
Pattern Recognition in High-Throughput Zebrafish Imaging
Nezhinsky, A.E.

Citation
Nezhinsky, A. E. (2013, November 21). Pattern Recognition in High-Throughput Zebrafish
Imaging. Retrieved from https://hdl.handle.net/1887/22286

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/22286

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/22286

Cover Page

The handle http://hdl.handle.net/1887/22286 holds various files of this Leiden University
dissertation

Author: Nezhinsky, A.E.
Title: Pattern recognition in high-throughput zebrafish imaging
Issue Date: 2013-11-21

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/22286

4 Software Development and Evaluation for
High Throughput Zebrafish Analysis

Under preparation for publication and partially based on:

E.J. Stoop, T. Schipper, Huber S.K. Rosendahl, A.E. Nezhinsky, F.J. Verbeek, S.S. Gur-
cha, G.S. Besra, C.M. Vandenbroucke-Grauls, W. Bitter & A.M. van der Sar: Zebrafish
embryo screen for mycobacterial genes involved in the initiation of granuloma forma-
tion reveals a newly identified ESX-1 component, Disease Model Mechanisms: 526–536
(2011)

A.E. Nezhinsky & F.J. Verbeek: Pattern recognition for high throughput zebrafish imag-
ing using genetic algorithm optimization. In: 5th IAPR Conference on Pattern Recog-
nition in BioInformatics (PRIB 2010), Lecture Notes in Bioinformatics 6282: 302–312,
Springer (2010)

73

4 Software Development and Evaluation for High Throughput Zebrafish Analysis

4.1 Introduction

In the previous chapters we have elaborated on the segmentation of instances in an image.
From the introduction it was clear that the field of application is High Throughput
imaging for zebrafish. In the previous chapters the zebrafish has already been used
as a test object; in this chapter we further elaborate on the successful segmentation
algorithms to embed these in software that can be used in a High-Throughput context
to derive measurements.

4.2 High Throughput Experiments

In recent research the Mycobacterium marinum (MM) infection model in the zebrafish
larvae is exploited in order to gain more insight on the development and mechanisms
behind granuloma formation (cf. Chapter 5) in zebrafish as part of tuberculosis research.

We present a High Throughput (HT) screening setup that is used to obtain insight
into spread of bacteria by investigating different conditions, e.g., different mutants of
MM (cf. Chapter 5) or different infection volumes. Features are extracted to compare a
control condition to an experimental condition (wild-type versus mutant).

Screening was performed in vivo on larvae that were anesthetized in egg water with
0.02% (w/v) ethyl-3-aminobenzoate methanesulfonate salt and images were taken with
a CCD camera mounted on a fluorescence stereo microscope. Until recently the analysis
of the images was done manually, which made true HT screening impossible. Therefore
suitable HT analysis software is needed.

4.2.1 Image Acquisition

For the purpose of localization and quantification of the infection within the larvae for
each subject instance a multimodal 2 channel image is acquired: one channel is containing
a brightfield and one channel is containing a fluorescent image. Within each instance
of the screen up to 3 zebrafish larvae were placed in a single well. Intentionally, the
orientation of the larvae is head-left; however deviations from the preferred orientation
do frequently occur. Both brightfield and fluorescent images were acquired using the
Leica MZ16FA light microscope and captured with a Leica DC500 (DFC420C) CCD
camera 24 bit color with an image size of 2592× 1944 pixels (about 5 Mpixels).

Besides the larvae no other objects are present in the brightfield image with the ex-
ception of incidental noise and debris. An example of a brightfield and a matching
fluorescent image is shown in Figure 3.15. One experiment contains multiple subject
instances that are created with the same microscope settings. For the automation, the
brightfield images are used in order to determine the position and location of the larvae.

