
TNFalpha-signaling in drug-induced liver injury
Fredriksson, L.E.

Citation
Fredriksson, L. E. (2012, December 6). TNFalpha-signaling in drug-induced liver injury.
Retrieved from https://hdl.handle.net/1887/20257
 
Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/20257
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/20257


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/20257 holds various files of this Leiden University 
dissertation. 
 
Author: Fredriksson, Lisa Emilia 
Title: TNFalpha-signaling in drug-induced liver injury 
Issue Date: 2012-12-06 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/20257
https://openaccess.leidenuniv.nl/handle/1887/1�


5A live-cell imaging-based NF-κB 
nuclear translocation RNAi screen 

identifies novel regulators of 
TNFα-induced apoptosis through 

control of the (de)ubiquitinase A20

 Lisa Fredriksson*, Bram Herpers*, Giulia Benedetti*, Zi Di,  Hans de Bont,  
John Meerman, Marjo de Graauw and Bob van de Water

Manuscript in preparation



114

5

An NF-kB RNAi screen identifies novel regulators of A20

ABSTRACT

Stimulation of cells with the cytokine tumor necrosis factor alpha (TNFα) triggers 
cytoplasmic-to-nuclear oscillation of the dimeric transcription factor NF-kappaB (NF-κB). 
In the nucleus, NF-κB stimulates transcription of its own response inhibitors, IkappaBalpha 
(IκBα) and the (de)ubiquitinase A20. The concerted induction of IκBα and A20 functions 
to prevent over-activation of the response and the time-dependent inactivation is 
observed as a dampened NF-κB nuclear oscillation pattern. The number of nuclear 
oscillations dictates the transcription of downstream pro-inflammatory, anti-oxidant and 
anti-apoptotic genes. The number of nuclear translocation events is markedly reduced 
under hepatotoxic drug (diclofenac) exposure conditions in association with enhanced 
apoptosis. To understand the mechanism of the perturbed oscillatory response, we used 
a live-cell imaging-based siRNA screen to identify individual kinases, (de)ubiquitinases 
and sumoylases that control the NF-κB oscillatory response. We applied high content 
confocal laser scan microscopy in combination with multiparametric image analysis to 
follow the NF-κB oscillation in ~300 individual cells per condition simultaneously. Out 
of the ~1500 genes screened, we identified 115 that significantly affected the NF-κB 
oscillatory response. Using 4 individual siRNAs, we confirmed the action for 46 genes, 
which affected: (i) the amplitude or duration of nuclear oscillations; (ii) the time between 
oscillations, leading to an increase or decrease of the number of nuclear translocations; 
or (iii) an inhibition of the response altogether. In this last category we identified five 
genes, three novel, whose reduced expression protected against the diclofenac/TNFα-
induced apoptosis. Interestingly, the knockdown of four of these genes led to a basic 
up-regulation of A20 expression. In accordance, A20 knockdown promoted the NF-κB 
oscillation and enhanced apoptosis. Double knockdown experiments indicated a direct 
relationship between these four genes and A20 in the control of the NF-κB activation. 
These findings indicate that the (de)ubiquitinase A20 is a master regulator in the life-
death decision upon TNFα stimulation in drug-induced hepatotoxic responses, which, in 
turn, is kept under control by a network of genes that control its expression level.



