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6 Discussion 

Effects of metals on aquatic ecosystems  

Metals are detected in every environmental compartment and are inherently 

persistent. They undergo various speciation changes within different compartments 

(Tessier et al., 1995) and tend to accumulate in biota (Phillips et al., 1994). Total 

metal concentrations measured in water often fail to predict ecological effects 

accurately, and therefore there is a need for models that account for bioavailability. 

Many studies have shown that metal toxicity depends on water type-specific 

characteristics, such as pH, DOC and hardness (De Schamphelaere et al., 2004a; 

Pagenkopf, 1983). These parameters explain differences in toxicity in surface 

waters with equal dissolved metal concentrations. Bioavailability is a useful 

concept to refine risk assessments, and to select and prioritize sites that are at risk.  

One of the most promising models is the Biotic Ligand Model (BLM), so far 

developed for individual metals (see Chapter 1). Effects prediction using the BLM 

is dictated by water chemistry, including competition, metal availability and the 

effect concentration of the metal at the target site of toxic action. The idea behind 

BLMs is that a certain critical concentration should be reached at the epithelial 

binding site to trigger effects (Pagenkopf, 1983; Paquin et al., 2002a). The mode of 

action of metal binding on the biotic ligand in fish has been identified as 

disturbance of ionoregulation, followed by decreased Ca levels in the blood 

(hypocalcaemia), which is linearly related to initial effects and eventually results in 

mortality of the fish (Paquin et al., 2002b).  

The BLM concept is applicable to a wide range of organisms, i.e. plants (Lock et 

al., 2007), algae (Deleebeeck et al., 2009a), crustacean (Bossuyt et al., 2004), 

snails and rotifers (De Schamphelaere et al., 2010) and fish (De Schamphelaere et 
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al., 2004b) and can be coupled to species sensitivity distributions (Posthuma et al., 

2002). Taking bioavailability into account in this way, improves the ability to 

generate site-specific water quality criteria (Niyogi et al., 2004; Vijver et al., 2008).  

In the Netherlands, the scope for implementing the BLM of Cu was being explored 

and the model has been subjected to a sensitivity and uncertainty analysis (Vijver 

et al., 2008). PNECs were calculated for 6 water types. The PNEC of 2.4 µg/L, 

derived for the most vulnerable water type, was adopted1 as a generic quality 

standard, to be implemented in legislation in 2015. The wide-spread use of BLMs 

by environmental regulators however, was hampered by the complexity of the BLM 

procedure and the large number of required input parameters. Another limitation of 

BLMs, affecting their usefulness as a field impact prediction tool, was that they are 

derived in the laboratory and for individual metals - whereas metals occur in the 

field by definition in mixtures. Moreover, in addition to abiotic factors, many other 

parameters related to the habitat of species vary. These factors include the food 

web structure of communities, their productivity, exposure history, life history and 

disturbance regime (Clements et al., 2012). 

 

The aims are specified in four research questions, which are answered in separate 

chapters of this thesis.  

1. Is there a significant relationship between the calculated biotic ligand binding 

of metals and the measured bioaccumulation in aquatic species in the field?  

2. How accurately do single metal BLMs, extended with a mixture model, predict 

toxicity of metals in a field setting?  

                                                           

1 Adopted by board of directors of the Ministry of Infrastructure and the Environment 

(DIRBOWA, November 2009) to be implemented in “Regeling Monitoring KRW” in 2015.  

The aims of this PhD-thesis were: 

1. to verify and optimize the ability of biotic ligand models to predict 

effects under realistic field conditions  

2. to facilitate implementation of site-specific risk assessment 

methodology for several metals, based on mechanistic descriptions of 

biotic ligand models  
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3. What are vulnerable conditions and time periods for metal exposed 

ecosystems, based on changes in water chemistry and calculated effects on 

metal bioavailability? 

4. Is it possible to derive a simplified function, based on a limited number of 

monitoring parameters, to facilitate widespread, practical use and 

implementation of BLMs with acceptable predictive capacity? 

This PhD assists in incorporation of BLMs in operational risk assessment. The 

results are made operational by 1) the development of calculation tools, 2) the 

assessment of uncertainties of risks related to natural variations in water chemistry 

and 3) optimization of BLM for field predictions.  

This PhD-thesis primarily focused on Cu, Ni and Zn, because of their widespread 

occurrences, their legal status as (priority) pollutants in monitoring programs, and 

the presence of well-documented BLMs and toxicity databases.  

