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3 Anchor Region Based Pattern Recognition in Image Space

3.1 Introduction

We have designed and developed a generic algorithm for use in High Throughput appli-
cations in the life sciences. We want to automatically analyze images; in particular we
aim at the detection and annotation of shapes of biological interest.

Shapes often seem similar to the human eye; this is a perceptual generalization as each
individual (instance) is different. Size, position and a lot of other aspects differ. Global
proportions and image magnification are the same. An image can contain multiple shapes
and some of them are clustered together which complicates automatic analysis. Without
proper localization and annotation of the regions in the shapes, the measurement of
features within each instance is hampered. Additionally, each shape should be annotated
in such a way that it can be compared to other retrieved shapes. For our analysis we
want to establish an uniform way to overcome these problems.

The analysis is part of a High Throughput setup and therefore the starting point for
our approach is, that in at least 95% of the cases, retrieved shapes should be detected
and annotated correctly.

As a case study we have considered High Throughput analysis of zebrafish as it requires
automated analysis of thousands of zebrafish larvae [54]. For each zebrafish larva, a
brightfield image is acquired as shown in Figure 3.1. The brightfield image is used for
the localization and annotation of the zebrafish shape. Until recently, these images were
manually analyzed. The analysis included localization of the zebrafish shape in the
brightfield images.

This chapter is structured as follows:

• In Section 3.1.2 we describe the development of the algorithm.

• In Section 3.3 we continue with the application of the algorithm to zebrafish larvae.

• In Section 3.4 we extend the application of the algorithm to other shapes.

• In Section 3.3.4 a typical case study with statistical processing of the result is
presented to show the virtue of the current application.

• We close this chapter with a discussion of all results presented (Section 3.5).

3.1.1 Related Work

In order to make our approach more generic we do not design an algorithm specific for
our case study, but rather design an algorithm capable of success when applied to other
problems. The general starting point therefore, is to find the objects that can be globally
defined by their shape. In addition, we investigate the effect of the presence of more than
one instance. As prior knowledge we adapt the fact that the global shape is known but
the position for each shape is not known. We do not, however, consider active snakes or
other free form methods as a possibility.

We assume that in an image only the shapes of interest and some accidental noise
are present. Therefore, if we can separate the foreground from the background the
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3.1 Introduction

Figure 3.1: Examples of brightfield images (converted to grayscale) containing zebrafish
embryos. Note the differences in illumination resulting in shades in the back-
ground and variations in intensity.
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3 Anchor Region Based Pattern Recognition in Image Space

foreground object there will most likely contain the shape of interest and/or some ac-
cidental noise. An example of an approach combining both bottom-up and top-down
methods is given in [22]. The authors first exploit bottom-up image cues to create an
over-segmented representation of an image and then merge the segments by assigning
labels that correspond to the object category.

By the binarization (bottom-up) approach we are converting the problem from the
RGB domain to the binary domain, [21]. The choice of approach is problem related and
is strongly dependent on the data at hand. In the cases where prior spatial information
is known this characteristic can be exploited and used for setting the threshold value.
We have made a small inventory of different approaches for binarization and compared
the results.

Following the binarization we require a top-down approach for the pattern recognition
step, that can simply use a sketch or a logic representation of the object we are looking
for. A deformable template approach can be used for this purpose. Binary images are
successfully used for template and polygon matching [17, 29].

When binary objects are unintentionally interconnected it is good practice to split up
the binary image into a collection of binary regions based on some geometric assumptions
about the data. In the literature the rules to split up large objects are the minima rule
and the short cut rule [33] suggesting splitting an object at its concavities. Finding
concavities is preceded by finding the convex hull of an object [6]; this method can be
very effective. In such problems the choice of the algorithm that is used to split the
binary objects based on their concavities is very problem dependent. The recognition
step still must be performed on the resulting binary elements. We want to investigate if
a more globally operating method can be found.

A brute force template matching algorithm that uses straightforward matching of a
template element to every possible deformation, transition and rotation would be too
computationally intensive [28]. This problem can be overcome by reducing the search
space through application of predefined rules or a method should be used which is not
dependent on pixel by pixel comparison. Predefined rules can be retrieved from a priori
knowledge about the image. We therefore want to investigate a new direction in template
matching approaches as addition to existing techniques. To that end we developed an
algorithm capable of retrieving deformed shapes based on a prototype model.