115

5

An NF-kB RNAi screen identifies novel regulators of A20

INTRODUCTION 

The dimeric transcription factor nuclear factor-κB (NF-κB) controls the expression of a 
wide array of genes that play an important role in many stages of both physiology and 
disease. The activity of NF-κB is crucial in the host-pathogen response by transcribing 
anti-oxidant and pro-inflammatory genes and thereby activating the innate and adaptive 
immune response (1). In addition, the activity of NF-κB has been associated with 
disease states such as cancer, chronic inflammatory diseases and atherosclerosis (2). 
The malignant role of NF-κB arises from improper regulation of its activation. Enhanced 
activation of NF-κB leads to over-expression of genes responsible for proliferation, 
angiogenesis, metastasis, tumor promotion, inflammation and suppression of apoptosis, 
which gives the transcription factor its tumorigenic properties (3,4). Yet on the other hand, 
inhibition of NF-κB activity has been associated to toxicity of drugs (5,6).
	 NF-κB is activated by canonical and atypical signaling pathways. The canonical 
pathway is typically activated by pro-inflammatory stimuli such as the cytokines tumor 
necrosis factor-α (TNFα) and interleukin-1β (IL-1β) that bind to their respective receptors 
TNFR and IL-1R. Receptor activation is followed by the assembly of a signaling complex 
composed of several adaptor molecules, ubiquitin ligases and kinases to promote 
activation of the IKK-complex, the rate-limiting step of NF-κB pathway signaling. The 
IKK-complex consists of the catalytic subunits CHUK (IKKα) and IKBKB (IKKβ) and the 
regulatory subunit IKBKG (IKKγ or NEMO) (7). The active IKK complex phosphorylates 
the inhibitor of NF-κB, IκB, which is subsequently poly-ubiquitinated and degraded 
by the proteasome. This process unmasks the nuclear localization signal in NF-κB, 
allowing its nuclear translocation and initiation of NF-κB driven gene transcription (8). 
De-regulation of the IKK-complex is observed in different cancers, for example through 
activating mutations in NF-κB signaling promoting genes such as the NF-κB inducing 
kinase (NIK; MAP3K14) or inactivating mutations in NF-κB signaling repressors such 
as the deubiquitinase cylindromatosis (CYLD) (9), indicating that NF-κB activity requires  
tight regulation to control normal cellular physiology.
	 To understand this regulatory control, the NF-κB pathway has been subject to 
different screening approaches to further decipher its intracellular signaling. Gain- and 
loss-of-function screens based on NF-κB luciferase reporter constructs (10,11) were 
performed using cDNA (10) or RNA-interference (siRNA) screens (11,12). These end-
point assay screens focused on the prolonged NF-κB activity, and were unable to unravel 
the complex regulatory mechanisms involved in NF-κB activity that determine the spatial 
and temporal behavior of NF-κB after receptor stimulation. 
	 The nuclear translocation of NF-κB is an oscillatory response that is controlled 
by feedback control mechanisms and varies between individual cells. Importantly, these 
NF-κB oscillations determine the extent and levels of gene transcription (13-15). These 
oscillatory responses varies within a cell population and is dependent on regulation by post-
translational modifications such as phosphorylation, (de)ubiquitination and sumoylation 
(16). TNFα-induced activation requires K63 and linear (poly-)ubiquitination chains to 
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allow (auto-)phosphorylation of the IKK kinases to promote K48 linked poly-ubiquitination 
of IκB (8). Termination depends on deubiquitination as well as ubiquitination processes, 
as exemplified by the protein A20 (TNFAIP3). A20 deubiquitinates the activating K63 
chains from receptor-interacting protein 1 (RIP1), a TNFR associated kinase upstream 
of the IKK-complex, and replaces these by K48 chains, marking RIP1 for proteasomal 
degradation (17,18). As TNFAIP3 and NFKBIA (IκBα) are two of the principle early target 
genes of NF-κB, this provides a very important negative feedback loop to control NF-κB 
activation and constitutes the reason for the dampened oscillatory translocation pattern 
of NF-κB (19). Also drugs that cause liver failure in patients strongly affect the NF-κB 
oscillatory response (5).
	 In the current manuscript we searched for novel regulatory components of the 
oscillatory nuclear translocation response of the canonical NF-κB subunit p65 (RelA) upon 
exposure to the pro-inflammatory cytokine TNFα. We studied this in the context of drug-
induced liver injury responses. By combining RNAi and using live high content confocal 
imaging of green fluorescent protein tagged p65 (GFP-p65), in a HepG2 cell background, 
we here present an advanced screening approach to quantitatively determine the effect 
of individual gene knockdowns on the temporal and spatial behavior of NF-κB in single 
cells as well as at the population level.  We identified several genes that are essential for 
the regulation of the A20 protein levels, which thereby not only control NF-κB oscillation, 
but also the susceptibility of TNFα-mediated enhancement of drug-induced toxicity. 
 

MATERIALS AND METHODS

Reagents and antibodies
Human recombinant TNFα was acquired from R&D Systems (Abingdon, UK). Diclofenac 
sodium and the antibody against tubulin were from Sigma-Aldrich (Zwijndrecht, The 
Netherlands). AnnexinV-Alexa633 and AnnexinV-Alexa561 were made as described 
(20). The antibody against phospho-specific IκBα was from Cell Signaling (Bioké, 
Leiden, The Netherlands). The antibody against A20 was from Santa Cruz (Tebu-Bio, 
Heerhugowaard, The Netherlands). The bromo phenol blue solution was from Merck 
(Merck Millipore, Amsterdam Zuidoost, The Netherlands).

Cell culture
Human hepatoma HepG2 cells were obtained from American Type Culture Collection 
(clone HB-8065, ATCC, Wesel, Germany). HepG2 cells stably expressing GFP-p65 (NF-
κB subunit) were created by 400 µg/ml G418 selection upon pEGFP-C1-p65 transfection 
using Lipofectamine™ 2000 (Invitrogen, Breda, Netherlands). HepG2 BAC IκBα-GFP 
cells were generated by bacterial artificial chromosome (BAC) recombineering (21,22). 
Upon validation of correct C-terminal integration of the GFP-cassette by PCR, the BAC-
GFP construct was transfected using Lipofectamine™ 2000. Stable HepG2 BAC IκBα-
GFP cells were obtained by 500 μg/ml G418 selection. For all experiments the cells 
were cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% 
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(v/v) fetal bovine serum (FBS), 25 U/ml penicillin, and 25 µg/ml streptomycin between 
passages 5 and 20.

RNA interference
Transient knockdowns of individual target genes were achieved using siGENOME 
SMARTpool siRNA reagents in the primary screen or single siRNA sequences in 
the secondary deconvolution screen (50 nM; Dharmacon Thermo Fisher Scientific, 
Landsmeer, Netherlands). HepG2 cells were transfected using INTERFERin siRNA 
transfection reagent according to the manufacturer’s procedures (Polyplus transfection, 
Leusden, Netherlands) and left for 72 hours to achieve maximal knockdown before 
treatment. The negative controls were siGENOME non-targeting pool #1, caspase-8 and 
mock (INTERFERin only) transfection.

