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1 Introduction

Computers and computational methods have enabled experimental approaches in the
life-sciences in which large amounts of specimens are processed in order to establish
cause-effects relations or to detect rare events. These high volume experimental ap-
proaches are commonly referred to as High Throughput. In order to get the most out of
such experiments, the aspects of experimental design and analysis need to be considered.
Although computers enable High Throughput approaches, it is necessary to critically re-
view the computational approaches that are addressed. Methods need to be adapted
to the experimental design and sometimes, for several reasons, new methods need to be
developed. High Throughput methods are applied in different fields of the life-sciences
and the instrumentation for these High Throughput methods differs. In this thesis we
consider High Throughput methods that are concerned with imaging, imaging with mi-
croscopes in particular. The scope of this thesis is to evaluate and develop methods for
object recognition, extraction and measurement. In addition, given the output from a
High Throughput experiment, the analysis of the measurement is addressed. The aim of
this thesis is to find robust methods for object extraction and analysis. Throughout the
thesis one particular application domain is used, infection studies in zebrafish for which
High Throughput approaches are crucial. In order to understand the starting points
for High Throughput methods, a survey of the literature is performed. For a review,
two aspects have been particularly taken into consideration. The first being the relation
between the experimental design and the aim of the experiment. The second being the
computational aspects of the High Throughput experiment. In the next sections these
two aspects are addressed. This introductory chapter closes with an overview of the
contents of this thesis.

1.1 Whole Mount High Throughput Screening

A method called High Throughput screening (HTS) is used for scientific experimentation
within different fields of modern biology. The method makes it possible to come to a high
volume of experimental data. Results of such HTS experiments are used in setup for
drug design and better understanding of various biological processes. There are different
kinds of HT'S methods, most often though they consist of typical basic steps which are
applicable within different applications.

In order to prepare the experimental data a plastic micro-titer plate is used. Such a
plate consists of a grid of wells (a multiple of 96). The wells are filled with the object of
interest, which can be either an entire organism or a part of it. This is usually done by a
robot in an automated fashion. The genetically altered object or organism is compared
against a control group and is monitored through imaging. Resulting data is analyzed
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in order to gain further insights in certain conditions. Experiments that are done for
genomes do not involve the time factor, while experiments for proteomics testing are
usually done in a time-lapse fashion. Depending on the speed of development of the
organism, the start, end time and the interval of a time-lapse experiment is adapted, in
such a way that the time resolution is sufficient. Nowadays HTS is made possible by
automated microscopes. In order to do the final analysis problem specific image analysis
software is being developed.

In [36] High Throughput (HT) methods are distinguished in 3 groups: Phenotype,
Transcript and Proteomic. In this thesis we will focus only on the HT for phenotype
analysis, since phenotype is directly related to imaging.

In order to be able to do in depth disease and infection analysis by tissue screening
multiple models are used to mimic its behavior in the human body. A cell-based model is
fairly inexpensive, it is, however considered physiologically distant to human. Vertebrate
models of mammalians are more relevant, but expensive. A popular tradeoff between
higher vertebrate models and cell based models are small organisms, like C. elegans, the
fruitfly and the zebrafish. Because of their small size, these organisms can be imaged
whole mount, which means the whole organism is treated and used in the imaging. We
will discuss the HT possibilities of whole mount organism screening in more detail.

1.1.1 Non-Vertebrate Models

C. elegans (Caenorhabditis elegans) is an important non-vertebrate model organism that
has a rapid development, is transparent and is easy to cultivate. The main advantage
of the use of this model is the fact that C. elegans is the first organism of which the
entire fate map from zygote to mature organism is available and it is the first organism
with a completely sequenced genome. Fate maps provide a possibility to trace each cells
predecessor through time during the development of the organism [56] (also known as
cell lineage). The top of the fate map is the zygote cell followed at the next level by
two daughter cells that at the next level divide into more daughter cells and in such
a way a tree is formed and the nodes are indexed. This makes it very valuable in
human disease exploration, since genetics of C. elegans are for about 70% similar to
human. Computational aspects involve storing and traversing this cell lineage. AceDB
(AC. elegans DataBase) is a database that is specifically developed for the C. elegans
and can be used to browse the genomic data. Later AceDB was adapted to use with
genomic databases of other organisms. Additionally C. elegans is widely used for its
rapid development, transparency and ease of cultivation.

Rohde and Yanik [49] describe a HT approach for in vivo screening of C. elegans
in a time-lapse fashion. C. elegans is immobilized by cooling it down. The proposed
technology is used to perform subcellular-resolution femtosecond laser microsurgery of
single neurons in vivo and to image the subsequent axonal (ALM/AWB) regeneration
dynamics at sub-cellular resolution. Analysis of regeneration dynamics is done based on
imaging and statistics.

10



1.1 Whole Mount High Throughput Screening

1.1.2 Vertebrate Models

The Zebrafish (danio rerio) model is widely used as a vertebrate model. The layout of
processes involved in human disease within the zebrafish organism often can be compared
with their behavior in humans and therefore it can serve as a model for some human
disease; an overview can be found in [2]. Zebrafish has a fast development and is easy to
breed due to high fecundity rate: up to 200 offspring can be produced multiple times per
week. It has a relatively small size which makes it easy to maintain large populations and
produce large quantities for testing. The cell lineage of the zebrafish exists, but only in an
early stage. The DNA of the zebrafish has a lot of homologs as compared to the humans,
therefore the zebrafish model can be used to study the functional purpose of the genes
[25] and is useful in the fields of developmental, genomics and drug research. It makes
a good organism to use in research that is conducted in a HT fashion. Computational
methods are needed to store genomic data and to browse it. In order to facilitate for HT
data processing (of whole organism), computational approaches are needed for phenotype
analysis, tracking and feature extraction.

Infection patterns can be tracked throughout the body due to transparency in early
stages and especially when used with a fluorescent agent as a specific tissue promoter.
Phenotypic development and infection pattern locations can be studied due to the ex-
ternal development of the zebrafish. In addition, evolving behavior of the zebrafish can
be studied [20]. An early review of the HT approaches within the zebrafish research is
given in [36].

Common carp (Cyprinus carpio) is also an important model organism due to it being a
popular aqua cultivation species and its high reproduction rate. Most of the HT methods
that are based on the carp model are about genomics and will not be considered in this
thesis. However, nowadays carp is being considered in HT phenotype analysis.

Most HTS phenotype-based analysis methods are using brightfield or fluorescence
microscopy.

Light microscopy based methods are used in order to do measurements on a whole
mount organism phenotype for the aim of object localization and pattern recognition. A
prerequisite would be analysis without the need to manually position the model organ-
isms. One of the image based methods is Cognition Network Technology (CNT). CNT
is a semantic and context-based segmentation approach that is applied in the detection
of biological structures. In [62] CNT is used to detect transgenic fluorescent zebrafish
embryos. The zebrafish embryos must be located in well plates and be presented in a
lateral view. The shapes and regions can then be recognized by an artificial intelligence
based algorithm that makes use of a predefined ruleset that use graded responses for
area, length, and shape.

Another method for phenotype recognition for the zebrafish is presented by [34]. The
recognition is based on a Support Vector Machine model that uses image descriptors
(color histogram, representative color, and color layout) as input. This method does not
perform detailed regional analysis but is defined as a three class classification problem. It
is used to determine between three zebrafish embryonic conditions: hatched, unhatched,
and dead.

11



1 Introduction

Cellular processes within model organisms can be analyzed and modeled by making
use of tissue-specific fluorescent reporter genes. Regions of interest can then be localized
by image based methods that are able to retrieve fluorescent regions.

One of the methods for in vivo time lapse imaging is described in [3]. The authors
describe protocols building a light-emitting diode fluorescence macroscope in order to
screen adult fluorescent zebrafish. The macroscope is multi-spectral and imaging is
being done simultaneously on multiple fluorescent channels. This method allows for
the zebrafish to swim around. The method is able to distinguish up to five fluorescent
proteins that are located within the fish and simultaneously image up to 30 adult animals
that transgenically express a fluorescent protein. While the authors focus on the imaging
part, the segmentation of the produced images is based on the different webcam inputs
and thus limited to webcam capturing software (AMCap) and manual analysis. Aim
of the study was to use this HT method for imaging transgenic animals, screening for
tumor engraftment, and tagging individual fish for long-term analysis.

Walker et al. [64] describe a simple whole-organism HT method for quantifying changes
in reporter intensity in individual zebrafish over time termed, Automated Reporter
Quantification in vivo (ARQiv). ARQiv differs from current “high-content” (e.g., confo-
cal imaging-based) whole-organism screening technologies by providing a purely quan-
titative data acquisition approach. Data processing was based on the comparison of
intensity values within image regions. The values separated into the groups background,
signal and total signal and comparison could be done across time in percentage terms.

Complex Object Parametric Analyzer and Sorter or COPAS is a combination of an
instrument and a software package developed by Union Biometrica in order to analyze
and sort biological objects that range from 100 to 1500 microns in diameter. Instrument
is based on the principles of flow cytometry (cf. [35, 8]), but accommodates for larger
objects and uses a pneumatic sorting mechanism. Originally COPAS was intended for
the use with nematodes and later it was adapted for the use with zebrafish embryos.
COPAS is used for HTS applications. In depth analysis of the produced images is done
by the COPAS Profiler II software package. Based on fluorescence levels an optical profile
is created. This facilitates in quantitative detection of multicolor fluorescent labels and
determination of labeled object distributions such as tumor cells or granuloma in the
zebrafish.

Saji et al. [19] describe a HT screening approach to assist in hazard ranking of en-
gineered nanomaterials (ENM). This is done by tracking cellular injury in zebrafish
embryos through epifluorescence microscopy. The analysis of the response parameters of
nanomaterials is performed by the creation of heat maps by statistical approaches and
the use of self-organizing maps (SOMs).

1.2 Pattern Recognition
The HT methods previously described all have significant ingredients of computer sci-

ence. An overview of the described methods and their relationship to computer science
(CS) is provided in Table 1.1.

12
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] ref. ‘ exp. type ‘ main CS component ‘ v/t ‘ output
[49] f regeneration dynamics by intensity, statistics v images
[62] b segmentation by ruleset, graded response t images
[34] b classification by SVM, image descriptors Y Hage

descriptors
[3] f segmentation by imaging of different channels v images
[64] f comparison by region based intensity, statistics | v | regional report
8] f optical profile by intensity v images
[19] f response parameters analysis by SOM t heat maps

Table 1.1: An overview of some HTS methods. Experiment type (exp. type) is either
fluorescent (f) or brightfield (b) and performed in vivo (v) or in vitro ().

Figure 1.1: Schematic relations between a High Throughput Screening pipeline and Com-
puter Science.

There are no standard methods which would be suitable for all applications and thus
application dependent methods need to be developed. A schematic HT pipeline and its
dependency on CS8 is shown in Figure 1.1.

Pattern recognition can be seen in two contexts: object recognition and data mining.
Pattern recognition in terms of phenotypic object recognition plays an important role in
almost every HT analysis process. Object recognition relates to looking for a pattern in
the image space. In the case of separation of the objects of interest from the background
we refer to it as segmentation. Data mining relates to looking for patterns in data feature
space. Data mining depends on the data we use as input and can be used for finding
global features followed by refining.

1.3 Outline of the Thesis

In this thesis we will in particular focus on two aspects of HTS: the image analysis step
followed by pattern recognition of the resulting data. We have developed an image anal-

13
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Figure 1.2: Example of a High Throughput Screening pipeline applied to zebrafish phe-
notype recognition.

ysis framework that is able to automatically recognize the zebrafish shape and retrieve
the infection spread in a HT fashion. This pattern recognition framework allows for in
depth analysis of the spread of infection within the zebrafish organism.

1.3.1 Image Processing and Segmentation

In the case study that is presented in this thesis we will be focusing on the zebrafish
embryo as the model organism. We have developed a segmentation approach that is
suitable for HT analysis and is able to retrieve the fish shape from images. An example
of HTS is illustrated in Figure 1.2.

In Chapter 2 we describe our approach for retrieving the zebrafish shape from the input
images. The approaches presented here are used not only to separate the foreground from
the background but also to automatically recognize and annotate the zebrafish embryo
shapes. We present three deformable template based approaches we have developed for
this. In Chapter 4 we describe the graphical interface and the software that was created
based on the algorithms described in Chapter 2 and Chapter 3.

1.3.2 Analysis of Statistics of Patterns

After retrieval of the zebrafish shapes and separating the input brightfield images into
foreground and background the next step is to do measurements on the foreground
area. In our case study the measurements are done on the response of the immune

14
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system to the infection as well to the bacterial infection spread. In our research we
aim to contribute to the understanding of the genes/proteins that are involved in the
infection of the zebrafish with the Mycobacterium marinum, which is closely related to
Mycobacterium tuberculosis, the causative agent of tuberculosis in humans. In chapter
5 we do a number of statistical assessments of the data that was collected by our HT
approach. In Chapter 6 we discuss the results of the approach.

15






2 Segmentation and Pattern Recognition in
Image Space

Based on:

A. Nezhinsky € F.J. Verbeek: Pattern Recognition for High Throughput Zebrafish Imag-
ing using Genetic Algorithm Optimization. In: 5th IAPR Conference on Pattern Recog-
nition in Biolnformatics (PRIB 2010), Lecture Notes in Bioinformatics 6282: 302-312,
Springer (2010)

and

A. Nezhinsky & F.J. Verbeek: Efficient and Robust Shape Retrieval from Deformable
Templates. In: Leveraging Applications of Formal Methods, Verification and Validation.
Applications and Case Studies (ISoLA 2012), Lecture Notes in Computer Science 7610:
42-55, Springer (2012)
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2 Segmentation and Pattern Recognition in Image Space

2.1 Introduction

Retrieving location and contour of a shape is crucial for the analysis of large image
datasets in many fields, such as optical character recognition (OCR) and bio-imaging.
Segmentation is the decomposition of an image into foreground objects and background.
Foreground objects are preferably the (biological) structures of interest, while other ob-
jects and noise are the background. In most cases objects of interest are homogenous
regions and therefore most segmentation methods are based on homogeneity. Homo-
geneity of an object can be based on different characteristics, this can be color, texture
or other similarity measures.

2.1.1 Related Work

Most segmentation techniques use a characteristic object feature in order to separate
objects from the background. These features can be based on object shape or on color
or texture and are attempting to mimic human visual system behavior. A successful
segmentation turns a grayscale or color image into a binary representation in which one
value represents the object of interest and the other the background.

The first step in many applications is to segment a meaningful biological structure
from images and remove the background, despite its position, rotation and scale. Im-
ages in biology are acquired under different conditions which affects quality, brightness,
contrast, lighting conditions and the amount of noise. Consequently, extraction as well
as processing of shapes from the images might be hampered.

We can separate the segmentation techniques into two groups: bottom up segmen-
tation and top down segmentation [4]. Bottom up segmentation uses image criteria in
order to define image regions that are likely to be the structure of interest. In this case
no machine learning or pattern recognition is involved.

The top-down approach on the other hand uses pattern recognition techniques that use
predefined object representation in order to approximate the object location. Top-down
methods are suggested to mimic human vision behavior and are becoming more successful
in retrieving an object based on its predefined shape. On the other hand bottom-up
techniques can get more precise local image boundaries [31]. Recent work [31, 4, 68, 22]
stresses the importance of combining both methods exploiting their advantages.

Bottom-up Segmentation We first give a short overview of some bottom-up segmen-
tation methods. Color and texture based approaches are intuitive and most common
during low level segmentation.

Color based segmentation can be based either on gray scale images or on color. The
common approach based on color value is thresholding an image with a single value.
The thresholding method converts a gray scale image into a binary representation by a
threshold value. The value is chosen either manually by the scientist or automatically
[46]. During thresholding, pixels that have a grayscale value above the threshold value
are marked as foreground. All other pixels are then marked as background. A number
of variations exist on this approach. Thresholding can be done in an inverted manner,

18
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such that pixel values below the threshold value are treated as foreground, the rest
as background. Additionally multi thresholding methods exist, where a pixel is set as
foreground if its value is in between two threshold values.

For color images these values first must be converted to gray scale or separated into
different channels (RGB or HSV [21]) and then thresholded. This approach works well
under the assumption that the object of interest is of a characteristic color that is
significantly different from the color of the background or other objects in the image.

Another approach is to look for region similarity by applying region growing techniques
within the region-based methods. A state of the art color region based method is Mean
Shift discontinuity preserving altering [59]. It first determines the clusters in the image
by merging regions iteratively based on color similarity, then it assigns class labels to
formed clusters. If the Mean Shift is used with a generalized kernel it can be seen as a
nonparametric algorithm. Another widely used and adapted region-based method is the
watershed segmentation [12].

Besides color characteristics objects can be characterized by their edges. An edge
location within each image is efficiently represented by the magnitude of the gradient.
For each (pixel) position (x,y) in the image we have | Vf(z,y) | as the magnitude of
the gradient by usage of Sobel, Previt or Roberts filter [21] on the edge map. A binary
representation can be also found directly by applying a Canny edge detector. An edge
map represents shape boundaries. Alternatively edges can be found by considering zero-
crossings of the Laplacian-of-Gaussian [53]. After the edges are identified the image
can be separated into objects by using connected components labeling [50] combined
with thresholding. These edge-based methods can only perform well if edges are clearly
present in the image and no objects are overlapping one another.

A more elaborate list of (low level) segmentation techniques is given in [38].

Top-down Segmentation (Pattern Recognition) An important problem in image anal-
ysis field is the content retrieval of objects from images. While the bottom up segmen-
tation techniques can be used to separate foreground from the background, it is not
enough for annotation of objects within the foreground. To accomplish that certain
pattern recognition based on a shape model are required.

Most widely used methods are: active shape models (ASM) [9], active snakes (or
contours) [26], the Hough Transform [52], deformable templates [65] and level-set based
methods (LSM) [51]. Most model based segmentation methods are concerned with the
retrieval of certain predefined shapes from the images.

A large number of context based image retrieval systems have been described [70].
These can be divided into the free-form and the parametric approaches [24].

Free Form Free-form class models have no global shape limitation, but focus mainly
on attraction towards certain image features [24]. Free form models need a correct
global initialization inside an image and optimize the local shape. A popular free-form
approach for shape retrieval is the Active Contour (or active snake) [26]. Shape edges
need to be connected together for an active snake to perform correctly.

19
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Parametric In papers dealing with recognition of objects with known shapes, [18, 44,
16] the authors stress the use of deformable templates. Deformable templates are part
of the parametric class models as they make use of a predefined set of parameters.
The representation of the parameters might differ, but often a template is used, which
consists of a set of contour points to which we approximate the basic shape outline. A
deformable template [24] approach gives the possibility to represent an object that can
be subject to certain deformations in a compact manner. In that case object localization
should be performed by a process of matching the deformable template to the object
shape in the input image. In [9, 27, 45] a deformable template representation of a shape
is a set of points approximating the outline as obtained from a priori knowledge.

Existing template matching systems are known for handling grayscale or binary im-
ages. Some systems work directly on the grayscale input image. In this case often shape
descriptors like STFT [37] are used to describe shape or texture characteristic. Other sys-
tems assume a bottom-up segmentation step like thresholding [21, 46] already converted
the image to a binary representation. In [33] the authors propose a deformable template
based region merging system. As input their method uses both over segmentation with
region color and edge detection and is based on splitting and merging regions based on
certain perceptual criteria.

2.1.2 Overview of Basic Approaches for Zebrafish Embryo Segmentation

We have tried to apply different bottom up segmentation methods in order to separate
the zebrafish shapes from the background. Note, that this concerns solely segmenta-
tion, not recognition. This means the separation of foreground (the space taken up by
zebrafish embryos) and the background of an image.

The motivation to apply color or grayscale based segmentation is based on the sug-
gestion that the zebrafish embryos have a different color than the background. In order
to determine the color that defines a zebrafish embryo automatically, we first attempt to
determine the color of the background. This can be done under the assumption that a
zebrafish embryo is never located on or intersecting the edge of the image. This means
that all the pixels on the edge of the image are part of the background. All image objects
that are not of that color are then treated as zebrafish.

First we attempt to do the segmentation based on grayscale thresholding. The most
basic approach would be global thresholding. This means that image pixels with an
intensity value below a threshold value ¢ are labeled as foreground and the rest of image
space is labeled as background. A global threshold method does not work for most
of images at hand. This was due to the fact that because of uneven illumination the
background intensity differed on different locations in the image and therefore there was
no t value that could be set to separate foreground from background. An example of
failing global thresholding is shown in Figure 2.1.

We also attempted to interpolate the grayscale background values from the edges to
the center of the image. By this we tended to predict the background values as they
should be at the location of the image and then subtract them from the original image.
A commonly used way of doing it would be using a large Gaussian filter. However, since
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2.1 Introduction

Figure 2.1: From left to right: Original image (converted to grayscale) , thresholded
grayscale image.

Figure 2.2: From left to right: original image, difference of interpolated image and orig-
inal.

the zebrafish objects are very large this approach would not work. We applied a bi-linear
interpolation method to be able to predict the background values of each pixel within
the image. Instead of pixels we separated the image into small a X a rectangular areas
and calculated their average intensity. If the difference between this intensity and the
interpolated image was larger than a certain threshold ¢, area was treated as foreground,
otherwise as background. Foreground pixels were multiplied with the original image,
background area intensity was set to 0. In Figure 2.2 we show some results of this
algorithm. While the results seem good there is an amount of variables (¢,a) that still
need to be set by hand per image before running the algorithm .

Following the grayscale threshold we have tried to separate the image based on its
values in the color spaces. Again, we assumed that the edge of the image contains
only background values. We have separated the image into HSI space, which is a more
standard way to do segmentation on color images than separating into RGB channels.
We have followed a typical HSI segmentation method as is presented in [21](page 331).
The method is based on thresholding the saturation image S. Then the retrieved mask
Sp was multiplied with the hue image H. The saturation threshold value is set based on
the edge background values. An example of this method applied to a typical zebrafish
image is shown in Figure 2.3. The spatial location of non black pixels in S; x H represent
the regions of interest. This segmentation is not accurate, since a lot of pixels within
the zebrafish and on its border are treated as background.
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Figure 2.3: From left to right: original image (converted to grayscale), its saturation
component (59), thresholded saturation component multiplied by hue (S, X

Figure 2.4: From left to right: original image, regions retrieved by mean-shift segmenta-
tion, retrieved background region in gray.

Another method based on color is Mean Shift discontinuity preserving altering [59].
The method progresses throughout the image by looking for color similarities. Then the
image is labeled into regions. We have applied the method to the zebrafish images by
assuming the entire background will be selected as one region. This region can then be
identified since we know the background is present at the edge of the image. The result
of such a segmentation is shown in Figure 2.4. As can be seen this method gives more
accurate results.

In our test case the image background represents a liquid and therefore it is fairly
smooth without high local color changes. The zebrafish objects however usually do have
strong boundaries. This suggests the use of edge based methods. We have tested our
data with several straightforward gradient operators. An operator that directly gives a
binary image as output is the Canny edge detector. Its output is shown in Figure 2.5.
As can be seen in the figure edge based methods are able to remove the background.
However, since the zebrafish embryos have a lot of strong edges present within the fish
it still might be difficult to automatically select the zebrafish outline.

Some of the approaches presented here were used as a preprocessing step during the
actual pattern recognition process. The choices of these approaches are described in
more detail in the following sections. A short summary on the methods as applied to
zebrafish embryos is given in Table 2.1.
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2.1 Introduction

Figure 2.5: From left to right: Original image converted to grayscale, right canny edge
detector result.