Prior to an integrated discussion, answers to the research questions are 

highlighted below. 

Answers to the research questions 

Research question 1 (Chapter 2): Elevated concentrations of metals had a 

negative impact on growth of two different crustacean species, commonly present 

in natural surface waters. A reduced body weight was related to bioaccumulation of 

Cd, Co and Mn in D. magna and G. roeseli. Bioaccumulation was related to the 

occupancy of the biotic ligand. 

Research question 2 (Chapter 3): BLMs were suitable to rank sites with respect to 

effects of metals on population growth of D. magna. Effects on population growth 

could be attributed to Cd and Zn in the in situ experiment and to Co and Ni in the 

laboratory experiment. The sensitivity of D. magna under these multimetal field 

exposure conditions was approximately 20 – 30 times higher, than in original 

BLMs. 

Research question 3 (Chapter 4): Monitoring data were organized to derive 

seasonal patterns over a 3.5 years period. Mean seasonal variations of estimated 

metal-induced risks upto a factor 2, were caused by variations in the 

concentrations of dissolved metals and other water chemistry parameters. Highest 

risk were predicted in February, lowest risks in September/October, whereas May 

resembled the annual average risk. Knowledge of the seasonal variations enables 
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the reduction of sampling frequency, while covering the minimum and maximum 

values of HC5s of metals.  

Research question 4 (Chapter 5). Simplification of BLMs by linear regression 

showed that a high level of accuracy of predicted HC5 can be maintained, while 

the number of BLM-parameters is reduced. Only a limited number of input 

parameters was required: DOC, eventually extended with pH and Ca. Adding more 

water chemistry parameters obviously gave more accurate predictions, but did not 

improve HC5 prediction significantly.  

In the following paragraphs three definitions for validity, variation and uncertainty 

are employed, which can be easily confused. Their definitions are: 

Calibration factor: A factor describing the deviation between measurements and 

model outcomes. 

Uncertainty factor: A factor describing the variation in a dataset 

Safety factor: A political value, applied to cover other unquantified uncertainties. 

In line with the first aim of the PhD project “to verify and optimize the ability of biotic 

ligand models to predict effects under realistic field conditions”, the validity of BLMs 

for field predictions will be discussed. In line with the 2nd aim “to facilitate 

implementation of site-specific risk assessment methodology…” recommendations 

for data gaps in water chemistry databases, optimal sampling frequencies and 

safety factors in site specific risk assessment are presented. 

Validity of biotic ligand model for field predictions 

This thesis provides evidence from in situ experiments on 12 field locations and 

parallel experiments with the same water samples in the laboratory (Chapter 3). 

This type of experiments was not done before, and added new information with 

respect to the validity of BLMs to predict field effects. This paragraph discusses: 1) 

the options for BLM validation, 2) validation of chemical speciation modeling; 3) 

validation of competitive binding model to the biotic ligand, and 4) extrapolation of 

BLMs to other species (read across). Finally, conclusions and recommendations 

for research and policy are presented. 
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Options for BLM validation 

Evaluation of the validity of BLMs was extensively discussed internationally, and 

was laid down in European risk assessment reports of Cu, Ni and Zn. For most of 

the natural surface water samples (De Schamphelaere et al., 2002a; De 

Schamphelaere et al., 2003; De Schamphelaere et al., 2004c; Schwartz et al., 

2007) or organisms sampled in natural surface waters (Bossuyt et al., 2004; 

Muyssen et al., 2005), metal effects could be predicted within a factor 2 accuracy. 

The applicability of Daphnia BLMs for more sensitive species was also confirmed 

(De Schamphelaere et al., 2006; De Schamphelaere et al., 2010; Schlekat et al., 

2010). The Scientific Committee on Health and Environmental Risks concluded 

that: “The use of BLMs […] provides sufficient protection from the potential effects 

of metals“ (SCHER, 2010).  

Validation is defined as “determining whether a model predicts the effects well “. 

Validation is often accompanied by calibration of model parameters in order to 

achieve agreement between predicted values (model output) and measured data.  

 
Figure 6.1 Scheme for functional validation. A step in this approach is the calculation 
of a calibration factor, to maximize the agreement between measured and modeled 
toxicity. Default BLM and speciation models are applied and their parameters are not 
adjusted. 
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Two types of validation can be distinguished: functional and conceptual validation. 