3.1.2 Algorithm Overview

We propose a complete framework for analysis and recognition of biological shapes. It
consists of multiple steps and several scenarios. The analysis pipeline is shown in Figure
3.2. As input a color or grayscale image (Input image) is used and in addition a Prototype
Template of the shape that is looked for.

First, a Preprocessing step is applied in order to separate the object(s) from the back-
ground and by this the Input Image is converted to a Binary image. Segmentation alone,
however, does not give satisfactory results, as we are not only interested in separating
background from foreground, but we also want to recognize the particular shapes and
their position and best possible representation in the image.
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3.1 Introduction

Figure 3.2: Proposed framework for the main scenario of shape localization and annota-
tion.

The second step, a Pattern Recognition step, is applied in order to recognize the
shapes from the binary image and annotate them. This is done by retrieving the best
representation of the prototype template in the binary image. The resulting shape (Final
detailed result) can be used for further measurements.

In order to make this model fit for High Throughput (HT) applications we propose
a scenario so that the results produced by the main scenario need to be checked by a
human for consistency. This scenario is an addition to the fully automated scenario in
the following way. From the Preprocessing step the number of Connected components
that are extracted as foreground is retrieved. In cases in which the shapes are not
overlapping each other and no other objects are present in the image, the final result
should present the number of objects that equals the number of connected components.
Therefore we can assume that in most cases the number of connected components from
the preprocessing step equals the number of objects present in the image. If the number
of connected components does not equal the number of retrieved shapes from the final
result, we mark this result as something that needs to be evaluated by a human observer
for correctness. The complete process is shown in Figure 3.2.

3.1.3 Pre-processing

For the proposed approach we need a bottom up technique that can easily separate
foreground and background. The production of a binary image Ib from a grayscale or a
RGB color image differs per problem at hand and will therefore not be the focus here.
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3 Anchor Region Based Pattern Recognition in Image Space

However, we will in short describe the binarization algorithm for a specific shape, since
we will use it as an example throughout this chapter.

Thresholding of the typical images containing biological objects is not a trivial pro-
cess. This is due to the fact that images often suffer from uneven illumination as result
of microscopy, contain noise and have different color values representing the similar
structures. As an example consider the images and their differences in Figure 3.1.

We have evaluated the performance of different thresholding methods for the images
as used in this case study [43]. For the segmentation we did not use a texture based
descriptor, since it was reported [69] that this method produced false positives when a
background region contained texture similar to the object of interest. A detailed com-
parison of binarization methods for the images containing zebrafish is given in Chapter 2.

For the binarization we have probed a state of the art method, mean shift segmenta-
tion [59]. This approach distributes the image into connected regions (or clusters) based
on color similarity. Since the mean-shift can run with different parameter settings these
should be derived from the data. To accomplish this we run the algorithm with different
settings.

To determine the correct settings for the mean-shift segmentation algorithm for the
case study we use the assumption that the shape is never located at the edge of the
image (1) and that the objects of interest are smooth shapes (2):

1. We assume the objects of interest are never located at the edge of the image.
Therefore we can assume that the image border consists for the most part or solely
of the background: all pixels that are part of the same cluster as the border pixels
are also background. As a result of this assumption the background can be easily
subtracted from the image, and in this way only the objects of interest and noise
remain.

2. A smooth object will tend to have a lower compactness (Eq. 3.1.1) then edgy
ones, so we can use this measurement to determine if an object is present in the
image. For each collection of clusters resulting from mean-shift segmentation we
start with checking the compactness of the objects (or clusters). We subtract the
background clusters from the collection and of the remaining ones we calculate
the average compactness. The settings that provide the highest compactness are
chosen as best settings. In order to calculate compactness area and perimeter of
each binary object oi are considered:

compactness = perimeter(oi)
2/area (3.1.1)

As an example throughout this section we use the binary image Ib as shown in Figure
3.3. This image was derived from the grayscale image through mean-shift segmentation.
The result of the preprocessing is a binary image without annotation of the shapes.
Moreover non specific shapes, noise and debris are still present in the image and need
not be taken into account for our measurements. Therefore, additional segmentation is
needed.

50



3.2 Pattern Recognition: The Anchor Region Based Method

Figure 3.3: An example of grayscale and binary image containing zebrafish embryos and
some artificial debris.

3.2 Pattern Recognition: The Anchor Region Based Method

Now that we have removed the background with the pre-processing step we need to
recognize and annotate the shapes that are segmented from the binary image. As Pattern
Recognition step we have developed a Deformable Template Matching method: the
anchor region based algorithm. In Figure 3.4 an overview is shown.