Segmentation technique Discussion
binary thresholding fails at uneven illumination
background interpolation good, but variables need to be set per case
HSI space based good, if zebrafish intensity differs from background
mean-shift good results
edge based good results, but needs post-processing

Table 2.1: Comparison of different bottom up segmentation methods with respect to
zebrafish embryo retrieval.
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2 Segmentation and Pattern Recognition in Image Space

2.1.3 Deformable Template Matching

The problem at hand is the retrieval of a known basic shape: the basic shape is known but
can slightly vary. Besides separating foreground from background also content retrieval
is important: we want to know how a shape is located, how many shapes are in the
image and where which part of the shape is. This calls for a top down approach. A
candidate would be a parametric approach. Template matching is a process of finding a
predefined template in an image. The way template similarity as compared to a part of
the original image is calculated differs per application [32].

2.2 Deformable Template Matching (Approach 1)

In this section we introduce a slice representation model (SR) of a deformable template.
Instead of considering the outline of a shape, we simplify the shape representation by
considering only certain characteristic horizontal slices and use these for template match-
ing. The proposed SR model is made advantageous for efficient optimization with a
Genetic Algorithm (GA). In [66, 48] authors also propose a GA for low parameter shape
templates (circle and ellipse detection).

2.2.1 Method

We propose a template representation which captures both boundary and interior of the
object and thereby describes the average structure of a predefined shape. The grid of
the search space is determined by the discrete pixels in a K x L image matrix M. We
take a binary image as starting point. The binary image is obtained by thresholding.
Thereby we assume a background pixel has the value 0 and a foreground pixel value 1.
In the following subsections we will describe the template representation in more detail
as well as the deformations that a template can undergo.

Slice Representation Model

The prototype template Ty we propose is represented by the following vector:

TO = (80781:"'78n7d)7 (221)

where n is the number of slices; d is the distance between two slices in the horizontal
direction. Initially Tp is represented in a X (horizontal)-Y (vertical) space in the hori-
zontal direction, with slices being parallel to the Y-axis. This is done for ease in the
representation. A template slice itself is then represented by the vector:

s; = (wi, b, i), (2.2.2)

where w; is the fixed width in pixels in the horizontal direction, preferably w; = 1; b;
is the fixed width in pixels in the vertical direction of the image, preferably b; = 0 and
located below and above the area of w;. The b; are required to define that the area
surrounding the shape is preferably empty. And ¢; is the seed point of a slice; ¢; is
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2.2 Deformable Template Matching (Approach 1)

Figure 2.6: a) A single slice. The slice is always parallel to the Y-axis b) Template for
a fish shape ¢) Location of ¢; in a fish shape template d) Template for a car
shape e) Location of ¢; in a car shape template

needed to be able to define non symmetrical shapes as input. This point will be used as
a reference for allowed slice shifts. In Figure 2.6a an example slice is shown; a slice is a
sample of the template always perpendicular to the length axis.

In Figure 2.6b, 2.6¢, 2.6d two examples of templates are shown. The template length
is fixed according to £(v) = n * d. For templates with horizontal symmetry axis, ¢; is
simply chosen as the center of each slice (cf. Figure 2.6¢ ). For templates having no
horizontal symmetry axis ¢; are located on the same horizontal line (cf. Figure 2.6e ).

Deformations

This representation was chosen as we assumed the slices will be able to move vertically
along the template to match a deformed (slightly shifted) shape. At template shift or
slight rotation the global shape is still captured within the template. The total length
of the template is fixed in the proposed representation.

A deformed template T' is derived from the prototype template Ty and is represented as
T(To,I). A deformation I will then be encoded by a state-sequence as follows:

I'=(z,y+030,y+01,...,y+dn), (2.2.3)

where x is the shift in the X-axis direction of ¢p; y + d; is the translation measured in
the Y-axis direction of the g; of slice i.

We assume the maximal vertical deformation between two slices is 45 degrees, cf. Fig-
ure 2.7a. As a result of this constraint |5;—1 — d| < |6;] < |0;—1 + d| applies for two
starting points of consecutive slices 7 and 7 + 1. Then, each ¢; can be shifted vertically
within the following boundaries:
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Figure 2.7: a) Vertical shift margins allowed for slice starting point ¢;, relative to ¢;

and ¢; ;. b) A possible deformation for a fish template.

max(gi—1 — d, g1 — d) < ¢; < min(g—1 + d, Gi+1 + d). (2.2.4)

In Figure 2.7b we demonstrate a possible deformation of a template representing a fish.

Energy Function

The energy function ® is a fitness function that specifies to what extent an identified
shape in the image matches the deformed template. In the literature the probability of
a deformed template being located over a shape is referred to as the likelihood [24].
Let us now introduce the details of the computation of ®. Consider the fitness ¢; of a
single slice i. In order to find the optimum we wish to maximize matching values (0 or
1) between pixels covered by the slice, i.e., pixels with value 1 contained in w; and pixels
(at top and bottom of the slice) with value 0 in b;. We then have: S;[j] represents the
j-th element (pixel) of slice S;, as counted from the top of the slice.

| w2 1, if M(z,j+y+ )= SilJ]
bm LS = b M
w; + 2b; =0 0,

In Figure 2.8 an example of a matching is given. The location of the proposed matching
is denoted in pattern. For this example:

(2.2.5)

otherwise

& _1+0+0+1+1+1+1+1+0+1+1+1
o 12

The deformation I consists of multiple slice shifts. The total fitness of all n slices is
given by:

=0.75

1 n
= i 2.2.
® n+1 ;‘b ( 6)

2.2.2 Optimization by a Genetic Algorithm

In this section we discuss the major components of a Genetic Algorithm (GA), i.e., popu-
lation, evaluation, selection, crossover and mutation respectively. In a GA, a population
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2.2 Deformable Template Matching (Approach 1)

Figure 2.8: Example of matching a slice S; on to a location in matrix M

P (of size m) of candidate solutions is evolved toward better solutions by introducing
computer analogues for recombination, mutation and selection [1].
A candidate solution is also referred to as an individual. The outline of a generic GA
pseudo code reads:
1.t=0
2. Initialize P(t)
3. Evaluate P(¢)
4. while not terminate do
5. P'(t) = SelectMates (P(t))
6. P"(t) = Crossover (P'(t))
7. P"(t) = Mutate (P"(t))
8. Evaluate P(t)
9. P(t+1)=P")
10. t=t+1

11. end while

The termination criterion can differ, depending on the problem at hand. The details of
the operators are dealt with in more detail in the following subsections.
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Figure 2.9: Fitness comparison for different tournament values in 30 runs

Representation of Individuals

A shape I based on the template Tj, also referred to as individual, is represented in the
image as, and consists of the following genomes:

The individuals are initialized with randomly valued genomes. According to common
practice in the GA research, a population is generated with random genome values,
covering the entire range of possible solutions. For finding shapes in images, this means
random shapes are initialized on random locations in the target image with a random
deformation according to Eq. 2.2.7.

Evaluation

The fitness function determines the quality of an individual and depends on the problem
at hand. Function ® (cf. Eq. 2.2.6) will serve as a fitness function for the genome values
of an individual; ® is then used to evaluate the candidate solutions in the selection step.

Selection

For the selection operation, the so-called tournament selection scheme [39] is used in
order to prevent premature convergence. Tournament size, i.e., ksj.e, was determined
through empirical testing. Consequently, comparison of high and low k. is given in
Figure 2.9. We have established kg;,. = 7 to be a good value for our experiments.

Crossover

A crossover is applied with single crossover point. A random point p € (0,7n) is chosen
where n denotes the length of the genome. After crossover of two individuals I; and g
the resulting individual I, has the following form:

I, = (xK,yK,50K7 "76PK’6(P+1)J +a, ..,6nJ + a). (2.2.8)

Variable a is needed to make sure Eq. 2.2.8 holds and is determined by:
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2.2 Deformable Template Matching (Approach 1)

Figure 2.10: Graphical representation of crossover function as derived from the data.
Typical example in zebrafish imaging.

Opi —d, i (O — Opt1), > d)
a={ 0p +d, if (6PK — 6(p+1)J < —d) (2.2.9)
0, otherwise

Mutation

For the mutation operator we use standard settings commonly used for GAs. That is a
uniform mutation, where each genome ¢ has the probability to mutate: 1/n [1], where
n is the genome length. For each genome:

g U(g,9) (2.2.10)

To make sure a uniform mutation is used we allow every slice center to mutate any-
where within the image space. Since the constrain max(¢;_1 — d, 41 — d) < ¢ <
min(g;—1 + d, g;+1 + d) holds, subsequent slice centers are not allowed to be more sepa-
rated than distance d.

2.2.3 Multiple Object Recognition

The shape under study can have multiple slightly different (deformed) instances in one
and the same image. The complete search space in this image is denoted by M. First the
best matching shape Sy (with highest fitness) is localized. To decrease the search space
for finding the next shape instance, we set all the elements contained within Sy € My to
0 and name the resulting image M.

This process is repeated by iteration and in that manner M; is reduced for each next
identified shape i. No shapes are found if the fitness of the found optimum F(S;) drops
drastically, under a predefined threshold value r. The value of r can be determined
empirically from a test on similar images (acquired under the same conditions). An
example of such drastic fitness drop in fitness growth is depicted in Figure 2.11. This is
a fitness plot for an image containing 3 fish shapes (cf. Figure 2.15a).

The pseudo code for finding multiple shapes in an image can be written as:

1.i=0
2. So = GA(My)
3. while F(S;) > r do

4.  save S; as found shape
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Figure 2.11: Fitness plot for an image containing three zebrafish shapes.

5. M;= M;_1\S;
6. i=i+1

7. S;=GA(M,)
8. t=t+1

9. end while

2.2.4 Experiments

To evaluate the performance of our template representation and GA optimization we
have designed the task of finding objects based on predefined slice templates in images
with different type of content. An experiment was performed with templates i.e. in
synthetic as well as microscope images. With a simple interface the user selects both
input images as well as the template shape for analysis.

Testing with Synthetic Images

We have used 20 synthetic binary images of 388 x 291 pixels. We have generated the
images with different shapes located at different locations in images, slightly rotated,
skewed and missing pixel data. Random noise (drawing debris) is introduced. The
images randomly contain up to 3 instances of an object.

The first template used for the synthetic shapes is a template of an animal figure pre-
sented in Figure 2.12. We have created a synthetic binary image containing one deformed
animal shape. The result of the application of the GA optimization is depicted in Figure
2.12.

The second template used for the synthetic shapes is a template of a house figure pre-
sented in Figure 2.13.

We have created a synthetic binary image containing two figures that have a deformed
house shape. The result of the algorithm (implementation done in Delphi) is shown in
Figure 2.13.
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Figure 2.12: Very simple template of an animal shape (head, legs and body) and the
result of shape localization in a synthetic image containing a simple animal
shape instance.

Figure 2.13: Very simple template of an house shape and the result of shape localization
in a synthetic image containing two simple house shapes.

Application to the Zebrafish Larvae Images

To evaluate the performance of our algorithm in a real-world imaging application we
have chosen the task of finding zebrafish embryo shapes. The task at hand concerned
using a High Throughput (HT) segmentation technique for retrieving the location and
number of zebrafish embryo objects within images [54]. An additional requirement for
this application is the need for automatic recognition of head, body and tail of each
embryo. A typical binary image as presented for localization is shown in Figure 2.15a.
This image was converted from color scale images to binary in a preprocessing step. We
use a straightforward gradient operator (Sobel) followed by an iso-data threshold. In
that way strong edge pixels were extracted for a binary representation [21].

Each image contains multiple zebrafish embryo shapes. The number of shapes in an
image is not known in advance, the shapes might be overlapping. The shapes in all the
images are assumed to be located approximately horizontal with a maximum angle of 45
degrees; so our approach could be used. We have applied the algorithm for a database
of 100 images with the same settings for the GA (m = 200, kg, = 7, r = 0.5). For 87
images the amount of embryos in the image and the approximation of their shape could
be retrieved correctly. In the cases where the algorithm failed, it was mostly due to large
occlusion overlap or shapes being much longer or shorter than the proposed template.
For the small and medium occlusions and overlap the algorithm performed correctly (
cf. Figure 2.15). In Figure 2.14b the template of a zebrafish used in these results is
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Figure 2.14: a) Typical binary image of zebrafish embryos in a resolution of 388 x 291
pixels. b) The template Ty in a graphical representation that has been used
on 100 tested images. Dark gray lines represent w; and light gray lines
represent b; within slices. Some results are shown in Figure 2.15.

Figure 2.15: Graphical representation of template matching results for 6 images contain-
ing zebrafish larvae shapes.

shown in a graphical representation.

2.2.5 Conclusions and Discussion

In this section we have illustrated an application of a GA to optimize a deformable
template approach. This approach can be used in different fields as the template can
represent different shapes. Our approach was designed for an application in the HT
screening of zebrafish embryos [54]. The optimization of template parameters is done
through a Genetic Algorithm, which provides the possibility to search for an optimal
solution in large search spaces. Our approach also allows to retrieve multiple instances
of a certain object in a single image. Results indicate that this approach has a low error
rate while computational performance is manageable and fast, which is, of course, very
suitable for HT applications. Future work is directed towards a further generalization
of the approach and making the template representation scalable.
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2.3 Deformable Template Matching (Approach 2)

In the previous section we have illustrated a deformable template approach for the
representation of a biological shape in a binary representation. We take this approach
as a basis and further investigate the possibilities of a deformable template approach.
We consider a representation on the basis silhouettes or boundary representations of
prototype templates.

In research dealing with recognition of known shapes [18, 44, 16] the use of deformable
templates is emphasized. Deformable templates typically are parametric class models;
they start from a set of predefined parameters. The representation of the parameters
might differ, but often a template is used, consisting of a set of contour points to which
the basic shape outline is approximated. So, if the basic shape that is looked for is known,
it still needs to be localized in the images. Therefore the prior knowledge can be exploited
by choosing the parametric deformable shape template matching method as a basic
approach [24, 70, 7]. Such an approach is used in the segmentation of cells in microscope
images [18]. In this application the Hough transform approach is reformulated to be used
as a deformable template. However, if the shapes are more complex than a circular shape
like object, it is difficult to adapt to this approach. An example of a more complex shape
is the segmentation of the masseter on the basis of a predefined template [44]; locally
deformed instances of the template can be successfully extracted from input images.
On the basis of this approach we propose a further generalization with which it is also
possible to deal with multiple objects in one image as well as with global deformations;
e.g., bending of the entire object. Based on silhouettes or boundary representations of
prototype templates a considerable amount of research has been completed [16]. Usually
the silhouettes are defined by contour points and make up the template. These templates
can then be deformed by a set of parametric transformations, including both local and
global transformations [70]. We have taken this traditional representation as a starting
point; however, we have replaced the contour points in the silhouette by a contour area
(cf. Figure 2.17). The reason for using this representation is that we would like to allow
multiple overlapping instances of the object in one input image and therefore we have
to accommodate for missing contour points.

In addition to the template matching, we also address the problem of shape normal-
ization; in particular for applications of biological objects. The combination of shape
localization and normalization has been successfully applied for the roundworm, i.e.,
C. elegans [47]. It is known as the BDB+ method. On the basis of the object boundary
a straightening is applied so as to ease the further analysis of the objects. In our appli-
cation, however, this method cannot be used; it starts from a predefined shape and then
straightens the shape assuming the boundary has already been extracted. We want to
investigate the recognition and straightening of more complex elongated shapes and, as
indicated, account for the presence of multiple instances in one image.

The framework that we have elaborated consists of two steps. First, a preprocessing
step including a segmentation of an input image in order to separate the object(s) of
interest from the background is applied. Segmentation alone, however, does not give
satisfactory results, as we are not only interested in separating background from fore-
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ground, but we also want to recognize position and best possible representation of the
object. This is realized in the second step consisting of a matching of a deformable
template to the segmented image. This step is the main focus of this chapter. Finally, a
post-processing step includes shape normalization through straightening of the extracted
shape. Such is possible from contextual information about the object in the image that
we have gained. Deformations are known and therefore deformations can be normalized
according to the template. The framework was implemented in C++ using the OpenCV
graphics library (http://opencv.willowgarage.com).

2.3.1 Method

The starting point of our algorithm is variation; i.e. a shape has variation, it can
be inflicted with noise and it can be deformed or partially occluded. Our framework
detects deformed instances of a predefined structure by means of deformable template
matching and these instances are subsequently extracted from an input image. In Figure
2.16, an overview of the process is presented. The approach consists of two steps: the
preprocessing step and the template matching step. First, during the preprocessing
step, the input image is converted to a strict binary representation. In the main process
the deformable template matching is applied in the binary image obtained from the
preprocessing. This entails looking for the best match of a prototype template in the
image. If a match is found the result is annotated according to the prototype template
and henceforth, straightened.

Pre-processing

The first step in the analysis is retrieving foreground and background: i.e., an operation
that converts an input image to a binary representation by marking the pixels which
belong to foreground objects 1 and the background pixels 0. Different binarization
methods are described in the literature; i.e., based on the usage of global or adaptive
threshold methods, color or edge based segmentation. The choice of the method depends
on the input image at hand, its properties and quality [21]. In the cases where prior
spatial information is known this given can be exploited and the threshold value set can
be based on this given.

After separation of foreground and background in the image, the contextual informa-
tion still needs to be retrieved in order to recognize the objects of interest.

Prototype Template

The initial contour sketch of the object of interest is defined by the prototype template Tp.
The construction of T} is based on prior knowledge and is an approximate representation
of how a typical object contour should look like and represents a contour location area.
A few examples are shown in Figure 2.17.

A contour location area represents the region of interest within which the local tem-
plate contour can exist and change. By doing so, the local deformations become limited
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Figure 2.16: Proposed framework for automatic shape retrieval and straightening.

—7
=

Figure 2.17: Some examples of prototype templates of different objects. Gray area rep-
resents the space where connected component boundaries might be located.
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Figure 2.18: An example of matrix representing a template slice ¢(4, 7). Fields with value
1 are marked with gray color. Other fields have the value 0.

Figure 2.19: A prototype template as a chain of slices and a deformed instance. All shape
boundaries that fit in the grey area fit the template. Black lines represent
two example shapes that fit these templates.

by looking only at the pixels that are located within the contour location area (de-
picted in gray in Figure 2.17). Limiting the template boundary location of the deformed
template is necessary to predict image boundary location in cases where it is missing,
incomplete or overlapping.

As a result of this representation only global deformations are left, which will be
described in the next subsection.

Parametric Transformation

Biological shape instances are often bended and rotated. To cope with these global
deformations Ty is distributed into n smaller sub-templates, so called slices t;:

To =to, t, ... tn (2.3.1)

A single slice can be seen as a rectangular matrix ¢(7, j), consisting of binary values.
This is shown in Figure 2.20.

The horizontal medial axis of the slice Oporizontal, 1s defined at [i/2, %], and the slice
origin as O at [i/2,j/2].

Within the whole template the slices can rotate around their origin O to allow match-
ing against rotated shape, but the origins are linked together as a chain (Figure 2.19); at
any deformation of the total shape the distance between sequential slice origins remains
the same.

A deformed template 7" is derived from 7Ty and is represented as T = (Tp,§). A
deformation £ of the slice chain is encoded by the following state-sequence:

§: (1‘71/76%07041,...,04”) (232)
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Figure 2.20: An example of template matching of a template slice S(¢, ) and a region
R(i, ).

Here x is the shift in the X-axis, y the shift in the Y-axis direction of the first slice ty and
the angle of rotation «; of each slice t;. Due to the proposed slice based representation
our deformable template approach is very suitable for use with elongated shapes.

Objective Function

The fitness of a template matching of an input image is measured by an objective
function [24]. In [47] a parametric representation is used where the algorithm marches
along the backbone of C. elegans to calculate the objective function.

A similar approach is applied, by comparing simultaneously the binary slice matrix
S(i,7) to a selected image region R(i,7j) of the same size (cf. Figure 2.20a,b). First the
matrix is considered where both the template and the image region have overlapping
foreground pixels, which are the result of R(i,7) - S(i,7) (cf. Figure 2.20c).

Since during this step the shape is a filled binary object, matches that are farthest
from the slice center, yet still in the silhouette contour area are assumed to define the
object. Then to get the actual border the algorithm marches along the horizontal medial
axis of R(7,j) - S(i,j) iterating over 0 till j. Each orthogonal image plane pixel column
p; (with iterating from 0 to i) is compared to the template. It is assumed that the
fish silhouette has only one silhouette pixel in the top and the bottom of each column.
Therefore, per column the two extreme points that are of value 1 (as measured from the
horizontal medial axis) remain 1, all other values are set to 0 (Figure 2.20d). The value
of extreme(S(i,j) - R(7,j)) is then the total amount of overlapping outer shape pixels
between S(i,j) and R(i,j). This is treated as intermediate result. The quality (the
objective function) of this result is then measured by the length of the retrieved border.
The objective function is 1 if all pixels of the silhouette have been retrieved. Therefore
the objective function for a slice S(i,7) is:

o(S(i, 7)) = %emtreme(S(i,j) - R(1,7)) (2.3.3)
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Since a template consists of n slices of the same size, F(T',{) depends on the fitness
function of each slice k:

FT,8 =+ 3" 0u(S(, ) (23.4)
k=0

Matching the Template to the Input Image

To check all possible occurrences T' must be transformed, rotated and deformed using
all possible parameters. To find the best solution there is a need to retrieve the global
maximum of the fitness function for the input image. That is, to compare each S(i, j) to
all possible regions R(%, j) within the image. A global search is computationally complex
[28], especially when the image search space is large. In the literature Genetic Algorithms
and dynamic programming approaches [33, 58] have been used for optimization.

Post-processing: Straightening the Template

After a sequence of slices is found, the shape can be straightened by rotating each
found slice back. Since each deformed template 7" has a deformation defined by £ =
(z,y,ap, a1, ..., ap) each of its slices is rotated back by the slice angle —«. In that ;vay
the global deformation of the deformed template is reverted to the prototype template
To.

2.3.2 Application to the Zebrafish Larvae Images
Pre-processing

Because of uneven illumination, global threshold methods applied to a gray-scale version
of the zebrafish images will not produce satisfactory results. We, therefore, employ an
edge map based method to the input image. Edges define the boundaries between objects
and background without strong dependency on flaws in the illumination. There exist
several algorithms to create an edge map. After creation of the edge map a threshold
must be set to select the strong edges.

Determining the threshold value of an edge map can be a cumbersome task. To set
the threshold automatically without prior spatial relationship knowledge of the image,
Otsu’s method [46] might be applied.

However, we have prior spatial relationship knowledge of our particular data set and
exploit this for our own border based method: the objects in the image are always located
at some minimal distance d from image border. We try to exploit this. Thus we can
assume that a layer of thickness d on the outside of an image contains only background
pixels with some incidental noise. Of this layer we retrieve a number of local maximal
pixel values. Of all the collected values we take the median value to determine the
threshold value for the edge map.

To select the best preprocessing approach we compare the performance of different
edge detectors (Sobel, Roberts) [21] in combination with Otsu’s [46] method and our
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Figure 2.21: Minimal slices and optional slices in a prototype template. The template is
compared to an example of a short and a long larvae shape.

border based method on 233 images. We count the number of objects in the segmented
image. If the number of objects equals the number of objects in the original image
we mark the prediction as correct. Both gradient methods in combination with our
border method outperformed thresholding based on Otsu’s method. Out of the images
incorrectly segmented in 17 cases the zebrafish shapes were touching each other and were
thus connected. In all of these cases both edge detectors predicted 1 or 2 fish instead of
3 due to this connection.

After basic segmentation is realized, mathematical morphology operations are applied
to get rid of noise and close up unwanted gaps: first the closing operator is applied to
interconnect small regions and close holes, then connected components labeling (with
filling up holes) is applied to obtain the closed shapes. In order to eliminate remaining
noise we use the fact that we know the minimal area covered by a zebrafish. This area
size can be automatically retrieved from the template size. Thus we remove all objects
smaller then this minimal area. We do not remove objects that are larger than the
maximal area, since larger object might be intersecting zebrafish shapes.

