (according to a combination of all experiments).

• Mutant 943 shows no significant difference in amount of infection as compared to
the wild-type (according to a combination of all experiments).

In order to be able to compare more mutants, we have attempted to separate the data
into additional groups, namely clustered by mutant and experiment. To control if the
data were normally distributed again, the Shapiro-Wilk Test was needed. Within the 11
experiments for the following mutants ClusterSize variables were normally distributed:

• Experiment 0: wild-type, 431, 748, 801, 941, 943

• Experiment 1: 423, 431

• Experiment 2: wild-type, 262, 941

• Experiment 3: wild-type, 421, 817, 943

• Experiment 5: wild-type, 421, 730, 817, 885, 941, 943

• Experiment 6: 262, 548, 730, 817, 885

• Experiment 7: wild-type, 943
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• Experiment 8: wild-type, 423, 730, 817, 943

• Experiment 9: wild-type, 308, 414, 415

• Experiment 10: 298, 423, 941

In this manner the experiments where the infection pattern in wild-type is normally
distributed can now be compared to the normally distributed mutant infection pattern.
This was performed by Levene’s test for variance followed by an Independent t-test for
equality of means. With this test we could find the difference in infection and get an
estimation of the difference.

For all the experiments where infection patterns were not normally distributed the
Mann-Whitney U-test was used. This test could not be used to determine the actual
difference of infection size, however it does indicate if the percentage of infection is
significantly different. We use this test to support the results that were gained from
experiments where the t-test could be used. The mutant strains which had no normally
distributed data in any experiments are not considered. We also did not take into
consideration those mutant infection patterns in which the amount of samples in an
experiment was < 10. The results of CSMn[m] comparison are shown in Table 5.8.

It is difficult to extract direct conclusions from these results, since the conclusions
presented here are only supported by limited experiments. However preliminary conclu-
sions are shown in Table 5.9. For some mutant strains the results were not informative,
as different experiments provided results that could not be integrated. Mutants that
behaved in a similar way for different experiments were: 262, 308, 730, 748, 801 and
885.

Discussion

All considered, the mutant 885 behaves in the same way as the wild-type. No conclusive
remarks can be stated for mutant 423 and 943, as in the current dataset the experiments
provide contradictory results. A graphical representation of those results excluding the
contradictions is shown in Table 5.10.

Mutant strains 748 and 801 are known to have a mutation in the genes from the ESX-1
region. For the ESX-1 it is known that the mutants are less virulent [55, 54].

In our results mutant strains 748 and 801 show a very large difference in infection per-
centage as compared to the wild-type (2% vs 100%). The low percentage of infection for
both strains corroborates the known low virulence phenotype in zebrafish. We therefore
assume that the results obtained with the other mutants can be used to determine their
virulence phenotype.

Mutant strains 262 and 730 are gene knock-outs involved in cell wall bio-synthesis
and show a similar behavior — that is a very large difference in infection percentage
from the wild-type, respectively 25% and 6%. Since the knocked out genes are located
at different locations in the pathway the difference in percentages suggests a different
mechanism, yet similar effect.
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Table 5.8: Variance and mean comparison between MM and each of the mutants. In
cases where the t-test could be performed we also show the ratio of infec-
tion mean mutant/MM. For experiments which had a not normal distribution
Mann-Whitney (*) is used to indicate if the percentage of infection is signifi-
cantly the same or different.
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Mutant sig. diff according to experiment avg. percentage of MM infection

262 yes 2 25%

308 yes 9 11%

414 yes 10
no 0, 9

415 yes 1
no 0, 9

421 yes 3, 5, 7
no 2, 6

423 yes 0, 1
no 8

431 yes 1, 9, 10
no 0

730 yes 5, 8 6%

748 yes 0 2%

801 yes 0 2%

817 yes 3, 7
no 5, 6, 8

885 no

941 yes 2, 9, 10
no 0, 3, 4, 5

943 yes 3, 7
no 5, 6, 8

Table 5.9: Experiment results: difference in amount of infection as compared to the
wild-type throughout the entire fish.

