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2 Segmentation and Pattern Recognition in
Image Space
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2 Segmentation and Pattern Recognition in Image Space

2.1 Introduction

Retrieving location and contour of a shape is crucial for the analysis of large image
datasets in many fields, such as optical character recognition (OCR) and bio–imaging.
Segmentation is the decomposition of an image into foreground objects and background.
Foreground objects are preferably the (biological) structures of interest, while other ob-
jects and noise are the background. In most cases objects of interest are homogenous
regions and therefore most segmentation methods are based on homogeneity. Homo-
geneity of an object can be based on different characteristics, this can be color, texture
or other similarity measures.

2.1.1 Related Work

Most segmentation techniques use a characteristic object feature in order to separate
objects from the background. These features can be based on object shape or on color
or texture and are attempting to mimic human visual system behavior. A successful
segmentation turns a grayscale or color image into a binary representation in which one
value represents the object of interest and the other the background.

The first step in many applications is to segment a meaningful biological structure
from images and remove the background, despite its position, rotation and scale. Im-
ages in biology are acquired under different conditions which affects quality, brightness,
contrast, lighting conditions and the amount of noise. Consequently, extraction as well
as processing of shapes from the images might be hampered.

We can separate the segmentation techniques into two groups: bottom up segmen-
tation and top down segmentation [4]. Bottom up segmentation uses image criteria in
order to define image regions that are likely to be the structure of interest. In this case
no machine learning or pattern recognition is involved.

The top-down approach on the other hand uses pattern recognition techniques that use
predefined object representation in order to approximate the object location. Top-down
methods are suggested to mimic human vision behavior and are becoming more successful
in retrieving an object based on its predefined shape. On the other hand bottom-up
techniques can get more precise local image boundaries [31]. Recent work [31, 4, 68, 22]
stresses the importance of combining both methods exploiting their advantages.

Bottom-up Segmentation We first give a short overview of some bottom-up segmen-
tation methods. Color and texture based approaches are intuitive and most common
during low level segmentation.

Color based segmentation can be based either on gray scale images or on color. The
common approach based on color value is thresholding an image with a single value.
The thresholding method converts a gray scale image into a binary representation by a
threshold value. The value is chosen either manually by the scientist or automatically
[46]. During thresholding, pixels that have a grayscale value above the threshold value
are marked as foreground. All other pixels are then marked as background. A number
of variations exist on this approach. Thresholding can be done in an inverted manner,
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2.1 Introduction

such that pixel values below the threshold value are treated as foreground, the rest
as background. Additionally multi thresholding methods exist, where a pixel is set as
foreground if its value is in between two threshold values.

For color images these values first must be converted to gray scale or separated into
different channels (RGB or HSV [21]) and then thresholded. This approach works well
under the assumption that the object of interest is of a characteristic color that is
significantly different from the color of the background or other objects in the image.

Another approach is to look for region similarity by applying region growing techniques
within the region-based methods. A state of the art color region based method is Mean
Shift discontinuity preserving altering [59]. It first determines the clusters in the image
by merging regions iteratively based on color similarity, then it assigns class labels to
formed clusters. If the Mean Shift is used with a generalized kernel it can be seen as a
nonparametric algorithm. Another widely used and adapted region-based method is the
watershed segmentation [12].

Besides color characteristics objects can be characterized by their edges. An edge
location within each image is efficiently represented by the magnitude of the gradient.
For each (pixel) position (x, y) in the image we have | ∇f(x, y) | as the magnitude of
the gradient by usage of Sobel, Previt or Roberts filter [21] on the edge map. A binary
representation can be also found directly by applying a Canny edge detector. An edge
map represents shape boundaries. Alternatively edges can be found by considering zero-
crossings of the Laplacian-of-Gaussian [53]. After the edges are identified the image
can be separated into objects by using connected components labeling [50] combined
with thresholding. These edge-based methods can only perform well if edges are clearly
present in the image and no objects are overlapping one another.

A more elaborate list of (low level) segmentation techniques is given in [38].

Top-down Segmentation (Pattern Recognition) An important problem in image anal-
ysis field is the content retrieval of objects from images. While the bottom up segmen-
tation techniques can be used to separate foreground from the background, it is not
enough for annotation of objects within the foreground. To accomplish that certain
pattern recognition based on a shape model are required.

Most widely used methods are: active shape models (ASM) [9], active snakes (or
contours) [26], the Hough Transform [52], deformable templates [65] and level-set based
methods (LSM) [51]. Most model based segmentation methods are concerned with the
retrieval of certain predefined shapes from the images.

A large number of context based image retrieval systems have been described [70].
These can be divided into the free-form and the parametric approaches [24].

Free Form Free-form class models have no global shape limitation, but focus mainly
on attraction towards certain image features [24]. Free form models need a correct
global initialization inside an image and optimize the local shape. A popular free-form
approach for shape retrieval is the Active Contour (or active snake) [26]. Shape edges
need to be connected together for an active snake to perform correctly.

19



2 Segmentation and Pattern Recognition in Image Space

Parametric In papers dealing with recognition of objects with known shapes, [18, 44,
16] the authors stress the use of deformable templates. Deformable templates are part
of the parametric class models as they make use of a predefined set of parameters.
The representation of the parameters might differ, but often a template is used, which
consists of a set of contour points to which we approximate the basic shape outline. A
deformable template [24] approach gives the possibility to represent an object that can
be subject to certain deformations in a compact manner. In that case object localization
should be performed by a process of matching the deformable template to the object
shape in the input image. In [9, 27, 45] a deformable template representation of a shape
is a set of points approximating the outline as obtained from a priori knowledge.