Main Process: Deformable Template Matching Prototype Template

Our initial zebrafish template in Figure 2.21 is created from averaging a test set of
training shapes [10]. This template is created from averaging a set of 20 zebrafish larvae
shapes.

Zebrafish larvae tend to have different lengths. Therefore, the length of the template
is not fixed, but can vary between some minimal (min) and maximal (max) number of
slices tymin and tyq,. If the number of found slices is smaller than min or larger than
max we assume the shape is not found. All the slices t, with min < x < max are thus
optional slices. This is depicted in Figure 2.21. The maz and min are set based on the
length of the longest and shortest encountered zebrafish.
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| | Prototype template T,
Lol alal.

Pixel column Pixel column

Figure 2.22: Marching direction for the first slice depicted in the image pixel matrix.

Objective Function for the First Slice.

The described objective function is applicable for slices in which the important in-
formation is located above and below the slice center. While most of the zebrafish
larvae template applies to this condition the very first (head) slice does not. The reason
for it is that its shape is close to half circular. This is depicted in Figure 2.22.

To cope with this case, instead of retrieving extreme values above and below the
median axis (described in Section 2.3.1) extreme values are retrieved in a circular way
as shown in Figure 2.22.

Matching the Template to the Shape

A top-down dynamic programming approach is applied with a hash table for intermediate
result saving, to obtain a global optimum.

In our test case the larvae shapes are located in an approximately horizontal position
in the input image. This given is used to reduce the search space. This is done by
assuming that each slice can rotate between —45 to 45 degrees as measured from the
image horizontal axis. Additionally a discrete set of deformation angles for each slice is
used.

To further reduce the search space a Multi resolution algorithm [30] is used. First the
solution is located on a low resolution template and a low resolution input image. Then,
the solution is used for initialization in a higher resolution.

2.3.3 Experiments and Results

An evaluation of our algorithm is performed on a data set consisting of 233 images. The
data set was directly obtained from a running experiment. Out of these images 177
(76%) contained multiple (3) zebrafish larvae, 33 (14%) contained 2 larvae and 23 (10%)
1 larva.
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Figure 2.23: Automatic localization of the zebrafish shapes using deformable template
matching. The white line defines the shapes as found by the algorithm.
White dots represent the found slice centers. In the left image the shapes
are touching each other, which makes recognition more difficult. These
images were created using the same template (these images were used to
determine bacterial infection, black regions, in each larva separately).

A first basic test is to check for how many of the tested images the number of larvae is
predicted correctly. The result was that for all images (100%) the number of the larvae
shapes (1, 2 or 3 larvae, even if overlapping) within each image was correctly retrieved
by our framework.

The automated prediction of the number of shapes in an image looks promising, but
only retrieving the number of shapes is not sufficient for a proper analysis of the results.
To that end we also test the accuracy of the algorithm, that is, how precise the shapes
were retrieved. In Figure 2.23 representative results of retrieved shapes are depicted.
We show shapes that are deformed in different ways as well as shapes touching each
other. The template in Figure 2.21 was used for the creation of all these images.

We are not aware of other methods that can be used for automatically retrieve prede-
fined shapes from images without an initialization, and therefore we have compared the
resulting shapes of each retrieved zebrafish larva shape against ground truth images of
the same shapes annotated by experts. In order to have manageable proportions in the
evaluation, we reduced our test set to a total of 104 zebrafish shapes (distributed among
35 images, containing up to 3 shapes per image).

Four experts (test-person T1, T2, T3, T4) were asked to delineate the correct outline
of the zebrafish larva. Drawing the shapes was realized with a LCD-tablet (Wacom)
using TDR software [61].

Next, the precision of our approach is compared by applying it to the same input
data (algorithm output A). A comparison of human to automatic retrieval was also used
in [47] for validation of the results. The accuracy of our shape retrieval algorithm is
measured by the equation proposed and explained in [44]:

N(Marea N Sarea)
N(Mm“ea) + N(Sarea)

accuracy = 2 X < ) x 100% (2.3.5)
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| | A [ T1 [ T2 [ T3] T4 |

A - 96.85 | 97.19 | 96.29 | 96.47
T1 | 96.85 - 97.61 | 97.21 | 96.81
T2 | 97.19 | 97.61 - 97.17 | 97.46

T3 | 96.29 | 97.21 | 97.17 - 96.68
T4 | 96.47 | 96.81 | 97.46 | 96.68 -

Table 2.2: Accuracy comparison of our algorithm A and the test subjects T1, T2, T3,
T4. The matrix is symmetrical, yet we have shown all the values for viewing
convenience.

Figure 2.24: Automatic straightening results of zebrafish larvae. Image (left) is the input
image. Image (right) is the straightening result.

We have compared the accuracy of our algorithm to T1, T2, T3, T4. The average
accuracy was established as 96.71% (o = 1.27). Note that this accuracy could not be
achieved only by the segmentation step, as 35 (of the 104) shapes used for this test were
touching each other and their boundary was derived through the template matching.

Table 2.2 depicts the results of the comparison of the accuracy of our algorithm A
with the test persons. In addition the inter-observer variation is analyzed.

As can be seen from the table the accuracy between our algorithm and each test person
is as close to the accuracy of the test persons to each other. This indicated that the
algorithm retrieves shapes as good as or comparable to manual retrieval.

In the last part of the experiment the objects, i.e., zebrafish, are straightened. This
is accomplished using a template with a straight top border in order to align the found
slices with their top to a horizontal line. The results are shown in Figure 2.24 and Figure
2.25. To retrieve and straighten a single zebrafish shape from a 2592 x 1944 image our
application needed about 35s of CPU time on an Intel Dual Core 2.66Ghz, 1.00Gb.

2.3.4 Conclusions

In this section we further investigate the possibilities of a deformable template approach.
The prototype template proposed in this section is represented as a bitmap and can easily
be adapted to the needs of the application while the same algorithm is used. Results can
then be compared by shape normalization. The algorithm we propose does not rely on
initial localization of the shape and therefore does not require any manual intervention
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Figure 2.25: Automated straightening results of zebrafish larvae. Image (left) shows
the found shapes projected on the input image. Image (right) shows the
automatic straightening result.

or analysis. The framework was applied in an experimental set up for HT screening
with a readout in images. In the application to zebrafish screening an average accuracy
of about 96 percent has been achieved. The framework can be easily adapted to work
with other shapes, e.g., in the life sciences or in other fields that require accurate and
robust shape retrieval. Further analysis of the object straightening precision is part of
the future work.

43






3 Anchor Region Based Pattern
Recognition in Image Space

Under preparation for publication and based on:

A. Nezhinsky € F.J. Verbeek: Anchor Region Based Pattern Recognition in Image Space

45



3 Anchor Region Based Pattern Recognition in Image Space

3.1 Introduction

We have designed and developed a generic algorithm for use in High Throughput appli-
cations in the life sciences. We want to automatically analyze images; in particular we
aim at the detection and annotation of shapes of biological interest.

Shapes often seem similar to the human eye; this is a perceptual generalization as each
individual (instance) is different. Size, position and a lot of other aspects differ. Global
proportions and image magnification are the same. An image can contain multiple shapes
and some of them are clustered together which complicates automatic analysis. Without
proper localization and annotation of the regions in the shapes, the measurement of
features within each instance is hampered. Additionally, each shape should be annotated
in such a way that it can be compared to other retrieved shapes. For our analysis we
want to establish an uniform way to overcome these problems.

The analysis is part of a High Throughput setup and therefore the starting point for
our approach is, that in at least 95% of the cases, retrieved shapes should be detected
and annotated correctly.

As a case study we have considered High Throughput analysis of zebrafish as it requires
automated analysis of thousands of zebrafish larvae [54]. For each zebrafish larva, a
brightfield image is acquired as shown in Figure 3.1. The brightfield image is used for
the localization and annotation of the zebrafish shape. Until recently, these images were
manually analyzed. The analysis included localization of the zebrafish shape in the
brightfield images.

This chapter is structured as follows:

e In Section 3.1.2 we describe the development of the algorithm.
e In Section 3.3 we continue with the application of the algorithm to zebrafish larvae.

e In Section 3.4 we extend the application of the algorithm to other shapes.

In Section 3.3.4 a typical case study with statistical processing of the result is
presented to show the virtue of the current application.

e We close this chapter with a discussion of all results presented (Section 3.5).

3.1.1 Related Work

In order to make our approach more generic we do not design an algorithm specific for
our case study, but rather design an algorithm capable of success when applied to other
problems. The general starting point therefore, is to find the objects that can be globally
defined by their shape. In addition, we investigate the effect of the presence of more than
one instance. As prior knowledge we adapt the fact that the global shape is known but
the position for each shape is not known. We do not, however, consider active snakes or
other free form methods as a possibility.

We assume that in an image only the shapes of interest and some accidental noise
are present. Therefore, if we can separate the foreground from the background the
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3.1 Introduction

Figure 3.1: Examples of brightfield images (converted to grayscale) containing zebrafish
embryos. Note the differences in illumination resulting in shades in the back-
ground and variations in intensity.
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foreground object there will most likely contain the shape of interest and/or some ac-
cidental noise. An example of an approach combining both bottom-up and top-down
methods is given in [22]. The authors first exploit bottom-up image cues to create an
over-segmented representation of an image and then merge the segments by assigning
labels that correspond to the object category.

By the binarization (bottom-up) approach we are converting the problem from the
RGB domain to the binary domain, [21]. The choice of approach is problem related and
is strongly dependent on the data at hand. In the cases where prior spatial information
is known this characteristic can be exploited and used for setting the threshold value.
We have made a small inventory of different approaches for binarization and compared
the results.

Following the binarization we require a top-down approach for the pattern recognition
step, that can simply use a sketch or a logic representation of the object we are looking
for. A deformable template approach can be used for this purpose. Binary images are
successfully used for template and polygon matching [17, 29].

When binary objects are unintentionally interconnected it is good practice to split up
the binary image into a collection of binary regions based on some geometric assumptions
about the data. In the literature the rules to split up large objects are the minima rule
and the short cut rule [33] suggesting splitting an object at its concavities. Finding
concavities is preceded by finding the convex hull of an object [6]; this method can be
very effective. In such problems the choice of the algorithm that is used to split the
binary objects based on their concavities is very problem dependent. The recognition
step still must be performed on the resulting binary elements. We want to investigate if
a more globally operating method can be found.

A brute force template matching algorithm that uses straightforward matching of a
template element to every possible deformation, transition and rotation would be too
computationally intensive [28]. This problem can be overcome by reducing the search
space through application of predefined rules or a method should be used which is not
dependent on pixel by pixel comparison. Predefined rules can be retrieved from a priori
knowledge about the image. We therefore want to investigate a new direction in template
matching approaches as addition to existing techniques. To that end we developed an
algorithm capable of retrieving deformed shapes based on a prototype model.

3.1.2 Algorithm Overview

We propose a complete framework for analysis and recognition of biological shapes. It
consists of multiple steps and several scenarios. The analysis pipeline is shown in Figure
3.2. Asinput a color or grayscale image (Input image) is used and in addition a Prototype
Template of the shape that is looked for.

First, a Preprocessing step is applied in order to separate the object(s) from the back-
ground and by this the Input Image is converted to a Binary image. Segmentation alone,
however, does not give satisfactory results, as we are not only interested in separating
background from foreground, but we also want to recognize the particular shapes and
their position and best possible representation in the image.
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3.1 Introduction

Figure 3.2: Proposed framework for the main scenario of shape localization and annota-
tion.

The second step, a Pattern Recognition step, is applied in order to recognize the
shapes from the binary image and annotate them. This is done by retrieving the best
representation of the prototype template in the binary image. The resulting shape (Final
detailed result) can be used for further measurements.

In order to make this model fit for High Throughput (HT) applications we propose
a scenario so that the results produced by the main scenario need to be checked by a
human for consistency. This scenario is an addition to the fully automated scenario in
the following way. From the Preprocessing step the number of Connected components
that are extracted as foreground is retrieved. In cases in which the shapes are not
overlapping each other and no other objects are present in the image, the final result
should present the number of objects that equals the number of connected components.
Therefore we can assume that in most cases the number of connected components from
the preprocessing step equals the number of objects present in the image. If the number
of connected components does not equal the number of retrieved shapes from the final
result, we mark this result as something that needs to be evaluated by a human observer
for correctness. The complete process is shown in Figure 3.2.

3.1.3 Pre-processing

For the proposed approach we need a bottom up technique that can easily separate
foreground and background. The production of a binary image I, from a grayscale or a
RGB color image differs per problem at hand and will therefore not be the focus here.
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However, we will in short describe the binarization algorithm for a specific shape, since
we will use it as an example throughout this chapter.

Thresholding of the typical images containing biological objects is not a trivial pro-
cess. This is due to the fact that images often suffer from uneven illumination as result
of microscopy, contain noise and have different color values representing the similar
structures. As an example consider the images and their differences in Figure 3.1.

We have evaluated the performance of different thresholding methods for the images
as used in this case study [43]. For the segmentation we did not use a texture based
descriptor, since it was reported [69] that this method produced false positives when a
background region contained texture similar to the object of interest. A detailed com-
parison of binarization methods for the images containing zebrafish is given in Chapter 2.

For the binarization we have probed a state of the art method, mean shift segmenta-
tion [59]. This approach distributes the image into connected regions (or clusters) based
on color similarity. Since the mean-shift can run with different parameter settings these
should be derived from the data. To accomplish this we run the algorithm with different
settings.

To determine the correct settings for the mean-shift segmentation algorithm for the
case study we use the assumption that the shape is never located at the edge of the
image (1) and that the objects of interest are smooth shapes (2):

1. We assume the objects of interest are never located at the edge of the image.
Therefore we can assume that the image border consists for the most part or solely
of the background: all pixels that are part of the same cluster as the border pixels
are also background. As a result of this assumption the background can be easily
subtracted from the image, and in this way only the objects of interest and noise
remain.

2. A smooth object will tend to have a lower compactness (Eq. 3.1.1) then edgy
ones, so we can use this measurement to determine if an object is present in the
image. For each collection of clusters resulting from mean-shift segmentation we
start with checking the compactness of the objects (or clusters). We subtract the
background clusters from the collection and of the remaining ones we calculate
the average compactness. The settings that provide the highest compactness are
chosen as best settings. In order to calculate compactness area and perimeter of
each binary object o; are considered:

compactness = perimeter(0;)* /area (3.1.1)

As an example throughout this section we use the binary image I, as shown in Figure
3.3. This image was derived from the grayscale image through mean-shift segmentation.
The result of the preprocessing is a binary image without annotation of the shapes.
Moreover non specific shapes, noise and debris are still present in the image and need
not be taken into account for our measurements. Therefore, additional segmentation is
needed.
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Figure 3.3: An example of grayscale and binary image containing zebrafish embryos and
some artificial debris.

3.2 Pattern Recognition: The Anchor Region Based Method

Now that we have removed the background with the pre-processing step we need to
recognize and annotate the shapes that are segmented from the binary image. As Pattern
Recognition step we have developed a Deformable Template Matching method: the
anchor region based algorithm. In Figure 3.4 an overview is shown.

We investigate the feasibility of a new Deformable Template Matching approach com-
pared to solutions presented in Chapter 2.

The template matching takes a binary image I, as obtained from the preprocessing
step. Binary image Ij, consists of two types of regions: foreground regions Ry,...,R;
and the background.

Foreground regions R are defined as a collection of interconnected pixels with value 1.
Background regions B are defined as a collection of interconnected pixels with value 0.

3.2.1 Prototype Template

The prototype template consists of template elements (¢, t1,...,¢,). The sequence of
elements in the tuple defines the order of these objects. Each element ¢ is defined by its
size r and a length limitation [:

e 71 is the radius of a circle that inscribes the object to be determined
e [ is the distance between the inscribed circle centers of ¢

Graphically this is depicted in Figure 3.5.

Since we want to focus on biological shapes the size and length may vary substantially.
Therefore we represent r and [ as variables instead of constants. We assume, however,
that the ratio of different template elements as relative to each other is the same, while
the object itself might be scaled. In this way we can define a collection of shapes with
variable width and length that all match the shape of interest.
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Figure 3.4: Overview of the proposed framework for Object Recognition. The first in-
put is a binary image that consists of fore- and background regions that
are obtained from the pre-processing. Second input, a prototype template,
represents the ideal shape of the object that we would like to retrieve. As
output detailed results are provided in the form of object instance locations.
The numbers (1,...,6) refer to the explanatory text.

Figure 3.5: A template element ¢(r, 1), defined by the inscribed circle radius r and inner
length [ (extension within which this circle can shift).
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Example Template

For example, if we want to localize all elements that look like a zebrafish larvae as
depicted in Figure 3.3 we can define the prototype template as a head object t( followed
by a body object t; followed by a tail object t5. The prototype template shape sequence
is then [tot1t2]. Now we construct the template as follows.

For the head region instead of a constant value for r we define rqg > 0,79 < r1. This
means that the head element must have a radius of inscribed circle smaller than for the
body region.

The radius of the tail region at its largest should be smaller then the body region,
with a minimum of 70%, thus, 0 < ro < 0.7r7.

We assume that the length of the head and body region together should be less than
half of the entire shape, thus, lo + {1 < 0.5 (lo + {1 + l2).

The zebrafish larvae shape can be represented as:

[tot1ta] sequence
ro = 0,170 < 11,0 <19 <0.7r1 radiusrelationship
To = < Trin < 75 < Tmaz radius limits (3.2.1)
(lo+11)<05-(lo+11+12)  lengthrelationship
Lmin < (lo + 11 +12) < linax length limits

The values of min, Tmazs lmins lmaz are here to restrict the allowed object size or length
for parts of the zebrafish object. If we set rmin = 0, Fmae = 00, lmin = 0, Linee = 00, the
representation becomes fully scale independent.

3.2.2 Conversion from Image to Graph

In this section we elaborate on the steps 1, 2, 3 and 4 from Figure 3.4. The template
matching step consists of searching for characteristic regions in I as they are defined in
the prototype template Tp. In order to do so we need to convert the search space into a
representation that can be used with the template T. To that end we need an approach
that converts the representation of the objects in the image from binary shapes to a
graph that can be traversed and evaluated. The representation must be reversible, that
is, upon localization of the template elements in the graph we must be able to convert
graph nodes to the original shape.

The concept of anchor points [57] is very helpful to obtain the template elements.
Anchor points are defined as a collection of non-removable pixels during the thinning
process. In [57] a set of anchor points (RCDM) based on a reduced set of center of
mazimal disks (CMDs) is retrieved for reversible skeletonization.

Our approach is based on retrieval of a set of CMDs followed by the reduction of the
set in such a way that the global characteristics of the shape still can be described while
the search space is drastically reduced. We adapt the basic method to our needs.
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Figure 3.6: Euclidean Distance transform D of the binary image from Figure 3.3. An
inverted lookup table is used, therefore the lighter pixels correspond to low
DT function values (closer to the background) and dark pixels correspond to
high values (further from the background).

Compute Distance Transform

The Euclidean Distance Transform is a tool common in shape matching and doing mea-
surements related to distance and CMD retrieval [67, 5, 13] and therefore it lends itself
perfectly for the problem at hand. The Euclidean Distance Transform (EDT, or DT for
short here) is a generally used operator which stands for the calculation of the smallest
Euclidean distance from each pixel to a region of interest (cf. [15, 5, 14]).

As input image we use the binary image mask I,. As output we construct an image
that will represent a DT map which will denote the radius of each region (step 1 in
Figure 3.4). The resulting Distance Transform has the same dimensions as I and is
denoted as D. The value of each pixel in the DT image corresponds to the distance to
the background d. The result of a DT applied to the grayscale image in Figure 3.3 is
shown as in Figure 3.6. In this image the locations of a larger inscribed circle for I have
lighter color.

Convert Distance Transform to Anchor Regions

Now from the DT the Anchor points are obtained (step 3 in Figure 3.4); the DT is
reduced to a set of anchor points through repetitive dilation of region in D. This object
will be called Dpeg;.
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We set the starting d; = 7, (smallest radius of the object we are looking for) and
increase by diy1 = d; + 6 while d; < 74, with stepsize § = 1. We choose § = 1 in
order to simplify the calculation, as a consequence the resulting anchor points may have
a thickness of more then one pixel and might not be accurately reversible. In our case,
the representation is used for recognition of the general outline of the object during the
template matching step and complete reversibility is not required. Note that the anchor
points in this case will be represented as clusters of non-removable pixels rather then
one-pixel points. Therefore we prefer the term anchor regions instead.

For each iteration the following is done. First we threshold D with distance value d;.
The resulting image D[i] will contain only the regions that were created with element
width r;. For each pixel at D(x,y) the following is done:

) )1 D(z,y) =d;
Dlite.y) = {O otherwise (3.2.2)
Dyest(x,y) = max(D[i](z,y), Dpest(,y)) (3.2.3)

Now, Dpest contains only the largest radius regions.

To retrieve the approximation of the shape that is covered by the retrieved radius
region we perform backtracking, therefore D[i] is subsequently dilated with a circular
structuring element E; with a radius d;. The result is subtracted from D in order to
prevent evaluating at the same area in the next iteration:

D' =D — (D[i] & E(dy)) (3.2.4)

Each result is the input to the next iteration. At completion of iterations (stop criterion
defined as d; < 7az) Dpest Will contain only the global anchor regions ag, a1, ..., a,. In
Figure 3.7 the resulting Dy is depicted.

In order to define each anchor region a from Dy in such a way that it can be used as
a node in a graph, an anchor region « is represented in the following manner: a(d, F, ¢),
where:

e d is the radius of the circular structuring element belonging to the anchor region.
For each a we store the d(a) = d; that was used for its creation.

e F' is the shape representing the anchor region. It is a collection of pixels that
contribute to the anchor region shape.

o ¢(cg, ¢y) is the anchor point, which also is the center of mass of the shape.
The overview of the entire process is given in the following pseudo code fragment:

1. d = rmin

2.1=0

3. while d < rp,4, do
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_— 5—4 ——— — I —
. —_—
Figure 3.7: Dpest: a collection of anchor regions ay, ..., a, selected from the Distance

Transform of example in Figure 3.3. d for each a is encoded as a grayscale
value. Image saturation contrast has been improved for visual purposes.
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Figure 3.8: Example of a dilation process of an anchor region by a circular structuring

10.

11.

12.

13.

14.

15.

element. Dark area to the left is the anchor region being dilated, resulting
in the dark area to the right.

1=14+1
d=d+1
for x = 0 to ImageWidth do
for y = 0 to ImageHeight do
if D(z,y) =d
Dli)(z,y) =1
else
DIi)(z.y) = 0
end for
end for
Diest(2,y) = max(D[i}(z,y), Doest (x, y))

D =D —(D[i] & E(d))

16. end while

Determine Undefined Space

Now that we have determined all anchor regions in Djy.s; we can consider the area it
represents. A consequent dilation of every anchor region a; will result in such area. A
graphical example of a dilation process of an anchor region is shown in Figure 3.8.

Taking Figure 3.7 as an example, if we perform a dilation of each a; with a circular
structuring element with radius d(ay) this will result in a configuration as depicted in
Figure 3.9:

Fax) © E(d(ax)) (3.2.9)
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Figure 3.9: Dilation of every anchor region shape in Dy from Figure 3.7.

The result obtained by application of Eq. 3.2.5 captures the original shape in a global
manner but is missing out on the small details; more specifically, objects that have
d < Timin are discarded.

This error is introduced through the usage of non linear filters. For retrieving the
global shape of the objects this does not give any problem.

However, since we need to reason about the retrieved regions, we save all these regions
as undefined regions U (step 2 in Figure 3.4). The region U can be determined by a
subtraction of the dilated Djeg from the original binary image:

U =1, — (Dli] ® E(d;)) (3.2.6)

for all 4. For the example in Figure 3.10 the resulting undefined region image is depicted.