Mutant Wild-type

262

308
730
748
801
885

Table 5.10: Difference in amount of infection as compared to the wild-type throughout
the entire fish, depicted as bar height.
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Figure 5.18: Box plot representation of the normalized cluster size CSn for the Body
region of the wild-type and the different mutants. A lot of difference can
be seen in the behavior of the mutant strains.

5.4.4 Amount of Infection separated into Regions

We want to compare the amount of infection as it is present in the characteristic regions
(Head, Body, Tail, Heart Region, Injection Point). Note that initially we consider the
comparison of the amount of infection per region for different mutants (e.g., does the per-
centage of infection in the Head region differ for mutants A and B), instead of comparing
the infection spread within each mutant. All cases can be compared in a correct way
by normalizing the amount of infection in each region over the total infection amount
in each fish. In this way the problem of a different total amount of infection is solved.
For all objects the entire infection in each case is set to 1.0 and normalizes the amount
of infection in each region. A normalized distribution of infection in the body area the
fish is shown per mutant in Figure 5.18. We see a lot of difference in the behavior of the
mutant strains, yet it needs to be proven to be statistically significant. We attempt to
test the significance by an independent sample t test.

In order to perform this test the data under comparison needs to be normally dis-
tributed. Therefore we apply a Shapiro-Wilk test to test for a normal distribution. We
have analyzed the following features:

• CSn(H) contained no normally distributed data for any of the mutants;

• CSn(B) contained normally distributed data for mutants: 351, 364, 414, 415, 423,
817, 943;

• CSn(T ) contained normally distributed data for mutants: 351, 414;

• CSn(HR) contained normally distributed data for mutant 414;
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• CSn(IP ) contained no normally distributed data for any of the mutants.

• Subsequently only the relationship between 351, 364, 414, 415, 423, 817, 943 in
CSn(B) and subsequently for 351, 414 inCSn(T ) could be considered for para-
metric statistical testing.

Our null hypothesis states that, under the assumption that the two groups are indepen-
dent, their variances are equal. Therefore we need to test the variances first. This is done
with Levene’s test for equality of variances. If the variances are equal an independent
samples t-test is performed in order to determine the equality of means. In Table 5.11
the results are shown.

The results of these tests are interpreted in the following way:

• Mutant 351 had statistically significant larger percentage of total infection (53%±
35%of total infection) present at the body area

as opposed to mutant 943 (38%± 27% of infection)

• Mutant 415 had statistically significant larger percentage of total infection (52%±
20% of total infection) present at the body area

as opposed to mutant 414 (39%± 23% of infection)

• Mutant 414 had statistically significant larger percentage of total infection (39%±
23% of total infection) present at the body area

as opposed to mutant 943 (38%± 27% of infection)

• Mutant 817 had statistically significant larger percentage of total infection (47%±
27% of total infection) present at the body area

as opposed to mutant 943 (38%± 27% of infection)

None of the variables of the wild-type were normally distributed. In order to be able
to accomplish a comparison of the infection spread of each mutant infection and the
wildtype we have chosen a different approach.

As an alternative for the parametric t-test, the Mann-Whitney U-test and the 2-
sample Kolmogorov-Smirnov test are considered. For this test the variables do not need
to be normally distributed. However the variables do need to follow an approximately
same distribution and there is a loss of information, since values are presented as ranks.
Mean equality can therefore not be predicted. This makes it a less powerful test than
the t-test. We compare the control group MM to all the mutants and look for similar
distributions. The null hypothesis is that the distributions of both groups are equal.
The following distributions were found as the same. We used the Mann-Whitney U-test,
since the amount of samples was fairly low and our data distribution is skewed (a lot of
0 values). We state H0:there is no difference in ratio of infection between the wildtype
and mutant x. The results that reject H0 (p ≤ 0.05 and |z| > 1.96) are given in a
graphical representation in Table 5.12, matching z and p(2t) values for this table are
given in Table 5.13.
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Mut Head Body Tail Heart Inj. Point

