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ABSTRACT

Drug-induced liver injury (DILI) is an important clinical problem, yet predicting human 
DILI for novel candidate drugs remains difficult. Current models indicate that in many 
cases DILI is linked to reactive metabolite formation and involves activation of innate 
immune responses.Here we systematically evaluated the combined application of high 
content live cell imaging-based analysis of 1) Nrf2 activation as a measure for reactive 
metabolite stress; 2) perturbations of the normal NF-κB activation mediated by TNFα; 
and 3) synergistic induction of apoptosis by DILI compounds and TNFα. Fifteen drugs 
associated with DILI were evaluated. Most DILI compounds induced Nrf2 stabilization-
dependent activation of the downstream target SRXN1 (11 out of 15). Various DILI 
compounds diminished the TNFα-induced activation of NF-κB (6 out of 15), which strongly 
correlated to the strength of Nrf2 activation. In particular for those compounds that show 
strong Nrf2 activation and perturbation of NF-κB signaling, a significant drug-cytokine 
synergy for apoptosis was observed, which included carbamazepine, diclofenac and 
ketoconazole, and to a lesser extent clozapine, nefazodone and amiodarone. Together, 
our data support that mechanism-based high content imaging strategies involving 
combined analyses of cellular stress responses contribute to DILI hazard identification. 
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INTRODUCTION

Adverse drug reactions are difficult to predict because of a lack in the understanding of 
the underlying mechanisms (1). Evidence points at the formation of chemically reactive 
metabolites being one of the initial causes of drug-induced liver injury (DILI) (1, 2), 
leading to oxidative stress and mitochondrial dysfunction (3). In addition, DILI involves an 
immune component (4) largely involving the innate immune system with the liver Kupffer 
cells as critical players (5-8). Activated immune cells release pro-inflammatory cytokines 
(9) which act on the hepatocytes undergoing reactive metabolite stress. This combination 
of toxicant and cytokine-induced stress signals may activate a pro-apoptotic response. 
Indeed, in mouse models non-hepatotoxic drugs (with DILI association in humans) can 
become hepatotoxic by co-treatment with lipopolysaccharide (LPS) which is dependent 
on the pro-inflammatory cytokine TNFα (10, 11). This critical role of TNFα in adverse 
drug-cytokine synergy can be reconstituted in an in vitro model by co-exposing liver 
epithelial cells to drugs linked to DILI in combination with TNFα (12, 13).
 Reactive drug metabolite-mediated intracellular perturbations of the cellular 
redox potential are counterbalanced by the anti-oxidant response under control of the 
transcription factor Nrf2 (14, 15). Under low oxidative stress conditions Nrf2 is degraded 
by the proteasome, due to ubiquitination by its inhibitory protein Keap1 (or INrf2) (14). 
During toxic stress the soft electrophilic reactive metabolites and/or increased levels of 
reactive oxygen species (ROS) target the cysteine residues in Keap1 (16, 17), allowing 
Nrf2 to evade the Keap1-mediated repression, and accumulates in the nucleus to activate 
a diversity of cytoprotective antioxidant target genes (18). Nrf2 is an essential transcription 
factor for defense against DILI (18), e.g. for the detoxification of acetaminophen (APAP) 
(19, 20). Interestingly, activation of Nrf2 is also influenced by the p53-p21 axis, autophagy, 
HSP90 and NF-κB signaling (21). This indicates that oxidative stress signaling, apoptosis 
regulation and immune signaling are tightly linked biological programs to accurately 
control the cell fate decision after toxicant exposure.
 TNFα binding to its receptor leads to activation of the tri-partite inhibitor of kappa-B 
kinase (IKK-) complex (IKKα, IKKβ and NEMO). This kinase complex phosphorylates the 
inhibitor of kappa B (IκBα), leading to rapid ubiquitination and degradation of this inhibitor 
directly followed by the release of NF-κB and nuclear translocation to activate its target 
genes. A primary early transcriptional target of NF-κB is IκBα (NFKBIA), which recruits NF-
κB back into the cytoplasm (resting state), creating an autoregulatory negative feedback 
loop (22). Hence, NF-κB activation follows an oscillating nuclear translocation pattern, 
dependent on the persistence of the cytokine signal and intracellular responses (23). 
Its periodicity is influenced by redox regulation and dictates the outcome of the genetic 
response (24). Importantly, we recently established that the hepatotoxicant diclofenac 
interferes with the NF-κB oscillatory response in association with a synergy between 
diclofenac and TNFα to induce apoptosis in liver cells (13). Whether this holds true for 
other DILI compounds is investigated here.
 We established a high content imaging-based strategy using HepG2 cells as 
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a model to quantitatively follow the onset of apoptosis, Nrf2-dependent activation of 
Sulfiredoxin (Srxn1) expression, and nuclear oscillation of NF-κB. These assays were 
used for concentration- and time-course experiments with a panel of fifteen drugs 
associated to human DILI: acetaminophen (APAP), 3’-hydroxyacetanilide (AMAP), 
amiodarone (AMI), carbamazepine (CBZ), clozapine (CLZ), diclofenac (DCF), isoniazid 
(INH), ketoconazole (KTZ), methotrexate (MTX), nefazodone (NFZ), naproxen (NPX), 
nitrofurantoin (NTF), ofloxacin (OFX), simvastatin (SN) and troglitazone (TGZ). We 
studied their effect on cell stress in relation to co-exposure with TNFα. Our results indicate 
that a strong correlation between Nrf2 activation and inhibition of TNFα-induced NF-κB 
nuclear translocation responses. When both of these response pathways are affected, 
TNFα and DILI compounds synergize to enhance the onset of cell killing. 
 