Connecting Nodes

The next step consists of creation of an undirected graph G connecting the anchor regions
(step 4 in Figure 3.4). This is accomplished by connecting all neighboring anchor regions
through their centers of mass.

We define a,, to be a neighbor of a,, if the elements of the line from the center of
mass of a,,to the center of mass of a, ( ¢(an) to c(ay,)) are entirely within regions
belonging to the dilated sequences of these anchor regions (or nodes). An example of
this neighboring definition is shown in Figure 3.11. This definition is comparable to the
definition of Voronoi (or Delaunay) neighbors: if two Voronoi regions share a boundary,
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Figure 3.10: Undefined space U.

the nodes of these regions are connected with an edge. In our case the regions themselves
can not be seen as Voronoi regions, however the neighboring property is the same.

In order to handle the undefined space the previous rule is extended as follows. We
define a,, to be a neighbor of a, if the elements of the line from c(a,,) to c(a,) are
entirely within regions belonging to the dilated sequences of these anchor regions (or
nodes) or to undefined regions, cf. Eq. 3.2.7. An example is shown in Figure 3.12.

c(am)c(an)eF (ty) ® E(d(an)) N F(a,) ® E(d(ay,))NU (3.2.7)
In Figure 3.13 we show G as it is created for the example of the zebrafish larvae.
The rule as described in Eq. 3.2.7 is always applicable for neighbor definition except
in pathological cases, for example due to poor image quality.

Convert Anchor Regions to Template Elements

Since a path in G is a sequence of anchor regions these need to be converted to template
elements. One template shape element ¢; can consist of multiple anchor regions. To that
end a collection of anchor regions [ag..a,]et; if:

e All anchor regions are of the same radius as the template element:
—foralli with0<i<n,d(a)=r

e The length between the start and the end of the anchor region chain fits the
template element length definition:
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3 Anchor Region Based Pattern Recognition in Image Space

Figure 3.11: Consider the areas A, B and C. Elements of the line from ¢(A) to ¢(B) are
entirely within regions A and B. This makes A and B neighbors. Elements
of the line from ¢(B) to ¢(C) are entirely within regions B and C. This
makes B and C neighbors. Some elements of the line from ¢(A) to ¢(C) are
not within regions A and C. A and C' are therefore not neighbors.

Figure 3.12: Consider the areas A, B and U. U represents the undefined regions. Ele-
ments of the line from ¢(A4) to ¢(B) are not entirely within regions A and
B. However, elements of the line from ¢(A) to ¢(B) are all within regions
A, B and U. A and B are therefore treated as neighbors.
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3.2 Pattern Recognition: The Anchor Region Based Method

Figure 3.13: Graph G depicted on image containing the dilation of Dpeg;.

- lmin(i) g C(CLO)C(al) + C(al)c(a2) +...+ C(an—l)c(an) g lmax(i)

Now that we have a conversion approach for anchor regions to template elements we can
assume that graph G consists of template elements ¢.

3.2.3 Bayesian Formulation

In the graph G, representing the input image, we will search for the presence of the
prototype template. Therefore G is traversed. An optimal solution determines the
location of the best matching shape.

An optimal solution is defined as one with the highest probability being a deformed
instance of the prototype template. The probability of a shape T; being present in an
image is expressed as: P(T;|G):

P(G|T;)P(T5)

P(TIG) = =g

(3.2.8)

Let ¢ be any deformation of the prototype template Ty. Then, according to [60] P(G|T;)
can be expressed as marginal probability sum of all probabilities for a deformation to
happen joint with the probability for its validity P(G,d;|T;) . This sum is approximated
by [ P(G,&]|T;)dd and can be rewritten in the following way:

P(GIT) = [ P(G.81)d5 = [ P(GI3. T)P(IT)d8 (3.29)
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3 Anchor Region Based Pattern Recognition in Image Space

Then, in order to maximize the probability that given graph G we can identify our
template T in it can be related to the maximum of the following expression:

P(G6;, T;) P(6:| ;) (3.2.10)

P(G|d;, T;) represents the likelihood. P(6;|T;)do is the prior probability of a deforma-
tion. We can reduce the problem to minimizing external and internal energy [60], related
respectively to likelihood and prior probability:

Eext = — log P(G|51,Tl) (3211)

Eint = —log P(6;|T;) (3.2.12)

This yields a total energy function that needs to be minimized being E = Feyt + Fipt.

Likelihood

The likelihood is a measurement of the similarity between an underlying object in G and
the deformed template 7T; in the image [24].

A deformed object of interest is a path in graph G that contains all the template
shape elements that are present in Ty (and these elements are encountered in the same
sequence).

A solution s is an ordered list of template elements [to,...,tx]. Cases where s =
[to,...,tx] ¢ Ty are not taken into consideration as a valid solution, therefore

0, ifs¢Ty

) (3.2.13)
1, otherwise

P(G|6;, T;) = {

For the zebrafish test case we assume that its basic structure should always be the
same. Therefore we do not introduce any fuzzy classifier for the external energy and
only consider the cases where P(G|d;,T;) = 1. Then energy function that needs to be
minimized becomes:

FE = Eint Zf S ¢ T() (3.2.14)

Prior Probability

Prior probability [24] is model driven and is the probability of a deformed 7; matching
the original T. We provide a prior that is applicable to the zebrafish larva, being the
main test case of this chapter, based on the following assumptions:

e The template, as described in Eq. 3.2.1 assumes a regular (healthy) zebrafish is
straight. Bended instances are allowed, but the straight ones should be preferred.
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3.2 Pattern Recognition: The Anchor Region Based Method

e The template, as described in Eq. 3.2.1, is represented in such a way, that shorter
instances could be (mis)interpreted as correct matches, while being a subset of the
correct match. For example a zebrafish match with a short tail can be considered
a solution, while the tail actually is longer. In order to prevent this we need to
prioritize the solutions that represent longer shapes.

As a result of these assumptions we construct the following priors:

e We favor the less deformed shapes over the heavily deformed ones. For two se-
quential nodes ¢, and ¢,1 we check the angle 6,1 4+1 between nodes as compared
to their predecessor node ¢, 1:

Ou1a+1 = arctan(c(to—1)s — c(ta)s, c(ta—1)y — c(ta)y)(180/7)

3.2.15
—arctan(c(tq)z — c(tat1)e, c(ta)y — c(tat1)y)(180/7) ( )

In order to consider the less deformed solutions we look at:
elargest = maX(90 ce Hk—l) (3.2.16)

We prioritize the candidates with the lowest 0j4,ges. This means the prior proba-
bility increases as 8j4,4est decreases.

e Additionally solutions that represent longer shapes need to be prioritized. Length
of a solution [ is represented as the sum of distances from anchor regions t,to t,
mass centers:

1= clta)c(ts) (3.2.17)

We prioritize the candidates with the highest [. Therefore prior probability in-
creases when the solution path length increases.

To that end we set the internal energy to:

Eing = e”™ . e F(1=blargest) (3.2.18)
with m, k normalizing constants. In Eq. 3.2.14 we state to consider only cases where
likelihood equals 1 therefore E = ;.

3.2.4 Finding an Optimal Solution

The Bayesian approach leads to a list L,y that contains all solutions in the dataset. The
following rules are considered while looking for optimal solutions:

e Create a list Lpes that will contain the optimal solutions

e Iteratively select the solution s with lowest E from L. To prevent cycles, solutions
with multiple instances of the same node are not considered.

— Save s t0 Lpegt

— Remove s from Ly
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3 Anchor Region Based Pattern Recognition in Image Space

Figure 3.14: A visual representation of retrieved zebrafish larvae. Detected shapes are
delineated with white.

— Remove all solutions that share at least one node with s from Ly
e Continue looking for solutions, while Ly is not empty (contains solutions)

The global shape of the objects can now be selected from the solutions in Lpes. The
shape is then retrieved by applying a dilation to the anchor regions.

The shape is not exact as it was an approximation derived from a distance transform
and dilation. In order to accurately retrieve our objects we miss out on the small objects
in the image at the locations where the opened regions are overlapping each other. These
small objects appear because opening does preserve the main geometric features, but
excludes features that are smaller than the structuring element radius. These small
objects (or artifacts) do remain in the undefined space U. Therefore we add elements
from U to the solution under evaluation. In order to know which elements to add we
select all elements that are the neighbors (cf. Eq. 3.2.7) of the retrieved regions (step 5
in Figure 3.4).

In our example the optimal result with three best solutions is shown in Figure 3.14.
Note that the algorithm correctly annotated the three zebrafish shapes, while the arti-
facts were not included.

3.3 Case Study 1: Zebrafish infection analysis

We have applied our approach for shape retrieval and annotation in a case study regard-
ing the spread of induced bacterial infection within the zebrafish larvae. In Chapter 5 a
more detailed description is given.

To better understand the infection progression large quantities of zebrafish larvae im-
ages needed are infected and after a few days of infection images are taken. All these
images need to be analyzed. Until recently, these images were analyzed manually. Of
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3.3 Case Study 1: Zebrafish infection analysis

Figure 3.15: A brightfield image (in grayscale representation) and a matching fluorescent
image (in grayscale representation). Images were taken with Leica DC500
microscope.

each location containing the zebrafish larvae two images were taken: one brightfield im-
age in order to establish the location of the larvae, and one fluorescent image containing
only location of the infection. In Figure 3.15 example of such an image pair is shown.

The analysis includes localization of the zebrafish shape in the brightfield image and
quantification of the granuloma cluster size and spread from the fluorescent images. This
enables the necessary HT automated approach.

For this case study we use a comparison of infection pattern of the wild-type of the My-
cobacterium marinum (MM) that made the zebrafish sick with a mutant strain (714M)
that induced less infection [42].

A brightfield image is used for finding and annotating the zebrafish shape. Addition-
ally, locations of subareas can be estimated. We annotate the zebrafish larvae shape
based on the prototype template representation as shown in Eq. 3.2.1. By using this
template as prototype the algorithm estimates the location of the head, body and tail
region of the zebrafish larvae.

3.3.1 Zebrafish Orientation

The template we have used for the zebrafish does not discriminate between the top
and the bottom of the zebrafish. Therefore an additional step is needed to retrieve the
orientation of the zebrafish larvae shape; this is necessary for a good assessment of the
infection.

In order to be able to determine that the following approach is suggested. We localize
all the convex deficiency locations. The bottom of a zebrafish shape will usually have
larger convexity defects then the smooth top. If the largest convexity defect is then
located below the shape path we assume the fish is on its belly, otherwise its on its back.

The annotation allows us to retrieve some other characteristic locations within a shape.
For example the heart of the larva and the point at which usually injections are performed
can be not automatically retrieved. This could be done by defining the locations of these
points of interest in the prototype template. For example, the heart is located between
the head and the body nodes at the bottom of a larva. The injection point is located
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3 Anchor Region Based Pattern Recognition in Image Space

Figure 3.16: Graphical representation of the separation of a zebrafish into regions.

approximately halfway the tail area. An automatic annotation of these locations can
then be performed as we know the locations of the head, body and tail regions and we
have obtained the shape orientation from our analysis.

3.3.2 Zebrafish Region Annotation

Now for the assessment of the infection, head (H), body bottom (BB), body top (BT),
tail bottom (TB) and tail top (TT) are defined. From the position assessment the
orientation of the zebrafish could be easily retrieved. This made it possible to divide
areas into the top and bottom part. Separation of these regions was based on [63].

The estimated location of these areas is shown in Figure 3.16. After annotation the
found regions were masked with the fluorescent image of the same fish (cf. Chapter 4)
in order to define infection location and amount.

3.3.3 Data

For this case study 189 zebrafish larval shapes were retrieved and analyzed. The images
are the input for the analysis framework which consisted of two steps. First the zebrafish
are localized by our algorithm and then used as a mask for the fluorescent images.
Infection spread and size is saved to a comma separated file. In Figure 3.17 and Figure
3.18 an example of the result is shown. Based on this annotation the infection patterns
were established and described in more detail in Chapter 4

3.3.4 Analysis and Results

In our case study we set out to analyze the relationship between mutant and wild-
type (MM) in the amount of clusters, spatial distribution and the cluster size. The
results presented here followed from an in depth statistical analysis that is described in
Chapter 5.

In all regions of the zebrafish the wild-type gives a higher area of infection compared
to the 714M; overall the infection area is 5 times larger. In the head region the same
percentage of the granulomas in both MM and 714M are located. In the body bottom
region a higher percentage of the granulomas of the MM then 714M are located. In
the tail bottom region a higher percentage of the granulomas of the 714M then MM
are located. A graphical representation of these results is shown in Figure 3.19. In all
regions of the zebrafish the MM gives a higher amount of clusters then the 714M; overall
the amount of clusters is 3 times higher. The spread of the clusters is not significantly
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Figure 3.17:

Figure 3.18:

3.3 Case Study 1: Zebrafish infection analysis

Output for a single image as created by the our algorithm. The found
shapes are denoted with red line. The purple area indicates the presence of
granuloma formation at the current location. Optimal graph G is printed
within each shape. Blue lines represent node connections that were classified
as tail area, green lines as body area and red as head. This image is created
in an automated fashion.

Output for a single image as created by our algorithm. The found shapes
are denoted with red line. Note that the shapes in this example are heavily
deformed, yet the shapes were found and annotated correctly. This image
is created in an automated fashion.
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3 Anchor Region Based Pattern Recognition in Image Space

Figure 3.19: Graphical representation of the amount of infection (see Chapter 5 for more
information on these infographics). While there is always more MM infec-
tion than 714M, the percentages of their presence in certain regions are
different.

different for MM and 714M. In this manner we can derive statements on the behavior
of mutant strains.

3.4 Case Study 2: Other Model Organisms

For an additional test of the algorithm we test the possibility to separate different
shapes/organisms in the same image. An experiment was set up with two different
shapes, We have collected images containing both Xenopus laevis and Danio rerio. In
early stages (20-30) the Xenopus has approximately a length in the same order of mag-
nitude as a zebrafish embryo in larval stage. However, the shape of the organisms is
different: the tail of the Xenopus has the same width as its body, which is different from
the zebrafish. In Figure 3.20 we present an image containing the zebrafish in larva stage
and the Xenopus in stage 26.

We have used Figure 3.20 as input for our algorithm with a prototype template
10.0prapisn @s presented earlier in this paper. As result the zebrafish larva was found
while the Xenopus shape was rejected as a solution. The result is shown in Figure 3.21.
As can be seen the non zebrafish shapes were not selected, while zebrafish shapes were
annotated.

In order to be able to find the Xenopus we have adapted the prototype template to
the following:

That is, the r of the tail of the Xenopus should in general be close or equal to its body
thickness (biggest part of the tail should be or at least 70% of it):

[totita] sequence

ro = 0,79 < 11,72 > 0,72[biggest] > 0.7r1 radiusrelationship

Opebnopus — ) Tmin < Ti < T'max radius limits (34.1)
(lo+1) <05 (lg+11 +12) length relationship
lnin < (lo+ 11 +12) < linax length limits
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3.4 Case Study 2: Other Model Organisms

Figure 3.20: Brightfield image of a zebrafish in larval stage (on top of the image) as well
as the Xenopus in stage 26. Image was provided by N.Bardine.

Figure 3.21: Results of applying or algorithm to an image of a zebrafish larva and the
Xenopus larva with a prototype template Ty

zebrafish®
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Figure 3.22: Results of applying or algorithm to an image of a zebrafish larva and the
Xenopus larva with a prototype template To,.,ops-

Results of the segmentation are shown in Figure 3.22. As can be seen with this
template the Xenopus shape is annotated, while the zebrafish shape was ignored.

To show that our algorithm is independent in scale and size and only shape based
we also run the algorithm for an image that is containing the zebrafish larva and the
Xenopus in a later stage of development (see Figure 3.23). In stage 45 Xenopus shape is
very similar to the zebrafish and its shape has approximately the same characteristics.
The difference, however is the size, as the Xenopus in this stage is several magnitudes
bigger then the zebrafish.

Results of the segmentation are shown in Figure 3.24. As can be seen both the Xenopus
as the zebrafish are annotated. This is due to the fact that their shapes are similar and
thus both fit the prototype template of the zebrafish larva regardless of their size.

3.5 Conclusions

The algorithm is robust; it can deal with variation in position and orientation which
makes it a perfect candidate to use for the complex shapes and scenes as apparent in
life sciences: if no special instrumentation is used the location and orientation will not
be known.

We have successfully used the algorithm in a case study for HT of automatic recog-
nition of zebrafish larva, specifically for in depth analysis of granuloma cluster spread.
From statistical analysis of the output data we gained insight on the distribution pattern
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3.5 Conclusions

Figure 3.23: Brightfield image of a zebrafish in larval stage (on top of the image) as well
as the Xenopus in stage 45. Image was provided by N.Bardine.

Figure 3.24: Results of applying or algorithm to an image of a zebrafish larva and the
Xenopus larva with a prototype template Ty

zebrafish®
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of the wild-type strain and how it was different from mutant 714 strain.
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4.1 Introduction

In the previous chapters we have elaborated on the segmentation of instances in an image.
From the introduction it was clear that the field of application is High Throughput
imaging for zebrafish. In the previous chapters the zebrafish has already been used
as a test object; in this chapter we further elaborate on the successful segmentation
algorithms to embed these in software that can be used in a High-Throughput context
to derive measurements.

4.2 High Throughput Experiments

In recent research the Mycobacterium marinum (MM) infection model in the zebrafish
larvae is exploited in order to gain more insight on the development and mechanisms
behind granuloma formation (cf. Chapter 5) in zebrafish as part of tuberculosis research.

We present a High Throughput (HT) screening setup that is used to obtain insight
into spread of bacteria by investigating different conditions, e.g., different mutants of
MM (cf. Chapter 5) or different infection volumes. Features are extracted to compare a
control condition to an experimental condition (wild-type versus mutant).

Screening was performed in vivo on larvae that were anesthetized in egg water with
0.02% (w/v) ethyl-3-aminobenzoate methanesulfonate salt and images were taken with
a CCD camera mounted on a fluorescence stereo microscope. Until recently the analysis
of the images was done manually, which made true HT screening impossible. Therefore
suitable HT analysis software is needed.

4.2.1 Image Acquisition

For the purpose of localization and quantification of the infection within the larvae for
each subject instance a multimodal 2 channel image is acquired: one channel is containing
a brightfield and one channel is containing a fluorescent image. Within each instance
of the screen up to 3 zebrafish larvae were placed in a single well. Intentionally, the
orientation of the larvae is head-left; however deviations from the preferred orientation
do frequently occur. Both brightfield and fluorescent images were acquired using the
Leica MZ16FA light microscope and captured with a Leica DC500 (DFC420C) CCD
camera 24 bit color with an image size of 2592 x 1944 pixels (about 5 Mpixels).
Besides the larvae no other objects are present in the brightfield image with the ex-
ception of incidental noise and debris. An example of a brightfield and a matching
fluorescent image is shown in Figure 3.15. One experiment contains multiple subject
instances that are created with the same microscope settings. For the automation, the
brightfield images are used in order to determine the position and location of the larvae.
The fluorescent images contain the signal from the fluorescent agent that is present
in the larvae, more specifically in the bacteria. The florescent agent used is DsRed,
which indicates the presence of bacteria and is visualized in the microscope from the
red channel with quite strong signal (good signal/noise ratio). Besides infection present,
the color channels can contain values above 0, possibly the result of auto-fluorescence
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Figure 4.1: An example of data organizations as currently done for an array of experi-
ments.

of components in the objects or medium [40]; this should therefore be considered as
background noise. Fluorescent images are used to derive the amount and the location
of infection per object.

The analysis is done in time, all the images that are taken during the experiments are
stored for analysis.

4.2.2 Data Storage

Images from the experiments are stored on a hard disk in an organized semi-structured
manner. This organization is file system based. Images (pairs of brightfield and fluores-
cent images) resulting from the same experiment are grouped together in folders that
are named after the experiments. Folders of experiments are then grouped in a parent
folder which is a group of experiments that are done at a specific date or in specific
conditions. The organization is as is taken from the lab.

As an example consider Figure 4.1. Note, that in this example the directory name
contains the the date of the experiment, but this is not regular practice and therefore
can not be considered as a fixed rule. In this example all experiments that are performed
on 20 April 2012 are grouped together in the folder 12-04-20 M30 that contains sub
folders of experiments for mutant strains that are numbered the same as the folder
names: 262, 298 and 308. The E11b folder contains the experiments that were done
on zebrafish infected with the wild-type strains, i.e., the control group. The ni folder
contains images of zebrafish that are not infected by any bacteria. So, each of the folders
(in the example folder of mutant 262 is unfolded) contains images that were taken during
the experiments.

The images are stored either as 24 bit color lossless (png or tif/tiff) encoding. An
example of the content of such a directory is shown in Figure 4.2.

The type of image (either brightfield or fluorescent) can not be retrieved from the
filename. However, the relation between a fluorescent image and a brightfield that
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Figure 4.2: Containment of a windows directory that represents the output for a single
experiment number 262.

contains the same object is encoded in the filename. The numerical value of the last 2
digits of a fluorescent image is always one higher as compared to the brightfield image
from the same experiment. This is the only filename encoding rule that is applied by
different users. Note, that even and odd number are not fixed for brightfield/fluorescent
images and they can not be identified as such. In Figure 4.2 we therefore can conclude
that image 262-04.tif is taken of same specimen as 262-03.tif. However to confirm the
connection a preprocessing step still is needed in order to determine which images are
fluorescent, for example to prevent the pairing of files 262-03.tif and 262-02.tif to each
other.

4.2.3 User Analysis

We identify the following characteristics of the users that will be working with the
software:

e The users are researchers in the life sciences.
e They work on a PC for analysis and texting applications.
e They are used to doing High Throughput analysis.

e They are used to storing the data in a semi-structured way.

4.3 Our Approach

We have worked out the idea to automate the workflow as much as possible and present
the user with an interface that to a certain extent matches users workflow. First we will
describe the workflow as it exists now. Then we will describe the components out of
which the software is built up and subsequently, we will discuss each of the components
in more detail. The prototype name of the software is ZFA (Zebrafish Analysis).

4.3.1 Workflow

A starting point for the workflow was the data storage as described in 4.2.2. An overview
of the workflow is presented in Figure 4.3.
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Figure 4.3: The original workflow of moving from stored images to measurements.

The images that are stored are either fluorescent or brightfield and are located in the
same directory. The first step in the parsing is a labeling of the image content (brightfield
or fluorescent).

Each experiment (contents of a single directory) is considered to be blanco or an in-
fected image group. Blanco images are images that contain embryos that are not infected.
Each blanco image pair consists of a brightfield and a fluorescent image. Consequently,
from these images, the average fluorescent background value can be established per ex-
perimental set. Infected images are images that contain embryos that are infected. Each
infected image pair consists of a brightfield and a fluorescent image. The user determines
which images should be treated as infected and which as blanco. The user can retrieve
this knowledge from the directory names (cf. Section 4.2.2).

Each brightfield blanco image Bb is used to get information on the area that is occupied
by the not infected larvae. This area is then used as a mask for the fluorescent blanco
image F'b and produces masked result mB.

Each brightfield infected image Bi is used to determine the area that is occupied by
the infected larvae. This area is then used as a mask for the fluorescent infected image
F'i and produces a masked result mI.

The average intensity of area mB is used as a threshold for mI. This process is
described in more detail in Section 4.3.2.

The amount of infection and its position is then analyzed in the thresholded mI. The
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output of an experiment should be represented as measurements of the infection within
each zebrafish embryo.

4.3.2 Components

From the workflow several processes emerge and these processes are included in the

software as components, i.e., the preprocessing, the interface, the segmentation and the

data processing components. Next, each of the components is described in more detail.
We decided to build software along principles of evolutionary prototyping.