The fluorescent images contain the signal from the fluorescent agent that is present
in the larvae, more specifically in the bacteria. The florescent agent used is DsRed,
which indicates the presence of bacteria and is visualized in the microscope from the
red channel with quite strong signal (good signal/noise ratio). Besides infection present,
the color channels can contain values above 0, possibly the result of auto-fluorescence

74

4.2 High Throughput Experiments

Figure 4.1: An example of data organizations as currently done for an array of experi-
ments.

of components in the objects or medium [40]; this should therefore be considered as
background noise. Fluorescent images are used to derive the amount and the location
of infection per object.

The analysis is done in time, all the images that are taken during the experiments are
stored for analysis.

4.2.2 Data Storage

Images from the experiments are stored on a hard disk in an organized semi-structured
manner. This organization is file system based. Images (pairs of brightfield and fluores-
cent images) resulting from the same experiment are grouped together in folders that
are named after the experiments. Folders of experiments are then grouped in a parent
folder which is a group of experiments that are done at a specific date or in specific
conditions. The organization is as is taken from the lab.

As an example consider Figure 4.1. Note, that in this example the directory name
contains the the date of the experiment, but this is not regular practice and therefore
can not be considered as a fixed rule. In this example all experiments that are performed
on 20 April 2012 are grouped together in the folder 12-04-20 M30 that contains sub
folders of experiments for mutant strains that are numbered the same as the folder
names: 262, 298 and 308. The E11b folder contains the experiments that were done
on zebrafish infected with the wild-type strains, i.e., the control group. The ni folder
contains images of zebrafish that are not infected by any bacteria. So, each of the folders
(in the example folder of mutant 262 is unfolded) contains images that were taken during
the experiments.

The images are stored either as 24 bit color lossless (png or tif/tiff) encoding. An
example of the content of such a directory is shown in Figure 4.2.

The type of image (either brightfield or fluorescent) can not be retrieved from the
filename. However, the relation between a fluorescent image and a brightfield that

75

4 Software Development and Evaluation for High Throughput Zebrafish Analysis

Figure 4.2: Containment of a windows directory that represents the output for a single
experiment number 262.

contains the same object is encoded in the filename. The numerical value of the last 2
digits of a fluorescent image is always one higher as compared to the brightfield image
from the same experiment. This is the only filename encoding rule that is applied by
different users. Note, that even and odd number are not fixed for brightfield/fluorescent
images and they can not be identified as such. In Figure 4.2 we therefore can conclude
that image 262-04.tif is taken of same specimen as 262-03.tif. However to confirm the
connection a preprocessing step still is needed in order to determine which images are
fluorescent, for example to prevent the pairing of files 262-03.tif and 262-02.tif to each
other.

4.2.3 User Analysis

We identify the following characteristics of the users that will be working with the
software:

• The users are researchers in the life sciences.

• They work on a PC for analysis and texting applications.

• They are used to doing High Throughput analysis.

• They are used to storing the data in a semi-structured way.

4.3 Our Approach

We have worked out the idea to automate the workflow as much as possible and present
the user with an interface that to a certain extent matches users workflow. First we will
describe the workflow as it exists now. Then we will describe the components out of
which the software is built up and subsequently, we will discuss each of the components
in more detail. The prototype name of the software is ZFA (Zebrafish Analysis).

4.3.1 Workflow

A starting point for the workflow was the data storage as described in 4.2.2. An overview
of the workflow is presented in Figure 4.3.

76

4.3 Our Approach

Figure 4.3: The original workflow of moving from stored images to measurements.

The images that are stored are either fluorescent or brightfield and are located in the
same directory. The first step in the parsing is a labeling of the image content (brightfield
or fluorescent).

Each experiment (contents of a single directory) is considered to be blanco or an in-
fected image group. Blanco images are images that contain embryos that are not infected.
Each blanco image pair consists of a brightfield and a fluorescent image. Consequently,
from these images, the average fluorescent background value can be established per ex-
perimental set. Infected images are images that contain embryos that are infected. Each
infected image pair consists of a brightfield and a fluorescent image. The user determines
which images should be treated as infected and which as blanco. The user can retrieve
this knowledge from the directory names (cf. Section 4.2.2).

