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2
A new shape measurement

method and its application to

galaxies with colour gradients in

weak lensing surveys

Sections to be published in Semboloni E.,
Velander M., Hoekstra H., Kuijken K., et al, in

preparation

As one of the most powerful probes of cosmology, weak gravitational
lensing is now the main motivation behind some of the largest near-
future optical surveys ever undertaken. The statistical nature of the
method requires analysis of a large number of sources, and the minute
distortions involved demand high-quality data and precise shape mea-
surements. Weak lensing software therefore has to be both fast and accu-
rate, and such a software suite is introduced and tested in this Chapter.
This MV pipeline is shown to be very competitive, with the added ben-
efit of being able to measure higher-order lensing distortions, or flexion.
The tests described in this Chapter involve both monochromatic and
non-monochromatic simulations, where the latter have been included
to assess the amount of bias induced by a wavelength-dependent PSF.
Since most galaxies display colour gradients, with a core that has a
different colour from the outskirts, a wavelength-dependent PSF will
affect different parts of the galaxy image differently. Thus some addi-
tional shape bias may be introduced if the PSF is not precisely corrected
for. Creating simulations based on real galaxies observed in two differ-
ent filters, we find that the additional bias induced by this effect is not
greater than the bias inherent in the shape measurement software itself.
We conclude from our tests that given enough training data we will
most likely be able to characterise the colour gradient bias sufficiently
accurately to correct for it in future Euclid-like surveys.
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2.1. INTRODUCTION

2.1 Introduction

With weak gravitational lensing rapidly gaining traction as a powerful probe of
cosmology, new surveys are being designed with lensing as a main science goal.
Since weak lensing relies on the statistical properties of a galaxy population,
large surveys are necessary to minimise systematics such as the intrinsic shape
noise. The great number of precise measurements required for future weak lens-
ing analyses increases the necessity for shape measurement software to be both
fast and accurate. Currently there is a fair amount of software available, most of
which is centred either around the determination of shapes from combinations
of weighted second-order brightness moments, such as the method introduced
in Kaiser, Squires, & Broadhurst (1995) (KSB hereafter), or around model fit-
ting techniques such as lensfit (Miller et al., 2007; Kitching et al., 2008) or
Shapelets (Refregier, 2003; Refregier & Bacon, 2003).

The design of a survey also has to take systematics other than those due
to biases in shape measurements into account, and primary amongst them is
the shape distortion induced by the telescope and, in the case of ground-based
surveys, by the atmosphere. This shape distortion is known as the point-spread
function (PSF) and can cause coherent distortion across a survey field, biasing
the lensing signal. KSB methods have the inherent limitation of too simplistic a
description of the PSF and not all realistic PSFs can be accurately accounted for
using this description (see e.g. Hoekstra et al., 1998). lensfit has a more flexible
PSF model and has been proven to be accurate when applied to simulations such
as the Gravitational Lensing Accuracy Testing 2008 set (GREAT08; Bridle et al.,
2009, 2010), but due to the Bayesian approach it is unfeasibly slow for large near-
future surveys. We have therefore chosen to base the new shape measurement
software introduced and tested in this Chapter, the MV pipeline, on Shapelets
which are both flexible and fast thanks to their analytical nature. Because
of their definition as a set of Gauss-Hermite polynomials, any distortion or
convolution may be done analytically. This makes it straight-forward to extend
the shape analysis to higher-order lensing distortions, known as flexions, without
loss of time or accuracy. Flexion, which quantifies variations in shear across
a source image, was first discussed in Goldberg & Natarajan (2002) and the
notation was then further developed in Goldberg & Bacon (2005) and Bacon
et al. (2006). Adding flexion to shear results in a weak arc-like shape which
is a better description of the true lensing-induced distortion than the shear
stretch alone. Flexion is sensitive to small-scale fluctuations so added detail to
mass reconstructions is gained by including it. This makes flexion a powerful
complement to shear, particularly for detecting substructure within dark matter
haloes (Okura et al., 2008; Bacon et al., 2010; Er et al., 2010; Leonard et al.,
2011), or for determining their profiles and shapes (Hawken & Bridle, 2009; Er
& Schneider, 2011; Er et al., 2011).

In this Chapter we convey the details of the MV pipeline and the tests per-
formed on it using the GREAT08 simulations and simulations created specifi-
cally for the purpose of testing the MV pipeline in preparation for the analysis
of space-based data. Both sets of simulations are monochromatic in nature,
but recently the question of the impact of a wavelength-dependent PSF on
shape measurement accuracy was raised (Voigt et al., 2011). Since the PSF is
a function of wavelength, and since galaxies in general are expected to display
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2. THE MV PIPELINE AND GALAXY COLOUR GRADIENTS

different colours in their cores and disks, the PSF will look different at different
points on a galaxy image. Thus two galaxies with dissimilar intrinsic shapes
and colour gradients may become indistinguishable after being convolved with
a wavelength-dependent PSF. Perfectly correcting for the PSF in such a case
is impossible without further information on the colour gradient of the galaxy.
This could present a challenge for surveys where observations are done using a
broad-band filter such as the planned space-based Euclid1 survey, scheduled for
launch in 2019. The ultimate impact of this effect on weak lensing analyses will
depend on the true intrinsic colours of the galaxy distribution and on the total
shape measurement bias induced by the wavelength-dependent PSF. For the
first part several studies into colour gradients of galaxies have been carried out
in the context of galaxy evolution, most of them at low redshifts (e.g. Gonzalez-
Perez et al., 2011). To assess the impact of the second part, the bias induced
by a wavelength-dependent PSF, representative simulations have to be created.
In this Chapter we use real galaxies from the All-Wavelength Extended Groth
Strip International Survey (AEGIS; Davis et al., 2007) together with photo-
metric redshifts from the third Canada-France-Hawaii Telescope Legacy Survey
Deep field (CFHTLS-Deep3) to create realistic broad-band simulations. AEGIS
is here assumed to provide a representative galaxy sample which has been ob-
served through two filters with the Advanced Camera for Surveys (ACS) on-
board the Hubble Space Telescope (HST). These two filters can be combined
to approximate the broad-band filter proposed for Euclid and therefore these
data form the ideal starting point for Euclid-like simulations. The MV pipeline
is then tested on these simulations to determine the level of bias induced by
colour gradients in galaxies, and to identify the galaxy properties that have the
greatest impact on this bias.