Physical Implementation

The software is written in the C++ programming language in combination with the
OpenCV library and the interface was created using QtDesigner. The software shell
is chained in a pipeline as two executables. One contains the interface and the pre-
processing component. The other one contains the pattern recognition and the data
processing component. The first program automatically feeds the data to the second
one whenever the user runs an analysis.

Upon execution of the segmentation algorithm runs the interface is not locked, as
an advantage this means it continues to be interactive: the user can select and inspect
images, while the segmentation is ongoing.

Image Preprocessing

Both the fluorescent and the brightfield images are located in the same directory. A pre-
processing step is needed to separate them into the two groups. Therefore an automated
approach is developed to accomplish this separation.

In order to find a way to separate the images we have made the following assessment
of 3000 fluorescent images. First we examine the average intensity of the images. The
histogram of the images was analyzed and an average intensity was calculated. An
example histogram of a fluorescent image is shown in Figure 4.4. The average intensity
> f(x,y)/n x m (sum of pixel intensities divided by the total amount of pixels) always
remained under one third of total intensity spectrum. Therefore, if the average grayscale
value is lower then MaxIntensity/3 the image is considered to be a fluorescent image.

The filename of the fluorescent images is always linked to the matching brightfield
by a number in the filename and therefore the corresponding brightfield image is easily
retrieved.

User Interface

The interface component directs the user to select the working directories for both input
and output and subsequently presents the user with the previews of the images in selected
directories and allows to start the analysis and adjust different settings. Throughout the
development multiple versions of the interface have been proposed and evaluated with
the users. Version #jan2013 of the interface is shown in Figure 4.5. We will describe the
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1] 255 1] 255

Figure 4.4: Left: histogram of a sample fluorescent image. As can be seen from the
histogram all intensity values are located close to 0. Right: histogram of a
sample brightfield image (converted to grayscale). As can be seen the values
are more scattered through the entire interval.

sub components in more detail. For each description the corresponding sub component
number is given in Figure 4.5:

1. A drop down File menu. Options of the menu are: Open, Run, Set output folder
and FEuxit.

e Open: if option is selected an open directory dialog appears. The user selects
directories that contain the blanco images and the directories that need to be
analyzed. The selected data is then automatically separated into brightfield
and fluorescent images and a list of image file names is presented within the
interface ( sub component 8). For each directory the user can choose if it
either is a blanco, should be analyzed or both.

e Run: the images in the selected directories are transferred to the segmenta-
tion program and subsequently image processing is performed. The result is
written to a cswv file.

e Set output folder: sets the directory where the csv file and the output images
will be written to. Last working directory is always kept if the program is
restarted.

e Erit: exists the interface.

2. The directory that contains the output csv file and the output images (its value
can be modified from the File menu).

3. The output filename can be directly changed from the main interface window. Its
value is saved upon exiting the entire program and is reloaded at start up.

4. The ongoing current task of the ZFA is shown here. From this task an indication
is presented on the current image analysis task — including the current image.

5. Progress bar. At the onset of the analysis the bar is empty. It progresses while
the images are analyzed, with 100% of images analyzed represented by a full bar.
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Figure 4.5: Final version of the interface component.

6. An option to additionally look at specific locations: here the heart and the in-

jection point area. If selected, ZFA will annotate these areas and do additional
measurements at those locations. More information of the location of these points
can be found in Chapter 5.

. (and 9.) In this window a point-click on a filename activates a preview of the
fluorescent image and the matching brightfield image. Note, that the colors for
display are complementary to the original ones for visibility purposes.

. The image preview window shows a list of images that are contained in the selected
directory. The user selects, by ticking a checkbox, which of the loaded directories
should be analyzed and starts the image analysis pipeline. The user can make a
selection between the type of images in the selected directory If the user selects
Blanco the images will be treated as blanco images (see Section 4.3.2). If Analyze
is selected the images will be analyzed and the results will be written. If no options
are selected (no checkboxes are selected), then the directory is not considered at
all.

Image Analysis

In order to consider only the fluorescent signal that is resulting from infection the back-
ground is removed from the fluorescent images. We consider only the red channel of the
fluorescent image as that is the only channel that contains meaningful data. Then, all



4.3 Our Approach

Figure 4.6: Within the mask a threshold value is set (left: fluorescent image, right:
binary image as a result of thresholded left image).

Figure 4.7: Each zebrafish embryo mask is multiplied with the corresponding thresholded
fluorescent image (resulting from Figure 4.6) .

signal lower than a certain threshold value b is set to 0. The value of b is retrieved from
the blanco images. We assume blanco images contain no infection and all the signal in
it is considered background; we take the value of the brightest pixel of the blanco and
treat it as b. If more then one blanco image is present in the set an average value of the
brightest pixel of each blanco image is used instead.

All blanco images should be from the same set as the images we are analyzing and
the amount of selected blanco images should be > 0 (the user must select at least one
directory containing blanco images), otherwise b can not be computed. The resulting
thresholded image is shown in Figure 4.6.

The brightfield images are used to provide the mask of the shape under investigation.
The shape of the zebrafish embryos is localized by a model based segmentation algorithm
as described in Chapter 3. Each corresponding mask is then used for the measurements
in the fluorescent image. Besides only localizing the shape we also label different areas
as being specific regions of interest within the region mask (cf. Chapter 3).

For the fluorescent images only infection within the mask is used for the resulting
feature extraction. An example of this process is shown in Figure 4.7. In this manner
multiple instances of a shape in one image are processed one by one.
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Data Processing

After the retrieval of the infection in each zebrafish different features of the infection are
analyzed in more detail. An infection area is characterized by clusters of immune cells
(aka granuloma, cf. [54]). The measurements that can be done include measurements
of the shape and the amount of the cluster areas. This includes counting the amount
of clusters, their size, their spatial distribution within specific regions of the specimen,
the texture and the integrated intensity of each cluster. The extraction of the features
is followed by a statistical analysis of the features in context of the experiment. This
is elaborated in more detail in Chapter 5. After data is processed, this component
writes the data to a csv file so that further statistical analysis and classification can
be performed to the data by the user and other software. The process and the results
of the analysis are described in more detail in Chapter 5. Next to the output csv file
also output images are written. These images are the annotated representations of the
extracted masks and include the granuloma presence locations. These images can be
used for visual inspection of the results.

4.4 Evaluations and Results

In the context of the development of the software there are two kinds of results that
should be evaluated. The first are the results of user evaluations of the interface and
workflow. The second are the segmentation algorithm evaluations. That is referring to
the measurement of performance and accuracy.

4.4.1 User Evaluations

The prototyping is combined with a series of evaluations. Requirements for ZFA were
gathered through an elicitation process (derived from the workflow analysis). Users!
were asked to evaluate the product in different development stages of development.
Evaluations were performed on a functional prototype. Throughout different versions
feature requests were added at different stages of the software but the core process was
functional in all versions. For the evaluation the application prototype was installed on
the PC of the user.

Before requirements can be analyzed, modeled, or specified they must be gathered
through an elicitation process. During the elicitation phase we have retrieved the re-
quirements from studying the workflow. We have used the evolutionary prototyping
method with the user feedback regarding the interface design. The major requirements
were known and the way they should be implemented in the interface needed to be
iteratively adapted. The solutions were tested and adapted until interface interactions
were expressed as being satisfactory. After receiving an improved version the users were
interviewed about the usability of the system.

!Biologists at the Vrije Universiteit (Amsterdam) and IBL (Leiden).
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4.4.2 Results

The option for an output folder selection was introduced because the users desired to be
able to store multiple output csv files in a single, yet user chosen directory. Directory
location is shown directly in the interface, yet to change it the user must go through the
File menu. This option is added, because the output directory is usually not changed by
the users. However the option to change the csv output filename was integrated directly
in the interface, since users regularly tend to change this.

The current task window for showing the current task was introduced to provide a
better feedback to the user at the moment a problem occurs. This can be the case when
a certain image has a problem and can not be segmented for some reason. The task
window shows the filename of the last image that was analyzed. The user can inspect
that particular image to check if the problem can be solved or perhaps exclude that
particular image from the analysis.

The progress bar was introduced as the users wished to be informed on the time they
need to wait for the program to finish.

Most comments of the users related to the organization of the way a directory structure
containing the images was shown. In the early versions, directories that contained the
images showed previews of the fluorescent images. This was done as the previews could
indicate a rough measure of infection to the user. At first, the previews were shown in
the original (red over black) colors. However, the users commented that it was hard
to distinguish a weak red signal on a predominantly low intensity (seen as black color)
image. For that reason the image colors in the previews have been inverted in the
RGB model as shown in Figure 4.8. The inversion of the RGB channel image was done
according to the logical complement using the following scheme: R(red) was converted
to GB(green,blue); G was converted to RB; B was converted to RG. Since the original
image contained a signal only in the red color resulting images contain only a GB (GB
is also known as cyan) signal on a white background.

In an evaluation the users reported slow loading times of the interface. This especially
occurred when the directories for the analysis contained a larger number of images and
was due to preloading and processing (inverting the colors) of every image. In order
to shorten the loading time in a newer version instead of a preview of all images, the
previews are only displayed on a filename select from a list in the GUIL. The resulting
interface is shown in Figure 4.9.

4.4.3 Performance Evaluations and Results

It is important that the users can easily operate the software, but it is evenly important
that the software provides correct measurement results. Therefore we have done perfor-
mance and accuracy tests of the pattern recognition step. The interface, as described
in this chapter, was also coupled to different implementations of the segmentation algo-
rithm. The three different approaches for segmentation are described in more detail in
Chapters 2 (Approach 1 and 2) and 3 (Approach 3).

To compare the performance of the approaches we consider measurements that are
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Figure 4.8: Interactive layout. Image previews are shown in complementary colors with
a white background.
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Figure 4.9: Interactive layout. Image previews are not shown. Only when an image is
selected from the filename list the preview appears on the left.
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] Segmentation technique ‘ Approach 1 | Approach 2 | Approach 3 ‘

true positive (tp) 100 115 120
false positive (fp) 12 5 0
false negative (fn) 23 8 3

Precision 0.89 0.96 1.00

Recall 0.81 0.93 0.98

F 0.95 0.98 0.99

Table 4.1: Comparison of the proposed approaches with respect to zebrafish embryo
retrieval.

common for such pattern recognition problems, namely precision and recall (also known
as sensitivity). Precision is a measurement that represents the fraction of retrieved
shapes that are relevant to the objects under study. Recall is the fraction of relevant
objects that are retrieved. High precision yields a low percentage of false positives (fp),
while high recall yields a low percentage of false negatives (fn). This is given by:

. tp
precision = 4.4.1
tp+ fp (4.4.1)
recall = _ (4.4.2)
tp+ fn

i . i . | — 9. precision-recall
In order to combine the two measurements the F-score is used: F' = 2 B ccision Trecall

We compare the values of precision, recall and F for the three approaches in order
to see improvement in implementation. In Table 4.1 we present an overview for the
measurements for the three approaches and data it was tested on. The same test set
was used for the test of all the three approaches. We compiled the dataset from different
experiments with different background intensities. The dataset consisted of 46 images
containing 3 (36 images), 2 (6 images) or 1 zebrafish shape (3 images) per image. So
in total we tested with 123 zebrafish shapes. Of these images we labeled 25 as hard,
since in those cases the zebrafish shapes were touching, not placed in a lateral view or
showed severe deformations (e.g., bent tail). We assume a true positive has occurred if
the retrieved shape when analyzed by a human observer can be confirmed as zebrafish.
We assume a false positive occurs when a shape is found, yet it is incorrect (we establish
this happens when more then 20% of the shape is outside of the real zebrafish shape, or
at least 20% of the fish is not included). A false negative occurs when a shape is in the
image but it is not annotated as such.

The first approach could not retrieve a lot of zebrafish shapes and it introduces a lot
of false positives when only a part of the shape was retrieved. This happened mostly
in the cases where the zebrafish shapes were close to each other or the tail was heavily
deformed. All shapes were retrieved roughly as an approximation.

The second approach performed well, but still some shapes were not or not correctly
retrieved. In cases of false positives, this happened when the zebrafish tails were heavily
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deformed and the algorithm failed to detect the tail. The shapes were retrieved more
accurate than by the use of the first approach, however the shapes were still not smooth.
Time needed to do analysis on all the images was approximately the same as with the
first approach.

The third approach performed very well on the dataset. The only three shapes that
were not found by the third approach were all located in the same image. Its analysis
failed because the preprocessing step (mean-shift segmentation) could not separate the
foreground from the background due to low intensity difference. Failing to retrieve these
three individuals thus had nothing to do with the actual pattern recognition step. A
smooth shape was retrieved for every image. Time needed to do analysis on all the
images was approximately 4 times shorter than with the first and the second approach.

Additional elaboration of results and comparisons can be found in Chapter 6.

From this it is clear that Approach 3 gives the best performance and is used in the
latest version of ZFA software.

4.5 Conclusions and Discussion

An evolutionary prototyping procedure with evaluations helped to improve ZFA on the
level of (G)UT as well as performance and features. Also the segmentation algorithm
yields good results and can be used successfully in a High Throughput approach.

ZFA is successful at recognizing the zebrafish larva shape and analyzing the infection
within the larvae. ZFA is robust as it can be adapted to recognizing other shapes
by simply changing the template; therefore it can be suitable for other organisms and
especially in HT.

In the current version the measurements that are performed on the infection are:
localization, infection cluster size, infection cluster amount and average infection cluster
intensity. More texture measurements are to be performed such as shape descriptors
and in depth intensity analysis.

For now the directory structure is used to select image folders containing the data
that needs to be analyzed. This makes the software easy to use in a different laboratory
without the need for a special database. However future work will include an online
database repository where uploading the images through a web based interface becomes
part of the process. This will make local installation of the software obsolete. Currently
the measurements are stored in an output file. The file is in a comma separated format.
This is a feasible approach in a laboratory environment where the users are using different
files for different experiments. However when the amount of images grows the output
should be stored in a relational SQL database for easier indexation. The data can then be
organized based on keywords such as experiment type, experiment date, mutant number
and the id of the biologist that took the images. Links between experiments can then
be retrieved based on SQL queries.

ZFA has proven its value as a software solution for the analysis in a HT screening
pipeline.
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5.1 Introduction

Tuberculosis is a serious disease and a significant part of the world population is infected.
Unfortunately, effective treatment is still difficult due to bacteria resistance. In order
to elucidate which genes are responsible for infection, the behavior of the tuberculosis
bacteria Mycobacterium tuberculosis needs to be analyzed. In our study this behavior is
modeled by a close relative — the Mycobacterium marinum (MM ). The MM is hosted
in cold blooded animals. For our study the zebrafish is used as a host. Zebrafish makes
a good model for analysis as its immune system is in many ways comparable to human.
The zebrafish larvae can be obtained in large numbers and studied by HT imaging (cf.
Chapters 2, 3).

Infection of the zebrafish with MM is characterized by the presence of granulomas.
Granulomas are clusters of immune cells and bacteria indicating infection. They can be
visualized with fluorescent agents.

In order to determine which genes of MM are involved in formation of granulomas we
obtained a dataset of 1000 random mutants of the MM bacteria and screened for those
mutants that were not able to efficiently infect zebrafish larvae [54]. In this manner 30
mutants have been identified that were unable to infect larvae (cf. [55]).

In order to gain more insight in the progression of MM infection it is required to
analyze infection spread in the host, c.q. the zebrafish, over a certain period of time.
This requires the following questions to be answered:

(1) Is there a pattern in the organization of granuloma clusters in certain tissues?

(2) Does appearance differ for certain bacterial mutants?

This analysis is accomplished with the HT imaging as described in Chapters 4. For
each zebrafish a brightfield and fluorescence microscopy image is acquired. The analysis
included localization of the zebrafish shape and qualitative estimation of the granuloma
cluster size and spread. Consequently, no quantitative data could be retrieved. The
results are presented by means of different types of custom designed infographics.

We have designed and implemented an automated framework for shape retrieval and
cluster analysis [43]. This framework has been applied to large scale HT applications
(54].

The basis of the software framework is an algorithm for shape retrieval to automati-
cally find the zebrafish shape(s) in the image. The algorithm uses deformable template
matching [23] and labels the regions for further analysis. This approach made it possible
to analyze the infection amount per fish in an automated fashion (cf. Chapter 4).

Proof of Principle: Wild-type versus Mutant 714

As a proof of principle, a study for the detailed analysis was performed to find a strategy
for analysis. As an initial test case mutant 714 was chosen; this is one of the 30 mutants
which is not successful in infecting the fish. We are focusing on the question: can the size
of the granuloma clusters be analyzed from the infected fish? In addition, we compare
similarity in larvae infected with the wild-type MM and mutant 714.
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Figure 5.1: A brightfield image may contain up to 3 shapes of the zebrafish larva.

In depth Analysis: Wild-type versus a List of Mutants

After the proof of principle from the first assessment we apply our algorithm for in depth
analysis of a larger set of mutants. We compare the results of infection to the readout for
the wild-type. The following mutants indicated by a number were part of our analysis:
262, 308, 414, 415, 421, 423, 431, 730, 748, 801, 817, 885, 941 and 943. In order to
process this amount of data an objective test was needed.

Microscopy

Images were taken in batches of 30 wells. Each batch contained sibling zebrafish larvae.
Images were acquired with a Leica DC500 microscope. The general layout of an exper-
iment takes 3 zebrafish larvae per well. As a result a single image can contain up to 3
individuals.

For each well, both brightfield and fluorescent images were acquired. The brightfield
image contains the zebrafish shape, while the fluorescent image contains the signal at
granuloma locations. An example of such images for a single well is presented in Figure
5.1 and 5.2 (cf. Chapters 2, 3). As can be seen the fluorescent images have very low and
different intensity values. By inspecting the images, it is not difficult to conclude that
consistent manual analysis therefore will be very difficult and imprecise.

5.2 Analysis of High Throughput Zebrafish Infections Screens
Based on Approach 2

The images are the input for the analysis framework ZFA (cf. Chapter 4). As algorithm

for the pattern recognition we used Approach 2 (cf. Section 2.3). First, the zebrafish are
localized and the result is used as a mask for the fluorescent image. Within the mask
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Figure 5.2: A fluorescent image containing the signal of granuloma spread. For visual-
ization purposes the contrast is enhanced. The image contains specific (A)
and non specific (B) staining as well as systemic noise.

a threshold value is determined. Finally the data is analyzed and written to a comma
separated file.

The data set we have used for the analysis consisted of 189 infected zebrafish larvae.
The larvae were divided into 3 groups: not infected larvae NI (5), infected with My-
cobacterium marinum wild-type MM (67) and those infected with the 714 mutant 714M
(117).

For the infection approximately the same amount of bacteria was used; the volume
was plated on 7TH10 plates. At injection the zebrafish were 6 days old. The infection has
progressed for 5 days, after this the imaging was performed.

5.2.1 Brightfield Imaging: Shape Localization and Annotation

The ZFA determines a region of interest (ROI) and provides annotation of the relevant
areas. A deformable template is used for the retrieval of the zebrafish shapes. In order
to be able to detect different regions of the fish, the template was divided into 11 regions
(or slices in Section 2.3) counting from head to tail (numbered from 0 to 10). We have
chosen for division into 11 parts, as it is empirically established that this amount of
parts allows best for annotating the shape as well as doing spatial analysis. In Figure
5.3 the graphical representation of a prototype template used for our experiments is
shown. Enumerations (7) with values 0 and 1 are considered as the head regions, 2 till
4 as the trunk regions and the remaining parts as the tail regions. This division of
the larva in regions has been successfully used in other applications [63]. The injection
point for infection is located at approximately region 5 [11] and this can be used for the
analysis.
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Figure 5.3: Graphical representation of the prototype template used for our experiments.
The vertical bars divide the zebrafish into regions. The template is created
from averaging a test set of 20 training shapes

Figure 5.4: Graphical output of the framework overlaid on the original image for the top
fish in the image. The light gray line denotes the shape mask contour and
the white regions indicate the presence of granuloma formation. This image
is created in an automated fashion.

5.2.2 Fluorescent Imaging: Analysis

For the actual measurement of clusters fluorescent images were used and related to the
mask size, obtained from the brightfield images. The NI group is expected to have no
infection at all and thus the level of their maximal fluorescent signal is considered as
noise level n. No infection / granuloma formation is present in NI, therefore this group
was only used to obtain reference for a noise level. In the other groups all signal below n
is considered noise, while all signal above n represents granuloma presence. This signal
is analyzed per fish and written to a csv file as shown in Table 5.1. The notions will be
explained in the sequel.

5.2.3 Output and Dataset Creation

Output of the analysis software is created in the form of an overlay image containing
the detected zebrafish and the infection as shown in Figure 5.4, together with a csv file
(cf. Chapter 4).

Clusters of bacteria are labeled and for each of the clusters the surface area is deter-
mined. The infection is present in clusters:

Definition 1. ClusterCount is the amount of clusters present throughout the entire
zebrafish larva, denoted by C'C. A single cluster is defined as a connected collection of
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] Field name ‘ Explanation
TotalArea Total shape area
ClusterCount C'C Amount of clusters in the larva
ClusterSize C'S Area covered by all clusters

ClusterCountAt[i] CC[i] | Like CC but for a single template region
ClusterSize[i] C'S[i] Like C'S but for a single template region

Table 5.1: Fields contained in the output csv per larva, ¢ to the template region number
(0 to 10) as described in Section 5.2.1.

pixels of which every pixel is covering an area that is classified as infection. The image
pixels are classified as infection in an automated fashion as described in Section 4.3.2.
Background pixels are automatically excluded from the analysis.

The total area of the spread is the sum over all clusters:

Definition 2. ClusterSize is the total area covered by the infection throughout the
entire zebrafish larva, denoted by CS. Area is expressed in units that represent the
amount of pixels that are classified as infection. This classification was performed in an
automated fashion as described in Section 4.3.2. Background pixels are automatically
excluded from the analysis.

From the template we define 11 regions and a cluster is always assigned to the region
center with closest geometrical distance [43].

5.2.4 Analysis and Results

In this section an analysis of the results is presented. First the distribution of the clusters
is discussed and second a relation to the amount of infection is derived from the data.

Distribution of Cluster Amount

In our study we set out to analyze the relationship between mutant and wild-type with
respect to the amount of clusters and spatial distribution. To that end we compare the
average number of clusters (feature Cluster Count,C'C[i]) between MM and 714M (cf.
Figure 5.5).

Definition 3. Cluster Count[region/ is the amount of clusters present in a certain region
(or slice), denoted by CC[i]. A cluster is defined as a connected collection of pixels of
which every pixel is covering an area that is classified as infection.

The image pixels are classified as infection in an automated fashion as described in
Section 4.3.2. Background pixels are automatically excluded from the analysis.

From the initial measurements this distribution does not seem to be conclusive. This
is due to the fact that the mean was taken from a dataset with a certain scatter. This
scatter is shown in Figure 5.6.
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Figure 5.5: Spatial comparison of the average amount of clusters for MM and 714M in
relation to the zebrafish template with a 95% confidence interval.

Figure 5.6: Scatter plot of the amount of clusters in each case of the test set used.

We are interested in the distribution of the granuloma clusters and in order to ana-
lyze the different batches in the same way we normalize the CC[#] over the total CC.
The normalization is performed for each individual case and subsequently the mean is
calculated. In Figure 5.7 the results are depicted.

Definition 4. Normalized Cluster Count [region/ is the normalized C'C[i] feature, de-
noted by CCn[i]. Normalization is done over the total amount of clusters throughout

the entire zebrafish larva region: CCnl[i| = CC[i]/CC

From the graph we can observe that MM and 714 M have the same behavior. The mean
and the 95% confidence interval suggest that the two distributions can be considered as
similar. Additionally we assume, after inspection of a Q—Q plot, that the data for each
variable has a normal distribution. Our null hypothesis Hy states that, under assumption
that the two groups are independent, their variances are equal. We therefore apply
Levene’s Test for Equality of Variances to the CCn[i], 0 < i < 10. The results are
shown in Table 5.2.