Each brightfield blanco imageBb is used to get information on the area that is occupied
by the not infected larvae. This area is then used as a mask for the fluorescent blanco
image Fb and produces masked result mB.

Each brightfield infected image Bi is used to determine the area that is occupied by
the infected larvae. This area is then used as a mask for the fluorescent infected image
Fi and produces a masked result mI.

The average intensity of area mB is used as a threshold for mI. This process is
described in more detail in Section 4.3.2.

The amount of infection and its position is then analyzed in the thresholded mI. The

77

4 Software Development and Evaluation for High Throughput Zebrafish Analysis

output of an experiment should be represented as measurements of the infection within
each zebrafish embryo.

4.3.2 Components

From the workflow several processes emerge and these processes are included in the
software as components, i.e., the preprocessing, the interface, the segmentation and the
data processing components. Next, each of the components is described in more detail.

We decided to build software along principles of evolutionary prototyping.

Physical Implementation

The software is written in the C++ programming language in combination with the
OpenCV library and the interface was created using QtDesigner. The software shell
is chained in a pipeline as two executables. One contains the interface and the pre-
processing component. The other one contains the pattern recognition and the data
processing component. The first program automatically feeds the data to the second
one whenever the user runs an analysis.

Upon execution of the segmentation algorithm runs the interface is not locked, as
an advantage this means it continues to be interactive: the user can select and inspect
images, while the segmentation is ongoing.

Image Preprocessing

Both the fluorescent and the brightfield images are located in the same directory. A pre-
processing step is needed to separate them into the two groups. Therefore an automated
approach is developed to accomplish this separation.

In order to find a way to separate the images we have made the following assessment
of 3000 fluorescent images. First we examine the average intensity of the images. The
histogram of the images was analyzed and an average intensity was calculated. An
example histogram of a fluorescent image is shown in Figure 4.4. The average intensity∑

f(x, y)/n×m (sum of pixel intensities divided by the total amount of pixels) always
remained under one third of total intensity spectrum. Therefore, if the average grayscale
value is lower then MaxIntensity/3 the image is considered to be a fluorescent image.

The filename of the fluorescent images is always linked to the matching brightfield
by a number in the filename and therefore the corresponding brightfield image is easily
retrieved.

User Interface

The interface component directs the user to select the working directories for both input
and output and subsequently presents the user with the previews of the images in selected
directories and allows to start the analysis and adjust different settings. Throughout the
development multiple versions of the interface have been proposed and evaluated with
the users. Version #jan2013 of the interface is shown in Figure 4.5. We will describe the

78

4.3 Our Approach

Figure 4.4: Left: histogram of a sample fluorescent image. As can be seen from the
histogram all intensity values are located close to 0. Right: histogram of a
sample brightfield image (converted to grayscale). As can be seen the values
are more scattered through the entire interval.

sub components in more detail. For each description the corresponding sub component
number is given in Figure 4.5:

1. A drop down File menu. Options of the menu are: Open, Run, Set output folder
and Exit.

• Open: if option is selected an open directory dialog appears. The user selects
directories that contain the blanco images and the directories that need to be
analyzed. The selected data is then automatically separated into brightfield
and fluorescent images and a list of image file names is presented within the
interface (sub component 8). For each directory the user can choose if it
either is a blanco, should be analyzed or both.

• Run: the images in the selected directories are transferred to the segmenta-
tion program and subsequently image processing is performed. The result is
written to a csv file.

• Set output folder : sets the directory where the csv file and the output images
will be written to. Last working directory is always kept if the program is
restarted.

• Exit : exists the interface.

2. The directory that contains the output csv file and the output images (its value
can be modified from the File menu).

3. The output filename can be directly changed from the main interface window. Its
value is saved upon exiting the entire program and is reloaded at start up.

4. The ongoing current task of the ZFA is shown here. From this task an indication
is presented on the current image analysis task — including the current image.

5. Progress bar. At the onset of the analysis the bar is empty. It progresses while
the images are analyzed, with 100% of images analyzed represented by a full bar.

