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3
Probing galaxy dark matter

haloes in COSMOS with weak

lensing flexion

Velander M., Kuijken K., Schrabback T., 2011,
MNRAS, 412, 2665

Current theories of structure formation predict specific density profiles
of galaxy dark matter haloes, and with weak gravitational lensing we
can probe these profiles on several scales. On small scales, higher-
order shape distortions known as flexion add significant detail to the
weak lensing measurements. We present here the first detection of a
galaxy-galaxy flexion signal in space-based data, obtained using a new
Shapelets pipeline introduced here. We combine this higher-order lens-
ing signal with shear to constrain the average density profile of the
galaxy lenses in the Hubble Space Telescope COSMOS survey. We also
show that light from nearby bright objects can significantly affect flex-
ion measurements. After correcting for the influence of lens light, we
show that the inclusion of flexion provides tighter constraints on density
profiles than does shear alone. Finally we find an average density profile
consistent with an isothermal sphere.
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3.1. INTRODUCTION

3.1 Introduction

Weak gravitational lensing is a powerful technique for studying the distribution
of matter in the universe due to its ability to model the matter distribution
in foreground structures, independent of the nature of the matter present. As
the light from background sources is bent around foreground lenses, the galaxy
images get distorted by the tidal gravitational field. The first-order distortion
is known as shear and is essentially an elongation of the image causing the
source galaxy to appear stretched in one direction. This type of distortion mea-
surement has been used in a wide variety of cosmological studies ranging from
modeling the large-scale structure using cosmic shear (see e.g. Van Waerbeke
& Mellier, 2003; Hoekstra & Jain, 2008; Munshi et al., 2008, for reviews) to
determining galaxy halo shapes using galaxy-galaxy lensing (Hoekstra et al.,
2004; Mandelbaum et al., 2006a; Parker et al., 2007).

First described by Goldberg & Natarajan (2002), the second-order distor-
tion is a relatively new addition which has since been named flexion (Goldberg
& Bacon, 2005; Bacon et al., 2006). There are two types of flexion relevant
to weak lensing studies: the first flexion induces a skewness of the brightness
profile whilst the second flexion is a three-pronged distortion. In combination
with shear, these distortions cause the well-known banana shape of lensed source
images. As flexion is effectively the gradient of shear, it is sensitive on small
scales. This makes it an important complement to shear which is sensitive on
relatively large scales only. By virtue of this, and of the orthogonality of the
three measurements, flexion is highly beneficial to investigations of the inner
profiles of dark matter haloes, where baryons become important, and to the
detection of substructure in cluster haloes. Indeed, it was recently shown (Er
et al., 2010) that mass reconstructions profit from the use of flexions in combi-
nation with shear, and flexion has already been used to constrain the halo mass
distribution and to detect substructure in clusters of galaxies (Leonard et al.,
2011; Okura et al., 2008). To provide more information on substructure and
mass profiles, there are currently new statistical flexion tools being developed
(eg. Leonard et al., 2009; Leonard & King, 2010; Bacon et al., 2010). Another
application, as discussed in Hawken & Bridle (2009), is to use both flexions in
combination with shear to significantly tighten the constraints on galaxy halo
ellipticities compared to using shear alone.

The shape measurement technique known as Shapelets (Refregier, 2003; Re-
fregier & Bacon, 2003) works by decomposing a galaxy image into a series of
2D Hermite polynomials. These provide a simple framework for describing the
main galaxy image distortion operators, such as shear and flexion, and the con-
volution with the point-spread function (PSF). Due to the flexible treatment
of the PSF, the Shapelets formalism has an advantage over the currently most
widely used shape measurement method, KSB (from Kaiser, Squires, & Broad-
hurst, 1995), since KSB uses an idealised model for the PSF whilst Shapelets
is more versatile. The KSB equivalent for flexion is known as HOLICs (Okura
et al., 2007).

Since the field of weak lensing is relatively new, lensing measurements are
continuously being improved in accuracy and applicability. Being a statistical
technique, however, the accuracy of the weak lensing results depends heavily
on the amount of data available. Galaxy-galaxy flexion has been tentatively
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3. GALAXY DM HALOES IN COSMOS WITH FLEXION

observed (Goldberg & Bacon, 2005) using the ground-based Deep Lens Sur-
vey (DLS), but to further investigate galaxy-size haloes more and better data is
needed. With large surveys such as the Canada-France-Hawaii Telescope Legacy
Survey (CFHTLS) and the Red Sequence Cluster Surveys (RCS, RCS2) avail-
able, and new surveys like the 1500 square degree Kilo-Degree Survey (KiDS)
imminent, the future looks bright. However, a space-based data set provides bet-
ter resolution and such a data set is already accessible to us: the HST COSMOS
survey. Using this data we will in this Chapter improve on the galaxy-galaxy
flexion measurements of Goldberg & Bacon (2005).

This Chapter is organised as follows: in Section 3.2 we review the formalism
for shear and flexion, whilst we review the Shapelets method in Section 3.3 with a
description of our implementation (dubbed the MV pipeline) in Section 3.3.1. In
Section 3.4 we test the MV pipeline on simulations and in Section 3.5 the pipeline
is applied to data from the COSMOS survey. We conclude in Section 3.6.

Throughout this Chapter we assume the following cosmology (WMAP7; Ko-
matsu et al., 2010):

(ΩM ,ΩΛ, h, σ8, w) = (0.27, 0.73, 0.70, 0.81,−1)

3.2 Shear and flexion

We begin by briefly reviewing the weak lensing formalism. Flexion is a second-
order lensing effect first introduced by Goldberg & Bacon (2005) and further
developed by Bacon et al. (2006) (hereafter B06). It arises from the fact that
convergence and shear are not constant across a source image, and can be used
to describe how these fields fluctuate. In the weak lensing regime, the lensed
surface brightness of a source galaxy, f(x), is related to the unlensed surface
brightness, f0(x), via

f(x) ≃
{

1 +

[

(A− I)ijxj +
1

2
Dijkxjxk

]

∂

∂xi

}

f0(x). (3.1)

Here I is the identity matrix, xi denotes lensed coordinates, and

A =

(

1 − κ− γ1 −γ2

−γ2 1 − κ+ γ1

)

(3.2)

with κ = 1
2
(ψxx + ψyy) a second derivative of the lensing potential ψ, where

subscripts denote partial differentiation. γ1 = 1
2
(ψxx − ψyy) and γ2 = ψxy are

the two components of the complex shear γ = γ1 + iγ2. The matrix

Dijk =
∂Aij

∂xk
(3.3)

describes how convergence and shear vary across a source image. We can re-
express Dijk as the sum of two flexions: Dijk = Fijk + Gijk . The two flexions,
the first flexion F (known as F flexion or one-flexion) and the second flexion G
(known as G flexion or three-flexion), are the derivatives of the convergence and
shear fields. There are four flexion components, each of which may be written in
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3.3. SHAPELETS

terms of the third derivatives of the lensing potential (Hawken & Bridle, 2009):

F1 =
1

2
(ψxxx + ψyyx) (3.4)

F2 =
1

2
(ψxxy + ψyyy) (3.5)

G1 =
1

2
(ψxxx − 3ψxyy) (3.6)

G2 =
1

2
(3ψxxy − ψyyy) (3.7)

where F = F1 + iF2 and G = G1 + iG2 are the complex F and G flexions respec-
tively. The full matrices Fijk and Gijk in terms of the four flexion components
are written explicitly in B06.