From the Levene’s test we obtain the value of p, that stands for significance. If
p > 0.05 then the null hypothesis is accepted. For zebrafish regions 1, 3, 4, 5, 8, 10 the
hypothesis is accepted, the corresponding variances are equal (marked with * in Table
5.2). For regions 0, 2, 6, 7 and 9 the variances significantly differ. Finally, we performed
the independent samples t-test. Based on the results from Levene’s test we know which
variances significantly differ; in Table 5.3 only the correct assumptions are listed.

95



5 Data and Pattern Analysis in Infection Studies in Zebrafish

Figure 5.7: Spatial comparison of the normalized amount of clusters for MM and 714M
with a 95% confidence interval as compared to the zebrafish template.

‘ Region ‘ Hy Var | p value ‘ ‘

CCnl0] = 0.017
CCnl[l] = 0218 | *
CCn[2] = 0.010
CCn[3)] = 0526 | *
CCnl[4] = 0512 | *
CCnlp) = 0.221
CCnlo] = 0.011
CCnl[7] = 0.042
CCnfg) = 0488 | *
CCnl9)] = 0.046
conllo] | = 0.662 | *

Table 5.2: Levene’s Test for Equality of Variances for Cluster CountC'Cn[i]. Equal vari-
ances are marked with *.
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| Region [Var [t | Sig. (2t) [ Mean Diff [ Std. Err Diff | |

CCnl0] | = | 0.014 | 0.989 0.000 0.014
CCn[l] | = | 0244 | 0.808 0.006 0.023
CCn[2] | = | —0.909 | 0.365 —0.024 0.027
CCn[3] | = | 0417 | 0677 0.005 0.013
CCn[4] | = | 2216 | 0028 0.020 0.009 *
CCn[5] | = | —0.844 | 0.400 ~0.018 0.022
CCnl6] | — | —1.225 | 0.222 ~0.015 0.013
CCn[7] | = | 0815 | 0416 0.005 0.007
CCn[8] | = | 2093 | 0.038 0.013 0.006 *
CCn[9] | = | 1.603 | 0.112 0.008 0.005
CCn[10] | = | 0270 | 0.787 0.000 0.001

Table 5.3: t-test for Equality of Means. Significant difference in the mean value is marked
with *.

We observe that there is a significant difference (meaning significance < 0.05) in the
mean value for regions 4 and 8 (marked with * in Table 5.3). Preliminary conclusions
are as follows. In the head the highest proportion of clusters is found, followed by the
injection site. Globally the distribution is the same for both MM and 714M. Excep-
tions are region 4, adjacent to the injection site, and region 8 where a significant larger
distribution of the clusters of MM bacteria is found compared to 714M.

Distribution of the Amount of Infection

Next, we analyze the relation between mutant and wild-type in the area covered by
granulomas:

Definition 5. Cluster Size [region] is the total area covered by the infection in region
i, denoted by CS[i]. The area is expressed in units that represent the amount of pixels
covering the region of interest within in the input images.

The image pixels are classified as infection in an automated fashion as described in
Section 4.3.2. Background pixels are automatically excluded from the analysis.

In Figure 5.8 a graph, with 95% confidence, is depicted of the comparison of the
average area of infection between MM and 714M.

Again, as with the cluster count, we normalize the C'S[i] over the total C'S for both
MM and 714M and compare the results in Figure 5.9.

Definition 6. Normalized Cluster Size [region] is the normalized C'S[i] feature, denoted
by C'Sn[i]. Normalization is done over the total area covered by the infection throughout

the entire zebrafish larva region: C'Sn[i| = C'S[i]/CS.

From the graph in Figure 5.9 it seems that the mean and the distribution are similar
for some regions and different for others; i.e., 1, 4, 5 seem to have a very different mean.
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Figure 5.8: Spatial comparison of the average C'S[i] for MM and 714/M in comparison
to the zebrafish template.

Figure 5.9: Spatial comparison of the normalized average total cluster size for MM and
714M.
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] Region ‘Ho Var pvalue‘ ‘
*

CSn0] 0.266
CSnll] = 0.807
CSn[2] = 0.025
CSn[3] = 0.690 | *
CSn[4] = 0.001
CSnl5] = 0.002
CSnl6] = 0.388
CSnl7] = 0.255
CSn[g] = 0.907
CSn9] = 0.036
cSn[l0] | = 0274 | *

Table 5.4: Levene’s test for equality of variances for total normalized Cluster Size C'Sn[i],
¢ is the region id.

Again, our null hypothesis states that, under the assumption that the two groups are
independent, the variances are equal. We apply Levene’s Test for Equality of Variances
to the C'S[i], 0 < i < 10. The results are shown in Table 5.4.

For regions 0, 1, 3, 6, 7, 8 and 10 the significance is > 0.05 and thus our hypothesis is
accepted. In Figure 5.9, it can be seen that the differences in the mean are considerable
though the variances for MM and 714M remain the same.

To determine the difference of the mean values we use the knowledge gained from the
Levene’s test to do the independent samples t-test. The results are shown in Table 5.5.

We observe there is a significant difference in the mean value for regions 1, 4 and 5
(marked with * in Table 5.5). This result is in correspondence with the initial observation
of Figure 5.9 in which these means seemed rather different. The preliminary conclusions
from these findings are the following. The larger part of the infection migrates towards
the head of the zebrafish. The second largest part of infection, however, remains at the
injection site. In wild-type infected fish (MM), a larger proportion of clusters is located
in the head compared to the 714M mutant; i.e., significant difference of the mean while
the variance is equal.

5.2.5 Conclusions

We have used a novel framework for automated granuloma cluster recognition in order
to analyze the spatial distribution in zebrafish larvae. As a proof of concept we have
analyzed the data for the zebrafish larva infected with the wild-type Mycobacterium
marinum and a MM mutant 714M.

From a statistical analysis of the data we can derive information on the spread of gran-
ulomas. In fish infected with the wild-type Mycobacterium marinum a higher amount of
granuloma clusters is found. However, if we look at the normalized spread of infection
it behaves approximately the same; it either stays at the site of the injection or it moves
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| Region [Var [t [ Sig. (2t) [ Mean Diff [ Std. Err Diff | |

CSn[0] [ = | 0.016 | 0.987 0.000 0.021
CSn[l] | = | 2065 | 0.040 0.073 0.035 *
CSn[2] | - | —1.739 | 0.084 —0.046 0.027
CSn[3] | = | 0517 | 0.606 0.006 0.012
CSn[4] | = | 2176 | 0.032 0.041 0.019 ¥
CSn5] | - | —2.102 | 0.037 —0.060 0.029 *
CSn[6] | = | —0.850 | 0.397 —0.018 0.022
CSn[7] | = | —0.305 | 0.761 —0.003 0.009
CSn[8] | = | 0558 | 0578 0.004 0.007
CSn[9] | = | 1443 | 0.151 0.004 0.003
CSn[10] | = | —0.528 | 0.598 0.000 0.001

Table 5.5: t-test for Equality of Means for the normalized Cluster Size feature. Signifi-
cant difference in the mean value is marked with *.

towards the head of the larva. For the wild-type Mycobacterium marinum it seems that
the infection is more likely to migrate towards the head compared to the 714 mutant;
in the 714 mutant it is established that the majority of the infection remains located
at the injection site. The percentage of the amount of clusters per region is distributed
approximately in the same way for both groups in this test.

In the following sections this approach is further elaborated with more mutants and
a larger dataset. Moreover, other measurement parameters are to be considered in the
analysis. Large volumes of data will allow to do predictions from the measurements
using machine learning approaches.

5.3 Analysis of High Throughput Zebrafish Infections Screens
Based on Approach 3

In the previous section we have analyzed the infection spread within the zebrafish larvae.
In this section a pilot analysis is shown for Approach 3 that is described in Chapter 3. We
repeated the experiment of Section 5.2. Again, we have chosen mutant 714 (714M), as it
is reported as one of the 30 mutants which does not make the fish ill. As a result of this
study we could, indeed, find certain characteristic patterns in granuloma cluster spread
and size for both MM and 714M. The acquisition is accomplished though imaging. For
each zebrafish, a brightfield and fluorescence microscopy image is acquired (Figure 5.1
and 5.2). Until recently, these images were analyzed manually. The analysis included
localization of the zebrafish shape in a brightfield image and qualitative estimation of
the granuloma cluster size and spread from a paired fluorescent image. The fluorescent
signal is often of low intensity and noisy and therefore manual analysis is difficult and
will not result in objective evaluation.

We have designed and implemented a framework for automated shape retrieval and
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cluster analysis [43] (cf. Chapter 2). The recognition algorithm was based on a de-
formable template matching [23, 16] approach that distributes the zebrafish shape into
vertical sub regions (slices). Besides our own work this framework has also been applied
in large scale applications [54]. However, this algorithm used for zebrafish detection had
certain drawbacks: the algorithm was slow due to high complexity of template matching
[23]; the slices were fixed-width vertical regions that did not discriminate between the
top and the bottom of the shape.

The results obtained with Chapter 2 have resulted in the development of another
algorithm based on Anchor Regions. This is described in Chapter 3. By the use of
this algorithm it is possible to distribute the zebrafish shapes into certain characteristic
(Figure 5.10) but not size fixed regions. This algorithm is more true to nature, it can
better deal with the large biological variation in shape and size of the zebrafish larvae
(Figure 3.1).

Brightfield Imaging: Shape Localization and Annotation

In our previous analysis of infection spread we used Approach 2 as described in Chapter 2
to localize the zebrafish shape and divide it into 11 regions counting from head to tail.
This allowed for annotating the shape as well as doing spatial analysis. For this study we
have abandoned this approach and developed a new template matching algorithm that
localizes the zebrafish shapes without the computationally complex sub-region search
approach.

This novel algorithm is based on mathematical morphology and probability theory.
The algorithm estimates the location of the head, body and tail region of the zebrafish
larvae and its orientation. This is done by distributing the template into possible sub
templates, that are representing these regions. A probability tree is created to find an
optimal shape resembling a zebrafish, cf. Chapter 3. Due to the rotation invariance of
the algorithm the zebrafish larvae do not need to be aligned in a certain way. In Figure
3.14 the example of an output of the novel algorithm is shown.

Fluorescent Imaging: Analysis

The fluorescent signal is analyzed per fish mask, as it was found in the previous step. No
granuloma formation is present at the not infected group NI, therefore this group was
only used to obtain an intensity value that represents the noise level threshold n. All
signal below n is considered noise, while signal above n represents granuloma presence.

The larva is modeled in 5 regions, listed in Table 5.6. The division into regions is
an estimation and is proposed based on possible regions of interest. The detection of
the regions is done in an automated fashion by Approach 3 (by choosing a prototype
template that consists of head, body and tail regions).

This result is presented in an infographic in Figure 5.10. The use of this kind of
infographics is to illustrate and summarize the data gained from the statistical analysis
in a very clear way. This way of data visualization will be used throughout this chapter.
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] Area Name ‘ Notation
HEAD H
BODY TOP BT
BODY BOTTOM BB
TAIL TOP TT
TAIL BOTTOM TB

Table 5.6: Automatic region assignment.

Figure 5.10: Graphical representation of the separation of a zebrafish into distinguished
regions.

Output and Dataset Creation

Output is created in the form of an overlay image as in Figure 3.14, containing the
retrieved zebrafish shape with the infection in the overlay and an entry in the csv file
containing the granuloma spread in each of the regions; i.e., H, BT, BB, TT, TB, cf.
Table 5.6. The granuloma spread for each region 7 is described by the amount of Clusters
in a region, C'C[i], Definition 3, and the total amount of Infection in each region, C'S[i],
Definition 5. Hence, we introduce the feature Average Cluster Size:

Definition 7. Average Cluster Size [region] is the average area covered by the infection
in a single cluster at region i, denoted by ACS[i]. The area is expressed in units that
represent the amount of pixels covering the region of interest within in the input images.
The image pixels are classified as infection in an automated fashion as described in 4.3.2.
Background pixels are automatically excluded from the analysis. Per region Average
Cluster Size [region] is calculated by: ACS[i] = CS[i]/CC1i].

5.3.1 Analysis and Results

In our study we set out to analyze the relationship between mutant and wild-type in the
amount of clusters, spatial distribution and the cluster size. Note, that it is impossible
to directly compare the amount of infection between different regions, since the regions
are of different size. However it is possible to compare each region between the wild-type
and the 714 mutant.
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Figure 5.11: Spatial comparison of the mean amount of infection for MM and 714M in
relation to the zebrafish regions.

Amount of Infection

First we compare the Cluster Size, C'S[i], Definition 5, measured as a numerical density
in each region, compared between MM and 714M (cf. Figure 5.11).

At this point this distribution is not conclusive. This is due to the fact that MM
make the fish more ill and thus overall produces more granulomas compared to 714/M.
The mean amount of infection throughout the entire fish is 4558.24 (standard deviation
oM = 569.51) for MM and 825.69 (6 M = 102.74) for 714M. The amount of infection in
wild-type (MM) is roughly 5 times higher compared to 714M.

In order to analyze the different batches in the same way we consider the normalized
Cluster Size feature, C'Sn[i], Definition 6. The normalization is done for each individual
case and subsequently the mean is calculated. In Figure 5.12 the results are depicted.

From the graph we can observe that MM and 714/M have approximately the same
behavior. The mean and the 95% confidence interval suggest, that the two distribu-
tions in H, BT and TT can be considered similar. In BB (body bottom) and TB (tail
bottom) the distribution behaves differently. Let us consider this in more detail. Our
null hypothesis states that, under the assumption that the two groups are independent,
their variances are equal. We therefore apply Levene’s Test for Equality of Variances to
the CSnli], ie{H, BT, BB, TT, T B}, followed by the independent samples t-test. Based
on the results from Levene’s test we know which variances significantly differ. We ob-
serve that there is a significant difference for the total amount of infection (respectively
Sig.2t = 0.011 and Sig.2t = 0.018 ) in the mean value for regions BB and TB (variance
not equal).

Amount of Granuloma Clusters

We compare the average number of clusters, Definition 3, (variable CC[]) between MM
and 714M (cf. Figure 5.13).
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Figure 5.12: Comparison of spatial distribution of the normalized mean amount of infec-
tion (C'Sn[i]) for MM and 714M in relation to the zebrafish regions with a
95% confidence interval.
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Figure 5.13: Comparison of spatial distribution of the mean amount of clusters for MM
and 714M in relation to the zebrafish regions.
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Figure 5.14: Comparison of spatial distribution of the normalized mean amount of clus-
ters for MM and 714M in relation to the zebrafish regions.

Throughout the entire fish for MM the CC[i] is higher than for 714M. MM has a
mean amount of 161.94 (6 M = 18.00) throughout the entire fish and 77/M has a mean
amount of 46.40 (oM = 4.13). The amount of clusters in MM is about 3 times higher
than in 714M. This makes it difficult to compare the relative behavior of granuloma
clusters. Therefore let us consider the normalized clusters amount CCn[i], Definition 4,
in Figure 5.14.

From the graph we can observe that MM and 714M have approximately the same
behavior. We analyze the graph in more detail by testing equality of variances and mean
equality of each region, in the same way as described previously and find no significant
difference in the mean values.

Average Size of Granuloma Clusters

We also look at the average size of the granuloma clusters, ACS[i], Definition 7. Figure
5.15 shows the average cluster sizes for different regions of the zebrafish. We analyze the
graph in more detail by testing equality of variances and mean equality of each region,
in the same way as described previously. We observe that there is a significant difference
(respectively Sig.2t = 0.000 and Sig.2¢t = 0.009 ) in the mean value for BB and TB
regions (variance not equal).

Results

In all regions of the zebrafish for MM the amount of infection is higher than the 714M
with larger granulomas.

The same percentage of the granulomas in both MM and 714M are located in the
head region. A larger percentage of the granulomas of the MM than 71/M are located
in the body bottom region.

A higher percentage of the granulomas of the 714M then MM are located in the tail
bottom region. In Figure 5.16 a graphical representation of the form of an infographic
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Figure 5.15: Comparison of spatial distribution of the average cluster sizes (ACS]]) for
MM and 714M in relation to the zebrafish regions.

Figure 5.16: Graphical representation of the amount of infection. There is always more
MM infection than 71/M; in the image this is illustrated by a wider bar.
The percentages of their presence in certain regions are different; this trend
is depicted through level height.

of these results is shown.

MM has a higher amount of clusters than 714M in all regions of the zebrafish (overall
the amount of clusters is 3 times higher). There is no significant difference in cluster
spread pattern for MM and 714M.

In most regions the relative cluster sizes are not significantly different (though MM
tends to have larger clusters). The exceptions are the body bottom and the tail bottom
area, where MM gives significantly larger clusters than 714M.

As a result of using Approach & instead of Approach 2 we could consider infection
behavior in regions of interest. This resulted in more true to nature analysis that could
be directly comprehended by the users.
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5.4 In Depth Analysis of High Throughput Zebrafish Infections
Screens

For a more in depth analysis of the data we consider a dataset that was created during 11
experiments performed on infection by different mutants of the Mycobacterium marinum
strains visualized with fluorescence in mCherry red.

We analyze the data to find statistically relevant differences in behavior. We attempt
to relate the result to biology. Analysis is performed on the same selection of mutants.

Mutants that were considered during the experiments were the following: 262, 308,
414, 415, 421, 423, 431, 730, 748, 801, 817, 885, 941, 943.

The following mutants were attenuated for early granuloma formation (infection levels
were less than 50% of the E11 (wild-type) infection ([55, 64]): 262, 308, 421, 431, 730,
748 and 801 (cf. [55, 66]).

For mutants 748 and 801 it is known that both have a mutation in the genes from
the ESX-1 region. Genes from the ESX-1 region are being knocked down in order to see
which gene influence the virulence.

Mutant strains with knocked out genes that are involved in cell wall bio-synthesis
(cf. [55], p64) are: 262, 431 and 730. Mutant strains 262 and 431 showed a substan-
tial increased susceptibility to rifampicin (cf. [55, 65]). Other mutant strains are not
specifically annotated and their specific functional profile is not known.

5.4.1 Experiments

The data that has been provided is separated into 11 experiments. Cases in each ex-
periment are provided as images, i.e., a readout entails a brightfield image and a corre-
sponding fluorescent image.

For retrieval, each experiment is identified by the user that took the images and a time
stamp at the date the experiment was performed. The number of samples, i.e. zebrafish,
that were exposed to the mutants differs per experiment.

5.4.2 Analysis and Results

We set out to analyze the difference in infectious behavior of the different mutants and
attempt to discover distinguishable characteristics between the different mutants. We
have established a more fine grained set of features that we measure; these are listed in
Table 5.7.

5.4.3 Total amount of Infection

As a first comparison we consider the total area covered by the infection C'S, Definition
5, measured for each mutant type.

Definition 8. Cluster Size per mutant is defined as average C'S of all mutant m bacteria
infected larva, denoted by C'SM[m)].
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] Variable ‘ Description
CS Definition 5
CcC Definition 3
ClusterRegion CS/CC (Average size of one cluster)
HClusterSize Area covered by infection in the larva Head area
BClusterSize Area covered by infection in the larva Body area
TClusterSize Area covered by infection in the larva Tail area
HClusterSizeN HClusterSize/CS
BClusterSizeN BClusterSize/CS
TClusterSizeN TClusterSize /CS
IPClusterSize | Area covered by infection in the larva Injection Point area
HRClusterSize Area covered by infection in the larva Heart area
IPClusterSizeN IPClusterSize/CS
HRClusterSizeN HRClusterSize/CS

Table 5.7: Different variables that can be taken into account and their description.

It is preferred to compare each mutant infection pattern to the infection by the wild-
type (E11 or MM). We separate the data into groups, grouped by mutant id without
considering the experiment number. The first step is to test each group for normality.
Therefore we consider two well-known tests of normality, the Kolmogorov-Smirnov Test
and the Shapiro-Wilk Test. The sample size for each mutant is sometimes low (< 50),
therefore the Shapiro-Wilk Test seems more appropriate, as it is typically suitable for
handling both small and large sample sizes. We have tested the distributions per mutant
for all experiments for being normally distributed by applying a Shapiro-Wilk Test. The
results show that none of the mutant data was normally distributed. In Figure 5.17 this
can be seen through inspection of the mean and the standard deviation. Explanation
for the lack of not normally distributed values is the following: the amount of injected
infection and imaging conditions were different for each experiment. A solution is to
normalize the values per mutant per experiment.

The next step would be to normalize the groups one by one and then combine them
back into one whole. The infection amount is normalized per experiment over the mean
amount of infection of the wild-type in that experiment:

Definition 9. Normalized Cluster Size per mutant is the normalized CSM [m] feature
per mutant m bacteria infected larva, denoted by CSMn[m]. Normalization is done over
the wild-type infected fish of a single experiment: CSMn[m] = CSM[m]/CSM[MM].

The resulting dataset, again, contained no normally distributed variables. In order to
be able to compare each mutant to the wild-type we checked the (not normal) distribu-
tions for similarity by the nonparametric Mann-Whitney test. Distributions similar to
normalized E11 that were found were: 423, 885, 943. Suggested results are the following;:

o Mutant 423 shows no significant difference in amount of infection as compared to
the wild-type (according to a combination of all experiments).
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Figure 5.17: Graphical representation of the ClusterSize as it was measured for different
mutants.

e Mutant 885 shows no significant difference in amount of infection as compared to
the wild-type (according to a combination of all experiments).

e Mutant 943 shows no significant difference in amount of infection as compared to
the wild-type (according to a combination of all experiments).

In order to be able to compare more mutants, we have attempted to separate the data
into additional groups, namely clustered by mutant and experiment. To control if the
data were normally distributed again, the Shapiro-Wilk Test was needed. Within the 11
experiments for the following mutants ClusterSize variables were normally distributed:

e Experiment 0: wild-type, 431, 748, 801, 941, 943

e Experiment 1: 423, 431

e Experiment 2: wild-type, 262, 941

e Experiment 3: wild-type, 421, 817, 943

e Experiment 5: wild-type, 421, 730, 817, 885, 941, 943
e Experiment 6: 262, 548, 730, 817, 885

e Experiment 7: wild-type, 943

109



5 Data and Pattern Analysis in Infection Studies in Zebrafish

e Experiment 8: wild-type, 423, 730, 817, 943
e Experiment 9: wild-type, 308, 414, 415
e Experiment 10: 298, 423, 941

In this manner the experiments where the infection pattern in wild-type is normally
distributed can now be compared to the normally distributed mutant infection pattern.
This was performed by Levene’s test for variance followed by an Independent t-test for
equality of means. With this test we could find the difference in infection and get an
estimation of the difference.

For all the experiments where infection patterns were not normally distributed the
Mann-Whitney U-test was used. This test could not be used to determine the actual
difference of infection size, however it does indicate if the percentage of infection is
significantly different. We use this test to support the results that were gained from
experiments where the t-test could be used. The mutant strains which had no normally
distributed data in any experiments are not considered. We also did not take into
consideration those mutant infection patterns in which the amount of samples in an
experiment was < 10. The results of CSMn[m] comparison are shown in Table 5.8.

It is difficult to extract direct conclusions from these results, since the conclusions
presented here are only supported by limited experiments. However preliminary conclu-
sions are shown in Table 5.9. For some mutant strains the results were not informative,
as different experiments provided results that could not be integrated. Mutants that
behaved in a similar way for different experiments were: 262, 308, 730, 748, 801 and
885.

Discussion

All considered, the mutant 885 behaves in the same way as the wild-type. No conclusive
remarks can be stated for mutant 423 and 943, as in the current dataset the experiments
provide contradictory results. A graphical representation of those results excluding the
contradictions is shown in Table 5.10.

Mutant strains 748 and 801 are known to have a mutation in the genes from the ESX-1
region. For the ESX-1 it is known that the mutants are less virulent [55, 54].