This Chapter is organised as follows: in Section 2.2 we introduce the theoret-
ical background of shear and flexion, and of Shapelets, with the MV pipeline be-
ing described in detail in Section 2.2.3. Monochromatic tests of the MV pipeline
are carried out in Section 2.3 and the software is applied to non-monochromatic
simulations in Section 2.4. We conclude in Section 2.5.

2.2 Theoretical background

2.2.1 Shear and flexion

If the lensing convergence and shear are not constant across a given source image,
then we need to quantify how they vary. This can be done by measuring higher-
order lensing distortions known as flexion. The formalism was first explored
by Goldberg & Bacon (2005) and then further investigated by Bacon et al.
(2006) (hereafter B06). In the weak lensing regime where convergence is small
the lensed surface brightness of a source galaxy, f(x), and the unlensed surface
brightness, f0(x), are related through

f(x) ≃
{

1 +

[

(A− I)ijxj +
1

2
Dijkxjxk

]

∂

∂xi

}

f0(x). (2.1)

where I is the identity matrix, xi denotes lensed coordinates, and A is a dis-
tortion matrix which may be expressed in terms of convergence κ and shear

1http://www.euclid-ec.org
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2.2. THEORETICAL BACKGROUND

γ:

A =

(

1 − κ− γ1 −γ2

−γ2 1 − κ+ γ1

)

. (2.2)

Dijk ≡ ∂Aij/∂xk describes how the lensing field varies across a source image.
Assuming that there are no such fluctuations, an assumption which may be
valid if e.g. the source image is very small, is equivalent to setting Dijk = 0. We
can now re-express this matrix as a sum of two quantities: Dijk = Fijk + Gijk .
These two quantities are referred to as first flexion, or F flexion, and second
flexion, or G flexion, respectively and similarly to shear have two components
each. To make the relation between convergence, shear and flexion clear we can
express all quantities in terms of derivatives of the lensing potential ψ (see e.g.
Hawken & Bridle, 2009):

κ =
1

2
(ψxx + ψyy) (2.3)

γ1 =
1

2
(ψxx − ψyy) (2.4)

γ2 = ψxy (2.5)

F1 =
1

2
(ψxxx + ψyyx) (2.6)

F2 =
1

2
(ψxxy + ψyyy) (2.7)

G1 =
1

2
(ψxxx − 3ψxyy) (2.8)

G2 =
1

2
(3ψxxy − ψyyy) (2.9)

The full matrices Fijk and Gijk in terms of the four flexion components are
written explicitly in B06. Visually, if the shear is a stretch in one direction then
F flexion is a subtle skewness of the brightness profile reminiscent of a centroid
shift and the G flexion has three-fold rotational symmetry. When all the above
distortions are applied to a circular object, a weak arc is created.

2.2.2 Shapelets

The shape measurement pipeline presented in this Chapter is based on the
Shapelet formalism which makes possible the linear decomposition of a galaxy
image with surface brightness f(x) into a set of complete and orthogonal basis
functions Bab called Shapelets:

f(x) =

∞
∑

a=0

∞
∑

b=0

sabBab(x;β) (2.10)

where sab are the Shapelets coefficients. The formalism was first introduced by
Refregier (2003) and its application to weak lensing shape estimates was further
studied in Refregier & Bacon (2003). The basis functions employed consist of
Gauss-Hermite polynomials:

Bab(x;β) = kabβ
−1e

−
|x|2

2β2 Ha(x/β)Hb(y/β). (2.11)
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2. THE MV PIPELINE AND GALAXY COLOUR GRADIENTS

The Hermite polynomial of order n, Hn, depends on the coordinate on the image
plane and on the Shapelets scale radius β, and the basis functions are normalised
by a constant kab. What makes Shapelets powerful is not only their complete-
ness but also their invariance under Fourier transforms which enables us to do
convolutions analytically. This makes Shapelets a very fast method for deter-
mining distortions which is essential to weak lensing, particularly for dedicated
surveys where a large number of objects have to be analysed. They are also
analogous to the eigenstates of the two-dimensional quantum harmonic oscilla-
tor, and thus any linear transformation such as translation, rotation, dilation
and shear and flexion can be expressed as a combination of ladder operators:

âi ≡ 1√
2

(x̂i + ip̂i) (2.12)

â†i ≡ 1√
2

(x̂i − ip̂i) (2.13)

where i = 1, 2 (for the x- and y-directions), x̂ ≡ x and p̂ ≡ ∂/∂x. The property
raised or lowered by these operators is known as spin; a quantity which is
invariant under rotation by an angle φ = 2π/s is said to be a spin-s quantity.
Thus shear (or ellipticity) is a spin-2 quantity, while F flexion is spin-1 and G
flexion is spin-3. The shear operators may be written in terms of raising and
lowering operators as

Ŝ1 =
1

2

(

â†21 − â†22 − â2
1 + â2

2

)

(2.14)

Ŝ2 = â†1â
†
2 − â1â2 (2.15)

or, in terms of the x̂ and p̂ operators

Ŝ1 = −1

2
(x̂1p̂1 − x̂2p̂2) (2.16)