Location

262

298

308

315

351

415

421

431

550

604

730

740

748

801

885

941

Table 5.12: Graphical representation of the percentage of infection measured in certain
zebrafish regions. We compare each mutant (bars on the left of each com-
parison) to the wild-type (bars on the right of each comparison). Note, that
not the amount of infection, but the percentages are compared.
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Discussion

As we have found earlier (Table 5.10) some mutants give large differences in infection
amount throughout the entire fish, as compared to the wild-type. If we in addition
consider the infection amounts within the regions, as presented in Table 5.12, we observe
new patterns. For example, ESX-1 mutant strains 748 and 801, also on regional level,
show similar behavior, namely for both lower percentage of infection is concentrated in
the tail, head, injection point and heart region as compared to the wild-type. Mutant
strains 262, 431 and 730 (genes knock outs which are involved in cell wall bio-synthesis)
show a similar behavior at the injection point and heart region. All of them have a
higher percentage of infection than the wild-type present in the heart and the same ratio
as the wild-type at the injection point. Yet, the percentages of infection as measured
over the head/body and tail regions do differ.

According to these results the following mutant strains behave the same as the wild-
type when measured for the HR/IP sites: 351, 415, 941.

The measurements presented here can not be interpreted to directly compare the
infection amount between regions in a single mutant strain. For example, although
mutant strain 262 has a lower amount of infection as compared to the wild-type in HR
and the same amount of infection as the wild-type in IP, which does not mean that for
mutant 262 there is more infection in IP than in HR. The reason for it is that the results
presented here are relative to the wild-type and the distribution of infection within the
wild-type should be considered to make that comparison.

5.4.5 Infection Flow per Mutant Strain

For each mutant strain we want to investigate the difference in the response of the innate
immune system in a comparison of different regions in a zebrafish embryo. For example,
for a certain mutant strain, does the heart contain more infection then the injection
point.

We use the same normalized dataset from the previous subsection. The data is not
normally distributed and thus we use the Wilcoxon Signed-Rank Test instead of the
paired t-test. We do this test only for the injection point IP and heart HR since the
area they cover are approximately the same (while the head/body/tail region differs per
individual case). Therefore no additional normalization over the region size needs to be
performed.

Additionally these two regions are indeed dependent, since per fish the amount of
total infection is always 1.0 and thus there is a connection between HR and IP, namely
HR + IP + rest = 1.0. We run the Wilcoxon test on the data. Our H0 states that there
is no difference between the ratio of infection in IP and HR.

As a result we found that for most mutants the spread did not differ and therefore
H0 is not rejected. Significant difference was only found for mutants 298, 415, 550 and
the wild-type. If we consider the median values of these mutants the following can be
concluded:

• Mutants 298, 415, 550 and the wild-type had a significantly higher percentage of
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Mut Heart Region vs Injection Point

Wild-type
298
415
550

262
308
315
351
364
414
421
423
431
604
730
748
817
885
941
943

Table 5.14: Distribution of the percentage of infection within each individual, indicated
by bar height. We consider the heart area and the injection point. The size
of the areas is the same.

infection present in the heart as compared to the injection point.

• For other mutants there was no significant difference in the percentage of infection
between the heart and the injection point.

A graphical representation of these results is shown in Table 5.14.

Discussion

Mutants 298, 415 and 550 seem to have the same flow of infection from the injection
point to the heart. For all other mutant strains this mechanism works differently and
the infection is evened out between the injection point and the heart.

We can see that the infection spread through the regions for the wild-type is: HR > IP
and therefore the results as they are presented earlier in Table 5.10 can indeed not be
used for direct comparison of the distribution within a mutant strain.