Exposures
Prior to imaging, nuclei were stained with 100 ng/ml Hoechst 33342 in complete DMEM 
for 45 minutes. The cells were then exposed to Diclofenac 500 µM or DMSO 0.2% for 8 
hours. The cells were then challenged with human TNFα (10 ng/ml).

Live Cell Imaging of GFPp65 and GFP-IκBα in HepG2 Cells
The GFP-p65 nuclear translocation response and IκBα-GFP level response upon 
10 ng/ml human TNFα challenge was followed for a period of 6 hours by automated 
confocal imaging every 6 minutes (Nikon TiE2000, Nikon, Amstelveen, Netherlands). 
Quantification of the nuclear/cytoplasmic ratio of GFPp65 intensity in individual cells was 
performed using an algorithm for ImageJ (Z. Di, B. Herpers, L. Fredriksson, K. Yan, B. 
van de Water, F.J. Verbeek and J.H.N. Meerman, submitted). 

Translocation response class definition and hit definition
For the primary screen, the amplitudes of the individual translocation response tracks 
were normalized to their intrinsic response maxima (=1) and minima (=0) to be able to 
compare the timing of the nuclear translocation events versus the plate average. For the 
secondary screen, non-normalized data were used. Four different classes were defined 
according to the type of nuclear p65 oscillation response: increased, no oscillation, 
decreased and different compared to the oscillation observed with control siRNA. Each 
class used a different set of five specific parameters (Fig. 1A). For each targeted gene, a 
Pearson’s chi-squared cumulative statistic was calculated from the set of five parameters 
of each class and p-values were obtained by comparing the value of the statistic to a 
chi-squared distribution. Targeted genes obtaining a p-value lower than or equal to 0.001 
were considered as hits.

Apoptosis measurements
Apoptosis was determined by the live cell apoptosis assay previously described (5,20). 
The relative Annexin V fluorescence intensity per image was quantified using Image Pro 
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(Media Cybernetics, Bethesda, MD) and normalized to the number of nuclei or cell area 
to obtain the estimated percentage of apoptosis.

Western Blot
Cells were harvested in sample buffer (6 times diluted bromo phenol blue solution 
with β-mercaptoethanol). The samples were subjected to protein separation, blotted 
on Immobilon-P (Millipore, Amsterdam, The Netherlands). Phosphorylated IκBα 
was detected using the Tropix Western-Star kit™ (Applied Biosystems) following 
manufacturer’s protocol. For tubulin and A20, the membranes were blocked for 1h at room 
temperature in milk powder 5% (w/v) in Tris-buffered saline/Tween 20 (TBS-T). Primary 
antibody incubation was done overnight at 4°C followed by incubation with cy5-labeled 
secondary or horseradish peroxidase-conjugated antibodies (Jackson Immunoresearch, 
Newmarket, UK) in 1% BSA in TBS-T for 1 h at room temperature. Protein signals were 
detected with ECL (GE Healthcare) followed by film detection for A20 or by visualization 
on the Typhoon 9400 imager (GE Healthcare, Diegem, Belgium) for tubulin.

Statistical procedures
All numerical results are expressed as mean ± standard error of the mean (SEM). 
Statistical significance was determined by GraphPad Prism using an unpaired t-test,
* P≤0.05, ** P≤0.01, *** P≤0.001. Heatmap representations and hierarchical clustering 
(using Pearson correlation) were performed using the MultiArray Viewer software.
 

RESULTS

NF-κB nuclear oscillation phenotype siRNA screening in HepG2 cells

Stimulation of cells with TNFα initiates nuclear translocation oscillation of the NF-κB 
transcription factor. To follow the dynamics of this process, we created a stable GFP-
tagged HepG2 reporter line for the NF-κB subunit p65/RelA. Time-lapse confocal 
microscopy showed that the nuclear translocation of GFP-p65 is transient and follows a 
dampened oscillation at set time intervals, largely due to NF-κB-dependent transcription 
of IκBα (19). Under control conditions, the initial translocation peaks at 30 minutes after 
TNFα (10 ng/mL) stimulation, followed by a second and third peak at 120 minute intervals 
(Figure 1 A, top). In HepG2 cells this effect was maximal at 10 ng/mL (data not shown). 
Successful knockdown with siRNAs targeting A20 (Supporting Data S1) slightly decreased 
the time-interval between oscillations, leading to faster oscillation, whereas knockdown 
of IκBα (Supporting Data S1) almost completely inhibits NF-κB oscillation in association 
with enhanced levels of p65-GFP expression (Fig. 1 A, middle). Pre-incubation of HepG2 
cells with 500 μM diclofenac for 8 hours increased the time interval between peaks (Fig. 
1 A, bottom; (5)). To distinguish these four phenotypes (control, increased oscillation, 
decreased oscillation and no oscillation) from each another, we established a pipeline of 
automated image segmentation and GFP-p65 nuclear/cytoplasmic ratio quantification for 
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Figure 1. NF-κB oscillation phenotype siRNA screening in HepG2 cells. (A) Representative images of GFP-p65 
translocation after TNFα (10 ng/mL) challenge in HepG2 cells by automated confocal microscopy. Insets: zooms 
of single cells with an average response in respect to the imaged population. The nuclear translocation events 
are marked by yellow boxes and the numbers indicate the time in minutes after TNFα exposure. The nuclear 
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(value of 1) and its lowest ratio (0). The average response of the total cell population is presented in the middle 
panel. The features and their directions that define the response classes (different, increased, decreased and 
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were found to have an effect on the oscillation under DMSO conditions while 4.7% were determined to give a 
significant effect after DCF pre-exposure.