In our results mutant strains 748 and 801 show a very large difference in infection per-
centage as compared to the wild-type (2% vs 100%). The low percentage of infection for
both strains corroborates the known low virulence phenotype in zebrafish. We therefore
assume that the results obtained with the other mutants can be used to determine their
virulence phenotype.

Mutant strains 262 and 730 are gene knock-outs involved in cell wall bio-synthesis
and show a similar behavior — that is a very large difference in infection percentage
from the wild-type, respectively 25% and 6%. Since the knocked out genes are located
at different locations in the pathway the difference in percentages suggests a different
mechanism, yet similar effect.
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Table 5.8: Variance and mean comparison between MM and each of the mutants. In
cases where the t-test could be performed we also show the ratio of infec-
tion mean mutant/MM. For experiments which had a not normal distribution
Mann-Whitney (*) is used to indicate if the percentage of infection is signifi-
cantly the same or different.
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Mutant ‘ sig. diff ‘ according to experiment | avg. percentage of MM infection

262 yes 2 25%
308 yes 9 11%
414 yes 10

no 0,9
415 yes 1

no 0,9
421 yes 3,5, 7

no 2,6
423 yes 0,1

no 8
431 yes 1,9, 10

no 0
730 yes 5,8 6%
748 yes 0 2%
801 yes 0 2%
817 yes 3,7

no 5, 6,8
885 no
941 yes 2,9, 10

no 0,3,4,5
943 yes 3,7

no 5,6, 8

Table 5.9: Experiment results: difference in amount of infection as compared to the
wild-type throughout the entire fish.

Mutant H Wild-type

262

308
730
748
801
885

Table 5.10: Difference in amount of infection as compared to the wild-type throughout
the entire fish, depicted as bar height.
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Figure 5.18: Box plot representation of the normalized cluster size CSn for the Body
region of the wild-type and the different mutants. A lot of difference can
be seen in the behavior of the mutant strains.

5.4.4 Amount of Infection separated into Regions

We want to compare the amount of infection as it is present in the characteristic regions
(Head, Body, Tail, Heart Region, Injection Point). Note that initially we consider the
comparison of the amount of infection per region for different mutants (e.g., does the per-
centage of infection in the Head region differ for mutants A and B), instead of comparing
the infection spread within each mutant. All cases can be compared in a correct way
by normalizing the amount of infection in each region over the total infection amount
in each fish. In this way the problem of a different total amount of infection is solved.
For all objects the entire infection in each case is set to 1.0 and normalizes the amount
of infection in each region. A normalized distribution of infection in the body area the
fish is shown per mutant in Figure 5.18. We see a lot of difference in the behavior of the
mutant strains, yet it needs to be proven to be statistically significant. We attempt to
test the significance by an independent sample t test.

In order to perform this test the data under comparison needs to be normally dis-
tributed. Therefore we apply a Shapiro-Wilk test to test for a normal distribution. We
have analyzed the following features:

e CSn(H) contained no normally distributed data for any of the mutants;

C'Sn(B) contained normally distributed data for mutants: 351, 364, 414, 415, 423,
817, 943:

e CSn(T) contained normally distributed data for mutants: 351, 414;

CSn(HR) contained normally distributed data for mutant 414;
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e C'Sn(IP) contained no normally distributed data for any of the mutants.

e Subsequently only the relationship between 351, 364, 414, 415, 423, 817, 943 in
CSn(B) and subsequently for 351, 414 inC'Sn(T) could be considered for para-
metric statistical testing.

Our null hypothesis states that, under the assumption that the two groups are indepen-
dent, their variances are equal. Therefore we need to test the variances first. This is done
with Levene’s test for equality of variances. If the variances are equal an independent
samples t-test is performed in order to determine the equality of means. In Table 5.11
the results are shown.

The results of these tests are interpreted in the following way:

e Mutant 351 had statistically significant larger percentage of total infection (53% +
35%of total infection) present at the body area

as opposed to mutant 943 (38% =+ 27% of infection)

e Mutant 415 had statistically significant larger percentage of total infection (52% +
20% of total infection) present at the body area

as opposed to mutant 414 (39% =+ 23% of infection)

e Mutant 414 had statistically significant larger percentage of total infection (39% +
23% of total infection) present at the body area

as opposed to mutant 943 (38% =+ 27% of infection)

e Mutant 817 had statistically significant larger percentage of total infection (47% +
27% of total infection) present at the body area

as opposed to mutant 943 (38% =+ 27% of infection)

None of the variables of the wild-type were normally distributed. In order to be able
to accomplish a comparison of the infection spread of each mutant infection and the
wildtype we have chosen a different approach.

As an alternative for the parametric t-test, the Mann-Whitney U-test and the 2-
sample Kolmogorov-Smirnov test are considered. For this test the variables do not need
to be normally distributed. However the variables do need to follow an approximately
same distribution and there is a loss of information, since values are presented as ranks.
Mean equality can therefore not be predicted. This makes it a less powerful test than
the t-test. We compare the control group MM to all the mutants and look for similar
distributions. The null hypothesis is that the distributions of both groups are equal.
The following distributions were found as the same. We used the Mann-Whitney U-test,
since the amount of samples was fairly low and our data distribution is skewed (a lot of
0 values). We state Hy:there is no difference in ratio of infection between the wildtype
and mutant x. The results that reject Hy (p < 0.05 and |z| > 1.96) are given in a
graphical representation in Table 5.12, matching z and p(2t) values for this table are
given in Table 5.13.
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Mut [ Head | Body Tail [ Heart [ Inj. Point

Location

262

298

308

315

351

415

421

431

550

604

730

740

748

801

885

941

Table 5.12: Graphical representation of the percentage of infection measured in certain
zebrafish regions. We compare each mutant (bars on the left of each com-
parison) to the wild-type (bars on the right of each comparison). Note, that
not the amount of infection, but the percentages are compared.
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Discussion

As we have found earlier (Table 5.10) some mutants give large differences in infection
amount throughout the entire fish, as compared to the wild-type. If we in addition
consider the infection amounts within the regions, as presented in Table 5.12, we observe
new patterns. For example, ESX-1 mutant strains 748 and 801, also on regional level,
show similar behavior, namely for both lower percentage of infection is concentrated in
the tail, head, injection point and heart region as compared to the wild-type. Mutant
strains 262, 431 and 730 (genes knock outs which are involved in cell wall bio-synthesis)
show a similar behavior at the injection point and heart region. All of them have a
higher percentage of infection than the wild-type present in the heart and the same ratio
as the wild-type at the injection point. Yet, the percentages of infection as measured
over the head/body and tail regions do differ.

According to these results the following mutant strains behave the same as the wild-
type when measured for the HR/IP sites: 351, 415, 941.

The measurements presented here can not be interpreted to directly compare the
infection amount between regions in a single mutant strain. For example, although
mutant strain 262 has a lower amount of infection as compared to the wild-type in HR
and the same amount of infection as the wild-type in IP, which does not mean that for
mutant 262 there is more infection in IP than in HR. The reason for it is that the results
presented here are relative to the wild-type and the distribution of infection within the
wild-type should be considered to make that comparison.

5.4.5 Infection Flow per Mutant Strain

For each mutant strain we want to investigate the difference in the response of the innate
immune system in a comparison of different regions in a zebrafish embryo. For example,
for a certain mutant strain, does the heart contain more infection then the injection
point.

We use the same normalized dataset from the previous subsection. The data is not
normally distributed and thus we use the Wilcoxon Signed-Rank Test instead of the
paired t-test. We do this test only for the injection point IP and heart HR since the
area they cover are approximately the same (while the head/body/tail region differs per
individual case). Therefore no additional normalization over the region size needs to be
performed.

Additionally these two regions are indeed dependent, since per fish the amount of
total infection is always 1.0 and thus there is a connection between HR and IP, namely
HR + IP + rest = 1.0. We run the Wilcoxon test on the data. Our Hj states that there
is no difference between the ratio of infection in IP and HR.

As a result we found that for most mutants the spread did not differ and therefore
Hy is not rejected. Significant difference was only found for mutants 298, 415, 550 and
the wild-type. If we consider the median values of these mutants the following can be
concluded:

e Mutants 298, 415, 550 and the wild-type had a significantly higher percentage of
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Mut ‘ Heart Region vs Injection Point
Wild-type
298
415
550
262
308
315
351
364
414
421
423
431
604
730
748
817
885
941
943

Table 5.14: Distribution of the percentage of infection within each individual, indicated
by bar height. We consider the heart area and the injection point. The size
of the areas is the same.

infection present in the heart as compared to the injection point.

e For other mutants there was no significant difference in the percentage of infection
between the heart and the injection point.

A graphical representation of these results is shown in Table 5.14.

Discussion

Mutants 298, 415 and 550 seem to have the same flow of infection from the injection
point to the heart. For all other mutant strains this mechanism works differently and
the infection is evened out between the injection point and the heart.

We can see that the infection spread through the regions for the wild-type is: HR > IP
and therefore the results as they are presented earlier in Table 5.10 can indeed not be
used for direct comparison of the distribution within a mutant strain.

In order to keep the statistics clear we have only compared regions of equal size to
each other (HR and IP). Regions H, B, T have therefore not been analyzed in this
experimental setup.
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Figure 5.19: Scatter plot of the average cluster size. Spot location within each region
does not provide locational information.

5.4.6 Average Size of Clusters

In our previous analysis we also took into consideration the normalized ClusterCount
values. These values represent total infection area measured over all clusters at a certain
location (cf. Section 5.2). Now we consider the average size of one cluster in a region
i, ACS[i] (Definition 7) separated over characteristic regions (Head, Body, Tail, Heart
Region, Injection Point ). Additionally we also consider the average size of one cluster
within an entire fish.

Definition 10. Average Cluster Size is the average area covered by the infection in a
single cluster, denoted by ACS. Area is expressed in units that represent the amount of
pixels covering the entire object of interest within in the input images. The image pixels
are classified as infection in an automated fashion as described in 4.3.2. Background
pixels are automatically excluded from the analysis. Average Cluster Size is calculated
by: ACS =CS/CC.

In Figure 5.19 we see that the correlation of the Cluster Size and Cluster Count
shows a near linear increase. Pearson’s p-value is 0.000, indicating that this relationship
is significant. Pearson’s correlation between the two groups is showing a significant
positive correlation of 0.884, which illustrates that if the C'S variable increases then CC
also increases.

This also suggests that the interesting cases are the ones that do not follow this
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Figure 5.20: Box plot representation for the ACS is the injection point and the heart
region for different mutants.

trend and are the outliers to the correlation regression (cf. Figure 5.19). A graphical
rendition of the distribution for the injection point region and the heart region is shown
in Figure 5.20.

We have performed normal distribution analysis on ACS for all the mutant strains
and the regions H, B, T, HR, IP. From this approach we obtained the following outcome:

e ACS contained normally distributed data for mutants: 415, 885, 943,;
e ACS[H] contained normally distributed data for mutant 351, 415, 548.
e ACS|[B] contained normally distributed data for mutant 315, 604, 943;
e ACS|T] contained normally distributed data for mutant 423;

o ACS[HR)] contained normally distributed data for mutants: 315, 351;

ACS|[IP] contained normally distributed data for mutants: 351, 415, 748, 943.
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]Compare‘ Measure ‘Var ‘ Means‘ N Mean o g
415/885 ACS - -

415/943* ACS = = 30/49 | 36/27.79 18.85/14.98 | 3.4/2.14
885/943* ACS - - 58/49 | 40/27.79 | 27.35/14.98 | 3.59/2.14
351/415% | ACS[H] - = 14/28 | 13.68/29.19 | 7.70/22.01 | 2.06/4.16
351/548 | ACS[H] = =

415/548* | ACS[H] - - 28/6 | 29.19/8.29 | 22.01/6.89 | 4.16/2.81
315/604 | ACS[H] = =

315/943 | ACS[B] = =

604/943 | ACS[B] = =

315/351 | ACS[HR] | = =

351/415 | ACS[IP]

351/748% | ACS[IP] - = 14/14 | 28.07/7.94 | 25.68/5.72 | 6.80/1.53
351/943 | ACS[IP] | = =

415/748% | ACS[IP] - = 24/14 | 50.33/7.94 | 41.76/5.72 | 8.52/1.53
415/943 | ACS[IP] - =

748/943* | ACS[IP] - - 14/38 | 7.94/37.58 | 5.72/23.85 | 1.53/3.87

Table 5.15: Levene’s test for equality of variances followed by the t-test for equality of

means. Mutant combinations with significantly different means are marked
with a *.

Our null hypothesis, again, states that, under the assumption that the two groups are
independent, their variances are equal. The results are shown in Table 5.15. Note, that
the wild-type is not present in this table, since it contained no normally distributed data
for the ACS.

The results of these tests are interpreted in the following way (Arbitrary Units (AU)
were measured in pixels):
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Mutant 415 resulted in statistically significant larger clusters (364+22 AU ) through-
out the entire larva as opposed to mutant 943 (28 + 17 AU).

Mutant 885 resulted in statistically significant larger clusters (40431 AU ) through-
out the entire larva as opposed to mutant 943 (28 £ 17 AU).

Mutant 415 resulted in statistically significant larger clusters (29 +26 AU ) in the
head region as opposed to mutant 351 (14 £+ 10 AU).

Mutant 415 resulted in statistically significant larger clusters (29 +26 AU ) in the
head region point as opposed to mutant 548 (8 + 10 AU).

Mutant 351 resulted in statistically significant larger clusters (28 432 AU ) near
the injection point as opposed to mutant 748 (8 &7 AU).

Mutant 415 resulted in statistically significant larger clusters (50 = 50 AU ) near
the injection point as opposed to mutant 748 (8 &7 AU).
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Location ‘ Average size of a granuloma

entire larva
415 vs 943
entire larva
885 vs 943
head *x
415 vs 351
head *x
415 vs 548
injection point
351 vs 748
injection point
415 vs 748
injection point

943 vs 748

kokxk

Table 5.16: Graphical representation of the average granuloma cluster size. Only com-
parisons of mutant infection strains that were found to be significant are
shown. In each image the light gray represents the region where comparison
is done. The dark grey circle depicts the standard deviation of the largest
and the inscribed white circle (if present) the smallest granuloma size. The
black line inside the circle represents the average size. It is used for reference.

e Mutant 943 resulted in statistically significant larger clusters (38 + 28 AU ) near
the injection point as opposed to mutant 748 (8 £7 AU).

No other statistically significant relationships were found. A graphical representation of
these results is given in Table 5.16.

Discussion

We would prefer to compare the mutant strains to the wild-type rather than to another
mutant strain. However, since the wild-type was not present in the results we are
considering mutants that mimic the behavior of the wild-type and that are present in
the results of our analysis.

As we have found earlier (cf. Table 5.8) mutant strain 415 had approximately the
same amount of infection according to experiments 0 and 9 as the wild-type as measured
throughout the entire fish. This also applies for mutant 885 (cf. Table 5.8). We therefore
use 415 and 885 to predict that the wild-type will have slightly larger clusters throughout
the entire body as mutant 943 (cf. * in Table 5.16).

Strain 415 shares the same distribution of the infection between the H region as the
wild-type (cf. Table 5.12). We therefore use 415 to predict that the wild-type will have
larger clusters in its head as compared to the mutants 351 and 548 (cf. ** in Table 5.16).
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Strain 415 shares the same distribution of the infection between the IP and HR region
as the wild-type (cf. Table 5.14 and Table 5.12). We therefore use 415 to predict that
the wild-type will have larger clusters at the injection point as compared to mutant 748
(cf. *** in Table 5.16).

In order to be able to do other comparisons with not normally distributed data we
need to use an alternative for the parametric t-test. However, since the mean equality
can not be predicted it is more difficult to say something about it. In the case of ACS
we have chosen not to perform non-parametric testing as it is less powerful and makes
reasoning about the results harder. However this test will be included in future work.

5.5 Conclusions

In this chapter we have described a recipe for the analysis of the data that is retrieved by
our algorithm from Chapter 3 in order to retrieve interesting patterns. We are attacking
the problem at hand in the following way.

e First, the measurements are collected and arranged into usable data.

e Second, the data is reduced by statistical analysis. During this step tradeoffs must
be chosen between parametric and non parametric testing, the type of normaliza-
tion and data clustering.

e Then the data can be reduced by the use of an infographic. Our infographics
contain a lot of data, yet show it in a compact, understandable way. The meaning
of the data can be illustrated much faster than from written statistical data. All
the infographics used here are supported by statistical analysis. In this way the
data can be presented to the user in a very clear way.
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6.1 Pattern Recognition in Computer Vision

In Chapters 2 and 3 we have presented three different approaches to retrieve a prede-
fined biological shape from an input image. All approaches were based on deformable
templates. The approaches were designed in such a way so that they could be used with
in the HTS pipeline of zebrafish embryos. The methods needed to be able to retrieve
shapes that are created as a result from different experiments, were subject to different
light conditions and microscope settings. We have tried different representations of the
zebrafish template.

First we have tried splitting the template into n vertical (to the zebrafish median
axis) sub-templates that represent the boundary of the object. Subsequently the sub-
templates were found one by one. As preprocessing step we have used an edge based
representation. The edges were matched to each sub template. A mayor drawback was
a high computational complexity due to a high amount of pixel comparisons within the
image matrix space. This complexity could be reduced by applying a pyramid approach
(lower resolution images) and introducing constraints to the location and orientation of
the embryos within the image. One of the constraints that reduces computation time
would be positioning the individuals with their head located left and their tail in the
right part of the image in relation to the starting point. Since the zebrafish embryos
differed in length, the size constraints of sub templates would complicate the analysis of
differently shaped individuals.

Accordingly, we have tried using a variable number of sub templates, yet still with a
fixed thickness. The prototype template that we proposed was represented as a bitmap
that defines size limits for each sub template. It can easily be adapted to the needs of
the application while the same algorithm is used.

Instead of looking at the edge data we considered filled contours. The same drawback
as with the previous representation was that the shape was represented as a fixed max-
imal and minimal thickness at different shape locations, which excludes shapes that are
slightly bigger or smaller from being matched.

We also introduced a shape normalization step. This was done by a straightening of
the retrieved deformed shape based on the prototype template shape. This normalization
step enabled comparison of differently deformed zebrafish embryos. However, due to the
fixed thickness of sub-templates spatial analysis within individuals that differed in length
were still difficult to compare.

In the third approach we represented the individuals based on their characteristic
regions, rather than dividing into sub templates. This allowed for a better recognition
of the individuals. The regions were found based on anchor points and during the
search a higher order representation was used instead of pixel data. In this manner the
computation time was reduced significantly and the problem of connected shapes was
solved. Additionally, the constraint of locating embryos from left to right was lifted.
Since the regions are recognized it is possible to do a more in depth analysis on certain
regions of interest and compare the different shapes regardless of their deformation or
length difference.

In order to localize a deformed template within the image space we examined a Genetic
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Algorithm and a Dynamic Programming approach. First choice was the Genetic Algo-
rithm due to its possibility to search for an optimal solution in large search spaces. This
approach was feasible, yet in some cases algorithm could be trapped in a local optimum
and was fairly slow due to high number of variables that were adjusted. In the third
approach straightforward depth first graph searching could be used. This was motivated
by the fact that the search graphs were relatively simple and thus no optimization was
required. In cases where the graph is more complex a Dynamic Programming or another
similar approach can be applied; such could be the case when images contain a large
amount of different shapes.

The final version of the algorithm we propose does not rely on initial localization
of the shape and therefore does not require any manual intervention or analysis. The
framework can be easily adapted to work with other shapes, in the life sciences or in
other fields that require accurate and robust shape retrieval. Further analysis of the
object and the straightening thereof is part of future work.

A comparison of the result for the same image using the three algorithms is given in
Figure 6.1.

6.2 Software Development

We have developed ZFA, a software solution that includes the interface and a processing
unit, based on the algorithm that is presented in Chapter 3 (Approach 3).

Our solution is successful at recognizing the zebrafish larva shape and analyzing the
infection within the larvae and is robust as it can be adapted to recognizing other shapes.
The measurements that are performed on the infection are: localization, infection cluster
size, infection cluster amount and average infection cluster intensity.

ZFA has proven its value as a software solution for the analysis in a HT screening
pipeline.

6.3 Statistical Analysis

We have used the framework that we have developed for automated granuloma cluster
recognition in order to analyze the spatial distribution in zebrafish larvae. As a proof
of concept we have analyzed the data for the zebrafish larva infected with the wild-type
Mycobacterium marinum (MM) and some of its mutants.

As a first assessment we compared the behavior of granuloma of the wild-type bacteria
to the behavior of the mutant 714 strain. Mutant 714 was chosen as it was one of the
mutants that did not make the fish ill and this assessment was used as a proof of concept
for further investigation of other mutants. A statistical analysis on the spread of bacteria
was performed and information on the spread of granuloma was derived. Since the MM
tends to make the fish more sick it makes sense that overall more granuloma clusters
are found in the wild-type infected fish. However, if we look at the normalized spread
of infection it behaves approximately the same; it either stays at the site of injection or
it moves towards the head of the larva. For the Mycobacterium marinum it seems that
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Figure 6.1: Shape retrieval results. The same input image is used for all three approaches
(Approach 1 till 3 from top to bottom).
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the infection is likely to migrate towards the head compared to the 714 mutant; in the
714 mutant it is established that the majority of the infection stays at the injection site.

In the second assessment we compared a large dataset of different mutant strains to
the wild-type and to each other. Moreover, other measurement parameters could be
considered in the analysis due to a more precise approach for retrieving the shape and
its regions. Locations of interest such as the heart region and the injection point region
could be retrieved. However, not all the mutants could be directly compared to the
wild-type as they were not normally distributed. Those that were have been compared
to each other and to the wild-type. Detailed results are provided in Section 5.4.

6.4 Conclusion

Here we present our final conclusions regarding our study of automation for High Through-
put at the organismal level. We have applied our method to an important model organ-
ism, the zebrafish. With the development of our approach we made it possible to gain
useful biological knowledge that used to be gathered manually in a High throughput
fashion, which makes it a key activity within the field of bio-informatics.

We have shown and compared different deformable template based approaches that
have been used for the pattern recognition step in the software. We have made it possible
to automatically localize and annotate the shapes of the zebrafish larvae. The silhou-
ettes that were identified serve as a mask to measure and analyze the fluorescent signal
corresponding with the bacteria; if multiple fluorescent channels are used, other analysis
can be accomplished with the same mask. In the case of zebrafish larvae, the current
approach is sufficient for an analysis on spread through global regions in the zebrafish.
However, in order to do an even more in depth analysis on infection spread, localization
of certain organs within the fish or the determination of zebrafish age, we would require
more characteristics than the silhouette. A silhouette representation does not suffice for
that purpose since it is only describing the outside of the organism while inner infor-
mation is left out. In this case an analysis of the brightfield signal within each mask
can contribute with informative features. As an example we have experimented with
a framework for the automated determination of the developmental stage of zebrafish
embryos. A machine learning approach uses both silhouette and brightfield data from
within the mask for feature extraction. In a preliminary setup we have set up a machine
learning pipeline taking into account all signal in the brightfield image; the results are
promising and indicate the feasibility of the approach (cf. Nezhinsky et al. [41], Figure
6.2).

We have discussed the construction and the evaluation of a workflow which we have
embedded in a user interface to support the work with the algorithms described in this
thesis in a high-throughput setting. So, during the development process prototypes of
our software were already used for a real life problem. This evolutionary approach turned
out to be successful. The reason for this successful design lies in the fact that evaluation
and requirements were obtained from the intended user group which was involved in the
development from the beginning and who were the intended end-users.
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Figure 6.2: Overview of the proposed framework for automatic zebrafish embryo devel-
opmental stage determination.