Ŝ2 = −1

2
(x̂1p̂2 + x̂2p̂1) (2.17)

Using the same notation we can write simple analytical expressions for the
flexion operators:

F̂1 = −1

8

(

3x̂2
1p̂1 + 2x̂1x̂2p̂2 + x̂2

2p̂1

)

(2.18)

F̂2 = −1

8

(

x̂2
1p̂2 + 2x̂1x̂2p̂1 + 3x̂2

2p̂2

)

(2.19)

Ĝ1 = −1

8

(

x̂2
1p̂1 − 2x̂1x̂2p̂2 − x̂2

2p̂1

)

(2.20)

Ĝ2 = −1

8

(

x̂2
1p̂2 + 2x̂1x̂2p̂1 − x̂2

2p̂2

)

(2.21)

Applying these operators to circular Shapelets we thus get an image which is
‘flexed’.

Using Shapelets, the point-spread function (PSF) can be convolved with
a galaxy image in a similarly analytical fashion. The PSF is described by a
distortion matrix P:

Pa1a2b1b2(βobj, βcon) =
∑

a3,b3

C
βconβobjβpsf
a1a2a3 C

βconβobjβpsf

b1b2b3
pa3b3 (2.22)
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2.2. THEORETICAL BACKGROUND

Here pab are the Shapelets coefficients of the PSF and βpsf , βobj and βcon are
the scale radii of the PSF, the object and the resulting PSF convolved object
respectively. Cβ1β2β3

nml is a convolution tensor which depends on the different scale
radii. The full expression is given in Refregier (2003). The PSF convolution is
then done by multiplying the above matrix and the Shapelets expansion of the
object being convolved.

2.2.3 The MV pipeline

Figure 2.1 Polar Shapelets basis functions up to a maximum Shapelets order
of nmax = 10. For m ≥ 0, the real components of the basis functions are shown
while for m < 0 the imaginary components are shown. The solid purple (thick)
lines mark the coefficients used by the MV pipeline to estimate the shear and
flexions for an analysis with nmax = 10. The dashed purple (thick) lines mark the
coefficients not used by the KK06 implementation for the same nmax.

The software we introduce and test in this Chapter, the MV pipeline, is based
on an earlier Shapelets implementation described in Kuijken (2006) (hereafter
KK06), which we will refer to as the KK pipeline. The KK pipeline is a robust
piece of shear estimation software which has been thoroughly tested on simu-
lation suits such as the two Shear TEsting Programmes (STEP1 and STEP2)
(Heymans et al., 2006a; Massey et al., 2007a). The MV pipeline keeps the core
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2. THE MV PIPELINE AND GALAXY COLOUR GRADIENTS

Shapelet decompositions of KK, but extends the analysis package to enable
flexion measurement. The basic procedure for doing this is to

i) create a circular galaxy model

ii) apply shear and flexion to the model, and convolve with the measured
PSF

iii) decompose the true PSF convolved source image into Shapelets

iv) fit the model to the observed image.

In theory a galaxy image could be perfectly described by an infinite series of
Shapelets, but in practice we have to truncate this expansion. We choose to
truncate at order nmax = a+ b (see Equation 2.10). In general we also keep the
choice of nmax constant for all galaxies in an analysis, rather than allowing for it
to vary according to some criteria such as size or brightness. This ensures that
we do not introduce artificial S/N-dependent biases. The trade-off is some noise
at higher-order coefficients for smaller or fainter sources but these coefficients
will remain unbiased.

Steps i) and ii) above can be summarised as follows to first order in ellipticity
s and flexions f and g:

P ·



1 +
∑

i=1,2

(

tiT̂
i + siŜ

i + fiF̂
i + giĜ

i
)





Nc
∑

even

cnC
n (2.23)

where P is the PSF matrix and T̂ i, Ŝi, F̂ i and Ĝi are the translation, shear, F
flexion and G flexion operators respectively, as specified in Equations 2.16–2.21.
ti, si, fi and gi are the corresponding coefficients which are determined through
step iv) above. The translation operators are included in the fit to allow for
some shifting to ensure that the fit is not spoilt by an inaccurate centroid. The
last term is the circular model in step i) which in this case is expressed as a sum
of circular Shapelets Cn with coefficients cn. n is even (see the m = 0 Shapelets
in Figure 2.1) and the expansion is truncated at Nc = nmax − 2 to safeguard
against PSF structure at higher orders affecting the highest order Shapelets
used.

Once steps i), ii) and iii) have been carried out, the model galaxy and the
cartesian Shapelets representation of the true source image are both converted
into polar coordinates in preparation for the fit, as described in Refregier (2003).
For cartesian Shapelets of order n = a + b, the corresponding polar Shapelets
will have order n with angular order m ≤ n and n+m even. This conversion is
done in order to avoid truncation effects due to the mixing of orders. F flexion,
shear and G flexion operators acting on a polar Shapelet of order (n,m) generate
terms at order (n ± 1,m ± 1), (n ± 2,m ± 2) and (n ± 3,m ± 3) respectively
(see e.g. Massey et al., 2007b, Figure 2, for an illustration of the mixing of
Shapelet coefficients). We therefore truncate the polar Shapelets expansion in
the diamond shape shown in Figure 2.1, i.e. we only include terms up to order
(Nc, 0), (Nc − 1,±1), (Nc − 2,±2) and (Nc − 3,±3) in the fit. This minimises
the impact of order mixing. As illustrated in Figure 2.1, the choice of which
Shapelets to include in the fit differs slightly between the MV and the KK
pipelines. The extra Shapelets included in the MV pipeline are necessitated by
the fact that the spin-3 information (i.e. G flexion) is encoded in the m ± 3
components.
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2.3. MONOCHROMATIC TESTS

Finally in step iv), the model object is fit to the observed source using least-
squares. This gives us an estimate for all the relevant quantities simultaneously:
the ellipticity (s1, s2), the F flexion (f1, f2), and the G flexion (g1, g2). This
technique is fast and adding the four flexion parameters does not significantly
increase the computation time compared to fitting for ellipticity alone. The
errors on the estimates originate from the errors on the Shapelet coefficients
derived from the photon noise. The χ2 is differentiated at the best-fit in order
to obtain covariances between the fit parameters. For further discussion on
errors see KK06.