MATERIALS AND METHODS

Reagents
All drugs were acquired from Sigma-Aldrich and freshly dissolved in DMSO, except for 
menadione and naproxen (in PBS). Human TNFα was purchased from R&D systems 
and stored as 10 μg/mL in 0.1% BSA in PBS aliquots.
 
Cell culture
Human hepatoma HepG2 cells were acquired from ATCC (clone HB8065) and maintained 
and exposed to drugs in DMEM high glucose supplemented with 10% (v/v) FBS, 25 U/
mL penicillin and 25 μg/mL streptomycin. The cells were used between passage 5 and 
20. For live cell imaging, the cells were seeded in Greiner black μ-clear 96-well plates, at 
20,000 cells per well.

Generation of GFP-tagged cell lines
HepG2 cells stably expressing human GFP-p65 as in (13). Mouse Sulfiredoxin (Srxn1) 
was tagged with GFP at the C-terminus using BAC recombineering (25) and stably 
introduced into HepG2 cells by transfection and 500 μg/ml G-418 selection. 

RNA interference
siRNAs against human NFE2L2 and KEAP1 were acquired from Dharmacon 
(ThermoFisher Scientific) as siGENOME SMARTpool reagents, as well as in the form of 
four individual siRNAs. HepG2 cells were transiently transfected with the siRNAs (50 nM) 
using INTERFERin (Polyplus). 

Western blotting
Samples were collected by direct cell lysis (including pelleted apoptotic cells) in 1x Sample 
Buffer supplemented with 5% v/v β-mercaptoethanol and heat-denatured at 95°C for 10 
minutes. The separated proteins were blotted onto PVDF membranes before antibody 
incubation in 1% BSA in TBS-Tween20. Antibodies: mouse-anti-GFP (Roche); rabbit-
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anti-IκBα (Cell Signaling); rabbit-anti-Nrf2 (H300, Santa-Cruz); mouse-anti-caspase-8 
(Cell Signaling); rabbit-anti-cleaved PARP (Cell Signaling); mouse-anti-Tubulin (Sigma).

Microscopy
Real-time apoptosis induction was determined by monitoring the accumulation of 
Annexin-V-Alexa633 labeled cells over a 24 hour time period (26). For this, transmission 
and Alexa633 images of the same area with cells were taken automatically every 30 
minutes using a BD Pathway™ 855 bioimager and a 10x Olympus PlanApo lens. 
 Stabilization of Srxn1-GFP or nuclear oscillation of GFP-p65 was monitored 
using a Nikon TiE2000 confocal laser microscope (lasers: 488nm and 408nm), equipped 
with an automated stage and perfect focus system. Prior to imaging at 20x magnification, 
HepG2 cells were loaded for 45 minutes with 100ng/mL Hoechst33342 to visualize the 
nuclei, upon which the Hoechst-containing medium was washed away to avoid Hoechst 
phototoxicity (27). Srxn1-GFP cells were imaged every 30 minutes across a 24 hour time 
span, GFP-p65 cells every 6 minutes for 6 hours.