Functional validation involves a direct comparison of model output (EC50 or NOEC) 

with observations, without going into the details of underlying processes (See 

Figure 6.1). A functional validation provides insight in of the relevance and 

robustness of the model under more realistic conditions. The conditions in a 

validation study are meant to be more realistic than those applied for model 

derivation; i.e. natural surface water samples instead of synthetic media, or species 

sampled from natural habitats instead of species cultured in the laboratory, or even 

in situ exposure instead of lab-exposure.  

  
Figure 6.2 Scheme of conceptual calibration of BLMs. Models are visualized by blue 
squares, model input is visualized by triangles, model output by rectangles. 
Intermediate results are expressed in white rectangles. Orange triangles are model 
parameters, that are subject to calibration in validation studies. In a conceptual 
validation, intermediate results, for instance the free metal ion activity are compared 
with measurements in order to improve description of the speciation step. 
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In Chapter 3 it was observed that processes which are not included in the BLM 

cause a mismatch between model predictions and field observations. This 

mismatch was captured in a calibration factor, to account directly for deviations 

between model predictions and field observations. A functional validation was 

applied, and calibration factors of 20 for Co and Ni and 30 for Cd and Zn were 

calculated. 

Conceptual validation involves an evaluation of the underlying processes in the 

model, for example the validity of the metal complexation binding to DOC or 

inorganic ligands, or the competition between cations (H, Ca, Na and Mg) and 

metals. Laboratory experiments are usually employed to ensure that the process of 

interest is not affected by other processes. Conceptual validation often goes along 

with calibration of model parameters, to improve the description of particular 

processes. In Figure 6.2 the modeling steps and calibration options for a 

conceptual approach are shown. During conceptual validation, specific speciation 

or BLM parameters are adjusted to maximize the agreement between measured 

and calculated toxicity, as was done for species sensitivity (fBL,50%) in Chapter 3. 

Potential causes for a deviation between predicted and observed toxicity endpoints 

are summarized in the textbox below.  
 
Textbox: Factors affecting metal toxicity 

During conceptual calibration of field studies, the deviations between predicted and 

observed toxicity were reduced by adjustment of DOC properties, intrinsic species 

sensitivity or binding properties of the biotic ligand (Chapter 3). Part of the 

1. properties of DOC, 
− the number of binding sites 
− the heterogeneity of binding sites 
− metal binding to humic and fulvic acids 
− the percentage active fulvic acids 

2. binding properties of the biotic ligand 
3. intrinsic sensitivity of the species 
4. other abiotic factors (excluded in BLMs) 

− mixture toxicity 
− other ligands like nitrates and phosphates 
− other competitors like Fe, Al and Mn 

5. other biotic factors (excluded in BLMs) 
− food quality or quantity 
− life history 
− etcetera 
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deviation was caused by other factors, other than BLM-parameters, such as 

mixture toxicity, and food quantity. In this thesis those uncertainties were assigned 

to the species sensitivity parameter FBL. 

Validation of chemical speciation models 

The binding of metals to dissolved organic matter has a significant impact on free 

ion activities (Tipping et al., 2011). The role of DOC as main descriptor for HC5s of 

Cu, Ni and Zn was quantified in Chapter 5. The conceptual validation of speciation 

models required reliable measurements of free ion activities of metals and their 

complexes. This required advanced equipment and proper calibration. It was 

beyond the scope of this thesis to review all the methods that are available. 

However it is useful to be aware that different methods for measuring free ion 

activities exist, and that their outcomes differ (Sigg et al., 2006). 

A difference of a factor 5 in Cu-binding capacities of various sources of DOC was 

reported (Frimmel et al., 1999). Cu activities in natural water samples were higher 

than predicted activities with WHAM V (Dwane et al., 1998). An overview of 

validation studies (Chapter 3) showed that active fulvic acid (AFA) was the most 

common calibration parameter. Best match between WHAM-calculated and 

measured Cu-activity was obtained when 40 to 80% of the DOC was considered to 

be AFA and when the rest was considered to be inert for copper complexation. For 

pragmatic reasons 50% AFA was used in this thesis, which was supported by 

several other studies (De Schamphelaere et al., 2002a; De Schamphelaere et al., 

2002b; De Schamphelaere et al., 2003).  