79

4 Software Development and Evaluation for High Throughput Zebrafish Analysis

Figure 4.5: Final version of the interface component.

6. An option to additionally look at specific locations: here the heart and the in-
jection point area. If selected, ZFA will annotate these areas and do additional
measurements at those locations. More information of the location of these points
can be found in Chapter 5.

7. (and 9.) In this window a point-click on a filename activates a preview of the
fluorescent image and the matching brightfield image. Note, that the colors for
display are complementary to the original ones for visibility purposes.

8. The image preview window shows a list of images that are contained in the selected
directory. The user selects, by ticking a checkbox, which of the loaded directories
should be analyzed and starts the image analysis pipeline. The user can make a
selection between the type of images in the selected directory If the user selects
Blanco the images will be treated as blanco images (see Section 4.3.2). If Analyze
is selected the images will be analyzed and the results will be written. If no options
are selected (no checkboxes are selected), then the directory is not considered at
all.

Image Analysis

In order to consider only the fluorescent signal that is resulting from infection the back-
ground is removed from the fluorescent images. We consider only the red channel of the
fluorescent image as that is the only channel that contains meaningful data. Then, all

80

4.3 Our Approach

Figure 4.6: Within the mask a threshold value is set (left: fluorescent image, right:
binary image as a result of thresholded left image).

Figure 4.7: Each zebrafish embryo mask is multiplied with the corresponding thresholded
fluorescent image (resulting from Figure 4.6) .

signal lower than a certain threshold value b is set to 0. The value of b is retrieved from
the blanco images. We assume blanco images contain no infection and all the signal in
it is considered background; we take the value of the brightest pixel of the blanco and
treat it as b. If more then one blanco image is present in the set an average value of the
brightest pixel of each blanco image is used instead.

All blanco images should be from the same set as the images we are analyzing and
the amount of selected blanco images should be > 0 (the user must select at least one
directory containing blanco images), otherwise b can not be computed. The resulting
thresholded image is shown in Figure 4.6.

The brightfield images are used to provide the mask of the shape under investigation.
The shape of the zebrafish embryos is localized by a model based segmentation algorithm
as described in Chapter 3. Each corresponding mask is then used for the measurements
in the fluorescent image. Besides only localizing the shape we also label different areas
as being specific regions of interest within the region mask (cf. Chapter 3).

For the fluorescent images only infection within the mask is used for the resulting
feature extraction. An example of this process is shown in Figure 4.7. In this manner
multiple instances of a shape in one image are processed one by one.

81

4 Software Development and Evaluation for High Throughput Zebrafish Analysis

Data Processing

After the retrieval of the infection in each zebrafish different features of the infection are
analyzed in more detail. An infection area is characterized by clusters of immune cells
(aka granuloma, cf. [54]). The measurements that can be done include measurements
of the shape and the amount of the cluster areas. This includes counting the amount
of clusters, their size, their spatial distribution within specific regions of the specimen,
the texture and the integrated intensity of each cluster. The extraction of the features
is followed by a statistical analysis of the features in context of the experiment. This
is elaborated in more detail in Chapter 5. After data is processed, this component
writes the data to a csv file so that further statistical analysis and classification can
be performed to the data by the user and other software. The process and the results
of the analysis are described in more detail in Chapter 5. Next to the output csv file
also output images are written. These images are the annotated representations of the
extracted masks and include the granuloma presence locations. These images can be
used for visual inspection of the results.

4.4 Evaluations and Results

In the context of the development of the software there are two kinds of results that
should be evaluated. The first are the results of user evaluations of the interface and
workflow. The second are the segmentation algorithm evaluations. That is referring to
the measurement of performance and accuracy.

4.4.1 User Evaluations

The prototyping is combined with a series of evaluations. Requirements for ZFA were
gathered through an elicitation process (derived from the workflow analysis). Users1

were asked to evaluate the product in different development stages of development.
Evaluations were performed on a functional prototype. Throughout different versions
feature requests were added at different stages of the software but the core process was
functional in all versions. For the evaluation the application prototype was installed on
the PC of the user.