Image quantification
To quantify the total pixel area occupied by cells or the number of cells per field imaged, 
transmission images and Hoechst images respectively were analyzed using ImagePro 
7.0 (Media Cybernetics). The accumulation of apoptotic cells or the appearance of 
Srxn1-GFP positive cells was quantified as the total number of pixels above background. 
The apoptotic pixel total was normalized for the total cell area. The number of adjacent 
fluorescent Srxn1-GFP pixels above background (with a minimum size of 45 pixels) 
was multiplied by the average density of those pixels as a measure for the GFP signal-
intensity increase and normalized for the amount of nuclei. 
 To quantify the nuclear translocation of GFP-p65, nuclei (Hoechst) masks are 
segmented and tracked in ImageJ to define the GFP-p65 nuclear intensity, followed by 
cytoplasm segmentation. The normalized nuclear / cytoplasmic intensity ratio for each 
cell is recorded and further analyzed for different oscillation features, also using ImageJ, 
including the number of translocations, time period of each individual peak, intensity of 
the peaks, delay between peaks, and nuclear entry and exit rates (Di Z., Herpers B., 
Fredriksson L., et al., submitted for publication).

Statistics
All experiments are performed at least in triplicate. Error bars indicate Standard Error, 
unless indicated otherwise. Statistical comparisons were done in a one-way ANOVA. 
P-value indications: P<0.05 (*); P<0.01 (**); P<0.001 (***).
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RESULTS

Drug-induced cell death of human HepG2 cells

To establish a strategy for a mechanism-based evaluation of adverse drug liver toxicities 
in in vitro models we assembled a list of 15 compounds linked to various types of adverse 
drug liver toxicity (Supporting Table 1). HepG2 cells were chosen as a model system since 
genetic manipulation allows the integration of fluorescent reporter constructs for live cell 
imaging approaches. First we incubated cells in presence of Alexa633-labeled AnnexinV 
and used live cell imaging to determine the concentration-dependent onset of apoptotic 
cell death. While none of the compounds induced an overwhelming amount of cell death, 
our sensitive and robust method allowed us to identify a concentration-dependent HepG2 
cell apoptosis for AMI, AMAP, APAP, CBZ, CLZ, DCF, KTZ, NFZ, NTF and SN. Little 
apoptosis was observed for INH, MTX, NPX, OFX and TGZ. For further experiments for 
each compounds we defined a concentration that is mildly cytotoxic (indicated in Fig. 1 A) 
to establish the effect on Nrf2 activation, NF-κB signaling and in relation to co-exposure 
to the pro-inflammatory cytokine TNFα.