Validity of competitive binding model 

The competitive binding concept was coupled to aquatic toxicity in a gill surface 

interaction model (GSIM), which was later also incorporated in BLMs (Pagenkopf, 

1983). The model was based on previous findings and assumptions: 1) that acute 

toxicity of metals was caused by alteration of the gill function, leading to dis-

functioning of the respiratory system, 2) that some metal species were more toxic 

than others, 3) that metal species form complexes with the gill surface, 4) that the 

rate of this process is low compared to the test duration, 5) that gills have a finite 

binding capacity, and 6) that other cations interact with the metal for binding to the 

gill (Paquin, 2002a). GSIM was able to explain binding of single metals and 

additive toxic effects of mixtures of Cu, Cd and Zn.  
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The validity of the GSIM was determined in a straightforward way by chemical 

analysis of metals in the gills. The principles of the GSIM were adopted to describe 

toxicity of metals in gill-less organisms too, for example plants, crustaceans and 

snails.  

Extrapolation of BLMs across species 

The primary effect of metals found across a wide range of aquatic organisms was 

the disturbance of cellular ion levels (Paquin et al., 2002a). This phenomenon and 

the fact that the affinity of the binding of ions to the gills seemed to be rather 

constant across species, justified the extrapolation of BLM across species. 

Because it is impossible to derive BLMs for all species in the ecosystem, some 

species are used as representatives for a larger group of species, with similar 

phylogenetic properties. Daphnia magna is a commonly used test organism, and 

daphnia BLMs were shown to be valid for other crustaceans too. The accuracy of 

the Daphnia magna BLMs was verified for rotifers (Cu, Ni and Zn), snails (Ni and 

Zn) and insects (Ni) (De Schamphelaere et al., 2006; De Schamphelaere et al., 

2010; Schlekat et al., 2010). BLMs developed for rainbow trout were applied for all 

other fish species. Even the acute Cu-BLM of Daphnia magna was able to predict 

chronic toxicity to fish (ECI, 2008). In Chapter 3, Co toxicity for D. magna could be 

described by a BLM for Enchytraeus albidus, assuming an equal ligand binding 

affinity. In Chapter 4, BLMs were used to extrapolate toxicity data of many species 

to site-specific conditions. The extrapolation of a complete SSD showed that the 

most sensitive species or even taxonomic groups in ecosystem differed amongst 

sites (See Figure 4.1), which was a start to understand and manage site-specific 

effects. 

Conclusions and recommendations about BLM validity 

Metal concentrations in our study area belonged to the highest found in The 

Netherlands. Still, effects to D. magna were only found on a few sites. BLMs were 

suitable to rank sites with respect to effects of metals on population growth of D. 

magna (Chapter 3). BLM calibration was needed to predict absolute effect levels, 

because the presence of other stressors, toxicants and sub-optimal growth 

conditions affected the species sensitivity. In Chapter 3 we optimized the predictive 

power of Co, Ni, Zn and Cd BLMs, by calibration of the intrinsic sensitivity or by the 

introduction of a calibration factor of 20-30. This is justified because experimental, 

interclonal and interspecies differences affected species sensitivity.  
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The calibration factors in this study are applicable to surface waters with relatively 

high metal concentrations, typical for contamination related to zinc industry. More 

tailored research is required to find out if the calibration factors are relevant for 

areas predominantly influenced by other sources, land use or geochemical origin. 

Selection of sites could be based on overlays of maps with total dissolved metal 

concentrations and for instance land-use maps. 

Dealing with data gaps 

In most European countries, including the Netherlands, metal concentrations in 

surface water are regularly monitored by national and regional water authorities.  

 

Figure 6.3 Coverage of BLM parameters measured on individual sites in the 
Netherlands. N = the number of BLM parameters measured for particular sites. In the 
table the number of sites (n) for each BLM parameter is summarized. (source: 
Limnobase 2007-2010). 

Risk assessment of metals, based on total dissolved metals, showed that many 

sites do not comply with current environmental quality criteria (Chapter 1). On the 

other hand, many studies showed that the risks were much lower, caused by the 

mitigating effect of DOC and hardness on metal bioavailability. The risk 

assessment was refined by BLM calculations which confirmed that risks of Cu and 

Zn were generally lower, though risks of Ni could be larger than expected (Table 

4.2, page 78), and the locations at risk changed.  

 

    
  
  
  
  
  
  
  
  
  
  
  
  
  
 n 
Total unique sites 4890 
pH 3276 
Ca 2789 
Mg 2123 
Na 2135 
Cl 4493 
SO4 3789 
HCO3 2156 
DOC 569 
DOC+Ca 252 
DOC+Ca+pH 228 
Complete BLM set 119 
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Because BLM account for the effect of local water chemistry on bioavailability of 

metals, they are valuable tools for risk managers to identify and prioritize sites that 

are at risk. Frequently data gaps were present in existing and BLM equations could 

not be performed. Simplified equations (Chapter 5) optimized the data use and 

required only a maximum of 3 out of 9 BLM parameters. Moreover, these 

equations were able to mimic BLM computations with sufficient reliability. 