2.3 Monochromatic tests

As part of the development of the KK pipeline, several aspects relevant to the
MV pipeline were thoroughly tested. We will therefore not delve further into
tests for details which are common between the two, such as the optimal choice
of scale radius β and the effect of noise. The distortion measurement routines
differ, however, and so we will in this Section thoroughly assess the shear and
flexion recovery performance of the MV pipeline. To this end we will use a series
of simulations which will be limited to one colour in this Section with the added
complication of colour gradients across galaxies and PSFs in the next.

2.3.1 GREAT08

The Gravitational Lensing Accuracy Testing 2008 (GREAT08) challenge (Bri-
dle et al., 2009, 2010) was a competition continuing a tradition of challenges
designed to test the accuracy of current state-of-the-art shear measurement
software available to the weak lensing community (e.g. STEP1 and STEP2;
Heymans et al., 2006a; Massey et al., 2007a). Both the MV pipeline and the
KK pipeline were entered in the GREAT08 competition, allowing us to not only
test the performance of the MV pipeline under different observing conditions,
but also to compare and contrast its shear estimation capabilities to those of its
predecessor.

Simulations

The GREAT08 challenge provided simulations designed for testing the funda-
mentals of shape measurement. Since part of the philosophy of the project
was to entice the participation of other communities, such as computer pro-
grammers, the simulations were kept fairly simplistic and focused on the core
problem of taking a noisy distorted galaxy image and measuring how much it
has been sheared by. To avoid any deblending issues, the galaxies were created
in individual postage stamps which were then placed on a grid to create an im-
age of 4000 × 4000 pixels and 10 000 galaxies. Each galaxy postage stamp was
created by i) simulating an elliptical and sheared galaxy; ii) convolving it with
a PSF; iii) binning the light to create a pixellised image; iv) applying a noise
model. During the course of the challenge there were four sets of simulations
released to participants; two sets with known shears (low and real noise) and
two blind sets (low and real noise). The main challenge consisted of the blind
real noise set which consisted of 2 700 composite images as described above.
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2. THE MV PIPELINE AND GALAXY COLOUR GRADIENTS

Table 2.1 Different branches of the GREAT08 RealNoise Blind simulations.
Four parameters were varied between branches according to this table, with further
explanations in the text.

Fiducial Variation 1 Variation 2

S/N 20 10 40
Rg/Rp 1.40 1.22 1.60
PSF type Fid Fid rotated Fid e × 2
Galaxy type b+d b or d b+d offcentre

Observing conditions were varied between images, one at a time, with the 9
different branches shown in Table 2.1. The fiducial branch had galaxies with
S/N = 20 and a ratio between the radius of the PSF convolved galaxy and that
of the PSF of Rg/Rp = 1.40. These numbers were varied to create four addi-
tional branches. The PSF used for all images was a truncated Moffat profile
which was mildly elliptical in the horizontal direction for the fiducial branch.
The PSF was rotated 45◦ or its ellipticity was doubled to create two additional
branches. The final variable to be altered was the galaxy type. In the fiducial
case galaxies were represented by the sum of two Sérsic profiles (Sérsic, 1968)
corresponding to the bulge and disk components. For one branch, the galaxies
consisted of only one Sérsic profile corresponding to either a bulge or a disk,
and in another the centroids of the bulge and disk did not coincide. For more
details on the different branches see the GREAT08 results paper (Bridle et al.,
2010).

Both the applied shear and the PSF was kept constant across each image,
although they were varied between images. The true shear values were concealed
from the participants, and so was the information pertaining to which image
was part of which of the 9 branches, but the PSF was provided as a star image.
Participants were thus told which of the three PSFs had been applied to which
image. The true applied shear values were perturbations around 5 root values,
both positive and negative, with |γroot

1,2 | ≤ 0.037. The GREAT08 team utilised
the paired rotation technique introduced in STEP2 whereby each simulated
galaxy has a twin galaxy which has been rotated by 90◦ before shearing. This
method minimises shape noise since the ellipticity estimates of each pair should
cancel in the absence of applied shear and PSF. The large number of simulated
galaxy images in combination with this shape noise minimisation technique
allowed for high precision assessment of current shape measurement methods in
preparation for future surveys.

Results

For the submitted results, we used the MV pipeline and a maximum Shapelets
order of nmax = 8. To average over all the galaxies in an image we used a
technique known as convex hull peeling (CHP). CHP works essentially like a 2D
median and is a way of eliminating outliers from a sample in a 2D parameter
space (e.g. in the (γ1, γ2) plane). This is done by removing a so-called convex
hull, i.e. the minimal convex set of data points containing all other points.
By peeling away a number of convex hulls and averaging over the remaining
points, a mean unaffected by extreme results may be produced (see Figure 2.2).
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2.3. MONOCHROMATIC TESTS

Figure 2.2 Illustration of the convex hull peeling procedure applied to the shears
measured on all galaxies in a single GREAT08 image. Each asterisk represents a
shear measurement, and the lines connecting data points show the points in the
convex hulls being removed before averaging. The final average, after removing
50% of the data points this way, is marked by a red star.