We investigate the feasibility of a new Deformable Template Matching approach com-
pared to solutions presented in Chapter 2.

The template matching takes a binary image Ib as obtained from the preprocessing
step. Binary image Ib consists of two types of regions: foreground regions R0, . . . , Ri

and the background.

Foreground regions R are defined as a collection of interconnected pixels with value 1.
Background regions B are defined as a collection of interconnected pixels with value 0.

3.2.1 Prototype Template

The prototype template consists of template elements (t0, t1, . . . , tn). The sequence of
elements in the tuple defines the order of these objects. Each element t is defined by its
size r and a length limitation l:

• r is the radius of a circle that inscribes the object to be determined

• l is the distance between the inscribed circle centers of t

Graphically this is depicted in Figure 3.5.

Since we want to focus on biological shapes the size and length may vary substantially.
Therefore we represent r and l as variables instead of constants. We assume, however,
that the ratio of different template elements as relative to each other is the same, while
the object itself might be scaled. In this way we can define a collection of shapes with
variable width and length that all match the shape of interest.
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3 Anchor Region Based Pattern Recognition in Image Space

Figure 3.4: Overview of the proposed framework for Object Recognition. The first in-
put is a binary image that consists of fore- and background regions that
are obtained from the pre-processing. Second input, a prototype template,
represents the ideal shape of the object that we would like to retrieve. As
output detailed results are provided in the form of object instance locations.
The numbers (1, . . . , 6) refer to the explanatory text.

Figure 3.5: A template element t(r, l), defined by the inscribed circle radius r and inner
length l (extension within which this circle can shift).
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3.2 Pattern Recognition: The Anchor Region Based Method

Example Template

For example, if we want to localize all elements that look like a zebrafish larvae as
depicted in Figure 3.3 we can define the prototype template as a head object t0 followed
by a body object t1 followed by a tail object t2. The prototype template shape sequence
is then [t0t1t2]. Now we construct the template as follows.

For the head region instead of a constant value for r we define r0 � 0, r0 < r1. This
means that the head element must have a radius of inscribed circle smaller than for the
body region.

The radius of the tail region at its largest should be smaller then the body region,
with a minimum of 70%, thus, 0 < r2 < 0.7r1.

We assume that the length of the head and body region together should be less than
half of the entire shape, thus, l0 + l1 < 0.5 · (l0 + l1 + l2).

The zebrafish larvae shape can be represented as:

T0 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[t0t1t2] sequence

r0 � 0, r0 < r1, 0 < r2 < 0.7r1 radius relationship

rmin < ri < rmax radius limits

(l0 + l1) < 0.5 · (l0 + l1 + l2) length relationship

lmin < (l0 + l1 + l2) < lmax length limits

(3.2.1)

The values of rmin, rmax, lmin, lmax are here to restrict the allowed object size or length
for parts of the zebrafish object. If we set rmin = 0, rmax = ∞, lmin = 0, lmax = ∞, the
representation becomes fully scale independent.

3.2.2 Conversion from Image to Graph

In this section we elaborate on the steps 1, 2, 3 and 4 from Figure 3.4. The template
matching step consists of searching for characteristic regions in Ib as they are defined in
the prototype template T0. In order to do so we need to convert the search space into a
representation that can be used with the template T . To that end we need an approach
that converts the representation of the objects in the image from binary shapes to a
graph that can be traversed and evaluated. The representation must be reversible, that
is, upon localization of the template elements in the graph we must be able to convert
graph nodes to the original shape.

The concept of anchor points [57] is very helpful to obtain the template elements.
Anchor points are defined as a collection of non-removable pixels during the thinning
process. In [57] a set of anchor points (RCDM) based on a reduced set of center of
maximal disks (CMDs) is retrieved for reversible skeletonization.

Our approach is based on retrieval of a set of CMDs followed by the reduction of the
set in such a way that the global characteristics of the shape still can be described while
the search space is drastically reduced. We adapt the basic method to our needs.
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3 Anchor Region Based Pattern Recognition in Image Space

Figure 3.6: Euclidean Distance transform D of the binary image from Figure 3.3. An
inverted lookup table is used, therefore the lighter pixels correspond to low
DT function values (closer to the background) and dark pixels correspond to
high values (further from the background).