Existing template matching systems are known for handling grayscale or binary im-
ages. Some systems work directly on the grayscale input image. In this case often shape
descriptors like SIFT [37] are used to describe shape or texture characteristic. Other sys-
tems assume a bottom-up segmentation step like thresholding [21, 46] already converted
the image to a binary representation. In [33] the authors propose a deformable template
based region merging system. As input their method uses both over segmentation with
region color and edge detection and is based on splitting and merging regions based on
certain perceptual criteria.

2.1.2 Overview of Basic Approaches for Zebrafish Embryo Segmentation

We have tried to apply different bottom up segmentation methods in order to separate
the zebrafish shapes from the background. Note, that this concerns solely segmenta-
tion, not recognition. This means the separation of foreground (the space taken up by
zebrafish embryos) and the background of an image.

The motivation to apply color or grayscale based segmentation is based on the sug-
gestion that the zebrafish embryos have a different color than the background. In order
to determine the color that defines a zebrafish embryo automatically, we first attempt to
determine the color of the background. This can be done under the assumption that a
zebrafish embryo is never located on or intersecting the edge of the image. This means
that all the pixels on the edge of the image are part of the background. All image objects
that are not of that color are then treated as zebrafish.

First we attempt to do the segmentation based on grayscale thresholding. The most
basic approach would be global thresholding. This means that image pixels with an
intensity value below a threshold value t are labeled as foreground and the rest of image
space is labeled as background. A global threshold method does not work for most
of images at hand. This was due to the fact that because of uneven illumination the
background intensity differed on different locations in the image and therefore there was
no t value that could be set to separate foreground from background. An example of
failing global thresholding is shown in Figure 2.1.

We also attempted to interpolate the grayscale background values from the edges to
the center of the image. By this we tended to predict the background values as they
should be at the location of the image and then subtract them from the original image.
A commonly used way of doing it would be using a large Gaussian filter. However, since
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2.1 Introduction

Figure 2.1: From left to right: Original image (converted to grayscale) , thresholded
grayscale image.

Figure 2.2: From left to right: original image, difference of interpolated image and orig-
inal.

the zebrafish objects are very large this approach would not work. We applied a bi-linear
interpolation method to be able to predict the background values of each pixel within
the image. Instead of pixels we separated the image into small a × a rectangular areas
and calculated their average intensity. If the difference between this intensity and the
interpolated image was larger than a certain threshold t, area was treated as foreground,
otherwise as background. Foreground pixels were multiplied with the original image,
background area intensity was set to 0. In Figure 2.2 we show some results of this
algorithm. While the results seem good there is an amount of variables (t, a) that still
need to be set by hand per image before running the algorithm .

Following the grayscale threshold we have tried to separate the image based on its
values in the color spaces. Again, we assumed that the edge of the image contains
only background values. We have separated the image into HSI space, which is a more
standard way to do segmentation on color images than separating into RGB channels.
We have followed a typical HSI segmentation method as is presented in [21](page 331).
The method is based on thresholding the saturation image S. Then the retrieved mask
Sb was multiplied with the hue image H. The saturation threshold value is set based on
the edge background values. An example of this method applied to a typical zebrafish
image is shown in Figure 2.3. The spatial location of non black pixels in Sb×H represent
the regions of interest. This segmentation is not accurate, since a lot of pixels within
the zebrafish and on its border are treated as background.
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2 Segmentation and Pattern Recognition in Image Space

Figure 2.3: From left to right: original image (converted to grayscale), its saturation
component (S), thresholded saturation component multiplied by hue (Sb ×
H).

Figure 2.4: From left to right: original image, regions retrieved by mean-shift segmenta-
tion, retrieved background region in gray.

Another method based on color is Mean Shift discontinuity preserving altering [59].
The method progresses throughout the image by looking for color similarities. Then the
image is labeled into regions. We have applied the method to the zebrafish images by
assuming the entire background will be selected as one region. This region can then be
identified since we know the background is present at the edge of the image. The result
of such a segmentation is shown in Figure 2.4. As can be seen this method gives more
accurate results.

In our test case the image background represents a liquid and therefore it is fairly
smooth without high local color changes. The zebrafish objects however usually do have
strong boundaries. This suggests the use of edge based methods. We have tested our
data with several straightforward gradient operators. An operator that directly gives a
binary image as output is the Canny edge detector. Its output is shown in Figure 2.5.
As can be seen in the figure edge based methods are able to remove the background.
However, since the zebrafish embryos have a lot of strong edges present within the fish
it still might be difficult to automatically select the zebrafish outline.

Some of the approaches presented here were used as a preprocessing step during the
actual pattern recognition process. The choices of these approaches are described in
more detail in the following sections. A short summary on the methods as applied to
zebrafish embryos is given in Table 2.1.
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2.1 Introduction

Figure 2.5: From left to right: Original image converted to grayscale, right canny edge
detector result.