3.3 Shapelets

The Shapelets basis function set was introduced by Refregier (2003) and is more
fully described there. In summary, the surface brightness of an object f(x) can
be expressed as a sum of orthogonal 2D functions

f(x) =
∞
∑

a=0

∞
∑

b=0

sabBab(x;β) (3.8)

where sab are the Shapelets coefficients and the Shapelets basis functionsBab(x;β)
are defined as

Bab(x;β) = kabβ
−1e

−
|x|2

2β2 Ha(x/β)Hb(y/β). (3.9)

Here kab is a normalization constant, β is the Shapelets scale radius, (x, y) are
coordinates on the image plane and Hn(x) is a Hermite polynomial of order
n. The Shapelets basis functions are easily recognised as the energy eigenstates
of the 2D Quantum Harmonic Oscillator (QHO). The formalism developed for
the QHO can also be applied to Shapelets, providing analytical expressions for
transformations such as shear and flexion. In theory, an object can be perfectly
described through a decomposition into Shapelets up to order n→ ∞ but in
practice the expansion has to be truncated. We truncate at combined order
nmax = a+ b to avoid introducing a preferred direction.

Convolution with the point-spread function (PSF) can also be done analyti-
cally in the Shapelets formalism by simply multiplying the Shapelets expansion
by a PSF matrix P:

Pa1a2b1b2(βobj, βcon) =
∑

a3,b3

C
βconβobjβpsf
a1a2a3 C

βconβobjβpsf

b1b2b3
pa3b3 (3.10)

where pab are the Shapelets coefficients of the PSF and βpsf , βobj and βcon are
the scale radii of the PSF, the object and the resulting PSF convolved object
respectively. Cβ1β2β3

nml is a convolution tensor which depends on the different
scale radii and the full expression is given in Refregier (2003).
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3. GALAXY DM HALOES IN COSMOS WITH FLEXION

Figure 3.1 Polar Shapelets basis functions up to a maximum Shapelets order
of nmax = 10. For m ≥ 0, the real components of the basis functions are shown
whilst for m < 0 the imaginary components are shown. The solid purple (thick)
lines mark the coefficients used by the MV pipeline to estimate the shear and
flexions for an analysis with nmax = 10. The dashed purple (thick) lines mark the
coefficients not used by the KK06 implementation for the same nmax.

3.3.1 The MV pipeline

We introduce here an implementation of the Shapelets method which builds
on a previous implementation described in Kuijken (2006) (hereafter KK06).
This approach creates a Shapelets representation of the brightness profile of a
PSF-convolved galaxy image. It also creates a model circular source and applies
shear and flexion to it before convolving it with the point-spread function (PSF).
Finally it fits the galaxy image to this modeled source in order to find the amount
by which it has been sheared and flexed.

To first order in ellipticity s and flexions f and g, the model object can be
written as

P ·



1 +
∑

i=1,2

(

tiT̂
i + siŜ

i + fiF̂
i + giĜ

i
)





Nc
∑

even

cnC
n (3.11)

where P is the PSF matrix, T̂ i, Ŝi, F̂ i and Ĝi are the translation, shear, F
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3.4. TESTING THE PIPELINE

flexion and G flexion operators respectively and ti, si, fi and gi are the cor-
responding coefficients. The translation terms here ensure that fits spoiled by
undue centroid shifts are caught. The operators are acting on a circular source
which can be expressed as a series of circular Shapelets Cn with coefficients
cn where n is even and the series is truncated at Nc = nmax − 2. The reason
for truncating at Nc rather than nmax is to safeguard against PSF structure at
higher orders affecting the highest order Shapelets used. To avoid introducing
signal-to-noise (S/N) dependent biases, the nmax is kept constant for all galax-
ies rather than being allowed to vary according to size or brightness. For faint
sources, this means the higher-order coefficients will be noisy but unbiased.

Once we have a cartesian Shapelets representation of both the sheared, flexed
and PSF convolved circular model and of the PSF convolved object we want
to fit, we convert them both into polar Shapelets as described in KK06. Polar
Shapelets are simply cartesian Shapelets of order n = a + b expressed in polar
coordinates, resulting in polar Shapelets of order n with angular order m ≤ n
and n+m even. The construction of these is discussed in Refregier (2003) and
further investigated in Massey & Refregier (2005) and Massey et al. (2007b). In
our implementation, the purpose of converting the model and object Shapelets
expansions into polar Shapelets is to avoid truncation effects. F flexion, shear
and G flexion operators acting on a polar Shapelet of order (n,m) generate
terms at order (n ± 1,m ± 1), (n ± 2,m ± 2) and (n ± 3,m ± 3) respectively.
By truncating the polar Shapelets expansion in the diamond shape shown in
Figure 3.1, i.e. only including terms up to order (Nc, 0), (Nc−1,±1), (Nc−2,±2)
and (Nc − 3,±3) in the fit, we minimise truncation effects from the mixing of
orders.

The model is fit to each source using least-squares, resulting in a simultane-
ous estimate for the ellipticity (s1, s2), the F flexion (f1, f2), and the G flexion
(g1, g2). As explained in KK06, the errors on the Shapelet coefficients are de-
rived from the photon noise and propagated through the χ2 function for this
fit. By differentiating the χ2 at the best-fit, we obtain the covariances between
the fit parameters, resulting in proper error estimates.

In essence, the main development since KK06 is the addition of flexion to
the model and the inclusion of higher order polar Shapelets (m = ±3) in the fit.

3.4 Testing the pipeline

Several aspects of the pipeline, such as the choice of scale radius β, the method
of PSF correction and the effect of noise on ellipticity estimates, have been
thoroughly tested in KK06 as part of the development of the KK06 pipeline. In
this section we will therefore focus on testing the recovery of shear and flexion.

3.4.1 GREAT08

As participants in the GRavitational lEnsing Accuracy Testing 2008 (GREAT08)
challenge (Bridle et al., 2009, 2010), we were able to contrast the shear mea-
surement capability of the KK06 pipeline with that of the MV pipeline under
different observing conditions. The challenge provided a large number of simu-
lated sheared and pixelated galaxy images with added noise. The performance
of the different shape measurement pipelines taking part was quoted in terms
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3. GALAXY DM HALOES IN COSMOS WITH FLEXION

Table 3.1 The different branches of FLASHES. Four parameters are varied
between the branches according to this table.