A BAC-Srxn1-GFP HepG2 cell line reports xenobiotic-mediated Nrf2 activation

Rising levels of oxidative stress leads to activation of the antioxidant pathway, controlled 
by the transcription factor Nrf2. We first monitored the dynamics of Nrf2 stabilization 
in our HepG2 model. Menadione (20 μM, MEN), di-ethyl maleate (100 μM, DEM) and 
iodoacetamide (10 μM, IAA) are potent pro-oxidant xenobiotics that time-dependently 
stabilize Nrf2 in HepG2 cells (Fig. 1 B). Also KTZ and DCF for which phase I and II 
metabolism has been demonstrated in HepG2 cells (13, 28) caused stabilization of Nrf2.
To visualize the Nrf2 activation in real time, we generated HepG2 reporter cells expressing 
the Nrf2 target gene Sulfiredoxin (Srxn1) coupled to GFP, controlled by its own promoter, 
by BAC recombineering (25). Under normal conditions, the Srxn1-GFP reporter is not 
expressed, but exposure to MEN, DEM, IAA, H2O2, DCF and KTZ induced a strong time-
dependent expression of GFP-Srxn1 (Fig. 1 C) which was easily detected by confocal 
microscopy live-cell imaging (Fig. 1 D-E). Quantification of the Srxn1-GFP signal shows 
that activation of the Nrf2 response by the different Nrf2-inducing compounds follows 
differential activation patterns. All compounds activated the Srxn1-GFP expression within 
8 hours. However, while MEN, DEM, IAA and H2O2 induce acute Srxn1-GFP expression 
upon a lag-phase of 4 hours, the hepatotoxicants DCF and KTZ induce a gradual increase 
of the Nrf2 activity reporter over time (Fig. 1 E), possibly related to reactive metabolite 
formation. Importantly, the Srxn1-GFP expression in our model is Nrf2-dependent, since 
transfection with siRNA oligos targeting Nrf2 inhibits the expression of Srxn1-GFP after 
exposure to MEN, DEM, DCF and KTZ (Fig. 1 F). Moreover, also Keap1 knockdown 
which caused an expected stabilization of Nrf2, strongly induced Srxn1-GFP levels. 
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Figure 1. Drug-induced apoptosis and oxidative stress (A) Percentage of apoptotic HepG2 cells at 24 hours 
after exposure to fifteen different drugs. Concentrations are indicated in μM, except for AMAP, APAP and 
INH: in mM. “0”: 0.2% (v/v) DMSO. Shaded bars: concentration used in subsequent assays. (B) Western blot 
of Nrf2 expression in HepG2 cells exposed for 8 or 16 hours. (C) Western blot of GFP expression in HepG2 
Srxn1-GFP cells. (D) Stills of time-lapse image series of HepG2 Srxn1-GFP cells exposed to Nrf2 inducers. 
(E) Quantification of the Srxn1-GFP reporter response kinetics. (F) Knockdown of Nrf2 (siNFE2L2) and Keap1 
(siKEAP1) in HepG2 Srxn1-GFP cells upon 24h treatment.
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DILI compounds activate the Nrf2 stress response independent of TNFR activation

Next, we systematically tested the panel of liver toxicants on the HepG2 Srxn1-GFP 
reporter cells and monitored the increase of the GFP signal by live-cell imaging (Fig. 2 
A-B). We observed that APAP and its regioisomer AMAP potently induce the oxidative 
stress reporter, as soon as 4 hours after compound exposure. The drugs CBZ, CLZ, DCF, 
KTZ, NFZ and NTF strongly induced the Srxn1-GFP reporter 8 hours after compound 
exposure. AMI, MTX and NPX are weak oxidative stress inducers, and Srxn1-GFP 
induction was observed with delayed kinetics, at 16 hours after compound exposure. 
The drugs INH, OFX, SN and TGZ did not lead to oxidative stress induction within the 
24-hour imaging period in our cell system. These results were confirmed by Western blot 
(Fig. 2 C-D).
 Next, we addressed the question whether TNFα (10 ng/ml) co-exposure increases 
the rate of Nrf2 stabilization. TNFα has been reported to induce ROS formation, which 
can be counterbalanced by NF-κB driven production of anti-oxidant genes (29). However, 
as an anti-oxidant transcription factor, Nrf2 is potentially involved in this process as well. 
We observed no significant rise in Nrf2 stabilization or Srxn1-GFP expression when the 
HepG2 Srxn1-GFP cells were exposed to TNFα alone (Fig. 2 C and D). Since most of 
our test drugs induced activation of the Nrf2 response 8 hours after drug exposure, we 
pre-incubated for 8 hours before addition of 10 ng/ml TNFα and assessed the effect 
of TNFα on the activity of the oxidative stress response 24 hours after the start of the 
exposure. No significant increase in Nrf2 responses by compound-TNFα combination 
was observed (Fig. 2 C and D).