In order to keep the statistics clear we have only compared regions of equal size to
each other (HR and IP). Regions H, B, T have therefore not been analyzed in this
experimental setup.
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Figure 5.19: Scatter plot of the average cluster size. Spot location within each region
does not provide locational information.

5.4.6 Average Size of Clusters

In our previous analysis we also took into consideration the normalized ClusterCount
values. These values represent total infection area measured over all clusters at a certain
location (cf. Section 5.2). Now we consider the average size of one cluster in a region
i, ACS [i] (Definition 7) separated over characteristic regions (Head, Body, Tail, Heart
Region, Injection Point ). Additionally we also consider the average size of one cluster
within an entire fish.

Definition 10. Average Cluster Size is the average area covered by the infection in a
single cluster, denoted by ACS . Area is expressed in units that represent the amount of
pixels covering the entire object of interest within in the input images. The image pixels
are classified as infection in an automated fashion as described in 4.3.2. Background
pixels are automatically excluded from the analysis. Average Cluster Size is calculated
by: ACS = CS/CC.

In Figure 5.19 we see that the correlation of the Cluster Size and Cluster Count
shows a near linear increase. Pearson’s p-value is 0.000, indicating that this relationship
is significant. Pearson’s correlation between the two groups is showing a significant
positive correlation of 0.884, which illustrates that if the CS variable increases then CC
also increases.

This also suggests that the interesting cases are the ones that do not follow this
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Figure 5.20: Box plot representation for the ACS is the injection point and the heart
region for different mutants.

trend and are the outliers to the correlation regression (cf. Figure 5.19). A graphical
rendition of the distribution for the injection point region and the heart region is shown
in Figure 5.20.

We have performed normal distribution analysis on ACS for all the mutant strains
and the regions H, B, T, HR, IP. From this approach we obtained the following outcome:

• ACS contained normally distributed data for mutants: 415, 885, 943;

• ACS [H] contained normally distributed data for mutant 351, 415, 548.

• ACS [B] contained normally distributed data for mutant 315, 604, 943;

• ACS [T ] contained normally distributed data for mutant 423;

• ACS [HR] contained normally distributed data for mutants: 315, 351;

• ACS [IP ] contained normally distributed data for mutants: 351, 415, 748, 943.
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Compare Measure Var Means N Mean σ σ̄

415/885 ACS ¬ ¬
415/943* ACS = = 30/49 36/27.79 18.85/14.98 3.4/2.14

885/943* ACS ¬ ¬ 58/49 40/27.79 27.35/14.98 3.59/2.14

351/415* ACS [H] ¬ ¬ 14/28 13.68/29.19 7.70/22.01 2.06/4.16

351/548 ACS [H] = =

415/548* ACS [H] ¬ ¬ 28/6 29.19/8.29 22.01/6.89 4.16/2.81

315/604 ACS [H] = =

315/943 ACS [B] = =

604/943 ACS [B] = =

315/351 ACS [HR] = =

351/415 ACS [IP ] = =

351/748* ACS [IP ] ¬ ¬ 14/14 28.07/7.94 25.68/5.72 6.80/1.53

351/943 ACS [IP ] = =

415/748* ACS [IP ] ¬ ¬ 24/14 50.33/7.94 41.76/5.72 8.52/1.53

415/943 ACS [IP ] ¬ =

748/943* ACS [IP ] ¬ ¬ 14/38 7.94/37.58 5.72/23.85 1.53/3.87

Table 5.15: Levene’s test for equality of variances followed by the t-test for equality of
means. Mutant combinations with significantly different means are marked
with a *.

Our null hypothesis, again, states that, under the assumption that the two groups are
independent, their variances are equal. The results are shown in Table 5.15. Note, that
the wild-type is not present in this table, since it contained no normally distributed data
for the ACS .