Intrinsic shape Galaxy profile S/N PSF

Fiducial Round Gaussian 100 Round
Shape branch Elliptical Gaussian 100 Round
Profile branch 1 Round Exponential 100 Round
Profile branch 2 Round de Vaucouleur 100 Round
S/N branch 1 Round Gaussian 8 Round
S/N branch 2 Round Gaussian 20 Round
S/N branch 3 Round Gaussian 40 Round
PSF branch Round Gaussian 100 Elliptical

of a quality factor, or Q-value, defined as

Q =
kQσ

2

〈(〈γm
ij − γt

ij〉j∈k)2〉ikl
(3.12)

where σ2 = σ2
stat + σ2

syst is a combination of the statistical spread in the sim-
ulations and the expected systematic errors. The superscripts m and t denote
measured and true (input) values respectively and γij is the shear component i
for simulation image j. The differences between the measured and true shears
are averaged over different input shear sets k and simulation branches l. The
whole expression is normalised by kQ so that a method with a purely statistical
spread in the measured shears will have a Q-value of kQ which is the level de-
sirable for future surveys. In the case of GREAT08, kQ = 1000 and σ2 = 10−7,
giving a Q-value nominator of 10−4. With this definition current methods, like
those that took part in the earlier Shear TEsting Programme (STEP) (Heymans
et al., 2006a; Massey et al., 2007a), generally achieve 10 . Q . 100. This is
sufficient for current weak lensing surveys. For a more in-depth discussion on
the Q-value and its relation to the STEP parameters m (multiplicative bias)
and c (additive bias), we refer to Kitching et al. (2008).

The overall Q-value was similar for the KK06 and the MV pipelines, both
in the LowNoise Blind competition (Q ∼ 20) and in the RealNoise Blind (Q ∼
25). When broken down into the separate observing condition branches some
differences became apparent. In general the MV pipeline did exceptionally well
under “good” observing conditions, e.g. for the high S/N branch or for well
resolved galaxies. Our own simulations described in the next section will further
test the dependence of the MV performance on different observing conditions.

3.4.2 FLASHES

As there is no flexion simulation set publicly available to date, we create our
own FLexion And SHEar Simulations (FLASHES). FLASHES are very similar
to the GREAT08 simulations in several respects. First, each galaxy is generated
on a grid, ensuring that there is no overlap of objects, thus avoiding deblending
issues. Second, each simulation image consists of 10000 such objects. Third,
each galaxy is generated through the following sequence: (i) simulate a sheared
and/or flexed (elliptical) galaxy model (depending on simulation branch); (ii)

70



3.4. TESTING THE PIPELINE

convolve with the PSF; (iii) apply the noise model. Four parameters are varied
between the different FLASHES branches; the intrinsic galaxy shape, the light
profile of the galaxies, the S/N of the galaxies and the shape of the PSF. These
parameters are detailed below and summarised in Table 3.1.

Simulation details

All parameters except for the intrinsic ellipticities are kept constant in each
simulation image, and all images are created using Monte-Carlo selection. This
is very similar to the process described in KK06 and in Bridle et al. (2010), but
with the photon trajectories being influenced by flexion as well as by shear if
required.

The galaxies are modeled with Sérsic intensity profiles Igal ∝ e−kr1/n

(Sérsic,
1968) with varying indices n. A Sérsic index of n = 0.5 is a Gaussian profile
whilst n = 1 and n = 4 are exponential and de Vaucouleur profiles respectively.
Half of the FLASHES branches have intrinsically round galaxies whilst the other
half consists of galaxies with intrinsic ellipticities picked randomly from the
ellipticity distribution of objects in the COSMOS survey. There is no intrinsic
flexion included. The PSFs applied to the simulations are nearly Gaussian with
a Moffat profile IPSF = (1 + r2/a2)−m of index m = 9. In half of the branches,
the PSF is round whilst in the other half it is elliptical in the horizontal direction
with e1,PSF = 0.02. To mimic the properties of the COSMOS survey, we use a
PSF FWHM of 2.1 pixels and a PSF convolved galaxy size of 5.8 pixels which
is the typical size of the galaxies we use in our COSMOS analysis. Finally
there are four S/N branches, with S/N being defined as Flux/(Flux error). It
is expected that shape measurements will be less accurate at low S/N. For this
reason the MV pipeline applies a S/N cut at 10 in general. The low S/N branch
of 8 is designed to test how biased measurements are below this cut. The high
S/N branch of 100 tests biases under near-perfect noise conditions.

The strength of the different distortions is picked randomly but with the
following maximum values: |γ1,2| ≤ 0.05, |F1,2| ≤ 0.008 pixel−1 and |G1,2| ≤
0.02 pixel−1. The value of each distortion component is kept constant across
each image, but differs between the 30 images in each set, and between different
sets.

Simulation results

To estimate the average distortion on each image we use two different techniques:
a weighted average with weights inversely proportional to the measurement
errors, and Convex Hull Peeling (CHP). CHP is an efficient way of eliminating
outliers and is essentially a 2D median. A convex hull, in the context of a point
cloud in e.g. the γ1, γ2 plane, is the minimal convex set of points containing that
point cloud. Thus if all the points in this convex set were connected, a polygon
containing the entire point cloud would be produced. By peeling away convex
hulls, outliers are removed from the point cloud and the remaining points may
be averaged over to produce a mean unaffected by extreme results. This is the
averaging technique we used in GREAT08 where we peeled away 50% of the
measurements before averaging.

We employ the parameters m and c as used in STEP (Heymans et al., 2006a;
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3. GALAXY DM HALOES IN COSMOS WITH FLEXION

Figure 3.2 The multiplicative bias on the first component for each of shear, F
flexion and G flexion. The purple stars represent shear, pink circles represent F
flexion and green triangles represent G flexion. The symbols and solid lines show
the weighted averages whilst the dashed lines show the CHP average. This is from
running the MV pipeline on FLASHES, with nmax = 10. For the results for m2,
c1 and c2 please refer to Appendix 3.A.

Massey et al., 2007a) to quantify the performance of the software:

〈γmeasured
i 〉 − γinput

i = miγ
input
i + ci (3.13)

and similarly for the flexions, where i = 1, 2 represents the shear component.
A negative multiplicative bias mi thus indicates that the distortion is generally
underestimated. A systematic offset ci may be caused by e.g. insufficient PSF
correction.

In Figure 3.2 we show the multiplicative bias of the first component for
each of shear, F flexion and G flexion as a function of the different simulation
branches (please refer to Appendix 3.A for the remaining bias components). For
these results we use a Shapelets order of nmax = 10. We use SExtractor (Bertin
& Arnouts, 1996) to detect the objects in each simulation, which we then split
into clean star and galaxy catalogues by matching to the input catalogue. We
keep all properties apart from the one under investigation fixed at a fiducial
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3.4. TESTING THE PIPELINE

value to allow for a fair comparison. The fiducial simulations in Figure 3.2 have
intrinsically round, high S/N galaxies with Gaussian light profiles and a circular
PSF.