Before requirements can be analyzed, modeled, or specified they must be gathered
through an elicitation process. During the elicitation phase we have retrieved the re-
quirements from studying the workflow. We have used the evolutionary prototyping
method with the user feedback regarding the interface design. The major requirements
were known and the way they should be implemented in the interface needed to be
iteratively adapted. The solutions were tested and adapted until interface interactions
were expressed as being satisfactory. After receiving an improved version the users were
interviewed about the usability of the system.

1Biologists at the Vrije Universiteit (Amsterdam) and IBL (Leiden).

82

4.4 Evaluations and Results

4.4.2 Results

The option for an output folder selection was introduced because the users desired to be
able to store multiple output csv files in a single, yet user chosen directory. Directory
location is shown directly in the interface, yet to change it the user must go through the
File menu. This option is added, because the output directory is usually not changed by
the users. However the option to change the csv output filename was integrated directly
in the interface, since users regularly tend to change this.

The current task window for showing the current task was introduced to provide a
better feedback to the user at the moment a problem occurs. This can be the case when
a certain image has a problem and can not be segmented for some reason. The task
window shows the filename of the last image that was analyzed. The user can inspect
that particular image to check if the problem can be solved or perhaps exclude that
particular image from the analysis.

The progress bar was introduced as the users wished to be informed on the time they
need to wait for the program to finish.

Most comments of the users related to the organization of the way a directory structure
containing the images was shown. In the early versions, directories that contained the
images showed previews of the fluorescent images. This was done as the previews could
indicate a rough measure of infection to the user. At first, the previews were shown in
the original (red over black) colors. However, the users commented that it was hard
to distinguish a weak red signal on a predominantly low intensity (seen as black color)
image. For that reason the image colors in the previews have been inverted in the
RGB model as shown in Figure 4.8. The inversion of the RGB channel image was done
according to the logical complement using the following scheme: R(red) was converted
to GB(green,blue); G was converted to RB; B was converted to RG. Since the original
image contained a signal only in the red color resulting images contain only a GB (GB
is also known as cyan) signal on a white background.

In an evaluation the users reported slow loading times of the interface. This especially
occurred when the directories for the analysis contained a larger number of images and
was due to preloading and processing (inverting the colors) of every image. In order
to shorten the loading time in a newer version instead of a preview of all images, the
previews are only displayed on a filename select from a list in the GUI. The resulting
interface is shown in Figure 4.9.

4.4.3 Performance Evaluations and Results

It is important that the users can easily operate the software, but it is evenly important
that the software provides correct measurement results. Therefore we have done perfor-
mance and accuracy tests of the pattern recognition step. The interface, as described
in this chapter, was also coupled to different implementations of the segmentation algo-
rithm. The three different approaches for segmentation are described in more detail in
Chapters 2 (Approach 1 and 2) and 3 (Approach 3).

To compare the performance of the approaches we consider measurements that are

83

4 Software Development and Evaluation for High Throughput Zebrafish Analysis

Figure 4.8: Interactive layout. Image previews are shown in complementary colors with
a white background.

84

4.4 Evaluations and Results

Figure 4.9: Interactive layout. Image previews are not shown. Only when an image is
selected from the filename list the preview appears on the left.

85

4 Software Development and Evaluation for High Throughput Zebrafish Analysis

Segmentation technique Approach 1 Approach 2 Approach 3

true positive (tp) 100 115 120

false positive (fp) 12 5 0

false negative (fn) 23 8 3

Precision 0.89 0.96 1.00

Recall 0.81 0.93 0.98

F 0.95 0.98 0.99

Table 4.1: Comparison of the proposed approaches with respect to zebrafish embryo
retrieval.

common for such pattern recognition problems, namely precision and recall (also known
as sensitivity). Precision is a measurement that represents the fraction of retrieved
shapes that are relevant to the objects under study. Recall is the fraction of relevant
objects that are retrieved. High precision yields a low percentage of false positives (fp),
while high recall yields a low percentage of false negatives (fn). This is given by:

precision =
tp

tp+ fp
(4.4.1)

recall =
tp

tp+ fn
(4.4.2)

In order to combine the two measurements the F-score is used: F = 2 · precision·recall
precision+recall .