Multiparametric analysis of HepG2/GFP-p65 cells to monitor spatio-temporal NF-
kB responses

TNFα promotes liver cell injury under hepatotoxicant treatment conditions. We previously 
demonstrated that this is related to perturbations of NF-κB signaling by TNFα (13). To 
monitor the effect of the hepatotoxicants on the execution of the NF-κB response, we used a 
previously established HepG2 cell line expressing GFP-tagged p65/RelA, a subunit of the 
dimeric transcription factor NF-κB. This GFP-p65 reporter allows us to follow and quantify 
the spatio-temporal nuclear translocation of NF-κB. TNFα promotes phosphorylation and 
subsequent degradation of the NF-κB inhibitor IκBα in an oscillatory manner (Fig. 3 A) 
which is followed by nuclear translocation of NF-κB that oscillates in time (Fig. 3 B: top 
panel). This activity is IKK-dependent, because an 8 hour pre-incubation with 2 μM BMS-
345541, a potent IKKβ inhibitor, resulted in inhibition of the NF-κB oscillation response 
(Fig. 3 B). Quantification of the nuclear/cytoplasmic ratio of the GFP-p65 NF-κB reporter 
construct (based on ~1000 individual cells per condition) revealed that BMS-345541 
not only inhibits the NF-κB response in relation to the number of nuclear translocation 
events at 0.5 μM, but also the translocation amplitude of the GFP-p65 signal (Fig. 3 
C). Extraction of multiple parameters from the oscillation pattern of all individual cells 
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Figure 2. Drug exposure induces dynamically divergent Nrf2 responses. (A) Stills of live-cell imaging on HepG2 
Srxn1-GFP cells upon drug exposure (shown are 4, 14 and 24 hours). (B) Quantification of the Srxn1-GFP 
signal appearing upon drug exposure. (C) Western-blots for Nrf2 and GFP expression after 24 hour drug 
exposure in HepG2 Srxn1-GFP cells, either with or without co-exposure to 10ng/ml TNFα. (D) Quantification of 
the Nrf2 and Srxn1-GFP protein levels, 24h after drug +/- TNFα exposure.

within the observed population revealed that the IKKβ inhibition caused a concentration-
dependent decrease in the number of cells oscillating upon TNFα stimulation, together 
with an increase in the time of the second nuclear translocation maximum (150 minutes 
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in control conditions, 186 minutes at low BMS-345541 concentrations, and 216 minutes 
at the highest concentration) (Fig. 3 D). These data indicate that this GFP-p65 HepG2 
reporter cell line in combination with high content imaging provides thorough insight in 
the perturbations of the NF-κB signaling that fit with the biochemistry.
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Figure 3. TNFα stimulation induces IKKβ-dependent NF-κB oscillations. (A) 10 ng/ml TNFα stimulation induces 
IκBα phosphorylation and degradation, followed by IκBα re-synthesis and degradation. (B) HepG2 GFP-p65 
(NF-κB reporter) cells treated for 8 hours with the IKKβ-inhibitor BMS-345541 before TNFα exposure show 
impaired NF-κB nuclear translocation. (C) Quantification of the nuclear/cytoplasmic GFP-p65 intensity ratio 
in control (0.2% DMSO) and BMS-345541 treated cells upon TNFα stimulation. (D) Statistical analysis of the 
HepG2 GFP-p65 cell population under control versus BMS-345541 conditions.