The choice of how many points are removed before averaging may be varied
according to their distribution. For GREAT08 we chose to remove 50% of the
measurements before averaging.

The GREAT08 team compare the different submissions using a quality fac-
tor, or Q-value, in an attempt to consolidate the m (multiplicative bias) and
c (additive bias) parameters of STEP into a single quantity. In this case, the
Q-value is defined as

Q =
kQσ

2

〈(〈γm
ij − γt

ij〉j∈k)2〉ikl
(2.24)

where σ2 = σ2
stat + σ2

syst is a combination of the statistical spread in the sim-
ulations and the expected systematic errors. The superscripts m and t denote
measured and true values respectively and γij is the shear component i for
simulation image j. The differences between the measured and true shears are
averaged over root shear sets k and simulation branches l. The whole expres-
sion is normalised by kQ such that a method with a purely statistical spread in
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2. THE MV PIPELINE AND GALAXY COLOUR GRADIENTS

Figure 2.3 Submitted MV γ1 results for GREAT08. Each circle represents the
average γ1 in a single image containing 10 000 galaxies, and the crosses with
error bars show the resulting average for each root shear value. The fitted black
line would coincide with the zero-line if there were no biases in the measurements.
Also shown as a thinner pink line are the results submitted using the KK pipeline.
Each panel represents a different simulation branch as specified in the bottom left
corner of each panel (see also Table 2.1). The MV method does well in all cases
apart from low signal-to-noise (bottom left panel) and small galaxies (bottom right
panel).

the measured shears will have a Q-value of kQ which is the level desirable for
future surveys. In the case of GREAT08, kQ = 1000 and σ2 = 10−7, giving a
Q-value nominator of 10−4. Established shape measurements at the time of the
challenge, such as those based on the KSB method (Kaiser, Squires, & Broad-
hurst, 1995), generally achieve 10 . Q . 100. For future surveys with greater
requirements on accuracy, we would ideally use methods with Q→ 1000.

Both the MV and KK pipelines performed well for current surveys, reaching
an overall Q ∼ 25 in the RealNoise Blind simulations. Due to the definition of
Q however, a method is severely penalised if it presents issues in even one of
the nine branches. This ensures that a method with a stable high Q across all
branches wins the challenge. It is never the less instructive to look at the dif-
ferent branches separately to assess the impact of different observing conditions
on the performance of a particular method. In Figures 2.3 and 2.4 we show the
residual shear versus true shear for each branch for the submitted MV γ1 and γ2

results respectively. From this it is clear that the MV pipeline does very well in
7 of the 9 branches (100 . QMV . 500). For a perfect measurement, the black
solid line which has been fitted to the data would coincide with the zero-line
and any deviation is parameterised via the STEP m and c parameters, defined
as follows:

〈γm
i 〉 − γt

i = miγ
t
i + ci (2.25)
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2.3. MONOCHROMATIC TESTS

Figure 2.4 Submitted MV γ2 results for GREAT08. Each circle represents the
average γ2 in a single image containing 10 000 galaxies, and the crosses with error
bars show the resulting average for each root shear value. The fitted line would
coincide with the zero-line if there were no biases in the measurements. Also shown
as a thinner pink line are the results submitted using the KK pipeline. Each panel
represents a different simulation branch as specified in the bottom left corner of
each panel (see also Table 2.1). The MV method does well in all cases apart from
low signal-to-noise (bottom left panel) and small galaxies (bottom right panel).

where i = 1, 2 represents the shear component. A negative multiplicative bias
mi thus indicates that the distortion is generally underestimated. A systematic
offset ci may be caused by e.g. insufficient PSF correction, and the Q-values and
m and c biases for each of the 9 branches for the MV pipeline may be found
in Table 2.2. Also shown for comparison in each panel of Figures 2.3 and 2.4
are the results of the KK pipeline, and the differences in accuracy between the
two is small in most cases. A minor distinction is that while the MV pipeline
seems to underestimate the shear in nearly all panels, the KK pipeline predom-
inantly overestimates it. For the faint and barely resolved sources, however,
both pipelines show similar trends.

Although the MV pipeline performs very well in most cases, the results
for faint galaxies (bottom left panels in Figures 2.3 and 2.4) and, to a lesser
extent, barely resolved galaxies (bottom right panels) cause the overall Q-value
to not reach values adequate for future surveys. The KK pipeline also severely
underestimates the shear, and even more so than the MV pipeline in the case of
faint galaxies. The strong bias at S/N = 10 is however not consistent with the
results found in the STEP challenges (for the KK pipeline; see Heymans et al.,
2006a; Massey et al., 2007a) or in our own simulations (for the MV pipeline;
see Section 2.3.2). One of the reasons for this discrepancy may be due to the
definition of S/N. In GREAT08, the flux of a simulated object is set such that
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Table 2.2 MV results for the different branches of the RealNoise Blind simu-
lations. The Q, m and c parameters are defined in the text (Equations 2.24 and
2.25); the larger the Q-value and the smaller the m and c, the better the recovery
of the input shear.