The application of our software is described with a real life case study involving My-
cobacterium marinum infection. The resulting data was analyzed for infection patterns.
These patterns were related to the annotated areas within the zebrafish and therefore
previously this kind of analysis was hampered due to the limitations given by manual
analysis. With our algorithms the images could be processed in a High Throughput
fashion and thus large amount of features could be generated from the input images.
Using statistics on these features we were able to discover interesting differences in the
organization and amounts of granuloma clusters for different bacterial mutants. By ob-
taining these results we have shown the need for such automation processes and smart
software for these kind of screening applications.
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Dutch Summary

In de levenswetenschappen wordt gebruik gemaakt van zogenaamde High Throughput
methoden; deze bestaan uit experimenten waarbij een grote hoeveelheid data wordt
gegenereerd om zo bepaalde eigenschappen te kunnen vaststellen. De uitvoering van
deze methoden verschilt per toepassing. In dit proefschrift wordt met name aandacht
besteed aan de High Throughput methoden waarin een effect wordt gemeten aan de hand
van beelden van objecten, high-throughput betekent dat er grote hoeveelheden beelden
worden gegenereerd en er dus veel objecten moeten worden herkent om uiteindelijk een
uitspraak te kunnen doen over eigenschappen van deze objecten.

Een voorbeeld van een High Throughput proces is afgebeeld in Figuur 1.1. Het specifieke
doel van het onderzoek beschreven in dit proefschrift is het vaststellen van robuuste
methoden voor patroon herkenning binnen een High Throughput analyse, deze methoden
te onderzoeken alsmede te valideren. Binnen het onderzoek beschreven in dit proefschrift
wordt Patroon Herkenning gezien in zowel de context van object herkenning als ook in
de context van data mining en beide aspecten worden in dit proefschrift aangehaald.

We hebben reeds aangegeven dat de High-Throughput context in dit onderzoek vooral
veel beelden gegenereerd, deze beelden, microscoop beelden in het bijzonder, zijn dan
de input voor analyse. Het is zaak in deze beelden de objecten kunnen herkennen
en analyseren. In het veld van de beeldanalyse wordt daarvoor segmenatie gebruikt;
dit is de verdeling van een beeld in interessante objecten en de achtergrond. Wij als
mensen segmenteren doorlopend, dat wil zeggen scheiden van voor- en achtergrond,
voor een computer is dat echter veel lastiger. Dit moet worden geleerd. Segmentatie
technieken kunnen worden gescheiden in twee hoofdgroepen: bottom-up segmentatie
versus top-down segmentatie. Bottom up segmentatie is gebaseerd op het vinden van
gelijkwaardige eigenschappen van de objecten of de achtergrond om vervolgens deze van
elkaar te scheiden. Echter, vaak is een scheiding van een beeld in de voor-en achtergrond
regios niet voldoende om het voorwerp van specifieke interesse te vinden. Daarom is
daarnaast een aanpak vereist die gebaseerd is op patroon herkenning, een zogenaamde
top-down benadering.

In hoofdstuk 2 presenteren we twee benaderingen voor de High-Throughput context
die is bestudeerd in het kader van dit proefschrift: i.e. het segmenteren en annoteren
van de objecten die onderwerp van het experiment zijn. Voor toepassing wordt ge-
bruik gemaakt van de zebravis als model systeem, en daarom leggen we de nadruk op
beelden die zebravis embryos bevatten. We onderscheiden twee stappen: een voorbew-
erkingstap waarbij de achtergrond wordt gescheiden van de voorgrond (bottom-up) en
de Template-Matching stap, dat bestaat uit het zoeken naar een vervormbaar sjabloon
in het voorbewerkte beeld (top-down), een zogenaamde Deformable Template Matching
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methode. Voor deze Deformable Template Matching stap beschrijven we twee methoden
die gebaseerd zijn op het silhouet van een gemiddeld object als een sjabloon. Vervol-
gens nemen we aan dat het beeld een of meerdere objecten bevat die een misvormde
of verschoven afbeelding zijn van het sjabloon en we beschrijven een functie waarmee
wordt aangegeven in hoeverre een geidentificeerde vorm in het beeld overeenkomt met
het vervormde sjabloon. Het zoeken naar een correcte deformatie is een complex proces,
daarom passen we verschillende vormen van optimalisatie toe. Tevens bestuderen we de
mogelijkheden om het objecten die als resultaat gevonden worden te normaliseren om zo
een beter vergelijkbaar resultaat te verkrijgen. Het algoritme is geévalueerd met zowel
synthetische beelden als met beelden van zebravis embryos.

In hoofdstuk 3 presenteren we een methode van Deformable Template Matching die op
een andere wijze verder is uitgewerkt. Het object waar we naar zoeken wordt nu, in
plaats van een silhouet, gerepresenteerd door middel van zogenaamde ankerpunten. Dit
is robuster en meer natuurgetrouw, omdat de vorm die gezocht wordt niet meer een
van te voren vastgestelde grootte dient te hebben, maar als een schaal onafhankelijke
beschrijving wordt gerepresenteerd. De voorgestelde methode kan volledig worden geau-
tomatiseerd, en blijkt sneller en nauwkeuriger dan de methodes die in hoofdstuk twee
zijn gepresenteerd. We hebben het algoritme geévalueerd met beelden van zebravis en
xenopus embryos.

In hoofdstuk 4 beschrijven we hoe de beschreven algoritmen zijn geintegreerd een soft-
ware pakket, i.e. ZFA. Dit pakket wordt gebruikt voor de analyse van High-Throughput
data. We presenteren een interface die aansluit bij de workflow van de gebruikers. De
gebruikers zijn in dit geval onderzoekers in de levenswetenschappen. De verschillende
processen die vanuit de workflow ontstaan zijn, zijn in de software opgenomen als compo-
nenten: de voorbewerking, de interface, de segmentatie en de gegevensverwerking. Het
High-Throughput toepassingsgebied waar de software wordt gebruikt is het onderzoek
naar het doorgronden van infectie mechanismen die ten grondslag liggen aan Tubercu-
lose. Tuberculose is een ernstige ziekte en een aanzienlijk deel van de wereldbevolking is
geinfecteerd. Het is echter nog steeds moeilijk om een effectieve behandeling te vinden
vanwege de resistentie van bacterieén. Tuberculose wordt veroorzaakt door de bacterie
- Mycobacterium tuberculosis. Voor het onderzoek naar infectie mechanismen wordt
echter gebruik gemaakt van een nauw verwante soort - Mycobacterium marinum. Door
gebruik te maken van een model organisme, de zebravis, kan het infectieproces worden
bestudeerd in een groot aantal individuen. De zebravisjes moeten dan in beelden worden
geidentificeerd en vervolgens verder worden geanalyseerd. Onze software doet dat.

In hoofdstuk 5 worden de resultaten vergeleken die verkregen zijn uit het toepassen
van ZFA in een lopend onderzoek betreffende de infectie van zebravissen met Mycobac-
terium marinum. Een dergelijke infectie wordt gekenmerkt door de aanwezigheid van
zogenaamde granulomen. Granulomen zijn clusters van immuuncellen en bacterién die
wijzen op succesvolle infectie van de bacterie. In het onderzoek worden de bacterien
gevisualiseerd met fluorescent label. Om meer inzicht te krijgen op de progressie van
de infectie is het nodig om de spreiding ervan te analyseren in de gastheer, de zebravis,
gedurende een bepaalde periode. De resultaten worden onder meer gebruikt om vast te
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stellen welke genen verantwoordelijk zijn voor infectie. Eerst wordt, via het algoritme
uit hoofdstuk 3, de vorm van de zebravis embryo’s gelokaliseerd. Vervolgens worden
verschillende kenmerken van de infectie geanalyseerd door het deel van de software dat
verantwoordelijk is voor de gegevensverwerking. Onze aanpak maakte het mogelijk om
langs geautomatiseerde weg het gedrag van de infectie per zebravis te analyseren. Om
te bepalen welke genen van Mycobacterium marinum zijn betrokken bij vorming van
granulomen zijn 1000 willekeurige mutanten van deze bacterién geanalyseerd en daarbij
zijn de mutanten geselecteerd die zebravis larven niet ziek maakten. Op deze manier
zijn 30 mutanten geidentificeerd. We hebben onderzocht of er een patroon aanwezig is
in de spreiding of grootte van granuloma clusters in bepaalde weefsels en hoe het gedrag
verschilt per mutant ten opzichte van larven besmet met de wild-type bacterién.

Tenslotte worden in hoofdstuk 6 resultaten van de voorgaande hoofdstukken samengevat.
We beginnen met de segmentatie stap (Pattern Recognition in Images). We hebben drie
verschillende methoden beschreven. We vergelijken de prestaties van de drie methoden.
Alle methoden werden getest op dezelfde dataset. Resultaten laten een verbetering
in de prestaties zien. Het Ankerpunt gebaseerde (hoofdstuk 3) methode gaf de beste
resultaten. Dit algoritme zal daarom worden gebruikt voor de analyse en is deel van de
software.
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Russian Summary

B 6momornaecknx nccmeoBannsax 9acto uenoan3yior Meronuky High Throughput, mozso-
JIAIONIYIO € TIOMOIIBIO OOJIBIION CEPUH SKCIIEPUMEHTOB HAXOIUTH OIIPE/IEJIEHHBIE XapaKTe-
PUCTUKH OHOJIOrHIecKIX 00beKTOB. KOHKpeTHast peajn3aliyst 3T0i MeTOIMKN 3aBUCUT OT
KOHKPEeTHBIX TpeboBanuii. B narreit pabore mbl npumennin metoyiuky High Throughput
JUTsT J1JTsi I3MEPEHUIT CBS3aHbIX ¢ M300PaYKeHUsIMU WHTEPECYIONINX HAC OOBEKTOB.
IIpumep ncnompzopanns meronukn High Throughput mpusenén na pucynke 1.1.
Konkpernoii 1e1p10 ncciie0Banns B JAHHON paboTe SBIAETCS CO3/aHne Pla HAIEXKHBIX
metooB Pattern Recognition B konrekcre merogukun High Throughput. Pattern Recog-
nition MOXKHO paccMaTpuBaTh KaK PacIlO3HABAHUE ODBEKTOB B U300DarKEHUM HO TAKIKE
kak Data Mining. Perenusi obeux 3ajia4 jieTajibHO OIUCAHBI.

B namem wuccienoanuu merogom High Throughput obpabarbiBasiincs m3obpazkenus,
[IOJTyYeHHBIE C MTOMOIIBI0 MHUKPOCKOIA. VI300parkeHnss HeOOXOAMMO OBLIO U BBIJE/ISATH
(orgenurs or dboHa U ciydaiiHbIX IIOMEX) U aHAJM3UPOBaTh. [jsd JejoBeKa pasjiesienue
06beKTOB nepejHero IiaHa 1 ¢pona (cerMenTanus) HecJaokKHO. [l KoMIboTEpa ¥XKe,
- 9TO HETPUBHAJIbHAs 3a/ada. MeTonbl cermMeHTalu MOTYT OBITH pa3/e/IeHbl Ha JBe
OCHOBHBIe Tpymibl: cHu3y BBepx (Bottom Up) merommka ocHoBaHa Ha OOHAPYKEHHUI
SKBUBAJIEHTHBIX CBOWCTB O00BEKTOB U (DOHA, UTO MO3BOJISIET WX PA3JIE€IUTh, HO TAKOE
pasjesienne He BCErJa JOCTATOYHO, MOITOMY HCIIOIB3YeTCs €IIé M IOAXOJ CBEPXY BHU3
(Top Down), ocHoBanHBIil Ha paclo3HABAHUU 06PA30B.

B rmaBe 2 mbr mpesctasisiem jBa nogxoga kK merogmke High Throughput: To ecrn,
CEerMEHTAIINIO U BhIjIe/IeHne 00bEKTOB YIACTBYIONINX B 9KcIIepuMenTe. B KatdecTse peasib-
HBIX 0OBEKTOB ObLIN KCIOJB30BaHbl PeIOKN Jaruno (Danio rerio), T.e. OCYyIIECTBIISLICS
MOWCK M300paskeHuil SMOPUOHOB PHIOOK. MBI BhIZEISIEM IBa 3Tama: MpeaBapuTeIbHast
06paboTKa, pu KOTOpoii (OH OTIeJIsIeTCs OT epeHero miana ( CHU3y BBEPX) U, BTOPOE,
Template-Matching mrar, KoTOpbIit 3aKTI0TAETCS B HAXOXKICHIN Te(DOPMIPYEMOTO TadI0-
Ha ( ceepxy BHu3 ). [lisi BeiGopa Template-Matching 1mara 6buin npeJIOzKeHbl J1BA
MeTO/1a, OIMPAOIINXCS HA BBIOOD B KAuecTBe IMA0JIOHA YCPEJIHEHHOIO CHIIYITa 00hEKTa.
IIpu sTOM TIpeaIoIaragoch, 9To n30d6parkeHre (pOPMUPYIOT OJUH WJIH HECKOILKO 1edop-
MHUPOBAHHBIX MM CMEIIEHBIX 00HEKTOB.

TTonck momxomsmux gedopMaInii MpeacTaBasgeT n3 cebs CAOKHBI BBIMUCIUTETHHDBII
IPOTIECC, B KOTOPOM HUCITOIB3YIOTCS PA3TMTIHBIE BU/IBI ONTHMu3aInii. Takzke MbI paccMar-
puBaeM CrocoObl HOPMAJIU3AIUN TIOJIYUYEHBIX PE3YJIBTATOB JIJIsi BO3MOXKHOCTHU JIYYIIEro
CpaBHEHUsT DOJIBIIEr0 KOJUIECTBA JAHHDBIX.

B riase 3 npemioxkena ganbHeiimas pa3spaboTKa MeTOAa MOCTPOEHUs J1e(POPMUPYEMOTo
mabsona. ITouck oObEKT HPOUZBOAUTCHA C IIOMOIIBIO TaK HA3BIBAEMBIX OLOPHBLIX TOUYEK
BMECTO CHJIyITa. ITO CItocob botee HAIEIKEH U TOCTOBEPEH, T.K. NCTe3aeT HEOOXOTUMOCTE
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dukcupoBarh pazMepsl mabdsona. [1pesoxeHnblit crrocob MoJHOCTHIO AaBTOMATH3UPOBAH,
paboraer ObICTpee W TOUHEe, YeM METOJbI IIPEeJIOKeHHbIe paHee. MBI IpOTecTHpOBaIN
AJTOPUTM, UCIIOJIH3YsT M300parKeHmsT SMOPUOHOB PHIOOK JAHNO U SMOPUOHOB JIATYIITKH.

B rutase 4 onucan nporpaMMublii maker ZFA, koropsriii moxer B konrekcre High Through-
put aHaausnpoBaTh U300parkenust. Jst pasHBIX IIOJIb30BaTE el IIpeIcTaBieH naTepdeiic
COOTBETCTBYIONNX PADOTUX MTPOTECCOB.

[TporpaMMHbIil TAKeT BKJIIOYAELT: MPEIBAPUTEIbHYI0 00pabOTKy, mHTepdeiic, cerMmeHTa-
nuio u 06paboTKy maHHBIX. [IpegBapurenbHas 06pabOTKa IPeLyCMaTPUBAET BbIICICHUE
dryopec- MEHTHBIX U OOBITHBIX M300parKeHnit 00IacTell.

Wurepdeiic mpeocTaBisgeT BO3MOKHOCTD BEIOPATH IIPUMEDPBI, IIOMEIAET N300ParKeHus B
BeIOpannble mankn. Gopma SMOPUOHOB JAHNO JIOKAJIN30BAHA U JOBEICHA JO AJITOPUTMa
Bhrancsienust gyukiun gedopmupyemoro mabsona. [locte onpenenenus hopmMbl mpeio-
JKeH aHaJIi3 XapaKTepUCTUK pa3indabix nabekiuii. Tpeboannst k ZFA mbl BoiGupasin
UCXOJ[s U3 MPAKTHIECKUX HYXK/I. VI3BeCTHO, 94TO TYyOEepKyJie3 siBJSETCs OTHUM U3 CAMBIX
CepPHE3HBIX M pACIIPOCTPAHEHHBIX 3ab0/1eBanmii. DPHEKTUBHOE JTETCHUE €0 TTO-TTPEXKHEMY
3aTPY/HEHO U3-3a €ro DAKTEPUATLHON YCTOWINBOCTH.

IToBeienne baxTepun TyOEpKyIe3a MOXKHO MOJICIMPOBATD U3y dast [IOBEJICHUE €r0 OJIN3KOr0
poacrBenHuKa - Mycobacterium marinum. Ilpu momoru ucnosb30BaHUsT TAHUO Kak
MOJIETb CTAHOBUTHCST BO3MOYKHBIM OTCJICZKUBATDH Iporiece mHdeknun. s 5Toro HyKHO
JIOKAJIM3NPOBATDH PHIOKU JAHNO U aHAJIN3UPOBATD pacipesesenne nudekimn B Hux. Harm
IPOTrPAMMHBINI ITaKeT JIeJIaeT 3TO BO3MOYKHBIM.

B rmaBe 5 mpumensiercss ZFA B KadecTBe MPOrpaMMHOTO 00ECIIEUEHUsI MOHUTODUHTA
HCCTeIOBAHUS JaHNO WHMUIMpoBanuHoro bakrepusmu Mycobacterium marinum. Takwue
uHMEKINN XapaKTepU3yeTcsl MOsIBJIEHUEM I'PaHysieM (CKOIIEHUH MMMYHHBIX KJIETOK U
6akrepuii). ['paHyséMbl JIErKO BH3yaJIN3UPOBaTh (DJIFOOPECIIEHTHBIME areHTamu. Hari
noxoz (MCIIOIB30BaAHNe AJIOPUTMA U3 3 [VIABBI) II03BOJISIET aBTOMATU3UPOBATL AHAJINS
pPasBUTHA BO BpeMeHM WHQEKIMH B Teje XO3guHa, Janno. Jliasa Toro, 9robbl rirybxke
pazobparbes B POIecce pa3sBUTHA NHQEKIII HEOOXOINMO BBISBUTH I'€HbI OTBETCTBEHHDIE
3a passutue uudexnun. s sroro Obutu BuiOpanbl 1000 caydaifHbIX MyTAHTOB 3TUX
OakTepuii, a U3 HUX BLIOPAHBI T€ MYyTAHTHI IIPH KOTOPLIX PBHIOKU HE 3abosieBaan. Takmm
obpazom 30 MyTaHTOB ObLIM BBIIEIEHBI JIJIsi YIUIyOJIeHHOrO anajm3a. Mbl u3ydain, KpoMe
TOT'0, OTJIMYAIOTCS JIM TPAHYJIBI 10 Pa3MepaM U PACIIPEICTICHUSM B OIIPE/IETICHHBIX TKAHAX
nudurmposannbie redamu Mycobacterium marinum ot nHGUIUPOBAHHBIX TYOEPKYIE30M.

B rraBe 6 Mbr mepeuncisieM n 00CYZKIaeM PE3yJIbTATHI UCCIICIOBAHUI, TPOBEICHHBIX B
HIPEIbLIYIINX IJIaBax.

9TO W BOIPOCHI, CBA3AHHBIE C CEIMEHTAIIMOHHBIM IMArOM, PACIO3HABAHUSI OOLEKTOB B
n300paKEHUIX, OCOOEHHOCTU MPEJTIOYKEHHBIX TPEX PA3JINIHBIX METOJIOB, Mbl CDABHUBAEM
UX MPOU3BOJIUTENHLHOCTE. TeCT NMpu CONMOCTABIEHUN PA3HBIX METOJIOB MbI ITPOBOJIUM Ha
OJTHOM ¥ TOM 2Ke Habope JaHHbIX. llcciemoBanusi yHeIuTeIbHO MOKA3AIM, YTO TPETHUil
METOJI, JIACT HAWIYUIINe Pe3yJbTATHI U MO9TOMY HCIOJIb3yeTcs B akkere ZFA.

142



Curriculum Vitae

Alexander E. Nezhinsky was born om May 7 1982 in Leningrad, the USSR. He graduated
from the Stedelijk Gymnasium in Leiden in 2001. He studied Computer Science at Leiden
University and gained his Master of Computer Science degree in 2007. Additionally he
followed courses at the Academy of Arts (KAVBK) in The Hague.

In august 2008 he started as PhD candidate in the section Imaging and Bioinformatics
under the supervision of Dr. Ir. F. J.Verbeek. In his PhD research he investigated dif-
ferent image analysis and pattern recognition techniques applied to the zebrafish model.

143






List of publications

e A. Nezhinsky, E.J. Stoop, A.M. van der Sar & F.J. Verbeek: Numerical Analysis
of Image Based High-Througput Zebrafish Infection Screens: /Matching Meaning
with Data/. In: BIOINFORMATICS 2012, Proceedings of the Int. Conf. on
Bioinformatics Models, Methods and Algorithms: 257-262 (2012)

e A. Nezhinsky, E.J. Stoop, A.A. Vasylevska, A.M. van der Sar & F.J. Verbeek:
Spatial Analysis of Bacterial Infection Patterns in Zebrafish. In: Proceedings 21th
Annual Belgian-Dutch Conference on Machine Learning: 27-31 (2012)

e A. Nezhinsky & F.J. Verbeek: Efficient and Robust Shape Retrieval from De-
formable Templates. In: T. Margaria & B. Steffen (Eds.), Leveraging Applications
of Formal Methods, Verification and Validation. Applications and Case Studies
(ISoLA 2012), Lecture Notes in Computer Science 7610: 42-55, Springer (2012)

e A. Nezhinsky, I. Martorelli & F.J. Verbeek: Detection of Developmental Stage in
Zebrafish Embryos in a high throughput processing environment. In: Proceedings
20th Annual Belgian-Dutch Conference on Machine Learning: 97-98 (2011)

e E.J. Stoop, T. Schipper, Huber S.K. Rosendahl, A. Nezhinsky, F.J. Verbeek, S.S.
Gurcha, G.S. Besra, C.M. Vandenbroucke-Grauls, W. Bitter & A.M. van der Sar:
Zebrafish embryo screen for mycobacterial genes involved in the initiation of granu-

loma formation reveals a newly identified ESX-1 component, Disease Model Mech-
anisms : 526-536 (2011)

e A. Nezhinsky, J.W. Kruisselbrink & F.J. Verbeek: Convex Shape Retrieval from
Edge Maps by the use of an Evolutionary Algorithm. In: J. Filipe H. Gamboa A.
Fred (Ed.), Proceedings 1st International Conference on Bioinformatics: 221-225
(2010)

o A. Nezhinsky & F.J. Verbeek: Pattern recognition for high throughput zebrafish
imaging using genetic algorithm optimization. In: 5th IAPR Conference on Pat-
tern Recognition in Biolnformatics (PRIB 2010), Lecture Notes in Bioinformatics
6282: 302-312, Springer (2010)

145






Acknowledgements

Here, I would like to explicitly acknowledge gratitude to the group members of Imag-
ing&Bioinformatics at LIACS. Thank you all for the help, support and ’gezelligheid’
during my PhD time, you are all great colleagues and friends. Dome and Willems,
thank you for surviving in the same room and with me and making room 108 such a
cool place to be. Thank you Raf and the rest of the coffee-gang for infinite amount of
caffeine and very informative talks at the coffee corner.

I would also like to show my gratitude to Walter, Johannes and Michael, thank you
for interesting discussions on various subjects and the help on evolutionary algorithms.

I would like to acknowledge all the biologists with whom I collaborated in this project,
especially Esther and Astrid, it was very inspiring and interesting to work with you.

I am grateful to all my friends outside of LIACS for just being my friends! Especially
to those that came to my defence, even flew in from Russia to visit me during this time,
thank you very much for your support, this really means a lot to me! =) Thank you
Sander for interest in my thesis.

I would like to thank my parents, for always believing in me, showing interest in my
work, thinking about my future and always helping out if necessary.

And last but not least, Anastasia -Nastya- my wife who is always there for me and
supports me in my decisions in both hard and easy times.

147