From the above figure it is clear that both flexions are likely to be under-
estimated, especially for higher Sérsic indices. The bias is also strongly S/N
dependent, particularly for the F flexion. Thus a S/N cut is essential to im-
prove the performance of the MV pipeline, but a bias correction should also be
implemented. Investigating the dependence of m on S/N further, we are able
to fit the following power-law to our FLASHES results:

m1,2 = −a(S/N)−b (3.14)

where a and b are constants as follows: for shear (aγ , bγ) = (6.48, 1.78); for
F flexion (aF , bF) = (2.30, 0.48); for G flexion (aG , bG) = (0.36, 0.13). We will
apply this bias correction to our shape measurements in COSMOS, but since
FLASHES have been tailored for this particular data the biases should be ex-
plored further before being applied to other surveys.

3.4.3 Galaxy-galaxy simulations and bright object removal

At the core of weak galaxy-galaxy lensing is the averaging of the signal in rings
centered on lenses consisting of single galaxies rather than a galaxy cluster.
This type of analysis is robust as numerous systematics, induced by e.g. the
PSF, cancel out. Different systematics may however be introduced, such as the
light from the central, often bright, lens causing biases in the shape measure-
ments as discussed in Rowe (2008). To study this possible effect, we created
simple simulations with sources placed in evenly spaced rings around a central
lens. Apart from source numbers and positions, the simulations were created
in the same way as FLASHES. The S/N of the images was set to 200 to ensure
minimum bias, and for the same reason the source galaxies had Gaussian light
profiles. The size and profile parameters of the lens were varied between images.

The results for a lens with an exponential profile are shown in Figure 3.3
(black stars), where we have used nmax = 10. We recover a near-perfect average
signal in each source circle far from the lens. However, close to the lens the shear
and G flexion are slightly affected, but, more strikingly, the F flexion is severely
overestimated. The conclusion we draw from this is that bright objects can add
significantly to the F flexion signal, due to light ‘leaking’ into the Shapelets
fitting radius. This causes the pipeline to detect a source light profile that is
skewed towards the lens, and interpreting it as extra F flexion.

Our solution is to remove any bright objects sufficiently close to the source
being fit using a technique we introduce here as Bright Object Removal (BOR).
Before decomposing a galaxy image into Shapelets, we identify any bright ob-
jects that could conceivably intrude using selection criteria based on distance
between the two objects, Shapelets fitting radius of the source, and size and
brightness of the intruding object. We then create Sérsic models of the intrud-
ing objects using GALFIT (Peng et al., 2002) and subtract these models from
the Shapelets stamp before doing the fitting. It works well in these simulations,
provided one is careful with the parameters given to GALFIT as input. The sky
background value given to GALFIT is particularly important as a small error
in this estimate results in postage stamp artifacts when the stamps are sub-
tracted from the original image. In Figure 3.3 we also show the results if BOR
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3. GALAXY DM HALOES IN COSMOS WITH FLEXION

Figure 3.3 The shear (top panel), F flexion (middle panel) and G flexion
(bottom panel) results from galaxy-galaxy lensing simulations, with and without
Bright Object Removal (BOR). The black stars represent the tangential signal
without BOR and the green triangles represent the same measurement corrected
using BOR. The dashed pink line is the input signal and the purple circles are
the cross-signal, which is expected to vanish, for the uncorrected measurements.
Here, the FWHM of the lens is 14 pixels. Note the slight underestimation of the
shear, the slight overestimation of the G flexion and the massive overestimation
of the F flexion in the innermost bins when BOR is not applied.

is switched on whilst the rest of the analysis is kept identical to the previous run
(green triangles). There is still some excess F flexion signal around 44 pixels,
indicating that there may be some residual light remaining, but this excess is
smaller than for the uncorrected measurements. This provides a confirmation
that the measured signal reproduces the input signal well if BOR is applied,
and no new artifacts are introduced. We note, however, that the leaking light
does not affect the cross component of the measurements, with the consequence
that this effect cannot be detected through the usual systematic checks.

3.5 COSMOS analysis

Goldberg & Bacon (2005) made a first detection of galaxy-galaxy flexion us-
ing the ground-based DLS, proving that flexion can indeed be detected, but
ultimately they were hampered by the small size of their sample, the lack of
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3.5. COSMOS ANALYSIS

redshifts and the extra blurring caused by the atmosphere. Therefore we choose
the space-based Cosmic Evolution Survey (COSMOS, Scoville et al. (2007)) as
the first real dataset for the MV pipeline. Thanks to the depth of this survey
we will have access to more than a thousand times as many lens-source pairs
as Goldberg & Bacon (2005) did. More than half of these have photometric
redshifts meaning that the division of the sample into lenses and sources will
be more accurate. The intention is to provide independent confirmation that
galaxy-galaxy flexion has high enough S/N to be detected, and that the soft-
ware presented in this Chapter is able to do it. We will also look closer to the
lens than previous analyses and attempt to combine shear and flexion to give
constraints on galaxy dark matter halo profiles.

3.5.1 The COSMOS data set

COSMOS is to date the largest contiguous field imaged by the Hubble Space
Telescope (HST) with a total area of 1.64 deg2. The 579 tiles were observed in
F814W (I-band) by the Advanced Camera for Surveys (ACS) between October
2003 and November 2005. Each tile consisted of 4 dithered exposures of 507 sec-
onds each (2028 seconds in total) with about 95% of the survey area benefiting
from the full 4 exposures.

We use the images reduced by Schrabback et al. (2010) (hereafter S10) and
also their catalogues for stars and galaxies, detected using SExtractor. There
are a total of 446 934 galaxies with i814 < 26.7 in the mosaic catalogue, almost
half of which have COSMOS-30 photometric redshifts from Ilbert et al. (2009).
These redshifts are magnitude limited and cover the entire COSMOS field to a
depth of i+ < 25.

3.5.2 Data analysis

Galaxy-galaxy lensing is less affected by the problems plaguing cosmic shear
analyses, since most systematic shape distortions induced by instruments cancel
out when azimuthally averaged. Still, we have to be careful not to introduce new
systematic effects or biases, so correcting for the PSF and the charge-transfer
inefficiency (CTI) (e.g. Rhodes et al., 2007; Massey et al., 2010) is important.

We use all galaxies with redshifts of z < 0.6 as lenses. At higher redshifts
the light from the lensing galaxies becomes difficult to account for due to the
small angular separation on the sky, as explained further in Appendix 3.C.
Furthermore, imposing a lens redshift cut will ensure that the vast majority of
sources are truly background objects.