Q m1 (×10−2) m2 (×10−2) c1 (×10−4) c2 (×10−4)

Fiducial 241 −3.05 ± 0.43 −2.18 ± 0.56 0.24 ± 1.02 1.29 ± 0.99
b+d offset 152 −3.64 ± 0.44 −3.76 ± 0.56 0.83 ± 1.05 −0.37 ± 1.13
b or d 88.9 −4.42 ± 0.48 −4.90 ± 0.67 −2.96 ± 1.15 2.69 ± 1.21
PSF e × 2 140 −3.37 ± 0.44 −3.59 ± 0.56 −3.36 ± 1.03 2.08 ± 1.03
PSF rot 173 −3.09 ± 0.45 −3.88 ± 0.60 2.05 ± 1.10 −1.28 ± 1.08
S/N = 40 471 2.06 ± 0.32 2.20 ± 0.39 −1.14 ± 0.76 −0.65 ± 0.70
S/N = 10 4.81 −18.72 ± 0.70 −20.79 ± 1.03 −17.42 ± 1.74 5.75 ± 1.81
Rg/Rp = 1.6 395 −1.60 ± 0.46 −2.39 ± 0.59 3.09 ± 1.11 −0.68 ± 1.03
Rg/Rp = 1.22 23.9 −8.76 ± 0.62 −8.41 ± 0.82 −8.05 ± 1.46 0.41 ± 1.57

the number quoted as the signal-to-noise ratio is equal to the total flux divided
by the uncertainty in the flux obtained if the true shape, but not normalization,
of the object is known. We find that this does not correspond to the S/N we
detect as observers, defined as the total observed flux divided by the uncertainty
in the flux measurement (as determined by e.g. SExtractor). With this
definition we find that GREAT08 simulations with S/NGREAT08 = 10, 20, 40
actually correspond to an observed S/Nobs = 6, 12, 23 respectively, and our
results are then more in agreement with previous tests. In real applications
we do generally exclude galaxies with S/Nobs < 10 precisely because we know
that the bias increases steeply below this level. It should be noted, however,
that most galaxies in a weak lensing survey are small and faint, so a shape
measurement which is unbiased down to low S/N is vital for future surveys, and
it is clear that more work is required in this area. In general though the MV
pipeline did exceptionally well under “good” observing conditions, e.g. for the
high S/N branch or for well resolved galaxies. Our own simulations described
in the next section will further test the dependence of the MV performance on
different observing conditions.

2.3.2 FLASHES

In GREAT08, no flexion field has been applied so we are not able to test that
aspect of the MV pipeline using those simulations. Because the addition of
flexion measurements is the main development since the KK pipeline and all
the tests performed on it, it is essential that flexion recovery is tested as well.
With no public flexion simulations available, we create our own Flexion and
Shear Simulations (FLASHES) using software closely related to the Monte-
Carlo selection software used to create the GREAT08 simulations. FLASHES
are created with the intent of testing the MV pipeline in preparation for an
analysis of the space-based Cosmic Evolution Survey (COSMOS; Scoville et al.,
2007), and so several observing conditions are optimised for that survey.
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Table 2.3 The different branches of FLASHES. Four parameters are varied
between the branches according to this table.

Intrinsic shape Galaxy profile S/N PSF

Fiducial Round Gaussian 100 Round
Shape branch Elliptical Gaussian 100 Round
Profile branch 1 Round Exponential 100 Round
Profile branch 2 Round de Vaucouleur 100 Round
S/N branch 1 Round Gaussian 8 Round
S/N branch 2 Round Gaussian 20 Round
S/N branch 3 Round Gaussian 40 Round
PSF branch Round Gaussian 100 Elliptical

Simulations

The simulation creation technique is not the only similarity between GREAT08
and FLASHES. We create images containing 10 000 galaxies on a grid, with a
pair-wise match of intrinsic ellipticities in the case of elliptical galaxies. And
just as in GREAT08, each galaxy is created by i) simulating a lensing distorted
(elliptical) galaxy; ii) convolving it with a PSF; iii) binning the light to create
a pixellised image; iv) applying a noise model. However, since this is not a
challenge but an investigation into the behaviour of our pipeline, we choose
different observational conditions to GREAT08 and generally the S/N is kept
high. An overview of the 8 branches of FLASHES is shown in Table 2.3. All
galaxies are approximated as single-component Sérsic intensity profiles (rather
than the bulge-plus-disk description of GREAT08), with the fiducial profile
being a circular Gaussian, i.e. an intensity profile with Sérsic index n = 0.5. For
one branch this index is set to n = 1 instead, corresponding to an exponential
profile, and in another the index is n = 4, creating a de Vaucouleur profile.
For the branch with intrinsic ellipticities we pick random ellipticities from the
distribution in COSMOS and to minimise shape noise we use the paired rotation
technique as described in the previous section. We do not, however, include any
intrinsic flexion in these simulations. While we allow the lensing distortion to
vary between images, it is kept constant for all galaxies across a single image.
The strength of the shear and flexion fields are picked randomly but we ensure
that the value never exceeds |γ1,2| ≤ 0.05, |F1,2| ≤ 0.008 pixel−1 and |G1,2| ≤
0.02 pixel−1.

Once a lensing distorted galaxy model has been created we convolve it with
a PSF which is described by a Moffat profile with an index m = 9, making
it nearly Gaussian. This PSF is circular in general, except for one branch
where it is elliptical in the horizontal direction with e1,PSF = 0.02. As these
simulations are intended to mimic COSMOS data, the size of the PSF is fairly
small with a full width at half maximum (FWHM) of 2.1 pixels, resulting in
a PSF convolved galaxy size of 5.8 pixels. Finally we use the definition of
S/Nobs from the previous section to define the four S/N branches. Most of the
tests are carried out under near-perfect noise conditions to highlight any noise-
independent biases, but the lower S/N branches have the function of showing the
impact of noise on shape measurement accuracy. The lowest S/N = 8 branch
shows the bias below the S/N = 10 cut we generally apply when using real data.
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Results

Figure 2.5 The multiplicative bias m on the first component for each of shear, F
flexion and G flexion. The purple stars, pink circles and green triangles represent
shear, F flexion and G flexion respectively. The symbols and solid lines show the
weighted averages while the dashed lines show the CHP average. This is from
running the MV pipeline on FLASHES with nmax = 10.