DILI compounds cause a perturbation of NF-kB signaling

Next we tested the effect of DILI compound treatment on TNFα-induced NF-κB activation. 
We selected an 8-hour drug pre-incubation period before the addition of TNFα. As 
reported previously, DCF delayed the second translocation event (+20 min) (Fig. 4 A). 
AMI (+20 minutes), CBZ (+20 minutes) and NTF (+20 minutes) delayed the oscillation 
to a similar extent as DCF. Already at 25 μM KTZ strongly delayed the oscillation by 37 
minutes. NFZ delayed the oscillation by 30 minutes. Pretreatment with CLZ and MTX 
only weakly perturbed the appearance of the second translocation response with a delay 
of 10 and 16 min, respectively. Neither AMAP, APAP, INH, OFX, SN nor TGZ significantly 
influenced the translocation maximum of the second nuclear translocation event.
 Detailed cell population-based quantitative analysis of the translocation response 
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Figure 4. Drug-impaired NF-κB activation. (A) Time-lapse images of one representative cell showing NF-κB 
oscillation upon 10 ng/ml TNFα stimulation after an 8-hour drug pre-incubation period. Arrowheads point at 
the local nuclear translocation maxima. Quantified average of the GFP-p65 nuclear/cytoplasmic intensity ratio, 
normalized between 0 and 1 to focus on the appearance of the nuclear translocation maxima (peaks). (B) 
Analysis of the NF-κB response: time between peaks 1 and 2. (C) Analysis of the NF-κB response: assessment 
of the number of peaks. (D) Distribution of the TNFα-stimulated, drug pre-exposed cell population, classified for 
showing 0 to 5 peaks within the 6-hour imaging period.
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allows extraction of various parameters that describe the NF-κB oscillation response to 
TNFα. Indeed, pre-treatment with AMI, CBZ, DCF, KTZ, NFZ or NTF significantly affects 
the time between the translocation maxima 1 and 2 (Fig. 4 B) and thereby reduces the 
average number of translocation events within the 6-hour imaging window (Fig. 4 C). 
Importantly, by evaluating the cell distribution of on average ~1000 cells per condition, we 
identified that AMI, CBZ, DCF, KTZ, NFZ and NTF in general increased the percentage 
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Figure 5. Drug pre-incubation followed by TNFα may induce adverse drug-cytokine synergy. (A) Still images 
of time-lapse movies of HepG2 cells exposed to the drugs in co-presence of Annexin-V-Alexa-633, taken at 8 
hours (before 10 ng/ml TNFα addition) and at 24 hours (16 hours TNFα). (B) Quantification of the percentage 
apoptotic cells appearing upon drug only exposure, or in combination with TNFα. (C) Western-blot for 
cleaved caspase-8 and the caspase substrate PARP induction by drug alone or drug-TNFα co-treatment. (D) 
Comparison of the quantified percentage apoptotic cells 24 hours after drug (+TNFα) exposure, the area under 
the curve (AUC) and cleaved caspase-8 protein levels. 
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of cells with only one or two nuclear translocation peaks, and thereby decreased the 
percentage of cells with three or more NF-κB nuclear translocation events (Fig. 4 D). 

DILI compound and TNFa synergy towards apoptosis  

Since TNFα drives a NF-κB-dependent pro-survival response we anticipated that the 
inhibitory effect of drug pre-exposure on the NF-κB response might sensitize HepG2 
cells towards apoptosis. To address this we systematically analyzed the compound-
TNFα apoptosis synergy upon 8-hour drug pre-treatment followed by TNFα treatment. 
We monitored the onset of apoptosis within a 24-hour time period by live-cell imaging of 
AnnexinV-Alexa633 (Fig. 5 A). TNFα clearly enhanced the cell killing for CBZ, DCF and 
KTZ compared to the drugs alone. The cell killing for the other compounds was low, yet 
a significant increase in apoptosis under drug/TNFα conditions could be observed for 
AMI, CLZ and NFZ (Fig. 5 B). To further evaluate the onset of apoptosis, we monitored 
caspase-8 activation and PARP cleavage as markers of death receptor mediated cell 
killing. In accordance with the live apoptosis assay, we found a marked increase in 
cleaved caspase-8 and caspase-cleaved PARP under DCF/TNFα and CBZ/TNFα co-
exposure conditions (Fig. 5 C and D).

Integrated analysis of Nrf2, NF-kB and apoptosis high content live cell imaging 
assays

Finally we evaluated the relationship between Nrf2 activation, NF-κB signaling 
perturbations and compound/TNFα synergy. For all markers we defined the response 
from absent to very strong and accordingly ranked the compounds based on their 
synergy response (Table 1). Firstly, the data indicate that there is not a necessary 
correlation between Nrf2 activation and NF-κB inhibition, since both AMAP and APAP 
have a strong Srxn1-GFP induction but hardly affect the NF-κB response. In this situation 
also no cytotoxic synergy is observed. Yet for almost all compounds that show some 
synergy response for apoptosis, a strong Srxn1-GFP induction as well as a delayed NF-
κB nuclear oscillation is observed. 