Our source catalogue is comprised of all objects with a shape measurement.
We clean this catalogue using a series of conditions on size and measured shape,
detailed in Appendix 3.B1, the most important of which is to remove objects
with S/N < 10. Roughly two-thirds of the remaining sources have individual
COSMOS-30 photometric redshifts assigned to them. For the remaining third
(redshift bin 6 in S10) we use the estimated redshift distribution employed by
S10 to assign mean angular diameter distance ratios (Ds/Dls) to each lens-
source pair. We are finally left with 216 873 sources, corresponding to a source
density of ∼ 37 arcmin−2. For the pairs we use, the median lens redshift is
zlens = 0.27 and the median source redshift is zsource = 0.98.
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3. GALAXY DM HALOES IN COSMOS WITH FLEXION

Despite the excellent space-based resolution, we need to correct the galaxy
shapes for the instrumental PSF. The ACS PSF is known to fluctuate both
spatially and temporally (e.g. Rhodes et al., 2007; Schrabback et al., 2007), a
variation mostly driven by changes in telescope focus caused for example by
the breathing of the telescope. We can map the PSF using stars, but, in high-
galactic latitude ACS fields typically only ∼ 10 − 20 stars are present. This
number is too low for the standard approach of a polynomial interpolation.
Instead, we closely follow the analysis of S10, who conducted a principal com-
ponent analysis (PCA) of the ACS PSF variation as measured in dense stellar
fields. Details for the Shapelets implementation of PCA may be found in Ap-
pendix 3.B2.

A challenge with using CCD detectors in space is that they are not protected
by the atmosphere. Exposed, they continuously get bombarded by radiation,
causing deterioration of the chip surface. The imperfections created in this
way act as charge traps which causes inefficiency in the moving of electrons to
read-out. This effect is known as CTI (e.g. Rhodes et al., 2007; Massey et al.,
2010). As the electrons get trapped and then released at a later point, charge
trails following objects are created in the read-out direction, effectively causing
a spurious shear signal in that direction. Our correction for CTI again closely
follows S10, who derive parametric corrections for the change in polarization
for both galaxies and stars. For more details on this correction, please refer to
Appendix 3.B3.

Once corrected, the galaxy-galaxy shear and flexion signals are weighted
according to the geometric lensing efficiency of each lens-source pair. In the
case of flexion there is an extra scale dependence of the signal. For the Navarro-
Frenk-White (NFW) profile (Navarro, Frenk, & White, 1996), the strength of
the shear signal scales as

γNFW ∝ DlDls

Ds
(3.15)

where Dl, Ds and Dls are the angular diameter distances to the lens, to the
source, and between lens and source respectively (Wright & Brainerd, 2000).
The flexion signals scale as

FNFW,GNFW ∝ D2
lDls

Ds
(3.16)

(B06). We therefore weight the signals accordingly, scale them to a reference
lens and source redshift and compute the weighted average in 25 logarithmic
distance bins (see Appendix 3.B4 for details). We use a reference lens redshift
of zl,ref = 0.27 since that is close to the effective median redshift of our lenses,
and a reference source redshift zs,ref = 0.98. To estimate the errors on each
bin and the covariances between them, we use 5000 bootstrap resamples of our
source catalogue.

3.5.3 Results

The results from our galaxy-galaxy lensing analysis of the full COSMOS lens
and source sample is shown in Figure 3.4. In the left panel we plot the shear
results as a function of physical distance from the lens. These results agree
very well with those from S10 (see Appendix 3.D), providing an independent
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Figure 3.4 The galaxy-galaxy lensing results for the COSMOS data, using a
maximum Shapelets order of nmax = 10. Black solid points represent the tangen-
tial signal and green triangles represent the cross term. The pink circles represent
the tangential signal if we apply the multiplicative bias correction implied by
FLASHES. Note that the SIS and NFW profiles have been fitted to the shear
data and then translated into predictions for F and G curves.



3. GALAXY DM HALOES IN COSMOS WITH FLEXION

consistency check. To this we fit a Singular Isothermal Sphere (SIS) profile and
a tentative NFW profile. Due to the dependence on mass and redshift of the
mean concentration parameter (e.g. Duffy et al., 2008), the NFW profile is only
an indication when the spread in lens masses and redshifts is as great as it is
in the above sample. Splitting the sample up into redshift and/or mass bins
would increase the confidence in the fit, but decrease the S/N of the signals
significantly.

The middle and right panels show the F and G flexion results respectively,
for the same lenses and sources. The profiles plotted here are identical to those
plotted in the shear panel but translated into predictions for F and G, as opposed
to fitted to the flexion data directly. The F flexion has a tendency to be overesti-
mated compared to the predicted profile from the shear, and we investigate this
discrepancy further in the following sections. We also note that we measure a
G flexion that is very noisy and consistent with zero. This is most likely caused
by lack of information in higher m-order Shapelets for fainter sources, and we
choose to use only shear and F flexion in the continued analysis.

Also shown in pink circles in Figure 3.4 is the signal if we apply the multi-
plicative S/N-dependent bias correction implied by FLASHES. With this cor-
rection, the F flexion signal becomes slightly higher. This bias correction is
only based on one specific set of simulations and is thus rather preliminary;
this is also indicated in the increased size of the error bars. Correcting for the
morphology-dependent bias requires accurate source morphology determination.
Using the photometric galaxy type estimates from Ilbert et al. (2009) as an indi-
cator of morphology we find that < 5% of our source sample consists of likely de
Vaucouleur objects. This type estimate is not accurate enough to implement a
morphology bias correction, but simply removing the de Vaucouleur candidates
we identified makes little difference to our results. It is clear, however, that
an accurate bias calibration of the flexion amplitude, taking into account both
source S/N and brightness profiles, requires further investigation.

3.5.4 Removing bright objects

We now explore the tendency of the F flexion points to lie above the predicted
profiles. As shown in Section 3.4.3, the shape measured may be affected by
bright objects nearby. We implement BOR in our COSMOS analysis to see the
effect on real data. For very well resolved objects, prominent spiral arms and
other complications cause GALFIT to reject the single Sérsic profile fit. Removing
these objects, and the residual light from the wings of the profile (Figure 3.3),
requires a more sophisticated model. For now we are only interested in a rough
indication of the impact this light leakage has on a galaxy-galaxy signal so we
will not correct for the few large objects in this Chapter. However, as shown
in Figure 3.5, the correction to the innermost F flexion bin is non-zero even
without accounting for the very large objects. The shear is largely unaffected,
but for flexion analyses in future deeper and larger surveys it will be important
to correct for this effect.