The results of these tests are interpreted in the following way (Arbitrary Units (AU)
were measured in pixels):

• Mutant 415 resulted in statistically significant larger clusters (36±22 AU ) through-
out the entire larva as opposed to mutant 943 (28± 17 AU).

• Mutant 885 resulted in statistically significant larger clusters (40±31 AU ) through-
out the entire larva as opposed to mutant 943 (28± 17 AU).

• Mutant 415 resulted in statistically significant larger clusters (29± 26 AU ) in the
head region as opposed to mutant 351 (14± 10 AU).

• Mutant 415 resulted in statistically significant larger clusters (29± 26 AU ) in the
head region point as opposed to mutant 548 (8± 10 AU).

• Mutant 351 resulted in statistically significant larger clusters (28 ± 32 AU ) near
the injection point as opposed to mutant 748 (8± 7 AU).

• Mutant 415 resulted in statistically significant larger clusters (50 ± 50 AU ) near
the injection point as opposed to mutant 748 (8± 7 AU).
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Location Average size of a granuloma

entire larva *
415 vs 943

entire larva *
885 vs 943

head **
415 vs 351

head **
415 vs 548

injection point
351 vs 748

injection point ***
415 vs 748

injection point
943 vs 748

Table 5.16: Graphical representation of the average granuloma cluster size. Only com-
parisons of mutant infection strains that were found to be significant are
shown. In each image the light gray represents the region where comparison
is done. The dark grey circle depicts the standard deviation of the largest
and the inscribed white circle (if present) the smallest granuloma size. The
black line inside the circle represents the average size. It is used for reference.

• Mutant 943 resulted in statistically significant larger clusters (38 ± 28 AU ) near
the injection point as opposed to mutant 748 (8± 7 AU).

No other statistically significant relationships were found. A graphical representation of
these results is given in Table 5.16.

Discussion

We would prefer to compare the mutant strains to the wild-type rather than to another
mutant strain. However, since the wild-type was not present in the results we are
considering mutants that mimic the behavior of the wild-type and that are present in
the results of our analysis.

As we have found earlier (cf. Table 5.8) mutant strain 415 had approximately the
same amount of infection according to experiments 0 and 9 as the wild-type as measured
throughout the entire fish. This also applies for mutant 885 (cf. Table 5.8). We therefore
use 415 and 885 to predict that the wild-type will have slightly larger clusters throughout
the entire body as mutant 943 (cf. * in Table 5.16).

Strain 415 shares the same distribution of the infection between the H region as the
wild-type (cf. Table 5.12). We therefore use 415 to predict that the wild-type will have
larger clusters in its head as compared to the mutants 351 and 548 (cf. ** in Table 5.16).
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Strain 415 shares the same distribution of the infection between the IP and HR region
as the wild-type (cf. Table 5.14 and Table 5.12). We therefore use 415 to predict that
the wild-type will have larger clusters at the injection point as compared to mutant 748
(cf. *** in Table 5.16).

In order to be able to do other comparisons with not normally distributed data we
need to use an alternative for the parametric t-test. However, since the mean equality
can not be predicted it is more difficult to say something about it. In the case of ACS
we have chosen not to perform non-parametric testing as it is less powerful and makes
reasoning about the results harder. However this test will be included in future work.

5.5 Conclusions

In this chapter we have described a recipe for the analysis of the data that is retrieved by
our algorithm from Chapter 3 in order to retrieve interesting patterns. We are attacking
the problem at hand in the following way.

• First, the measurements are collected and arranged into usable data.

• Second, the data is reduced by statistical analysis. During this step tradeoffs must
be chosen between parametric and non parametric testing, the type of normaliza-
tion and data clustering.

• Then the data can be reduced by the use of an infographic. Our infographics
contain a lot of data, yet show it in a compact, understandable way. The meaning
of the data can be illustrated much faster than from written statistical data. All
the infographics used here are supported by statistical analysis. In this way the
data can be presented to the user in a very clear way.
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