DISCUSSION

Whether a candidate drug in the development phase harbors an increased risk for liver 
failure remains difficult to predict due to the lack of adequate biomarkers and predictive in 
vitro and in vivo models. In this manuscript we propose the integration of three high content 
quantitative microscopy live cell imaging-based in vitro approaches to systematically 
analyze and classify the effect of drug exposure over time by addressing the biochemical 
mechanism (oxidative stress-based Nrf2 activation), the immune response mechanism 
(NF-κB signaling) and the cell death response (apoptosis). 
 Drug metabolism can create reactive soft electrophiles which are eradicated by 
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further phase 2 drug metabolism or scavenged by glutathione (GSH). GSH depletion 
is sensed by the Nrf2-Keap1 system, which responds by Nrf2-driven increases in GSH 
production. Alternatively, reactive metabolites may covalently modify free cysteine 
moieties in Keap1. To monitor activation of the Nrf2-Keap1 as a measure for reactive 
metabolite formation, we made advantage of a bacterial artificial chromosome-based 
Sulfiredoxin (Srxn1)-GFP reporter, driven by the endogenous promoter of Srxn1, which 
is fully dependent on Nrf2. Most DILI compounds showed activation of the Nrf2 response 
suggesting that reactive metabolites are formed by these compounds. Indeed in an 
earlier study we demonstrated metabolite formation for DCF (13). We observed for APAP 
and its regioisomer AMAP a fast Srxn1-GFP induction, similar to the GSH-depleting 
agents DEM and IAA, suggesting a direct effect for GSH depletion on the Nrf2 induction. 
Sustained Nrf2 stabilization, indicating persistent Nrf2 activation, was found for CLZ, 
DCF, KTZ, NFZ and NTF, possibly modifying Keap1 through reactive metabolites, which 
correlated with Srxn1-GFP induction. No effect was found on the Nrf2 response or the 
Nrf2 reporter in HepG2 cells for the drugs INH, NPX, OFX, SN and TGZ. This effect might 
be due to the low expression of cytochrome P450 enzymes in HepG2 cells, compared 
to primary hepatocytes (30), the FBS concentration (10 %) used (31), the duration of the 
experiments, or the chosen concentration (32). Since the redox-cycling agent MEN as 
well as H2O2 also activated Srxn1-GFP expression, at this moment we cannot entirely 
exclude that the observed effect for the DILI compounds is (partly) related to secondary 
oxidative stress, possibly derived from mitochondrial toxicity. Further research is required 
to identify the exact mechanism of Nrf2 activation for the different DILI compounds.  
 Stimulation of HepG2 cells with TNFα activates the IKK complex, which is 
essential for the activation of the downstream NF-κB response. We showed that a strong 

 Nrf2 response NF- B response TNF -enhanced apoptosis 

Drug 

Fold 
increase 
Srxn1-
GFP 

Initiation 
(hours) 

delay 2nd 
peak 

(minutes) 
Oscillati
ons (#) 

24h 
drug 
only 
(%) 

24h 
drug + 
TNF  
(%) 

Differ
ence 
(%) 

Synergy 
initiation 
(hours) 

CBZ 3.2 10 20 1.98 2.8 21.8 18.9 12 
DCF 5.7 10 20 1.91 3.8 13.6 9.8 12 
KTZ 7.3 8 37 1.75 4.1 6.7 2.7 12 
CLZ 3.6 11 10 2.07 3.3 5.3 2.0 22 
NFZ 3.8 10 20 1.66 2.8 4.4 1.6 23 
AMI 0.9 19 20 1.8 5.0 7.1 2.1 23 
NTF 3.6 8 30 1.67 1.5 1.8 0.3 >24 

AMAP 3.0 5 5 2.11 1.3 2.6 1.3 19 
APAP 3.0 5 6 2.04 2.1 2.4 0.4 >24 
MTX 2.3 17 16 2.11 1.0 1.4 0.5 >24 
NPX 0.8 20 0 2.1 1.0 1.9 0.9 >24 
TGZ 0.3 >24 0 2.22 0.7 1.8 1.1 19 
SN 0.1 >24 3 2.24 1.8 1.8 0 >24 