We compare the values of precision, recall and F for the three approaches in order
to see improvement in implementation. In Table 4.1 we present an overview for the
measurements for the three approaches and data it was tested on. The same test set
was used for the test of all the three approaches. We compiled the dataset from different
experiments with different background intensities. The dataset consisted of 46 images
containing 3 (36 images), 2 (6 images) or 1 zebrafish shape (3 images) per image. So
in total we tested with 123 zebrafish shapes. Of these images we labeled 25 as hard,
since in those cases the zebrafish shapes were touching, not placed in a lateral view or
showed severe deformations (e.g., bent tail). We assume a true positive has occurred if
the retrieved shape when analyzed by a human observer can be confirmed as zebrafish.
We assume a false positive occurs when a shape is found, yet it is incorrect (we establish
this happens when more then 20% of the shape is outside of the real zebrafish shape, or
at least 20% of the fish is not included). A false negative occurs when a shape is in the
image but it is not annotated as such.

The first approach could not retrieve a lot of zebrafish shapes and it introduces a lot
of false positives when only a part of the shape was retrieved. This happened mostly
in the cases where the zebrafish shapes were close to each other or the tail was heavily
deformed. All shapes were retrieved roughly as an approximation.

The second approach performed well, but still some shapes were not or not correctly
retrieved. In cases of false positives, this happened when the zebrafish tails were heavily

86

4.5 Conclusions and Discussion

deformed and the algorithm failed to detect the tail. The shapes were retrieved more
accurate than by the use of the first approach, however the shapes were still not smooth.
Time needed to do analysis on all the images was approximately the same as with the
first approach.

The third approach performed very well on the dataset. The only three shapes that
were not found by the third approach were all located in the same image. Its analysis
failed because the preprocessing step (mean-shift segmentation) could not separate the
foreground from the background due to low intensity difference. Failing to retrieve these
three individuals thus had nothing to do with the actual pattern recognition step. A
smooth shape was retrieved for every image. Time needed to do analysis on all the
images was approximately 4 times shorter than with the first and the second approach.

Additional elaboration of results and comparisons can be found in Chapter 6.
From this it is clear that Approach 3 gives the best performance and is used in the

latest version of ZFA software.

4.5 Conclusions and Discussion

An evolutionary prototyping procedure with evaluations helped to improve ZFA on the
level of (G)UI as well as performance and features. Also the segmentation algorithm
yields good results and can be used successfully in a High Throughput approach.

ZFA is successful at recognizing the zebrafish larva shape and analyzing the infection
within the larvae. ZFA is robust as it can be adapted to recognizing other shapes
by simply changing the template; therefore it can be suitable for other organisms and
especially in HT.

In the current version the measurements that are performed on the infection are:
localization, infection cluster size, infection cluster amount and average infection cluster
intensity. More texture measurements are to be performed such as shape descriptors
and in depth intensity analysis.

For now the directory structure is used to select image folders containing the data
that needs to be analyzed. This makes the software easy to use in a different laboratory
without the need for a special database. However future work will include an online
database repository where uploading the images through a web based interface becomes
part of the process. This will make local installation of the software obsolete. Currently
the measurements are stored in an output file. The file is in a comma separated format.
This is a feasible approach in a laboratory environment where the users are using different
files for different experiments. However when the amount of images grows the output
should be stored in a relational SQL database for easier indexation. The data can then be
organized based on keywords such as experiment type, experiment date, mutant number
and the id of the biologist that took the images. Links between experiments can then
be retrieved based on SQL queries.

ZFA has proven its value as a software solution for the analysis in a HT screening
pipeline.

87