The version of the MV pipeline tested on FLASHES is the same as that tested
in GREAT08, with one minor difference; since the galaxies are in general better
resolved we use a maximum Shapelets order of nmax = 10. The galaxy shapes
in each image are averaged using two separate methods: CHP as in GREAT08,
and a weighted average with weights inversely proportional to the measurement
errors. To quantify the performance we use the m and c parameters from STEP
only rather than calculating a Q-value, or equivalent for flexion. The results for
m1 and c1 are shown in Figures 2.5 and 2.6 respectively, and the fitted biases
are detailed in Table 2.4. The biases and their trends are all very similar for
the second component and so we choose not to show them here. It is clear from
this that though the shear can be recovered with an accuracy of a few per cent
in general, the flexions are likely to be underestimated. This is particularly true
for higher Sérsic indices and noisier data. The dependence on galaxy brightness
profile is most likely an effect of the fact that Shapelets consists of Gauss-
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Table 2.4 First component multiplicative and additive biases in the MV pipeline
based on FLASHES. The top, middle and bottom tables show the shear, F flexion
and G flexion results respectively. Both results using a weighted average (super-
script avg) and convex hull peeling (superscript CHP) are displayed. For details
on the branches, see Table 2.3.

Shear
mavg

1,γ cavg
1,γ mCHP

1,γ cCHP
1,γ

(×10−2) (×10−4) (×10−2) (×10−4)

Fiducial 0.29 ± 0.10 1.75 ± 0.11 0.33 ± 0.10 1.80 ± 0.11
Shape branch 30.31 ± 0.10 −2.52 ± 5.11 8.68 ± 0.13 −0.96 ± 5.11
Profile branch 1 −0.16 ± 0.06 −6.85 ± 0.12 −0.10 ± 0.06 −6.75 ± 0.12
Profile branch 2 2.92 ± 0.30 −3.39 ± 1.70 2.95 ± 0.32 −2.68 ± 1.70
S/N branch 1 −15.73 ± 0.15 1.02 ± 1.86 −10.86 ± 0.10 6.09 ± 1.86
S/N branch 2 −3.05 ± 0.09 2.15 ± 0.59 −1.44 ± 0.10 2.81 ± 0.59
S/N branch 3 −0.51 ± 0.09 4.87 ± 0.32 −0.15 ± 0.09 5.01 ± 0.32
PSF branch 0.25 ± 0.07 3.36 ± 0.11 0.31 ± 0.07 3.38 ± 0.11

F flexion
mavg

1,F cavg
1,F mCHP

1,F cCHP
1,F

(×10−2) (×10−4) (×10−2) (×10−4)

Fiducial −20.70 ± 0.05 4.83 ± 0.00 −20.84 ± 0.05 4.85 ± 0.00
Shape branch −34.15 ± 0.03 1.12 ± 0.00 −33.16 ± 0.03 1.18 ± 0.00
Profile branch 1 −41.00 ± 0.01 −2.24 ± 0.00 −41.06 ± 0.01 −2.24 ± 0.00
Profile branch 2 −57.41 ± 0.03 −2.99 ± 0.00 −57.00 ± 0.04 −2.95 ± 0.00
S/N branch 1 −81.87 ± 0.02 1.41 ± 0.03 −77.27 ± 0.03 2.14 ± 0.03
S/N branch 2 −57.83 ± 0.02 2.84 ± 0.01 −54.16 ± 0.02 3.22 ± 0.01
S/N branch 3 −37.69 ± 0.04 3.16 ± 0.00 −35.51 ± 0.04 3.29 ± 0.00
PSF branch −20.13 ± 0.03 4.52 ± 0.00 −20.03 ± 0.03 4.51 ± 0.00

G flexion
mavg

1,G cavg
1,G mCHP

1,G cCHP
1,G

(×10−2) (×10−4) (×10−2) (×10−4)

Fiducial −20.73 ± 0.04 −7.48 ± 0.00 −20.81 ± 0.04 −7.41 ± 0.00
Shape branch −20.40 ± 0.04 −2.18 ± 0.00 −20.47 ± 0.04 −2.20 ± 0.00
Profile branch 1 −39.17 ± 0.03 0.09 ± 0.00 −39.16 ± 0.03 0.06 ± 0.00
Profile branch 2 −64.68 ± 0.15 3.78 ± 0.01 −64.03 ± 0.17 4.29 ± 0.01
S/N branch 1 −36.52 ± 0.08 −7.77 ± 0.24 −28.07 ± 0.11 −8.71 ± 0.24
S/N branch 2 −23.22 ± 0.03 −6.90 ± 0.03 −21.80 ± 0.03 −7.43 ± 0.03
S/N branch 3 −21.62 ± 0.04 −7.88 ± 0.01 −21.51 ± 0.04 −7.88 ± 0.01
PSF branch −19.21 ± 0.03 −8.37 ± 0.00 −19.22 ± 0.04 −8.47 ± 0.00
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Figure 2.6 The additive bias c on the first component for each of shear, F
flexion and G flexion. The purple stars, pink circles and green triangles represent
shear, F flexion and G flexion respectively. The symbols and solid lines show the
weighted averages while the dashed lines show the CHP average. This is from
running the MV pipeline on FLASHES with nmax = 10.