The usefulness of an existing national database over 2007-2009, increased from 

2.4% to 12% when a simplified equations with DOC as primary BLM parameter 

was applied (See Figure 6.3). When aiming for bioavailability corrections with 

BLMs, future monitoring programs should be optimized to include the required BLM 

parameters DOC, pH and Ca, and redundant parameters could be removed for this 

purpose.  

Optimal Sampling Frequency 

Seasonal variation in risks as a result of variable water composition was observed 

(Chapter 4). The risk characterization ratio (RCR) is expressed as 𝑃𝐸𝐶 𝑃𝑁𝐸𝐶⁄ . The 

month of May gave the best reflection of the annual average risk, whereas 

February exhibited the largest risks. This is a general pattern that could be 

abstracted when data of 76 sites over a period of 42 months were combined. 

Monthly risks were approximately 1.19× higher than the annual mean for Cu, for Ni 

this 1.33× and for Zn 1.85×. This seasonal pattern is quite consistent across sites, 

though the amplitude of risks may be higher on individual sites (see Figure 6.4). 

It is unknown whether the seasonal pattern is generally applicable to other regions. 

It may be dependent on water temperature (which affects the time that plants start 

growing, which on its turn changes the water chemistry by uptake of nutrients) and 

the hydrological situation (is the surface water fed by rain and surface run-off, by 

melting water or by groundwater). As long as the most vulnerable period is not 

identified, a general recommendation for the sampling frequency can be derived by 

a prospective power analysis. A prospective power analysis requires definition of 

type I (α), type II errors (β), the magnitude of the effect parameter (Δ), and 

information on the variation from previous investigations. 

RCR was used as the effect parameter because it compares the variability in HC5 

and metal concentrations. When testing RCR, the effect size was the minimum 

difference in RCR compared to a reference RCR, that can be proven at the given 

significance level.  
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Figure 6.4 Temporal variation of Ni risk in 76 sites in Dommel area 

The power analysis was performed, with the aim to detect sites with RCR <0.5 

(safe) and sites with RCR>2 (at risk). As a consequence, the risks of sites with 

0.5<RCR<2, remains undecided. 

Figure 6.5 shows that each sites had its own optimum sampling frequency (n) and 

that differences existed between the metals Cu, Ni and Zn. The sites were ranked, 

with increasing n. A common sampling frequency used by water authorities is 12 

samples per year (monthly). Figure 6.5 showed that a frequency of 12 samples per 

year is sufficient for Cu and Ni at most of the sites (95%) for a reliable RCR 

estimation within a factor 2. For Zn, a monthly sampling regime will only give 

reliable results for 30-35% of the sites. 

The optimal sampling frequency for Cu and Ni varies between 3 and 21 samples 

per year. For a reliable assessment of Zn-risks considerable higher sample 

numbers are required: upto 68 samples per year. High sampling frequencies may 

not be feasible, from logistic or financial point of view. We therefore recommend 

that sites with high optimal frequencies (for example >12 times/year) are critically 

evaluated. The optimal sampling frequency can further be reduced by taking into 

account the expected concentration range, based on historical data.  
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Figure 6.5 Calculated sampling frequency for Cu, Ni and Zn risks, ranked for 76 
individual sites. The sampling frequency should be able to detect HC5 exceedances by 
a factor 2. The sampling frequency is computed, using the observed standard 
deviation on each site, at α=0.05, β=0.05. In order to meet the assumptions of the 
power test, RCR values were log-transformed prior to the analysis. In that way, RCR 
behaves more like a normal distribution, and standard deviation becomes independent 
of RCR. 

Safety factors 

It is common practice in current risk assessment methodology, to apply safety 

factors that account for different types of variations and uncertainties (EC, 2011): 

1. overall quality of the database and the endpoints,  

2. diversity and representativity of the taxonomic groups, 

3. mode of action data,  

4. statistical uncertainties around the HC5 estimate,   

5. effects data from the field. 