Compute Distance Transform

The Euclidean Distance Transform is a tool common in shape matching and doing mea-
surements related to distance and CMD retrieval [67, 5, 13] and therefore it lends itself
perfectly for the problem at hand. The Euclidean Distance Transform (EDT, or DT for
short here) is a generally used operator which stands for the calculation of the smallest
Euclidean distance from each pixel to a region of interest (cf. [15, 5, 14]).

As input image we use the binary image mask Ib. As output we construct an image
that will represent a DT map which will denote the radius of each region (step 1 in
Figure 3.4). The resulting Distance Transform has the same dimensions as Ib and is
denoted as D. The value of each pixel in the DT image corresponds to the distance to
the background d. The result of a DT applied to the grayscale image in Figure 3.3 is
shown as in Figure 3.6. In this image the locations of a larger inscribed circle for Ib have
lighter color.

Convert Distance Transform to Anchor Regions

Now from the DT the Anchor points are obtained (step 3 in Figure 3.4); the DT is
reduced to a set of anchor points through repetitive dilation of region in D. This object
will be called Dbest.
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3.2 Pattern Recognition: The Anchor Region Based Method

We set the starting di = rmin (smallest radius of the object we are looking for) and
increase by di+1 = di + δ while di ≤ rmax with stepsize δ = 1. We choose δ = 1 in
order to simplify the calculation, as a consequence the resulting anchor points may have
a thickness of more then one pixel and might not be accurately reversible. In our case,
the representation is used for recognition of the general outline of the object during the
template matching step and complete reversibility is not required. Note that the anchor
points in this case will be represented as clusters of non-removable pixels rather then
one-pixel points. Therefore we prefer the term anchor regions instead.

For each iteration the following is done. First we threshold D with distance value di.
The resulting image D[i] will contain only the regions that were created with element
width ri. For each pixel at D(x, y) the following is done:

D[i](x, y) =

{
1 D(x, y) = di

0 otherwise
(3.2.2)

Dbest(x, y) = max(D[i](x, y), Dbest(x, y)) (3.2.3)

Now, Dbest contains only the largest radius regions.
To retrieve the approximation of the shape that is covered by the retrieved radius

region we perform backtracking, therefore D[i] is subsequently dilated with a circular
structuring element Ei with a radius di. The result is subtracted from D in order to
prevent evaluating at the same area in the next iteration:

D′ = D − (D[i]⊕ E(di)) (3.2.4)

Each result is the input to the next iteration. At completion of iterations (stop criterion
defined as di ≤ rmax) Dbest will contain only the global anchor regions a0, a1, . . . , an. In
Figure 3.7 the resulting Dbest is depicted.

In order to define each anchor region a from Dbest in such a way that it can be used as
a node in a graph, an anchor region a is represented in the following manner: a(d, F, c),
where:

• d is the radius of the circular structuring element belonging to the anchor region.
For each a we store the d(a) = di that was used for its creation.

• F is the shape representing the anchor region. It is a collection of pixels that
contribute to the anchor region shape.

• c(cx, cy) is the anchor point, which also is the center of mass of the shape.

The overview of the entire process is given in the following pseudo code fragment:

1. d = rmin

2. i = 0

3. while d ≤ rmax do
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3 Anchor Region Based Pattern Recognition in Image Space

Figure 3.7: Dbest: a collection of anchor regions a0, . . . , an selected from the Distance
Transform of example in Figure 3.3. d for each a is encoded as a grayscale
value. Image saturation contrast has been improved for visual purposes.
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3.2 Pattern Recognition: The Anchor Region Based Method

Figure 3.8: Example of a dilation process of an anchor region by a circular structuring
element. Dark area to the left is the anchor region being dilated, resulting
in the dark area to the right.

4. i = i+ 1

5. d = d+ 1

6. for x = 0 to ImageWidth do

7. for y = 0 to ImageHeight do

8. if D(x, y) = d

9. D[i](x, y) = 1

10. else

11. D[i](x, y) = 0

12. end for

13. end for

14. Dbest(x, y) = max(D[i](x, y), Dbest(x, y))

15. D = D − (D[i]⊕ E(d))

16. end while

Determine Undefined Space

Now that we have determined all anchor regions in Dbest we can consider the area it
represents. A consequent dilation of every anchor region ak will result in such area. A
graphical example of a dilation process of an anchor region is shown in Figure 3.8.

Taking Figure 3.7 as an example, if we perform a dilation of each ak with a circular
structuring element with radius d(ak) this will result in a configuration as depicted in
Figure 3.9:

F (ak)⊕ E(d(ak)) (3.2.5)
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Figure 3.9: Dilation of every anchor region shape in Dbest from Figure 3.7.