Segmentation technique Discussion

binary thresholding fails at uneven illumination

background interpolation good, but variables need to be set per case

HSI space based good, if zebrafish intensity differs from background

mean-shift good results

edge based good results, but needs post-processing

Table 2.1: Comparison of different bottom up segmentation methods with respect to
zebrafish embryo retrieval.
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2 Segmentation and Pattern Recognition in Image Space

2.1.3 Deformable Template Matching

The problem at hand is the retrieval of a known basic shape: the basic shape is known but
can slightly vary. Besides separating foreground from background also content retrieval
is important: we want to know how a shape is located, how many shapes are in the
image and where which part of the shape is. This calls for a top down approach. A
candidate would be a parametric approach. Template matching is a process of finding a
predefined template in an image. The way template similarity as compared to a part of
the original image is calculated differs per application [32].

2.2 Deformable Template Matching (Approach 1)

In this section we introduce a slice representation model (SR) of a deformable template.
Instead of considering the outline of a shape, we simplify the shape representation by
considering only certain characteristic horizontal slices and use these for template match-
ing. The proposed SR model is made advantageous for efficient optimization with a
Genetic Algorithm (GA). In [66, 48] authors also propose a GA for low parameter shape
templates (circle and ellipse detection).

2.2.1 Method

We propose a template representation which captures both boundary and interior of the
object and thereby describes the average structure of a predefined shape. The grid of
the search space is determined by the discrete pixels in a K × L image matrix M . We
take a binary image as starting point. The binary image is obtained by thresholding.
Thereby we assume a background pixel has the value 0 and a foreground pixel value 1.
In the following subsections we will describe the template representation in more detail
as well as the deformations that a template can undergo.

Slice Representation Model

The prototype template T0 we propose is represented by the following vector:

T0 = (s0, s1, . . . , sn, d), (2.2.1)

where n is the number of slices; d is the distance between two slices in the horizontal
direction. Initially T0 is represented in a X(horizontal)–Y (vertical) space in the hori-
zontal direction, with slices being parallel to the Y -axis. This is done for ease in the
representation. A template slice itself is then represented by the vector:

si = (wi, bi, ςi), (2.2.2)

where wi is the fixed width in pixels in the horizontal direction, preferably wi = 1; bi
is the fixed width in pixels in the vertical direction of the image, preferably bi = 0 and
located below and above the area of wi. The bi are required to define that the area
surrounding the shape is preferably empty. And ςi is the seed point of a slice; ςi is
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2.2 Deformable Template Matching (Approach 1)

Figure 2.6: a) A single slice. The slice is always parallel to the Y -axis b) Template for
a fish shape c) Location of ςi in a fish shape template d) Template for a car
shape e) Location of ςi in a car shape template

needed to be able to define non symmetrical shapes as input. This point will be used as
a reference for allowed slice shifts. In Figure 2.6a an example slice is shown; a slice is a
sample of the template always perpendicular to the length axis.

In Figure 2.6b, 2.6c, 2.6d two examples of templates are shown. The template length
is fixed according to �(v) = n ∗ d. For templates with horizontal symmetry axis, ςi is
simply chosen as the center of each slice (cf. Figure 2.6c ). For templates having no
horizontal symmetry axis ςi are located on the same horizontal line (cf. Figure 2.6e ).

Deformations

This representation was chosen as we assumed the slices will be able to move vertically
along the template to match a deformed (slightly shifted) shape. At template shift or
slight rotation the global shape is still captured within the template. The total length
of the template is fixed in the proposed representation.

A deformed template T is derived from the prototype template T0 and is represented as
T (T0, I). A deformation I will then be encoded by a state-sequence as follows:

I = (x, y + δ0, y + δ1, . . . , y + δn), (2.2.3)

where x is the shift in the X-axis direction of ς0; y + δi is the translation measured in
the Y -axis direction of the ςi of slice i.

We assume the maximal vertical deformation between two slices is 45 degrees, cf. Fig-
ure 2.7a. As a result of this constraint |δi−1 − d| < |δi| < |δi−1 + d| applies for two
starting points of consecutive slices i and i + 1. Then, each ςi can be shifted vertically
within the following boundaries:
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2 Segmentation and Pattern Recognition in Image Space

Figure 2.7: a) Vertical shift margins allowed for slice starting point �i, relative to �i−1

and �i+1. b) A possible deformation for a fish template.

max(ςi−1 − d, ςi+1 − d) < ςi < min(ςi−1 + d, ςi+1 + d). (2.2.4)

In Figure 2.7b we demonstrate a possible deformation of a template representing a fish.

Energy Function

The energy function Φ is a fitness function that specifies to what extent an identified
shape in the image matches the deformed template. In the literature the probability of
a deformed template being located over a shape is referred to as the likelihood [24].
Let us now introduce the details of the computation of Φ. Consider the fitness φi of a
single slice i. In order to find the optimum we wish to maximize matching values (0 or
1) between pixels covered by the slice, i.e., pixels with value 1 contained in wi and pixels
(at top and bottom of the slice) with value 0 in bi. We then have: Si[j] represents the
j-th element (pixel) of slice Si, as counted from the top of the slice.