OFX 0.1 >24 6 2.14 1.1 2.1 1.0 24 
INH 0.0 >24 0 2.28 1.4 2.4 1.1 24 

DMSO 0.0 >24 0 2.28 0.8 1.3 0.5 >24 
 

Table 1. Overview of the test results derived from the Srxn1-GFP assay (Nrf2 response), the GFP-p65 assay 
(NF-κB response) and the Annexin-V apoptosis assay (TNFα-enhanced apoptosis).
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drug-induced Nrf2 activation for the drugs AMI, CBZ, DCF, KTZ, NFZ and NTF closely 
correlated with a delay in the timing of the nuclear translocation peaks of NF-κB. Yet, 
while APAP also caused Nrf2 activation, this was not associated to a delay in the NF-
κB oscillation. We speculate that the crosstalk between the Nrf2 and NF-κB signaling 
is apparently not mediated through Nrf2 activation per se. Alternatively, the reactive 
metabolites derived from AMI, CBZ, DCF, KTZ, NFZ and NTF likely affect a broader set 
of intracellular sensors and, thereby, affect alternative signaling pathways, including Nrf2 
and NF-κB signaling. APAP-derived metabolites presumably only affect the Nrf2 pathway. 
This difference in response is likely related to different reactivity of the metabolites and/
or the intracellular sites where they are generated. More work is required to identify the 
levels of metabolite formation and their cellular targets for the DILI compounds we used. 
Moreover, it will be highly relevant to determine which compounds directly affect the Nrf2 
activation through covalent modification of Keap1.  
 In case of combined Nrf2 activation and NF-κB suppression an increased risk for 
drug-cytokine cytotoxic synergy may be present. The working model for immune-related 
DILI suggests the imbalance between pro-inflammatory cytokine and anti-inflammatory 
cytokine signaling as a critical initiator of hepatocyte cell killing (11, 12). We observed the 
strongest TNFα-enhanced drug-induced apoptosis for CBZ, DCF and KTZ, and more 
weakly for NFZ, AMI and CLZ. These six drugs activate both the Srxn1-GFP reporter 
and induce a delay in the NF-κB response, albeit that the effect of CLZ at 50 μM on 
NF-κB oscillation was not significant (10-minute delay), yet at 75 μM the effect became 
significant (20 minutes). This suggests that monitoring the ability of drugs to activate the 
Nrf2 response and determining the drug effect on NF-κB oscillations can be indicative 
for sensitization towards pro-inflammatory cytokines during drug exposure, as a sign for 
increased risk of DILI potential. We are currently investigating the underlying molecular 
mechanisms through RNA-interference-based functional genomics strategies and our 
findings indicate a critical role for the translational control component EIF4A1 in close 
relationship to the expression of the pro-apoptotic unfolded protein response gene 
CHOP/DDIT3 (Fredriksson et al., submitted). 
 In conclusion, we have established a systems microscopy approach using 
high content confocal microscopy live-cell imaging in combination with automated 
multiparametric quantitative image analysis to monitor in parallel the kinetics of 
apoptosis, Nrf2 activation and the NF-κB oscillatory response. Our systems microscopy 
assays are more quantitative, robust, reliable and more informative than standard protein 
quantification, because single cells within a large population can be monitored across 
time. Furthermore, the approach can be multiplexed: the Srxn1-GFP reporter can be 
combined with Annexin-V or propidium-iodide to monitor oxidative stress simultaneously 
with apoptosis or necrosis induction, respectively. We are aware that our current 
strategy does not positively identify all DILI compounds. Given the diversity of molecular 
mechanisms for DILI, we would not expect this. Although the monolayer cultures of our 
HepG2 reporter cells provide greater speed and accuracy, we understand that their 
limited differentiation status is posing some limitations. Currently we are establishing 3D 
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spheroid cultures of HepG2 cells to increase their differentiation status and increase the 
levels of phase 1 and 2 metabolism. Preliminary results using 3D HepG2-Srxn1-GFP cells 
for high content imaging shows induction of Srxn1-GFP expression by TGZ. While we 
have limited ourselves to Nrf2 and NF-κB signaling in this study, further development of 
additional cell injury reporters (e.g. mitochondrial function, ER-stress and DNA damage) 
is ongoing. We anticipate that the application of such models in combination with DILI 
compound, cytokine and siRNA screening will greatly contribute to the mechanistic 
understanding of adverse drug reactions. 
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Supporting Table 1. Drugs used in this study and their reported adverse effects on the liver
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