The result obtained by application of Eq. 3.2.5 captures the original shape in a global
manner but is missing out on the small details; more specifically, objects that have
d < rmin are discarded.

This error is introduced through the usage of non linear filters. For retrieving the
global shape of the objects this does not give any problem.

However, since we need to reason about the retrieved regions, we save all these regions
as undefined regions U (step 2 in Figure 3.4). The region U can be determined by a
subtraction of the dilated Dbest from the original binary image:

U = Ib − (D[i]⊕ E(di)) (3.2.6)

for all i. For the example in Figure 3.10 the resulting undefined region image is depicted.

Connecting Nodes

The next step consists of creation of an undirected graph G connecting the anchor regions
(step 4 in Figure 3.4). This is accomplished by connecting all neighboring anchor regions
through their centers of mass.

We define am to be a neighbor of an if the elements of the line from the center of
mass of amto the center of mass of an ( c(am) to c(an)) are entirely within regions
belonging to the dilated sequences of these anchor regions (or nodes). An example of
this neighboring definition is shown in Figure 3.11. This definition is comparable to the
definition of Voronoi (or Delaunay) neighbors: if two Voronoi regions share a boundary,
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3.2 Pattern Recognition: The Anchor Region Based Method

Figure 3.10: Undefined space U .

the nodes of these regions are connected with an edge. In our case the regions themselves
can not be seen as Voronoi regions, however the neighboring property is the same.

In order to handle the undefined space the previous rule is extended as follows. We
define am to be a neighbor of an if the elements of the line from c(am) to c(an) are
entirely within regions belonging to the dilated sequences of these anchor regions (or
nodes) or to undefined regions, cf. Eq. 3.2.7. An example is shown in Figure 3.12.

c(am)c(an)εF (tm)⊕ E(d(an)) ∩ F (an)⊕ E(d(an)) ∩ U (3.2.7)

In Figure 3.13 we show G as it is created for the example of the zebrafish larvae.

The rule as described in Eq. 3.2.7 is always applicable for neighbor definition except
in pathological cases, for example due to poor image quality.

Convert Anchor Regions to Template Elements

Since a path in G is a sequence of anchor regions these need to be converted to template
elements. One template shape element ti can consist of multiple anchor regions. To that
end a collection of anchor regions [a0..an]εti if:

• All anchor regions are of the same radius as the template element:

– for all i with 0 � i � n , d(ai) = ri

• The length between the start and the end of the anchor region chain fits the
template element length definition:
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Figure 3.11: Consider the areas A, B and C. Elements of the line from c(A) to c(B) are
entirely within regions A and B. This makes A and B neighbors. Elements
of the line from c(B) to c(C) are entirely within regions B and C. This
makes B and C neighbors. Some elements of the line from c(A) to c(C) are
not within regions A and C. A and C are therefore not neighbors.

Figure 3.12: Consider the areas A, B and U . U represents the undefined regions. Ele-
ments of the line from c(A) to c(B) are not entirely within regions A and
B. However, elements of the line from c(A) to c(B) are all within regions
A, B and U . A and B are therefore treated as neighbors.
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Figure 3.13: Graph G depicted on image containing the dilation of Dbest.

– lmin(i) � c(a0)c(a1) + c(a1)c(a2) + . . .+ c(an−1)c(an) � lmax(i)

Now that we have a conversion approach for anchor regions to template elements we can
assume that graph G consists of template elements t.

3.2.3 Bayesian Formulation

In the graph G, representing the input image, we will search for the presence of the
prototype template. Therefore G is traversed. An optimal solution determines the
location of the best matching shape.

An optimal solution is defined as one with the highest probability being a deformed
instance of the prototype template. The probability of a shape Ti being present in an
image is expressed as: P (Ti|G):

P (Ti|G) =
P (G|Ti)P (Ti)

P (G)
(3.2.8)

Let δ be any deformation of the prototype template T0. Then, according to [60] P (G|Ti)
can be expressed as marginal probability sum of all probabilities for a deformation to
happen joint with the probability for its validity P (G, δi|Ti) . This sum is approximated
by

�
P (G, δi|Ti)dδ and can be rewritten in the following way:

P (G|Ti) =

�
P (G, δi|Ti)dδ =

�
P (G|δi, Ti)P (δi|Ti)dδ (3.2.9)
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Then, in order to maximize the probability that given graph G we can identify our
template T in it can be related to the maximum of the following expression:

P (G|δi, Ti)P (δi|Ti) (3.2.10)

P (G|δi, Ti) represents the likelihood. P (δi|Ti)dδ is the prior probability of a deforma-
tion. We can reduce the problem to minimizing external and internal energy [60], related
respectively to likelihood and prior probability:

Eext = − logP (G|δi, Ti) (3.2.11)

Eint = − logP (δi|Ti) (3.2.12)

This yields a total energy function that needs to be minimized being E = Eext+Eint.