φi =
1

wi + 2bi

wi+2bi∑
j=0

Hj , Hj =

{
1, if M(x, j + y + δi) = Si[j]

0, otherwise
(2.2.5)

In Figure 2.8 an example of a matching is given. The location of the proposed matching
is denoted in pattern. For this example:

φi =
1 + 0 + 0 + 1 + 1 + 1 + 1 + 1 + 0 + 1 + 1 + 1

12
= 0.75

The deformation I consists of multiple slice shifts. The total fitness of all n slices is
given by:

Φ =
1

n+ 1

n∑
i=0

φi. (2.2.6)

2.2.2 Optimization by a Genetic Algorithm

In this section we discuss the major components of a Genetic Algorithm (GA), i.e., popu-
lation, evaluation, selection, crossover and mutation respectively. In a GA, a population
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2.2 Deformable Template Matching (Approach 1)

Figure 2.8: Example of matching a slice Si on to a location in matrix M

P (of size m) of candidate solutions is evolved toward better solutions by introducing
computer analogues for recombination, mutation and selection [1].

A candidate solution is also referred to as an individual. The outline of a generic GA
pseudo code reads:

1. t = 0

2. Initialize P (t)

3. Evaluate P (t)

4. while not terminate do

5. P ′(t) = SelectMates (P (t))

6. P ′′(t) = Crossover (P ′(t))

7. P ′′′(t) = Mutate (P ′′(t))

8. Evaluate P (t)

9. P (t+ 1) = P ′′′(t)

10. t = t+ 1

11. end while

The termination criterion can differ, depending on the problem at hand. The details of
the operators are dealt with in more detail in the following subsections.
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2 Segmentation and Pattern Recognition in Image Space

Figure 2.9: Fitness comparison for different tournament values in 30 runs

Representation of Individuals

A shape I based on the template T0, also referred to as individual, is represented in the
image as, and consists of the following genomes:

I = (x, y + δ0, y + δ1, . . . , y + δn). (2.2.7)

The individuals are initialized with randomly valued genomes. According to common
practice in the GA research, a population is generated with random genome values,
covering the entire range of possible solutions. For finding shapes in images, this means
random shapes are initialized on random locations in the target image with a random
deformation according to Eq. 2.2.7.

Evaluation

The fitness function determines the quality of an individual and depends on the problem
at hand. Function Φ (cf. Eq. 2.2.6) will serve as a fitness function for the genome values
of an individual; Φ is then used to evaluate the candidate solutions in the selection step.

Selection

For the selection operation, the so-called tournament selection scheme [39] is used in
order to prevent premature convergence. Tournament size, i.e., ksize, was determined
through empirical testing. Consequently, comparison of high and low ksize is given in
Figure 2.9. We have established ksize = 7 to be a good value for our experiments.

Crossover

A crossover is applied with single crossover point. A random point p ∈ (0, n) is chosen
where n denotes the length of the genome. After crossover of two individuals IJ and IK
the resulting individual IL has the following form:

IL = (xK , yK , δ0K , .., δpK , δ(p+1)J
+ a, .., δnJ + a). (2.2.8)

Variable a is needed to make sure Eq. 2.2.8 holds and is determined by:
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2.2 Deformable Template Matching (Approach 1)

Figure 2.10: Graphical representation of crossover function as derived from the data.
Typical example in zebrafish imaging.

a =

⎧⎪⎨
⎪⎩
δpK − d, if (δpK − δ(p+1)J

> d)

δpK + d, if (δpK − δ(p+1)J
< −d)

0, otherwise

(2.2.9)

Mutation

For the mutation operator we use standard settings commonly used for GAs. That is a
uniform mutation, where each genome g has the probability to mutate: 1/n [1], where
n is the genome length. For each genome:

g U(ḡ, g) (2.2.10)

To make sure a uniform mutation is used we allow every slice center to mutate any-
where within the image space. Since the constrain max(ςi−1 − d, ςi+1 − d) < ςi <
min(ςi−1 + d, ςi+1 + d) holds, subsequent slice centers are not allowed to be more sepa-
rated than distance d.

2.2.3 Multiple Object Recognition

The shape under study can have multiple slightly different (deformed) instances in one
and the same image. The complete search space in this image is denoted byM0. First the
best matching shape S0 (with highest fitness) is localized. To decrease the search space
for finding the next shape instance, we set all the elements contained within S0 ∈ M0 to
0 and name the resulting image M1.

This process is repeated by iteration and in that manner Mi is reduced for each next
identified shape i. No shapes are found if the fitness of the found optimum F (Si) drops
drastically, under a predefined threshold value r. The value of r can be determined
empirically from a test on similar images (acquired under the same conditions). An
example of such drastic fitness drop in fitness growth is depicted in Figure 2.11. This is
a fitness plot for an image containing 3 fish shapes (cf. Figure 2.15a).
The pseudo code for finding multiple shapes in an image can be written as:

1. i = 0

2. S0 = GA(M0)

3. while F (Si) > r do

4. save Si as found shape
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2 Segmentation and Pattern Recognition in Image Space

Figure 2.11: Fitness plot for an image containing three zebrafish shapes.

5. Mi = Mi−1\Si

6. i = i+ 1

7. Si = GA(Mi)

8. t = t+ 1

9. end while

2.2.4 Experiments

To evaluate the performance of our template representation and GA optimization we
have designed the task of finding objects based on predefined slice templates in images
with different type of content. An experiment was performed with templates i.e. in
synthetic as well as microscope images. With a simple interface the user selects both
input images as well as the template shape for analysis.