In this paragraph we elaborate on “Statistical uncertainties around the HC5 

estimate” (EC, 2011) by quantification of the spatial and temporal variations shown 

in Chapter 4. For the metals Cu, Ni, Zn an SSD-approach is used to derive the 

EQS, and safety factors of 1-2 for these metals are considered in the EU 

(Denmark, 2008; EC, 2010; ECI, 2008). The spatial and temporal variation of metal 

bioavailability determined in Chapter 4 exceeded safety factors that are currently 

applied for Cu, Ni and Zn. A basic principle of extrapolation in environmental risk 

assessment is that, where uncertainty is high, larger safety factors are necessary. 

The magnitude of a safety factor depends primarily on the number and quality of 

the available toxicological data (See Table 6.1). 
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Table 6.1 Magnitude of the safety factor, dependent on data availability (EC, 2011)  

Available data Safety factor 

At least one short-term L(E)C50 from each three 
trophic levels (fish, invertebrates (preferred 
Daphnia) and algae) ( i.e. base set) 

1000 

One long-term EC10 or NOEC (either fish or 
Daphnia) 100 

Two long-term results (e.g. EC10 or NOECs) from 
species representing two trophic levels (fish and/or 
Daphnia and/or algae) 

50 

Long-term results (e.g. EC10 or NOECs) from at 
least three species (normally fish, Daphnia and 
algae) representing three trophic levels 

10 

Species sensitivity distribution (SSD) method 5-1 (to be fully justified case by 
case) 

Field data or model ecosystems Reviewed on a case by case 
basis 

For small datasets safety factors vary from 10-1000 and reflect uncertainty due to 

the low number of species involved and the extrapolation from acute to chronic 

exposures. When only a few data are available, the lowest EC50 or NOEC is 

selected and divided by the safety factor to obtain the EQS (EU 2011). For metals 

also bioavailability or natural background concentrations may be taken into 

account, to determine the magnitude of the safety factor.  

Natural variations in metal-induced risks can be expressed as an uncertainty factor 

UF (Ragas et al., 1999), which is the ratio between the mean value and a realistic 

worst-case value (RWC): 

UF=MEAN/RWC 

A realistic worst case, is represented by a relatively low HC5, but is not the most 

extreme values. Therefore 5th percentiles were selected to represent realistic worst 

case.  

In our datasets, the spatial uncertainty was higher than temporal uncertainty (see 

Table 6.2). Overall, the variability of Cu-HC5 is approximately twice as high as Ni 

and Zn HC5. The uncertainty factors can be employed on the site-specific HC5, 

when only limited monitoring data are available, and vulnerable conditions are not 

defined.  

A safety factor for the site-specific HC5, which accounts for spatial and temporal 

variation, is not necessary as long as monitoring and risk assessment are directed 
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to the most vulnerable conditions. Spatial and temporal variation in HC5 can be 

accounted for by BLM or by the simplified functions (Chapter 5). When only limited 

monitoring data are available and not relevant for the most vulnerable conditions, a 

default safety factor of 5, as recommended by the TGD (EC, 2011), is a reasonable 

estimate for the combined spatial and temporal uncertainty of Ni and Zn, but for Cu 

a safety factor of 10 would be more appropriate.  

Table 6.2 Uncertainty factors due to spatial and temporal variation in HC5. Spatial 
variation is based on annual average data per site, temporal variation is based on 42 
measurements per site over the period 2007-2010. Overall uncertainty is the product of 
spatial and temporal uncertainties. 

 Spatial Temporal Overall 
Cu 4.5 2.6 11.7 
Ni 5.4 1.2 6.5 
Zn 3.9 1.5 5.9 

The desired protection level of aquatic ecosystems is ultimately a political choice. 

The value for the safety factor must be considered in combination with other 

choices and assumptions in the derivation of HC5, in order to prevent an 

attenuation of safety factors and other worst-case assumptions.  

The power of biotic ligand models lays in their ability to predict water type-specific 

no-effect levels and metal HC5s. This thesis showed that, after adjustment of the 

sensitivity factor, BLMs were able to predict effects of multimetal exposure to 

Daphnia magna.  

Uncertainties and variations in risk assessment were explicitly shown by 

application of BLMs to Dutch surface waters. BLMs are able to identify vulnerable 

time periods and vulnerable species in a particular water type. By knowledge of the 

seasonal variations of HC5 and metal concentrations, the monitoring frequency 

could be optimized. Accurate HC5 predictions were obtained with simplified 

equations, allowing reduction of the number of required monitoring parameters. 

The consideration of uncertainties and variations offers valuable information on 

where, when and how to invest in improvement of surface water quality. 
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