Likelihood

The likelihood is a measurement of the similarity between an underlying object in G and
the deformed template Ti in the image [24].

A deformed object of interest is a path in graph G that contains all the template
shape elements that are present in T0 (and these elements are encountered in the same
sequence).

A solution s is an ordered list of template elements [t0, . . . , tk]. Cases where s =
[t0, . . . , tk] /∈ T0 are not taken into consideration as a valid solution, therefore

P (G|δi, Ti) =

{
0, if s /∈ T0

1, otherwise
(3.2.13)

For the zebrafish test case we assume that its basic structure should always be the
same. Therefore we do not introduce any fuzzy classifier for the external energy and
only consider the cases where P (G|δi, Ti) = 1. Then energy function that needs to be
minimized becomes:

E = Eint if s /∈ T0 (3.2.14)

Prior Probability

Prior probability [24] is model driven and is the probability of a deformed Ti matching
the original T0. We provide a prior that is applicable to the zebrafish larva, being the
main test case of this chapter, based on the following assumptions:

• The template, as described in Eq. 3.2.1 assumes a regular (healthy) zebrafish is
straight. Bended instances are allowed, but the straight ones should be preferred.

62



3.2 Pattern Recognition: The Anchor Region Based Method

• The template, as described in Eq. 3.2.1, is represented in such a way, that shorter
instances could be (mis)interpreted as correct matches, while being a subset of the
correct match. For example a zebrafish match with a short tail can be considered
a solution, while the tail actually is longer. In order to prevent this we need to
prioritize the solutions that represent longer shapes.

As a result of these assumptions we construct the following priors:

• We favor the less deformed shapes over the heavily deformed ones. For two se-
quential nodes ta and ta+1 we check the angle θa−1,a+1 between nodes as compared
to their predecessor node ta−1:

θa−1,a+1 = arctan(c(ta−1)x − c(ta)x, c(ta−1)y − c(ta)y)(180/π)
− arctan(c(ta)x − c(ta+1)x, c(ta)y − c(ta+1)y)(180/π)

(3.2.15)

In order to consider the less deformed solutions we look at:

θlargest = max(θ0 . . . θk−1) (3.2.16)

We prioritize the candidates with the lowest θlargest. This means the prior proba-
bility increases as θlargest decreases.

• Additionally solutions that represent longer shapes need to be prioritized. Length
of a solution l is represented as the sum of distances from anchor regions tato tb
mass centers:

l =
∑

c(ta)c(tb) (3.2.17)

We prioritize the candidates with the highest l. Therefore prior probability in-
creases when the solution path length increases.

To that end we set the internal energy to:

Eint = e−ml · e−k(1−θlargest) (3.2.18)

with m, k normalizing constants. In Eq. 3.2.14 we state to consider only cases where
likelihood equals 1 therefore E = Eint.

3.2.4 Finding an Optimal Solution

The Bayesian approach leads to a list Lall that contains all solutions in the dataset. The
following rules are considered while looking for optimal solutions:

• Create a list Lbest that will contain the optimal solutions

• Iteratively select the solution s with lowest E from Lall. To prevent cycles, solutions
with multiple instances of the same node are not considered.

– Save s to Lbest

– Remove s from Lall
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Figure 3.14: A visual representation of retrieved zebrafish larvae. Detected shapes are
delineated with white.

– Remove all solutions that share at least one node with s from Lall

• Continue looking for solutions, while Lall is not empty (contains solutions)

The global shape of the objects can now be selected from the solutions in Lbest. The
shape is then retrieved by applying a dilation to the anchor regions.

The shape is not exact as it was an approximation derived from a distance transform
and dilation. In order to accurately retrieve our objects we miss out on the small objects
in the image at the locations where the opened regions are overlapping each other. These
small objects appear because opening does preserve the main geometric features, but
excludes features that are smaller than the structuring element radius. These small
objects (or artifacts) do remain in the undefined space U . Therefore we add elements
from U to the solution under evaluation. In order to know which elements to add we
select all elements that are the neighbors (cf. Eq. 3.2.7) of the retrieved regions (step 5
in Figure 3.4).