Testing with Synthetic Images

We have used 20 synthetic binary images of 388 × 291 pixels. We have generated the
images with different shapes located at different locations in images, slightly rotated,
skewed and missing pixel data. Random noise (drawing debris) is introduced. The
images randomly contain up to 3 instances of an object.

The first template used for the synthetic shapes is a template of an animal figure pre-
sented in Figure 2.12. We have created a synthetic binary image containing one deformed
animal shape. The result of the application of the GA optimization is depicted in Figure
2.12.

The second template used for the synthetic shapes is a template of a house figure pre-
sented in Figure 2.13.

We have created a synthetic binary image containing two figures that have a deformed
house shape. The result of the algorithm (implementation done in Delphi) is shown in
Figure 2.13.

30



2.2 Deformable Template Matching (Approach 1)

Figure 2.12: Very simple template of an animal shape (head, legs and body) and the
result of shape localization in a synthetic image containing a simple animal
shape instance.

Figure 2.13: Very simple template of an house shape and the result of shape localization
in a synthetic image containing two simple house shapes.

Application to the Zebrafish Larvae Images

To evaluate the performance of our algorithm in a real-world imaging application we
have chosen the task of finding zebrafish embryo shapes. The task at hand concerned
using a High Throughput (HT) segmentation technique for retrieving the location and
number of zebrafish embryo objects within images [54]. An additional requirement for
this application is the need for automatic recognition of head, body and tail of each
embryo. A typical binary image as presented for localization is shown in Figure 2.15a.
This image was converted from color scale images to binary in a preprocessing step. We
use a straightforward gradient operator (Sobel) followed by an iso-data threshold. In
that way strong edge pixels were extracted for a binary representation [21].

Each image contains multiple zebrafish embryo shapes. The number of shapes in an
image is not known in advance, the shapes might be overlapping. The shapes in all the
images are assumed to be located approximately horizontal with a maximum angle of 45
degrees; so our approach could be used. We have applied the algorithm for a database
of 100 images with the same settings for the GA (m = 200, ksize = 7, r = 0.5). For 87
images the amount of embryos in the image and the approximation of their shape could
be retrieved correctly. In the cases where the algorithm failed, it was mostly due to large
occlusion overlap or shapes being much longer or shorter than the proposed template.
For the small and medium occlusions and overlap the algorithm performed correctly (
cf. Figure 2.15). In Figure 2.14b the template of a zebrafish used in these results is
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2 Segmentation and Pattern Recognition in Image Space

Figure 2.14: a) Typical binary image of zebrafish embryos in a resolution of 388 × 291
pixels. b) The template T0 in a graphical representation that has been used
on 100 tested images. Dark gray lines represent wi and light gray lines
represent bi within slices. Some results are shown in Figure 2.15.

Figure 2.15: Graphical representation of template matching results for 6 images contain-
ing zebrafish larvae shapes.

shown in a graphical representation.

2.2.5 Conclusions and Discussion

In this section we have illustrated an application of a GA to optimize a deformable
template approach. This approach can be used in different fields as the template can
represent different shapes. Our approach was designed for an application in the HT
screening of zebrafish embryos [54]. The optimization of template parameters is done
through a Genetic Algorithm, which provides the possibility to search for an optimal
solution in large search spaces. Our approach also allows to retrieve multiple instances
of a certain object in a single image. Results indicate that this approach has a low error
rate while computational performance is manageable and fast, which is, of course, very
suitable for HT applications. Future work is directed towards a further generalization
of the approach and making the template representation scalable.
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2.3 Deformable Template Matching (Approach 2)

2.3 Deformable Template Matching (Approach 2)

In the previous section we have illustrated a deformable template approach for the
representation of a biological shape in a binary representation. We take this approach
as a basis and further investigate the possibilities of a deformable template approach.
We consider a representation on the basis silhouettes or boundary representations of
prototype templates.

In research dealing with recognition of known shapes [18, 44, 16] the use of deformable
templates is emphasized. Deformable templates typically are parametric class models;
they start from a set of predefined parameters. The representation of the parameters
might differ, but often a template is used, consisting of a set of contour points to which
the basic shape outline is approximated. So, if the basic shape that is looked for is known,
it still needs to be localized in the images. Therefore the prior knowledge can be exploited
by choosing the parametric deformable shape template matching method as a basic
approach [24, 70, 7]. Such an approach is used in the segmentation of cells in microscope
images [18]. In this application the Hough transform approach is reformulated to be used
as a deformable template. However, if the shapes are more complex than a circular shape
like object, it is difficult to adapt to this approach. An example of a more complex shape
is the segmentation of the masseter on the basis of a predefined template [44]; locally
deformed instances of the template can be successfully extracted from input images.
On the basis of this approach we propose a further generalization with which it is also
possible to deal with multiple objects in one image as well as with global deformations;
e.g., bending of the entire object. Based on silhouettes or boundary representations of
prototype templates a considerable amount of research has been completed [16]. Usually
the silhouettes are defined by contour points and make up the template. These templates
can then be deformed by a set of parametric transformations, including both local and
global transformations [70]. We have taken this traditional representation as a starting
point; however, we have replaced the contour points in the silhouette by a contour area
(cf. Figure 2.17). The reason for using this representation is that we would like to allow
multiple overlapping instances of the object in one input image and therefore we have
to accommodate for missing contour points.