120

5

An NF-kB RNAi screen identifies novel regulators of A20

all individual cells within one time-series, followed by extraction of 32 distinct oscillation 
features (Di et al., submitted). We classified the phenotypes based on the direction versus 
control for at least five oscillation features, e.g. number of peaks, time between peaks 
and amplitude of peaks (Fig. 1 A). If more than 5 of the 32 measured oscillation features 
were distinct from control and the oscillation phenotype did not match any of the other 
categories, the response was marked as “different oscillation”. 
	 Having established an automated system to track, segment and categorize the 
NF-κB oscillation pattern in individual cells, we set out to identify the genes that are 
responsible for the timely activity of the NF-κB response by siRNA screening (Figure 
1 B). We screened 779 kinases, 107 de-ubiquitinases and sumoylases, 580 ubiquitin 
ligases and 123 pre-described players in the TNFR/TLR-driven NF-κB response, under 
DMSO (control) and diclofenac (DCF) conditions. 22 siRNAs were overlapping in 
either of the libraries. Annexin-V-Alexa633 labeling of the cells allowed us to omit the 
genes that induce apoptosis upon knockdown. For all target genes the oscillation of the 
GFP-p65 reporter was followed for 6 hours at 6 minute intervals, directly after TNFα 
stimulation. Because we were mainly interested in the time between oscillations under 
control and DCF conditions, we normalized the nuclear/cytoplasmic GFP intensity ratio 
and separated the analysis for both conditions. Within each condition, we considered 
genes a potential hit at a p-value below or equal to 0.001, a minimum of in total 35 cells 
analyzed (average number of cells was 184 per condition) and absence of apoptosis. 
Within this p-value cut-off we could trace back the effect of A20 knockdown under control 
and DCF conditions in 76% and 92% of the samples, respectively; and the effect of IκBα 
knockdown in 94% and 100% of the samples (Fig. 1 C). Another 42 genes were added 
from the “different” category, based on visual inspection of the translocation phenotype 
and taking the p-value into consideration (P ≤ 0.05). In total we re-screened 115 genes 
by using 4 single siRNAs targeting the same gene, of which 46 genes were confirmed 
to affect the GFP-p65 oscillation with 2 or more single siRNAs in addition to the pooled 
siRNAs in either or both DMSO and DCF conditions.

Functional and phenotypic classification of the siRNA screen hits that control 
NF-κB oscillation

Out of the 46 confirmed hits, 5 genes, including the known inhibitor of NF-κB activation, 
UCHL1 (23), decreased the oscillation after knockdown; 7 increased the oscillation, also 
confirming the inhibitory role for TNFAIP3 (A20) for the activation of NF-κB; 24 showed 
no oscillation, including the essential activators of NF-κB IKBKG (IKKγ) and ubiquitin 
ligase CUL1, needed for the polyubiquitination of IκBα (24), and 4 did not fall in the 
previous three categories, but were significantly different from the controls under DMSO 
conditions (Figure 2 A-B and Table 1). Despite the oscillation-decreasing effect of DCF, 
2 siRNAs targeting splicing factor PHF5A and th receptor TNFRSF18, led to a further 
decrease in oscillation under this condition. Twelve increased the oscillation, 22 stopped 
the oscillation, including knockdown of the cyclin-dependent kinase CDK12 that was 
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Figure 2. Functional and phenotypic profiling of the siRNA screen hits that control NF-κB oscillation. (A) 
Typical non-normalized NF-κB oscillation averages acquired in the deconvolution screen, including examples 
of knockdowns that led to a phenotype similar to the classification controls; siA20, diclofenac (DCF) and siIκBα. 
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Table 1. Confirmed hits from the deconvolution screen arranged by classification. DCF = diclofenac.
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shown to only decrease the oscillation under DMSO conditions, and 4 had a different 
oscillation phenotype (Fig. 2 B and Table 1). Between the two conditions, 33 hits were 
overlapping, 7 were unique for DMSO and 6 for the diclofenac condition at a p-value cut-
off of p<0.001 (Fig. 2 B-C and Table 1). Most hits were kinases and (ubiquitin) ligases, 
which most often contributed to the “no oscillation” or “decreased” response phenotype 
(Fig. 2 D and 2 E).
	 The strength of our siRNA screening approach is the analysis of the dynamics 
of the NF-κB response at the single cell level within an entire population of cells. This 
allows measurement of the population dynamics upon knockdown of our candidate 
genes (Fig. 3 A and 3 B). Under control conditions the majority of the cells showed three 
nuclear translocation events within the imaging period. Yet the siRNA conditions that 
blocked the oscillation led to profiles with either no, or one shallow oscillation event, 
as shown with our positive control IκBα and knockdown of the genes necessary for 
NF-κB activation, IKBKG (IKKγ) and TNFRSF1A (TNFR1)  (Fig. 3 Bi). The decreased 
phenotype exhibited mainly 2 or 3 oscillation events, as shown by knockdown of CDK12 
and PHF5A, whereas the increased class, best illustrated by knockdown of our positive 
control TNFAIP3 (A20), showed mostly cells with 3 or 4 oscillations (Fig. 3 Bii). Within 
the profile class of “no oscillation” the number of peaks was vastly reduced and any 
observable translocation event occurred later than in control cells, at lower amplitude 
and with a reduced nuclear entry slope. Within the remaining fraction of cells (~30%) that 
showed more than one nuclear translocation event, the peaks remained shallow, which 
leads to a reduced dampening between the peaks (Fig. 3 Ci). The group of siRNAs that 
decreased the oscillation also decreased the number of oscillations and increased the 
time of the first translocation event. Differently from the “no oscillation” class, the profiles 
within the “decreased” class that included CDK12, RBX1, PHF5A and USP8, all showed 
an increase in the duration of the initial translocation event including a delayed time for 
the maximum. This suggests a role in the regulation of the NF-κB nuclear export, which 
subsequently affects the timing of the second peak (Figure 3 Cii). Finally, the increased 
class, including our positive control TNFAIP3 (A20), the inhibitor of NF-κB activation 
MAPKAPK2 (25), AGTR2 and MAPK4, were hallmarked by an increase in the number of 
oscillations, with a decreased time interval between peaks, that exhibit an elevated NF-
κB nuclear translocation amplitude (Figure 3 Ciii). 