In our example the optimal result with three best solutions is shown in Figure 3.14.
Note that the algorithm correctly annotated the three zebrafish shapes, while the arti-
facts were not included.

3.3 Case Study 1: Zebrafish infection analysis

We have applied our approach for shape retrieval and annotation in a case study regard-
ing the spread of induced bacterial infection within the zebrafish larvae. In Chapter 5 a
more detailed description is given.

To better understand the infection progression large quantities of zebrafish larvae im-
ages needed are infected and after a few days of infection images are taken. All these
images need to be analyzed. Until recently, these images were analyzed manually. Of
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Figure 3.15: A brightfield image (in grayscale representation) and a matching fluorescent
image (in grayscale representation). Images were taken with Leica DC500
microscope.

each location containing the zebrafish larvae two images were taken: one brightfield im-
age in order to establish the location of the larvae, and one fluorescent image containing
only location of the infection. In Figure 3.15 example of such an image pair is shown.

The analysis includes localization of the zebrafish shape in the brightfield image and
quantification of the granuloma cluster size and spread from the fluorescent images. This
enables the necessary HT automated approach.

For this case study we use a comparison of infection pattern of the wild-type of the My-
cobacterium marinum (MM) that made the zebrafish sick with a mutant strain (714M)
that induced less infection [42].

A brightfield image is used for finding and annotating the zebrafish shape. Addition-
ally, locations of subareas can be estimated. We annotate the zebrafish larvae shape
based on the prototype template representation as shown in Eq. 3.2.1. By using this
template as prototype the algorithm estimates the location of the head, body and tail
region of the zebrafish larvae.

3.3.1 Zebrafish Orientation

The template we have used for the zebrafish does not discriminate between the top
and the bottom of the zebrafish. Therefore an additional step is needed to retrieve the
orientation of the zebrafish larvae shape; this is necessary for a good assessment of the
infection.

In order to be able to determine that the following approach is suggested. We localize
all the convex deficiency locations. The bottom of a zebrafish shape will usually have
larger convexity defects then the smooth top. If the largest convexity defect is then
located below the shape path we assume the fish is on its belly, otherwise its on its back.

The annotation allows us to retrieve some other characteristic locations within a shape.
For example the heart of the larva and the point at which usually injections are performed
can be not automatically retrieved. This could be done by defining the locations of these
points of interest in the prototype template. For example, the heart is located between
the head and the body nodes at the bottom of a larva. The injection point is located
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Figure 3.16: Graphical representation of the separation of a zebrafish into regions.

approximately halfway the tail area. An automatic annotation of these locations can
then be performed as we know the locations of the head, body and tail regions and we
have obtained the shape orientation from our analysis.

3.3.2 Zebrafish Region Annotation

Now for the assessment of the infection, head (H), body bottom (BB), body top (BT),
tail bottom (TB) and tail top (TT) are defined. From the position assessment the
orientation of the zebrafish could be easily retrieved. This made it possible to divide
areas into the top and bottom part. Separation of these regions was based on [63].

The estimated location of these areas is shown in Figure 3.16. After annotation the
found regions were masked with the fluorescent image of the same fish (cf. Chapter 4)
in order to define infection location and amount.

3.3.3 Data

For this case study 189 zebrafish larval shapes were retrieved and analyzed. The images
are the input for the analysis framework which consisted of two steps. First the zebrafish
are localized by our algorithm and then used as a mask for the fluorescent images.
Infection spread and size is saved to a comma separated file. In Figure 3.17 and Figure
3.18 an example of the result is shown. Based on this annotation the infection patterns
were established and described in more detail in Chapter 4

3.3.4 Analysis and Results

In our case study we set out to analyze the relationship between mutant and wild-
type (MM) in the amount of clusters, spatial distribution and the cluster size. The
results presented here followed from an in depth statistical analysis that is described in
Chapter 5.