In addition to the template matching, we also address the problem of shape normal-
ization; in particular for applications of biological objects. The combination of shape
localization and normalization has been successfully applied for the roundworm, i.e.,
C. elegans [47]. It is known as the BDB+ method. On the basis of the object boundary
a straightening is applied so as to ease the further analysis of the objects. In our appli-
cation, however, this method cannot be used; it starts from a predefined shape and then
straightens the shape assuming the boundary has already been extracted. We want to
investigate the recognition and straightening of more complex elongated shapes and, as
indicated, account for the presence of multiple instances in one image.

The framework that we have elaborated consists of two steps. First, a preprocessing
step including a segmentation of an input image in order to separate the object(s) of
interest from the background is applied. Segmentation alone, however, does not give
satisfactory results, as we are not only interested in separating background from fore-
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ground, but we also want to recognize position and best possible representation of the
object. This is realized in the second step consisting of a matching of a deformable
template to the segmented image. This step is the main focus of this chapter. Finally, a
post-processing step includes shape normalization through straightening of the extracted
shape. Such is possible from contextual information about the object in the image that
we have gained. Deformations are known and therefore deformations can be normalized
according to the template. The framework was implemented in C++ using the OpenCV
graphics library (http://opencv.willowgarage.com).

2.3.1 Method

The starting point of our algorithm is variation; i.e. a shape has variation, it can
be inflicted with noise and it can be deformed or partially occluded. Our framework
detects deformed instances of a predefined structure by means of deformable template
matching and these instances are subsequently extracted from an input image. In Figure
2.16, an overview of the process is presented. The approach consists of two steps: the
preprocessing step and the template matching step. First, during the preprocessing
step, the input image is converted to a strict binary representation. In the main process
the deformable template matching is applied in the binary image obtained from the
preprocessing. This entails looking for the best match of a prototype template in the
image. If a match is found the result is annotated according to the prototype template
and henceforth, straightened.

Pre-processing

The first step in the analysis is retrieving foreground and background: i.e., an operation
that converts an input image to a binary representation by marking the pixels which
belong to foreground objects 1 and the background pixels 0. Different binarization
methods are described in the literature; i.e., based on the usage of global or adaptive
threshold methods, color or edge based segmentation. The choice of the method depends
on the input image at hand, its properties and quality [21]. In the cases where prior
spatial information is known this given can be exploited and the threshold value set can
be based on this given.

After separation of foreground and background in the image, the contextual informa-
tion still needs to be retrieved in order to recognize the objects of interest.

Prototype Template

The initial contour sketch of the object of interest is defined by the prototype template T0.
The construction of T0 is based on prior knowledge and is an approximate representation
of how a typical object contour should look like and represents a contour location area.
A few examples are shown in Figure 2.17.

A contour location area represents the region of interest within which the local tem-
plate contour can exist and change. By doing so, the local deformations become limited

34
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Figure 2.16: Proposed framework for automatic shape retrieval and straightening.

Figure 2.17: Some examples of prototype templates of different objects. Gray area rep-
resents the space where connected component boundaries might be located.
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Figure 2.18: An example of matrix representing a template slice t(i, j). Fields with value
1 are marked with gray color. Other fields have the value 0.

Figure 2.19: A prototype template as a chain of slices and a deformed instance. All shape
boundaries that fit in the grey area fit the template. Black lines represent
two example shapes that fit these templates.

by looking only at the pixels that are located within the contour location area (de-
picted in gray in Figure 2.17). Limiting the template boundary location of the deformed
template is necessary to predict image boundary location in cases where it is missing,
incomplete or overlapping.

As a result of this representation only global deformations are left, which will be
described in the next subsection.

Parametric Transformation

Biological shape instances are often bended and rotated. To cope with these global
deformations T0 is distributed into n smaller sub-templates, so called slices ti:

T0 = t0, t1, . . . , tn (2.3.1)

A single slice can be seen as a rectangular matrix t(i, j), consisting of binary values.
This is shown in Figure 2.20.

The horizontal medial axis of the slice Ohorizontal, is defined at [i/2, ∗], and the slice
origin as O at [i/2, j/2].

Within the whole template the slices can rotate around their origin O to allow match-
ing against rotated shape, but the origins are linked together as a chain (Figure 2.19); at
any deformation of the total shape the distance between sequential slice origins remains
the same.

A deformed template T ′ is derived from T0 and is represented as T ′ = (T0, ξ). A
deformation ξ of the slice chain is encoded by the following state-sequence:

ξ = (x, y, α0, α1, . . . , αn) (2.3.2)
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Figure 2.20: An example of template matching of a template slice S(i, j) and a region
R(i, j).

Here x is the shift in the X-axis, y the shift in the Y-axis direction of the first slice t0 and
the angle of rotation αi of each slice ti. Due to the proposed slice based representation
our deformable template approach is very suitable for use with elongated shapes.

Objective Function

The fitness of a template matching of an input image is measured by an objective
function [24]. In [47] a parametric representation is used where the algorithm marches
along the backbone of C. elegans to calculate the objective function.