Genes that prevent the NF-κB oscillation protect against TNFα/hepatotoxicant-
induced cell death.

Diclofenac (DCF) and carbamazepine (CBZ) are two drugs that are associated with 
idiosyncratic liver injury in humans, in which the innate immune system-based TNFα is 
an important component. Indeed, we have previously reported that diclofenac sensitizes 
liver cells to apoptosis caused by an otherwise non-toxic dose of TNFα (5). Since this 
was directly linked to inhibition of NF-κB signaling (5), we questioned whether inhibition 
of the 22 candidate genes that showed a “no oscillation” phenotype after knockdown, 
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Figure 3. Population statistics. (A) The population distribution of NF-κB oscillations in HepG2 GFPp65 cells 
upon indicated siRNA treatments. (B) Examples of how each phenotypic class is distributed in relation to the 
number of translocation peaks. (C) The translocation features that define the different classes: “no oscillation” 
(Ci), “decreased” (Cii) and “increased”(Ciii) are exemplified by their representative siRNAs.

would affect the cytotoxic response upon DCF/TNFα and CBZ/TNFα exposure. Since 
knockdown of caspase-8 completely inhibited the apoptotic response induced by both 
DCF/TNFα and CBZ/TNFα, we further used this as a positive control (Fig. 4 A and B). 
The majority of the knockdowns that displayed a “no oscillation” phenotype significantly 
inhibited the drug/TNFα-induced apoptotic response (12 out of 21; including CDK12, 
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RNF126 and TNFRSF1A), while others did not significantly affect the response (7 out of 
21; including CUL1, USP8 and AATK); only IKBKG (IKKγ) and TNFRSF18 knockdowns 
slightly, but significantly, increased the sensitivity towards apoptosis (Fig. 4 B). 
Interestingly, knockdown of the important negative regulator of TNFα-induced apoptosis, 
A20, strongly enhanced the apoptotic response (Fig. 4 A and B).

m
ock

siC
ontro

l

siC
ASP8

siA
20

siC
DK12

siI
KBKG

siR
APSN

siR
NF126

siT
NFRSF1A

siT
RIM

27

siT
RIM

8

siU
FD1L

siC
UL1

siF
BXW

11

siU
SP8

siT
RIM

50

siR
BX1

siM
AP3K14

siM
APK8

siF
BXW

5

siU
BOX5

siA
ATK

siA
DCK2

siT
NFRSF18

siT
TK

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

A
p

op
to

si
s 

(A
U

C
 F

C
 o

f C
on

tr
ol

)

***

**

***

***

***

***

***

**

** **

**

**
*

*
*

*

8 10 12 14 16 18 20 22 248 10 12 14 16 18 20 22 24 8 10 12 14 16 18 20 22 24 8 10 12 14 16 18 20 22 24

Exposure time (h)Exposure time (h) Exposure time (h) Exposure time (h)

DCF CBZ 

A
p

o
p

to
si

s 
(%

)
A

p
o

p
to

si
s 

(%
)

A
p

o
p

to
si

s 
(%

)
A

p
o

p
to

si
s 

(%
)

A.

B.

siControl
siCDK12

0

25

50

75

siControl
siTRIM27

siControl
siCASP8

siControl
siA20

siControl
siRNF126

siControl
siTNFRSF1A

siControl
siUFD1L

siControl
siTRIM8

siControl
siUFD1L

siControl
siCASP8

siControl
siA20

siControl
siCDK12

siControl
siRNF126

siControl
siTNFRSF1A

siControl
siTRIM27

siControl
siTRIM8

0

25

50

75

0

25

50

75
0

25

50

75

CBZ DCF

0

25

50

75

0

25

50

75

0

25

50

75
0

25

50

75

Figure 4. A “no oscillation” phenotype correlates to decreased drug/TNFα-induced apoptosis. (A) Live apoptosis 
imaging of wild type HepG2 cells with knockdowns resulting in a “no oscillation” phenotype in GFP-p65 cells 
after 500μM diclofenac (DCF) or 500μM carbamazepine (CBZ) pre-incubation for 8 hours followed by addition 
of TNFα (10 ng/mL) The amount of apoptosis is presented as a percentage after normalization to the number 
of Hoechst33342-positive cells. (B) The area under the curves (AUC) depicted in A was calculated and an 
average of the fold change (FC) compared to siControl for three independent experiments was determined. 
The difference in FC AUC compared to siControl was defined using Student’s t-test where * P≤0.05, ** P≤0.01 
and ***P≤0.001.
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Protection against apoptosis is correlated to A20 expression and not IκBα activa-
tion 