3.5.5 The effect of substructure

Since flexion is more sensitive to the underlying mass distribution on small scales
than shear is, we expect it to respond differently to the presence of substructure
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3.5. COSMOS ANALYSIS

Figure 3.5 Comparison between the galaxy-galaxy shear and flexion signals
with and without Bright Object Removal, showing the non-zero correction to the
innermost F flexion bin (corresponding to roughly 40 px in Figure 3.3). Black solid
points represent the difference between the signals before and after correction, with
the F flexion in units of kpc−1, whilst green circles represent the cross term.

in galaxy haloes. To test whether this has any impact on our analysis we
take a galaxy-size SIS halo (see B06, for shear and flexion expressions) and
populate it with subhaloes, allowing 20% of the mass to be in substructure.
The total mass of the halo is 1012 h−1M⊙ and the galaxy is placed at z =
0.35 with Dl/Dls = 0.5. We spread the substructure mass over 100 subhaloes,
randomly distributed according to an SIS density profile. Finally we average
the azimuthally averaged signal over 100 such galaxies. Now, subhaloes are
generally stripped. To approximate this we use a Truncated SIS (TSIS) profile
for the subhaloes (see Hoekstra et al., 2004, for constraints on parameters). The
TSIS convergence is given by

κ(θ) =
θE

2θ

(

1 − θ
√

θ2 + θ2S

)

(3.17)

where θE is the Einstein radius and θS is a truncation scale where the profile
steepens. On small scales (θ ≪ θS) the TSIS behaves like an SIS but at large
scales (θ ≫ θS) the profile decreases as θ4. The TSIS shear is given in Schneider
& Rix (1997) and the flexions are

F(θ) =
θE

2θ2

(

θ3

(θ2 + θ2S)3/2
− 1

)

eiφ (3.18)

and

G(θ) =
θE

2θ3

(

3θ + 8θS − 3θ4 + 12θ2θ2S + 8θ4S
(θ2 + θ2S)3/2

)

ei3φ (3.19)
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3. GALAXY DM HALOES IN COSMOS WITH FLEXION

Figure 3.6 Simulated shear and flexion signals azimuthally averaged in galaxy
haloes with and without TSIS subhaloes. Grey stars, circles and triangles repre-
sent the binned shear, F flexion and G flexion respectively. Purple, pink and green
lines represent the shear, F flexion and G flexion signal if the halo is a smooth SIS
(dashed). The solid lines are an SIS profile as fitted to the shear data points in
a simulated galaxy containing TSIS subhaloes and translated into predictions for
the flexions.

where φ is the position angle of the background source. Using the parameters
above and a truncation scale θS = 2 arcsec for the subhaloes we get the results
shown in Figure 3.6. The shear profile fit is pulled down slightly compared to
a smooth halo but the flexions are not similarly affected. Due to the substruc-
ture the flexions are more scattered, but the overall trend is for the points to
follow the smooth profile, or even slightly above in the F flexion case. Thus the
flexions seem overestimated compared to the shear fit. We stress however that
the fraction of substructure used in this test (20%) is high to exaggerate the
effect. The test does show that substructure may affect the flexions differently
to the shear, but its influence is likely less than the excess currently observed in
COSMOS.
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Figure 3.7 The correlation matrix between the shear and flexion bins, using
5000 bootstrap resamples. Please note the scale; to display the minute varia-
tions between off-diagonal elements we have artificially set the diagonal elements
(dark green) only to 0.1, whilst all other elements are unscaled and normalised to
diagonal elements of 1.0 as is customary.

3.5.6 Profile determination

One of the most interesting potential uses of flexion is as an aid to shear in
determining the inner density profiles of dark matter haloes. The two signals
are sensitive to the underlying density profile on different scales, so combining
the two will give us tighter constraints than either on their own. To combine
the shear and flexion signals we have to take any correlation between them
into account. B06 assumed that the shear and flexion measurements would be
uncorrelated. Here we confirm this assumption through the correlation matrix
between the shear and flexion bins, using 5000 bootstraps, shown in Figure 3.7.
This implies that it is trivial to combine the shear and flexion information to
find the profile of an average lens. We use the F flexion in conjunction with
the shear to fit density profiles to the measured signal. For this purpose we
try two different families of profiles: the power-law and the NFW. Our general
power-law is defined as

γ = −Ad−n (3.20)

with d the distance from the lens, and the amplitude A and the index n free
parameters. An index of n = 1 would be equivalent to an SIS. The above
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Figure 3.8 Joint profile constraints using shear and F flexion. The top (bottom)
panel shows the results for the power-law (NFW) fit. Purple (thin solid) lines
represent shear and green (dashed) represent F flexion. The contours show the
67.8%, 95.4% and 99.7% confidence limits respectively in terms of constant ∆χ2

(2.30, 6.17 and 11.8 respectively). The white (thick) contour marks the joint
confidence limits. The grey-scale is logarithmic in χ2.



3.6. DISCUSSION AND CONCLUSIONS

expression is easily differentiated to give the F flexion

F = (n− 2)Ad−n−1. (3.21)

The expressions for the NFW profiles are somewhat more complicated but
they are given in full in Wright & Brainerd (2000) and B06 for shear and flexion
respectively. Here we leave the virial radius M200 and the concentration c as
free and independent parameters. We fit the power-law and NFW profiles to
the inner 100 kpc only as this is the region where F flexion becomes important
and the shear profile is not affected by halo-halo contamination.

The top panel in Figure 3.8 shows that both the shear and the F flexion are
consistent with an SIS (n = 1), although together they prefer a slightly lower
power-law index of n = 0.73+0.40

−0.43. The bottom panel shows that it is difficult to
constrain the NFW concentration if it is left completely unrestricted. This anal-
ysis with two free and independent parameters is not completely representative,
however, since simulations indicate a fixed mean mass-concentration relation-
ship (Duffy et al., 2008). It is also important to note that the average profile we
constrain here is a composite of lenses in a large redshift range. Detection at
the high end of the redshift distribution tend to be biased towards intrinsically
brighter objects than at the low end. We also combine measurements from lenses
of different sizes and morphologies. Nonetheless, combining shear and F flexion
does provide tighter constraints than shear alone on the density profiles, and this
is an important proof of concept. The resulting mass estimate for the average
lens in COSMOS from the combined NFW fit isM200 = 2.12+3.60

−1.09 × 1011 h−1M⊙

with a concentration of c = 4.82+7.04
−3.16.

3.6 Discussion and conclusions

We have shown a significant detection of galaxy-galaxy F flexion for the first
time with Shapelets using the space-based COSMOS data set. We used this
flexion signal in conjunction with the shear to constrain the average density
profile of the galaxy haloes in our lens sample. We found a power-law profile
consistent with an SIS. Furthermore, we showed that the inclusion of F flexion
provides tighter constraints on both power-law and NFW profiles, an important
proof of concept.

The galaxy-galaxy F flexion signal measured in COSMOS is slightly higher
than expected from the shear signal, especially if we apply the multiplicative
bias correction. There is however no indication from the cross term that there
are systematics present. The discrepancy could be partly due to insufficient
nearby object light removal, but this is unlikely to explain the full offset. Sub-
structure in galaxy haloes may cause excess F flexion compared to what the
shear measures. However, a large fraction of the galaxy halo mass has to be in
substructure in order for the effect to become significant. We note that Goldberg
& Bacon (2005) also find shear and F flexion signals that are inconsistent with
each other; the velocity resulting from an SIS profile fit to their F flexion signal
is nearly twice that found using shear. This is qualitatively consistent with our
findings, which leads us to believe that there is something more fundamental
affecting the signal. In the near future we would like to further investigate the
dependence of these discrepancies on lens properties.
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We measure a galaxy-galaxy G flexion signal that is consistent with the
predicted profile, but due to the large measurement errors it is also consistent
with zero. This measurement is a lot noisier than the other two, an effect most
likely caused by the fact that there is less information available in the higher
m-order Shapelets for fainter sources. To measure a G flexion signal we thus
require many well-resolved sources, an extravagance not yet awarded us. Future
large space-based surveys such as EUCLID will enable us to investigate G flexion
further, but for now F flexion is a promising tool in its own right.