A similar approach is applied, by comparing simultaneously the binary slice matrix
S(i, j) to a selected image region R(i, j) of the same size (cf. Figure 2.20a,b). First the
matrix is considered where both the template and the image region have overlapping
foreground pixels, which are the result of R(i, j) · S(i, j) (cf. Figure 2.20c).
Since during this step the shape is a filled binary object, matches that are farthest

from the slice center, yet still in the silhouette contour area are assumed to define the
object. Then to get the actual border the algorithm marches along the horizontal medial
axis of R(i, j) · S(i, j) iterating over 0 till j. Each orthogonal image plane pixel column
pi (with iterating from 0 to i) is compared to the template. It is assumed that the
fish silhouette has only one silhouette pixel in the top and the bottom of each column.
Therefore, per column the two extreme points that are of value 1 (as measured from the
horizontal medial axis) remain 1, all other values are set to 0 (Figure 2.20d). The value
of extreme(S(i, j) · R(i, j)) is then the total amount of overlapping outer shape pixels
between S(i, j) and R(i, j). This is treated as intermediate result. The quality (the
objective function) of this result is then measured by the length of the retrieved border.
The objective function is 1 if all pixels of the silhouette have been retrieved. Therefore
the objective function for a slice S(i, j) is:

φ(S(i, j)) =
0.5

j
extreme(S(i, j) ·R(i, j)) (2.3.3)
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Since a template consists of n slices of the same size, F (T, ξ) depends on the fitness
function of each slice k:

F (T, ξ) =
1

n

n∑
k=0

φk(S(i, j)) (2.3.4)

Matching the Template to the Input Image

To check all possible occurrences T must be transformed, rotated and deformed using
all possible parameters. To find the best solution there is a need to retrieve the global
maximum of the fitness function for the input image. That is, to compare each S(i, j) to
all possible regions R(i, j) within the image. A global search is computationally complex
[28], especially when the image search space is large. In the literature Genetic Algorithms
and dynamic programming approaches [33, 58] have been used for optimization.

Post-processing: Straightening the Template

After a sequence of slices is found, the shape can be straightened by rotating each
found slice back. Since each deformed template T has a deformation defined by ξ =
(x, y, α0, α1, . . . , αn) each of its slices is rotated back by the slice angle −α. In that way
the global deformation of the deformed template is reverted to the prototype template
T0.

2.3.2 Application to the Zebrafish Larvae Images

Pre-processing

Because of uneven illumination, global threshold methods applied to a gray-scale version
of the zebrafish images will not produce satisfactory results. We, therefore, employ an
edge map based method to the input image. Edges define the boundaries between objects
and background without strong dependency on flaws in the illumination. There exist
several algorithms to create an edge map. After creation of the edge map a threshold
must be set to select the strong edges.

Determining the threshold value of an edge map can be a cumbersome task. To set
the threshold automatically without prior spatial relationship knowledge of the image,
Otsu’s method [46] might be applied.

However, we have prior spatial relationship knowledge of our particular data set and
exploit this for our own border based method: the objects in the image are always located
at some minimal distance d from image border. We try to exploit this. Thus we can
assume that a layer of thickness d on the outside of an image contains only background
pixels with some incidental noise. Of this layer we retrieve a number of local maximal
pixel values. Of all the collected values we take the median value to determine the
threshold value for the edge map.

To select the best preprocessing approach we compare the performance of different
edge detectors (Sobel, Roberts) [21] in combination with Otsu’s [46] method and our
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Figure 2.21: Minimal slices and optional slices in a prototype template. The template is
compared to an example of a short and a long larvae shape.

border based method on 233 images. We count the number of objects in the segmented
image. If the number of objects equals the number of objects in the original image
we mark the prediction as correct. Both gradient methods in combination with our
border method outperformed thresholding based on Otsu’s method. Out of the images
incorrectly segmented in 17 cases the zebrafish shapes were touching each other and were
thus connected. In all of these cases both edge detectors predicted 1 or 2 fish instead of
3 due to this connection.

After basic segmentation is realized, mathematical morphology operations are applied
to get rid of noise and close up unwanted gaps: first the closing operator is applied to
interconnect small regions and close holes, then connected components labeling (with
filling up holes) is applied to obtain the closed shapes. In order to eliminate remaining
noise we use the fact that we know the minimal area covered by a zebrafish. This area
size can be automatically retrieved from the template size. Thus we remove all objects
smaller then this minimal area. We do not remove objects that are larger than the
maximal area, since larger object might be intersecting zebrafish shapes.

Main Process: Deformable Template Matching Prototype Template

Our initial zebrafish template in Figure 2.21 is created from averaging a test set of
training shapes [10]. This template is created from averaging a set of 20 zebrafish larvae
shapes.

Zebrafish larvae tend to have different lengths. Therefore, the length of the template
is not fixed, but can vary between some minimal (min) and maximal (max) number of
slices tmin and tmax. If the number of found slices is smaller than min or larger than
max we assume the shape is not found. All the slices tx with min < x < max are thus
optional slices. This is depicted in Figure 2.21. The max and min are set based on the
length of the longest and shortest encountered zebrafish.
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Figure 2.22: Marching direction for the first slice depicted in the image pixel matrix.

Objective Function for the First Slice.

The described objective function is applicable for slices in which the important in-
formation is located above and below the slice center. While most of the zebrafish
larvae template applies to this condition the very first (head) slice does not. The reason
for it is that its shape is close to half circular. This is depicted in Figure 2.22.