IκBα is a direct phosphorylation target for the IKK complex after TNF receptor activation 
and subsequently targeted for proteasomal degradation, a prerequisite for NF-κB nuclear 
translocation. In addition, IκBα constitutes the earliest induced negative feedback 
mechanism for the attenuation of NF-κB activity. We wondered whether genes showing 
the most significant reduction in drug/TNFα-induced apoptosis (p-value < 0.001 in Figure 
4B: including CDK12, RNF126, TNFRSF1A, TRIM8 and UFD1L) would affect IκBα 
levels. We used BAC-NFKBIA-GFP (IκBα-GFP) HepG2 cells that phosphorylate and 
degrade IκBα-GFP with the same kinetics as non-tagged IκBα (Supporting Data S2). 
We knocked down above genes individually and followed the IκBα-GFP levels by live 
cell imaging. Depletion of the TNFRSF1A, UFD1L, and RNF126 strongly increased the 
initial levels of IκBα-GFP compared to mock treatment (Fig. 5 A), which was associated 
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Figure 5. IκBα levels are elevated and the re-expression is delayed while phosphorylation status remains the 
same after knockdown of the candidate genes. (A) Quantification of GFP expression in HepG2 cells expressing a 
BAC-NFKBIA-GFP construct. TNFα stimulation induces degradation and re-synthesis of the IκBα-GFP protein, 
which is altered after knockdown of the indicated candidate genes. (B) The amount of IκBα phosphorylation (P) 
after knockdown of the indicated candidate genes in HepG2 GFP-p65 cells followed by TNFα exposure for 0, 5, 
120 and 210 minutes was determined by western blotting. The tubulin-normalized intensities of P-IκBα for the 
same knockdowns after 5 minutes of TNFα exposure is shown in the right panel. 
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with an essential complete inhibition of the NF-κB translocation response (see Fig. 2 
B). Importantly, TNFα treatment caused an oscillatory response of IκBα-GFP at the 
population level, corresponding to the western blot data. As expected, depletion of the 
TNF receptor inhibited an IκBα-GFP oscillatory expression. Yet, CDK12, TRIM8 and 
RNF126 did not affect the initial breakdown of IκBα-GFP, but slightly delayed the newly 
translated IκBα-GFP. In line with this CDK12, TRIM8 and RNF126 did not inhibit the early 
phosphorylation of IκBα upon TNFα stimulation; as expected, TNFRSF1A knockdown 
prevented this phosphorylation event (Fig. 5 B). Knockdown of UFD1L showed a different 
response: despite the fact that TNFα could initiate a phosphorylation of IκBα, the 
degradation of IκBα-GFP was reduced, suggesting a role for UFD1L in the degradation 
of this protein (Fig. 5 A and B).
	 As differences in IκBα phosphorylation and breakdown were not the major 
contributors to the effect of CDK12, RNF126, TRIM8 and UFD1L, we turned our attention 
to a second important negative feedback mechanism for NF-κB activity, A20 (TNFAIP3) 
(17,18). Intriguingly, the A20 levels after knockdown of CDK12, RNF126, TRIM8 or UFD1L 
were increased at control situation, prior to TNFα treatment (Fig. 6 A and B). Regardless, 
TNFα was still capable to further induce A20 after TNFα exposure (Fig. 6 A) most likely 
since the first NF-κB nuclear entry peak is not affected by these knockdowns. Again, as 
expected, depletion of the TNFα-receptor (TNFRSF1A) did not affect A20 levels under 
control or TFNα treatment. 
	 A20 was an important regulator of the oscillatory NF-κB response in HepG2 
cells. The above data suggested that the effects of CDK12, RNF126, TRIM8 and UFD1L 
depletion on the reduced NF-κB oscillation was a direct result of the increased A20 levels. 
Therefore, we performed double knockdown experiments by combining A20 siRNAs with 
the siRNA against CDK12, RNF126, TRIM8 or UFD1L, again using TNFRSF1A as a 
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positive control. Importantly, depletion of TNF receptor together with A20 did not induce 
any oscillatory response, indicative for the effectiveness of our double knockdown. Yet, 
simultaneous knockdown of A20 with either CDK12, RNF126, UFD1L or TRIM8, (partially) 
recovered the NF-κB oscillatory response (Fig. 7 A), which was further quantified with 
respect to the average number of nuclear entry peaks at the cell population level (Fig. 7 
B).
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Figure 7. Double knockdown 
with candidate genes and 
siA20 leads to restoration 
of the translocation 
response. (A) The average 
oscillatory response in 
HepG2 GFP-p65 cells 
upon TNFα addition under 
double candidate gene and 
A20 knockdown conditions. 
Increased oscillation could 
be observed compared 
to knockdown of the 
candidate genes alone. 
(B) Quantification of the 
average number of peaks 
with and without A20 double 
knockdown. The data 
represent the average of 3 
independent experiments 
+/- S.E.M. The difference 
in the number of peaks 
compared to mock was 
defined using Student’s 
t-test where *** P≤0.001.