The software introduced in this Chapter, the MV pipeline, is able to detect
these higher order lensing distortions. We have shown that in practice, the
Shapelets F flexion measure is affected by light from nearby bright objects and
detailed a way to correct for this effect. This BOR does require further sophis-
tication to account for large, well resolved galaxies, galaxies which are not well
described by the single Sérsic light profile employed here. From the FLASHES
simulations it is clear that there is more work required in order to improve the
accuracy of the F flexion measurements for future surveys. Noise related biases
are particularly significant for this type of shape measure, and we have modeled
these biases in COSMOS.

In the future we hope to measure flexion on a larger survey, enabling us
to reduce the noise so that we can investigate the trend with e.g. redshift and
lens mass. A larger number of sources would also enable us to further tighten
the profile constraints in the inner regions of dark matter haloes where baryons
become important. It is not yet clear how well we can measure flexion on
ground-based data, but surveys like KiDS, CFHTLS and RCS2 should provide
an excellent test-bed.

Acknowledgements

We would like to thank our colleagues Henk Hoekstra, Edo van Uitert and Elisabetta Sem-

boloni at Leiden Observatory, and Peter Schneider at Bonn University, for useful discussions.

Gary Bernstein drew our attention to the possibility of using Convex Hull Peeling for our

averages, and for this we would like to thank him. MV is supported by the European DUEL

Research-Training Network (MRTN-CT-2006-036133). TS acknowledges support from the

Netherlands Organization for Scientific Research (NWO).

APPENDIX 3.A: FLASHES results

The figures shown in this Appendix complement Figure 3.2 in the main Chap-
ter 3 and provide additional detail on the results from running the MV pipeline
on FLASHES, with nmax = 10. The parameters m and c are defined through

〈γmeasured
i 〉 − γinput

i = miγ
input
i + ci (3.22)

and similarly for the flexions, where i = 1, 2 is the component. We use two
different techniques to estimate the average distortion on each image: a weighted
average and Convex Hull Peeling (CHP).

In Figure 3.9 we show the multiplicative bias of the second component for
each of shear, F flexion and G flexion as a function of the different simulation
branches. For these results we use a Shapelets order of nmax = 10. This
bias behaves as the multiplicative bias of the first component (Figure 3.2), as
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Figure 3.9 The multiplicative bias on the second component for each of shear,
F flexion and G flexion. The purple stars represent shear, pink circles represent F
flexion and green triangles represent G flexion. The symbols and solid lines show
the weighted averages whilst the dashed lines show the CHP average.

expected. The biases of all distortion measurements, and in particular F flexion,
are severely dependent on S/N and brightness profile.

The additive bias c is minimal for shear and F flexion (see Figures 3.10 and
3.11) indicating that the PSF is either well corrected for or not significantly
affecting these two measurements. For the G Flexion the offset is larger.

APPENDIX 3.B: COSMOS data analysis

3.B1 Catalogue creation

To maximise the number of lens-source pairs we use all objects with assigned
photometric redshifts as sources, but imposing a redshift cut of z < 0.6 for
lenses. Additionally we use sources without individual redshifts (S10 redshift
bin 6), assigning mean angular diameter distance ratios (Ds/Dls) to these lens-
source pairs according to the estimated redshift distribution employed by S10.
We then weight all pairs with their individual lensing efficiency, similar to the
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Figure 3.10 The additive bias on the first component for each of shear, F flexion
and G flexion. As before, the purple stars represent shear, pink circles represent F
flexion and green triangles represent G flexion. The symbols and solid lines show
the weighted averages whilst the dashed lines show the CHP average.

weighting scheme in e.g. Mandelbaum et al. (2006b) (see Appendix 3.B4). This
downweights pairs that are close in redshift and naturally removes pairs where
the “source” is in front of the “lens”. To the source catalogues we apply the
following cuts:

• S/N > 10. This cut is important as the F flexion measurement in partic-
ular gets heavily biased towards low S/N (see Section 3.4.2).

• If the centroid cannot be determined accurately the Shapelets decompo-
sition will be inferior. Therefore objects where the code is forced to move
the centroid compared to the one estimated by SExtractor by more than
half a pixel are excluded.

• The summed power in constant m of the polar Shapelets provides an
indicator of the Shapelet fit being affected by a neighbouring object. If the
fractional power is particularly high at high orders the object is excluded
(see KK06, for more details).
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Figure 3.11 The additive bias on the second component for each of shear, F
flexion and G flexion. As before, the purple stars represent shear, pink circles
represent F flexion and green triangles represent G flexion. The symbols and solid
lines show the weighted averages whilst the dashed lines show the CHP average.

• If the FWHM or scale radius of the object is too small compared to the
scale radius of the PSF the object is excluded.

• If γ2 > 1.4, F2 > 3.0 arcsec−1 or G2 > 6.6 arcsec−1 then the object is
excluded. These numbers are based on the measured distributions and the
cuts are applied to remove outliers with very noisy shape measurements.

• Finally, we remove faint objects with an assigned photometric redshift of
z < 0.6 that have a prominent secondary peak at z2nd > 0.6, as discussed
in S10.

3.B2 PSF interpolation

The ACS PSF fluctuates both spatially and temporally (e.g. Rhodes et al.,
2007; Schrabback et al., 2007), a variation mostly driven by changes in telescope
focus caused for example by the breathing of the telescope. We can map the
PSF using stars, but in high-galactic latitude ACS fields typically only ∼ 10 −
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Figure 3.12 CTI-induced residuals on the stellar Shapelet coefficients s20 (left)
and s03 (right) in an example star field. The black stars show the mean of the
coefficients as a function of stellar flux after subtraction of a spatial third-order
polynomial model derived from bright stars to separate PSF and CTI effects.
Each coefficient has been scaled to a reference number of ytrans = 2048 parallel
readout transfers. The purple curves show the parametric CTI model, jointly
determined from 700 stellar field exposures. The horizontal dashed line indicates
an offset corresponding to the mean CTI model for the bright stars used for the
polynomial interpolation. The green triangles indicate the corrected coefficients
after subtraction of the CTI model.

20 stars are present. This number is too low for the standard approach of a
polynomial interpolation. Instead, we closely follow the analysis of S10, who
conducted a principal component analysis (PCA) of the ACS PSF variation as
measured in dense stellar fields. They found that ∼ 97% of the PSF variation
can be described with a single parameter (the first principal component). This
parameter is related to the HST focus position, and we therefore dub it ‘focus’1

Here we make use of the S10 measurement of the HST focus in all COSMOS
exposures and the investigated stellar field exposures. We also obtain Shapelets
versions of the focus-dependent S10 PSF models, by decomposing the dense stel-
lar field stars into Shapelets and interpolating between them with polynomials
which are varied both spatially and with different powers of the focus principal
component coefficient. From these models and from the COSMOS focus esti-
mates we then compute a Shapelets PSF model for each COSMOS exposure,
which we then combine to obtain a model for the stacked PSF at all galaxy
positions.