To cope with this case, instead of retrieving extreme values above and below the
median axis (described in Section 2.3.1) extreme values are retrieved in a circular way
as shown in Figure 2.22.

Matching the Template to the Shape

A top-down dynamic programming approach is applied with a hash table for intermediate
result saving, to obtain a global optimum.

In our test case the larvae shapes are located in an approximately horizontal position
in the input image. This given is used to reduce the search space. This is done by
assuming that each slice can rotate between −45 to 45 degrees as measured from the
image horizontal axis. Additionally a discrete set of deformation angles for each slice is
used.

To further reduce the search space a Multi resolution algorithm [30] is used. First the
solution is located on a low resolution template and a low resolution input image. Then,
the solution is used for initialization in a higher resolution.

2.3.3 Experiments and Results

An evaluation of our algorithm is performed on a data set consisting of 233 images. The
data set was directly obtained from a running experiment. Out of these images 177
(76%) contained multiple (3) zebrafish larvae, 33 (14%) contained 2 larvae and 23 (10%)
1 larva.
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Figure 2.23: Automatic localization of the zebrafish shapes using deformable template
matching. The white line defines the shapes as found by the algorithm.
White dots represent the found slice centers. In the left image the shapes
are touching each other, which makes recognition more difficult. These
images were created using the same template (these images were used to
determine bacterial infection, black regions, in each larva separately).

A first basic test is to check for how many of the tested images the number of larvae is
predicted correctly. The result was that for all images (100%) the number of the larvae
shapes (1, 2 or 3 larvae, even if overlapping) within each image was correctly retrieved
by our framework.

The automated prediction of the number of shapes in an image looks promising, but
only retrieving the number of shapes is not sufficient for a proper analysis of the results.
To that end we also test the accuracy of the algorithm, that is, how precise the shapes
were retrieved. In Figure 2.23 representative results of retrieved shapes are depicted.
We show shapes that are deformed in different ways as well as shapes touching each
other. The template in Figure 2.21 was used for the creation of all these images.

We are not aware of other methods that can be used for automatically retrieve prede-
fined shapes from images without an initialization, and therefore we have compared the
resulting shapes of each retrieved zebrafish larva shape against ground truth images of
the same shapes annotated by experts. In order to have manageable proportions in the
evaluation, we reduced our test set to a total of 104 zebrafish shapes (distributed among
35 images, containing up to 3 shapes per image).

Four experts (test-person T1, T2, T3, T4) were asked to delineate the correct outline
of the zebrafish larva. Drawing the shapes was realized with a LCD-tablet (Wacom)
using TDR software [61].

Next, the precision of our approach is compared by applying it to the same input
data (algorithm output A). A comparison of human to automatic retrieval was also used
in [47] for validation of the results. The accuracy of our shape retrieval algorithm is
measured by the equation proposed and explained in [44]:

accuracy = 2×
(

N(Marea ∩ Sarea)

N(Marea) +N(Sarea)

)
× 100% (2.3.5)
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A T1 T2 T3 T4

A - 96.85 97.19 96.29 96.47

T1 96.85 - 97.61 97.21 96.81

T2 97.19 97.61 - 97.17 97.46

T3 96.29 97.21 97.17 - 96.68

T4 96.47 96.81 97.46 96.68 -

Table 2.2: Accuracy comparison of our algorithm A and the test subjects T1, T2, T3,
T4. The matrix is symmetrical, yet we have shown all the values for viewing
convenience.

Figure 2.24: Automatic straightening results of zebrafish larvae. Image (left) is the input
image. Image (right) is the straightening result.

We have compared the accuracy of our algorithm to T1, T2, T3, T4. The average
accuracy was established as 96.71% (�� = 1.27). Note that this accuracy could not be
achieved only by the segmentation step, as 35 (of the 104) shapes used for this test were
touching each other and their boundary was derived through the template matching.

Table 2.2 depicts the results of the comparison of the accuracy of our algorithm A
with the test persons. In addition the inter-observer variation is analyzed.

As can be seen from the table the accuracy between our algorithm and each test person
is as close to the accuracy of the test persons to each other. This indicated that the
algorithm retrieves shapes as good as or comparable to manual retrieval.

In the last part of the experiment the objects, i.e., zebrafish, are straightened. This
is accomplished using a template with a straight top border in order to align the found
slices with their top to a horizontal line. The results are shown in Figure 2.24 and Figure
2.25. To retrieve and straighten a single zebrafish shape from a 2592× 1944 image our
application needed about 35s of CPU time on an Intel Dual Core 2.66Ghz, 1.00Gb.

2.3.4 Conclusions

In this section we further investigate the possibilities of a deformable template approach.
The prototype template proposed in this section is represented as a bitmap and can easily
be adapted to the needs of the application while the same algorithm is used. Results can
then be compared by shape normalization. The algorithm we propose does not rely on
initial localization of the shape and therefore does not require any manual intervention
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Figure 2.25: Automated straightening results of zebrafish larvae. Image (left) shows
the found shapes projected on the input image. Image (right) shows the
automatic straightening result.

or analysis. The framework was applied in an experimental set up for HT screening
with a readout in images. In the application to zebrafish screening an average accuracy
of about 96 percent has been achieved. The framework can be easily adapted to work
with other shapes, e.g., in the life sciences or in other fields that require accurate and
robust shape retrieval. Further analysis of the object straightening precision is part of
the future work.
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