DISCUSSION

The transcription factor NF-κB is an important player in both physiology and disease, 
and its (enhanced) activity has been implicated in cancer as well as chronic inflammatory 
diseases (2). In addition, inhibition of NF-κB signaling has been implicated in the toxicity 
of drugs (5). The NF-κB translocation response is tightly controlled by different types of 
posttranslational modifications such as phosphorylation and especially (de)ubiquitination, 
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which has received much attention in recent years (16,17). In the current manuscript we 
have investigated the role of individual kinases, (de)ubiquitinases and sumoylases in the 
nuclear translocation of the transcription factor NF-κB following TNFα stimulation using 
siRNA-mediated knockdowns. For accuracy to determine the dynamics of the response, 
we employed a high content imaging method including a recently developed image 
analysis technique to quantify 32 different parameters describing the NF-κB oscillatory 
response. Using at least 5 of these features we could distinguish and classify siRNA 
knockdowns that result in a “no oscillation”, “decreased”, “increased” and significantly 
“different” translocation phenotype. An siRNA deconvolution screen confirmed 46 of 
the 115 hits from the primary screen of which the majority showed a “no oscillation” 
phenotype, and are thus likely to be positive regulators of NF-κB oscillation (Fig. 2). Many 
of these positive regulators also control the apoptotic outcome after hepatotoxicant/
TNFα-exposure, by regulating the expression levels of the (de)ubiquitinase A20.
	 We successfully applied an advanced high content imaging approach to identify 
novel regulators of NF-κB signaling. So far RNA interference screens for NF-κB signaling 
mainly involved endpoint assays that mimic NF-κB transcriptional activity using luciferase 
reporter assays (11,12), precluding mechanistic insight in the dynamics of the NF-κB 
activation response. Our method allowed us to identify candidate genes that regulate 
the oscillatory response of NF-κB. Some of the 46 candidate genes have already been 
implicated in the regulation of NF-κB signaling (Table 1). This overlap was primarily 
observed in the target genes that upon knockdown increased or inhibited an NF-κB 
oscillatory response: genes with an “increased” phenotype were previously described as 
inhibitors of the NF-κB signaling response, and genes with “no oscillation” phenotypes 
are associated with promoters of NF-κB signaling (Table 1). 
	 There is increasing evidence for a role of the oscillatory response of NF-κB in 
the control of gene expression. The total duration of nuclear localization and promoter 
association is likely to define the spatiotemporal control of epigenetic modulation of 
genes, and thereby their expression. Indeed, the differential expression of early, mid and 
late NF-κB target genes seems proportional to the strength and duration of the NF-κB 
nuclear occupancy (14,15). IκBα and A20 are classical early NF-κB target genes that 
are also regulated tightly in our model systems and provide early feedback control of 
NF-κB activation. At this point we do not know whether our candidate genes that affect 
the oscillatory response of NF-κB will also affect the overall target gene expression. We 
anticipate that such a dynamic transcriptional activity of NF-κB is likely to differ within 
the cell population. Indeed, we observed a differential response of the NF-κB oscillation 
in our cell population, with around 80% of the cells demonstrating 3 to 4 oscillations in 
control situations, and only 10% demonstrating one single peak. Depletion of for example 
TRIM27 completely shifted this response with 80% showing either 0 or 1 oscillation peak. 
Reversely, MAPKAPK2, AGTR2 and MAPK4 increased the percentage of cells with 4 
peaks. These effects will likely determine NF-κB mediated gene transcription. 
	 Various novel candidates that regulate NF-κB signaling were identified. We 
described the splicing factor PHF5A as a promoter of the NF-κB oscillatory response. 
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PHF5A is implicated in processing of pre-mRNA (26). We suggest that this gene is 
required for proper processing of the mRNA of the protein needed for nuclear export of 
NF-κB, i.e. IκBα, after transcriptional activation. Furthermore we implicated the atypical 
mitogen activated protein kinase (MAPK) 4 (also known as ERK4), in the attenuation 
of the NF-κB signaling, since knockdown of this protein resulted in an “increased” 
translocation phenotype. ERK4 acts as a kinase for the substrate MAPKAPK5 (MK5) 
(27). We identified MAPKAPK2 (MK2), another protein in the same family as MK5 as an 
inhibitor of NF-κB translocation. MK2 is known to inhibit the nuclear export of NF-κB by 
reducing the levels of IκBα (25). MK5 has a similar role as MK2 and both phosphorylate 
HSP27 (28). Interestingly, HSP27 was previously implicated in the regulation of IKK 
activity as well as IκBα function (25,29,30). More research is required to investigate this 
link.
	 Previously we reported that inhibition of the NF-κB translocation is linked to 
enhanced cytotoxicity following exposure to the hepatotoxicant diclofenac in combination 
with TNFα (5). Therefore, we focused on the knockdowns that resulted in a “no oscillation” 
phenotype. As expected, knockdown of known activators of the NF-κB signaling response, 
such as IKBKG (IKKγ; NEMO) and TNFRSF18 (GITR) (Table 1) enhanced the apoptotic 