3.B3 CTI correction

Our correction for CTI again closely follows S10, who derive parametric correc-
tions for the change in polarization for both galaxies and stars. The correction
for stars is important in order to measure the actual PSF, independent of the

1The capturing of small additional variations beyond focus was relevant for the cosmic
shear analysis of S10. Here we can safely ignore these minor additional effects. Galaxy-galaxy
lensing is much less sensitive to PSF anisotropy residuals as they cancel out to first order.
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non-linear CTI effects. In the stellar field analysis we therefore correct the PSF
cartesian Shapelet coefficients for CTI before generating the PCA PSF model.
In order to estimate the influence of CTI on the different Shapelet coefficients,
we follow S10 and spatially fit each coefficient within one exposure with polyno-
mials. Due to the limited depth of the charge traps, CTI is non-linear, and has
a larger relative impact on faint sources than on bright ones. The CTI effect can
thus be estimated from the flux-dependent residuals, after the polynomial model
has been used to subtract both the flux-independent PSF and the flux-averaged
CTI signal.

Figure 3.12 shows these residuals as a function of stellar flux for the stellar
Shapelets coefficients s20 and s03 in one example stellar field. Here the residuals
were scaled to the same number of readout transfers (2048). The CTI effect on
the coefficients is clearly visible (black stars), but with our power law model
(curve) it can be well corrected for (green triangles). The model is fit simulta-
neously from all 700 stellar fields as a function of stellar flux, sky background,
time and number of readout transfers (see S10). CTI affects object shapes in
the readout direction, which also after drizzling roughly matches the y-direction.
Thus CTI residuals are expected to be roughly symmetric about the y-axis and
hence vanish for coefficients sab with odd a. In the drizzled images the readout
direction is up for the upper and down for the lower chip and the CTI trails
occur in the opposite directions. This leads to a sign switch for coefficients with
basis functions that are not symmetric about the x-axis (odd b), and we have
taken this into account for s03 in Figure 3.12. We have detected (and modeled)
a significant signature of CTI on the following stellar Shapelets coefficients: s00,
s02, s03, s04, s05, s20, s21, s22, s40, and s60.

The correction of galaxy shapes for CTI again closely follows S10. Here we
fit power-law corrections to the shear and (now in addition) flexion estimates
as a function of galaxy flux, flux radius, sky background, time, and number of
readout-transfers. Note that Massey et al. (2010) introduced a more advanced
CTI correction scheme operating directly on the pixel level. This is expected to
yield higher precision, enabling for example the correction of the s01 component,
which cannot be estimated with our method due to its degeneracy with a simple
shift in object position. However, we are confident that our correction scheme
is sufficiently accurate for the analysis presented here, in particular as potential
residuals cancel to first order for the azimuthally averaged galaxy-galaxy lensing
signal.

3.B4 Signal computation

For the Navarro-Frenk-White (NFW) profile (Navarro, Frenk, & White, 1996),
the strength of the shear signal scales as

γNFW ∝ DlDls

Ds
(3.23)

where Dl, Ds and Dls are the angular diameter distances to the lens, to the
source, and between lens and source respectively (Wright & Brainerd, 2000).
The flexion signals scale as

FNFW,GNFW ∝ D2
lDls

Ds
(3.24)
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(B06). We therefore weight the signals accordingly, scale them to a reference
lens and source redshift and compute the weighted average in 25 logarithmic
distance bins as follows:

〈γt〉 =

∑

Eγt,iwγt,i
∑

wγt,i

(3.25)

and similar for the flexions, with the shear estimator and weight

Eγt,i = γt,i

(

ηi

ηref

)−1

wγt,i =
1

σ2
γ,i

(

ηi

ηref

)2

(3.26)

where

η =
DlDls

Ds
(3.27)

is the geometric lensing efficiency and σ2
γ,i = σ2

γ,intr,i + σ2
γ1,i + σ2

γ2,i is the error
on the shape measurement with σγ,intr the intrinsic shear noise. By contrast we
use the following F flexion estimator and weight:

EFt,i = Ft,i

(

Dl,i

Dl,ref

ηi

ηref

)−1

wFt,i =
1

σ2
F ,i

(

Dl,i

Dl,ref

ηi

ηref

)2

(3.28)

and similarly for the G flexion.

APPENDIX 3.C: High redshift results

As specified in the main Chapter 3, the lens catalogue we use has a redshift cut of
z < 0.6. This is to avoid having to go too close to the lens on the sky in order to
see a flexion signal. Within an angular radius of 2 arcsec we have low confidence
in the results; we are simply too close to the lensing galaxies and it becomes
difficult to account for effects induced by the lens light. BOR corrects for light
leakage at larger radii, but the correction is most likely incomplete very close
to the lens due to deviations from a smooth Sérsic profile. For objects beyond
our lens sample, the median redshift is close to 1.0. At this redshift the angular
distance limit of 2 arcsec on the sky corresponds to a physical distance of about
17 kpc. The F flexion falls off to low values already at about 20 kpc for a typical
galaxy, so we are left with a very low signal within a narrow ring around the
lens. Imposing the redshift cut of z < 0.6 on lenses gives us a median lens
redshift of z = 0.27 at which the inner limit corresponds to 9 kpc, leaving a
wider distance interval in which we can investigate the F flexion signal.

In Figure 3.13 we show the galaxy-galaxy signal for the high redshift sample,
i.e. for lenses with z > 0.6. The bins that are within 2 arcsec of the average
lens in this sample, and which are most likely contaminated by lens light, are
marked with dotted lines. The F flexion signal outside of this limit does agree
well with the profile predicted by the shear, but falls off quickly.

APPENDIX 3.D: Comparison with KSB

We compare our galaxy-galaxy shear signal to the one we get using the shears
from S10, using all the cuts normally applied in each analysis so that only
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Figure 3.13 The galaxy-galaxy lensing results from running the MV pipeline on
the COSMOS data, with nmax = 10. Black solid points represent the tangential
signal and green triangles represent the cross term. Open circles with dotted error
bars are bins that are too close to the lens on the sky. Please note that the SIS
and NFW profiles have been fitted to the shear data and then translated into
predictions for F and G curves.
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Figure 3.14 A comparison between the shears used in this Chapter and the
ones used in S10. Black points (green triangles) show the difference between the
tangential (cross) shear values in this Chapter and those produced by a KSB
pipeline for S10.

common objects are used. The bias correction described in their paper is in-
corporated in their shears whilst our measurements have no correction applied.
However, due to our S/N cut (see Appendix 3.B1) their correction is always less
than 4.2%.

As shown in Figure 3.14 the difference between the results from the two
pipelines, KSB and Shapelets, is negligible. This provides an independent con-
firmation that the MV pipeline produces shears of as high a quality as the
state-of-the-art weak lensing analysis presented in S10.

92