In all regions of the zebrafish the wild-type gives a higher area of infection compared
to the 714M; overall the infection area is 5 times larger. In the head region the same
percentage of the granulomas in both MM and 714M are located. In the body bottom
region a higher percentage of the granulomas of the MM then 714M are located. In
the tail bottom region a higher percentage of the granulomas of the 714M then MM
are located. A graphical representation of these results is shown in Figure 3.19. In all
regions of the zebrafish the MM gives a higher amount of clusters then the 714M; overall
the amount of clusters is 3 times higher. The spread of the clusters is not significantly
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Figure 3.17: Output for a single image as created by the our algorithm. The found
shapes are denoted with red line. The purple area indicates the presence of
granuloma formation at the current location. Optimal graph G is printed
within each shape. Blue lines represent node connections that were classified
as tail area, green lines as body area and red as head. This image is created
in an automated fashion.

Figure 3.18: Output for a single image as created by our algorithm. The found shapes
are denoted with red line. Note that the shapes in this example are heavily
deformed, yet the shapes were found and annotated correctly. This image
is created in an automated fashion.
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Figure 3.19: Graphical representation of the amount of infection (see Chapter 5 for more
information on these infographics). While there is always more MM infec-
tion than 714M, the percentages of their presence in certain regions are
different.

different for MM and 714M. In this manner we can derive statements on the behavior
of mutant strains.

3.4 Case Study 2: Other Model Organisms

For an additional test of the algorithm we test the possibility to separate different
shapes/organisms in the same image. An experiment was set up with two different
shapes, We have collected images containing both Xenopus laevis and Danio rerio. In
early stages (20-30) the Xenopus has approximately a length in the same order of mag-
nitude as a zebrafish embryo in larval stage. However, the shape of the organisms is
different: the tail of the Xenopus has the same width as its body, which is different from
the zebrafish. In Figure 3.20 we present an image containing the zebrafish in larva stage
and the Xenopus in stage 26.

We have used Figure 3.20 as input for our algorithm with a prototype template
T0zebrafish as presented earlier in this paper. As result the zebrafish larva was found
while the Xenopus shape was rejected as a solution. The result is shown in Figure 3.21.
As can be seen the non zebrafish shapes were not selected, while zebrafish shapes were
annotated.

In order to be able to find the Xenopus we have adapted the prototype template to
the following:

That is, the r of the tail of the Xenopus should in general be close or equal to its body
thickness (biggest part of the tail should be or at least 70% of it):

T0xebnopus
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[t0t1t2] sequence

r0 � 0, r0 < r1, r2 > 0, r2[biggest] > 0.7r1 radius relationship

rmin < ri < rmax radius limits

(l0 + l1) < 0.5 ∗ (l0 + l1 + l2) length relationship

lmin < (l0 + l1 + l2) < lmax length limits

(3.4.1)
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Figure 3.20: Brightfield image of a zebrafish in larval stage (on top of the image) as well
as the Xenopus in stage 26. Image was provided by N.Bardine.

Figure 3.21: Results of applying or algorithm to an image of a zebrafish larva and the
Xenopus larva with a prototype template T0zebrafish .
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Figure 3.22: Results of applying or algorithm to an image of a zebrafish larva and the
Xenopus larva with a prototype template T0xenopus .

Results of the segmentation are shown in Figure 3.22. As can be seen with this
template the Xenopus shape is annotated, while the zebrafish shape was ignored.

To show that our algorithm is independent in scale and size and only shape based
we also run the algorithm for an image that is containing the zebrafish larva and the
Xenopus in a later stage of development (see Figure 3.23). In stage 45 Xenopus shape is
very similar to the zebrafish and its shape has approximately the same characteristics.
The difference, however is the size, as the Xenopus in this stage is several magnitudes
bigger then the zebrafish.

Results of the segmentation are shown in Figure 3.24. As can be seen both the Xenopus
as the zebrafish are annotated. This is due to the fact that their shapes are similar and
thus both fit the prototype template of the zebrafish larva regardless of their size.

3.5 Conclusions

The algorithm is robust; it can deal with variation in position and orientation which
makes it a perfect candidate to use for the complex shapes and scenes as apparent in
life sciences: if no special instrumentation is used the location and orientation will not
be known.

We have successfully used the algorithm in a case study for HT of automatic recog-
nition of zebrafish larva, specifically for in depth analysis of granuloma cluster spread.
From statistical analysis of the output data we gained insight on the distribution pattern
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Figure 3.23: Brightfield image of a zebrafish in larval stage (on top of the image) as well
as the Xenopus in stage 45. Image was provided by N.Bardine.

Figure 3.24: Results of applying or algorithm to an image of a zebrafish larva and the
Xenopus larva with a prototype template T0zebrafish .
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of the wild-type strain and how it was different from mutant 714 strain.
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