response under diclofenac/TNFα and carbamazepine/TNFα exposure conditions (Fig. 
4). In addition, knockdown of known inhibitors of the NF-κB response such as FBXW5 
and TRIM27 (RFP) as well as the TNF receptor itself (TNFRSF1A) (Table 1) reduced the 
apoptotic response (Fig. 4). However, surprisingly, most of the knockdowns that lead to a 
reduced or no oscillatory response, reduced the drug/TNFα-induced apoptosis, including 
the known activators of NF-κB signaling, MAP3K14 (NIK) and TRIM8. Here we report 
for the first time that this observation is most likely due to the basal induction of the (de)
ubiquitinase A20. Higher A20 levels at the start of TNFα exposure would indeed reduce 
the induction of NF-κB translocation, as A20 is the most important negative regulator of 
RIP1 activity (17,18).  Furthermore, since A20 also controls apoptosis by deubiquitinating 
caspase-8 to reduce the activation of this protease (31), the elevated A20 levels might 
provide cellular protection against drug/TNFα-induced cell death. To our knowledge none 
of the candidate genes have been previously reported to affect A20 expression. 
	 Since both IκBα as well as A20 levels were enhanced under control conditions 
(Fig. 5 A and 6), and both are important target genes of NF-κB, it seems likely that 
the enhanced expression of these proteins results from some initial activity of p65 after 
knockdown of the candidate genes. Especially in UFD1L knockdowns, the A20 and 
IκBα levels were exceptionally high. UFD1L is described as part of a complex regulating 
the proteasomal degradation of polyubiquitinated proteins from the endoplasmic 
reticulum and implicated in the closure of the nuclear envelope (32). Potentially, lack 
of UFD1L dismantles the boundary between inactive (cytoplasmic) and active (nuclear) 
p65, allowing a rise in nuclear p65 presence and thereby transcription of the negative 
feedback genes A20 and IκBα, an effect similar to IκBα knockdown itself (Supporting 
Data S1). In addition, the higher expression of A20 together with potential upregulation of 
NF-κB transcribed anti-apoptotic genes could result in the decreased apoptotic response 
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observed. 
	 To our knowledge nothing is known about the functions and substrates of the E3 
ubiquitin ligase RNF126. However, as discussed earlier, many regulatory steps leading 
to the translocation of NF-κB involves ubiquitination of RIP1 and therefore RNF126 
knockdown possibly prolongs RIP1 polyubiquitination and thereby NF-κB activity, leading 
to the “no oscillation” phenotype by up-regulation of A20 as well as IκBα (Fig. 5 A and 
6). To determine whether the elevated IκBα and A20 expression is indeed caused by 
enhanced NF-κB activity before TNFα stimulation, the basal transcriptional activation of 
NF-κB should be addressed during the pre-stimulation knockdown period.
	 Similar to PHF5A described earlier, cyclin dependent kinases such as CDK12 
have been implicated in the processing of pre-mRNA (33). Although not yet described, 
knockdown of CDK12 could have a similar effect on the processing of IκBα pre-mRNA as 
suggested for PHF5A above, resulting in the “delayed” phenotype (Fig. 2 A), and delayed 
re-expression of IκBα protein (Fig. 5 A). The delay of IκBα pre-mRNA processing and 
thus prolonged nuclear p65 presence would also explain the enhanced expression of 
A20.
	 TRIM8 is an E3 ubiquitin ligase that has been reported to activate the NF-κB 
pathway by ubiquitinating the activating kinase TAK1 (34) as well as SOCS-1, a negative 
regulator of transcriptionally active NF-κB (35,36). Reduction of TRIM8 thereby resulted 
in a non-responsive, “no oscillation” phenotype with basic enhanced levels of A20 protein 
(Fig. 6). Of all candidate gene knockdowns leading to the “no oscillation” phenotype, 
the effect of TRIM8 knockdown seems to rely most on A20 upregulation as double 
knockdown for TRIM8 and A20 completely restored and even increased the NF-κB 
oscillatory response (Fig. 7).
	 In summary, using an advanced  systems microscopy approach involving high 
content imaging and RNA interference screening, we identified novel regulators of NF-
κB signaling. Some of these regulators were essential to control the TNFα-dependent 
cell death by controlling the expression levels of A20, a negative feedback regulator of 
TNF receptor signaling. Besides in cytotoxicity, our candidate genes are likely to have 
important functions in inflammation and in the development or progression of different 
diseases including cancer, rheumatoid arthritis and pathogen infection. This needs further 
exploration. 
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Supporting Data S1. siRNA-mediated 
knockdown is successful in wildtype and 
GFP-p65 HepG2 cells. 50 nM siRNA 
SMARTpool transfection on positive controls, 
siA20 and siIκBα results in successful 
knockdown using INTERFERin tranfection 
reagent, as determined by western blotting. 
In GFP-p65 cells the siIκBα results in higher 
IκBα levels after 72 hours of knockdown, 
since knockdown of this inhibitor leads to 
enhanced p65 activity during this period and 
thereby increased IκBα transcription.
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Supporting Data S2. Expression 
of IκBα-GFP does not enhance 
the levels of the protein. Stable 
expression of BAC-IκBα-GFP does 
not result in overexpression of this 
protein. Furthermore, the GFP-tagged 
version of this protein behaves as the 
endogenous protein following TNFα 
(10 ng/mL) exposure, as determined 
by western blotting.