Hermite basis functions so it will be optimised for profiles similar to Gaussian
profiles. As the Sérsic index increases, the central peak becomes sharper and
any skewness (e.g. F flexion) may get more affected by the diluting effect of the
PSF, effectively drowning out the F flexion signal. Additionally the wings of the
profile reach further which means that very high order Shapelets are required to
model them. However, a maximum Shapelets order of nmax = 10 necessitates
the fitting of 66 free parameters during the galaxy image decomposition stage,
and a typical galaxy in these simulations only covers an area of ∼ 80 pixels.
Including much higher orders than already done will therefore entail fitting
noise, and so we keep our maximum Shapelets order at 10. The consequence
is that some information in the outer wings is not modelled, and this in turn
leads to an underestimation of the flexions for higher Sérsic indices. The G
flexion also displays a non-negligible systematic offset c for galaxies with fiducial
Gaussian profiles, which may be a sign that this particular combination of galaxy
brightness and PSF profiles causes a spurious G flexion signal.
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The F flexion is more sensitive to noise than shear or G flexion, as is evident
from the lower left panel of Figure 2.5. While shear and G flexion show more
bias for the lowest S/N value of 8, a dataset which would be deemed too noisy
in an analysis of real data, than for other values, the F flexion shows a trend of
greater underestimation even for reasonably high S/N galaxies. A S/N cut is
therefore essential, but for F flexion a more sophisticated treatment is necessary
to calibrate the measurements. FLASHES have been designed to test the per-
formance of the MV pipeline under COSMOS-like observing conditions. We use
our findings to correct for any effects due to noise biases in our analysis of the
COSMOS survey (see Chapter 3). It should be noted, however, that as of yet too
little is known about potential biases under different observing conditions, so
calibrating shape measurements in any other survey based on FLASHES alone
is not recommended.

2.4 Non-monochromatic tests

As made clear, the PSF of a telescope will, if left uncorrected for, bias galaxy
shape measurements. For a broad-band filter, such as the one included in the
design of the future space-based mission Euclid, additional complications arise
from the fact that the PSF usually depends on wavelength. Hence, since the
colour generally varies across a galaxy, which is likely to have a redder central
bulge and a bluer disk, the PSF will as well. We therefore have to determine how
galaxy colour gradients affect our ability to recover the true lensing distortions,
represented by shear in this Section.

2.4.1 Analytical prediction

To assess the possibility to correct for the effect of a colour-dependent PSF, we
describe the observed intensity, Iobs(θ), of a galaxy image observed in a filter
of finite bandwidth as an integral over wavelength:

Iobs(θ) =

∫

dλ Iobs(θ, λ) (2.26)

=

∫

dλ I0(θ, λ) ⊗ T (θ, λ) (2.27)

where we have made explicit that the observed intensity is the pre-seeing in-
tensity I0(θ, λ) viewed through an imaging system with a PSF T (θ, λ). For a
broad filter, the observed centroid is

θ̄i ≡ 1

Ftot

∫

dλ

∫

dθ θiI
obs(θ, λ) (2.28)

=
1

Ftot

∫

dλ

∫

dθ

∫

dϕ θiI
0(ϕ, λ)T (θ − ϕ, λ) (2.29)

where Ftot is the total flux. By employing a change in variable, x = θ − ϕ, we
can derive the following expression:

θ̄i =
1

Ftot

∫

dλ

∫

dθ

∫

dx
[

I0(θ, λ)ϕiT (x, λ) + I0(θ, λ)xiT (x, λ)
]

(2.30)

=
1

Ftot

∫

dλ [θi(λ)F (λ) + F (λ)pi(λ)T (λ)] (2.31)
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where, for a given wavelength λ, F (λ) is the total flux, θi(λ) is the centroid,
pi(λ) are the first-order moments of the PSF and T (λ) =

∫

dθ T (θ, λ). For a
symmetric PSF the term

∫

dx I0(θ, λ)xiT (x, λ) will vanish; for more compli-
cated PSFs (such as imaging affected by coma) the term may be evaluated if
the PSF moments are known.

Assuming that the centroids for all wavelengths coincide for each galaxy, we
can estimate the pre-seeing centroid using Equation 2.31. We therefore continue
our analysis using centred moments. The second-order unweighted moments of
the pre-seeing and post-seeing intensities, Q0

ij and Qobs
ij , and of the PSF, Pij ,

are defined as

Q0
ij =

1

Ftot

∫

dλ

∫

dθ θiθjI
0(θ, λ) (2.32)

Qobs
ij =

1

Ftot

∫

dλ

∫

dθ θiθjI
obs(θ, λ) (2.33)

=
1

Ftot

∫

dλ

∫

dθ θiθj

∫

dϕ I0(ϕ, λ)T (θ − ϕ, λ) (2.34)

Pij(λ) =
1

T (λ)

∫

dθ θiθjT (θ, λ) (2.35)

Using the same substitution as above we can rewrite Equation 2.34 as

Qobs
ij =

1

Ftot

∫

dλ

∫

dϕ I0(ϕ, λ)

∫

dx T (x, λ)(xixj + ϕiϕj + xiϕj + ϕixj)

(2.36)
The two latter terms can be eliminated since the centroid of the pre-seeing
galaxy is assumed to be independent of wavelength. We then have

Qobs
ij =

1

Ftot

∫

dλ

[
∫

dϕ I0(ϕ, λ)

∫

dx T (x, λ)xixj

+

∫

dϕ I0(ϕ, λ)ϕiϕj

∫

dx T (x, λ)

]

(2.37)

which may be rewritten as before:

Qobs
ij =

1

Ftot

∫

dλ
[

F (λ)Pij(λ)T (λ) +Q0
ij(λ)F (λ)T (λ)

]

(2.38)

i.e.

Q0
ij = Qobs

ij − 1

Ftot

∫

dλ T (λ)F (λ)Pij(λ) (2.39)

Equation 2.39 shows that to measure second-order unweighted moments, and
thus shear, we only need to know F (λ) and Pij(λ). Assuming accurate knowl-
edge of F (λ), we conclude that for a perfect shape measurement method colour
gradient will not cause systematic errors to dominate the error budget. How-
ever, using unweighted moments to estimate shear is not possible due to noise.
Methods in use today use either weighted moments or a fitting procedure such
as Shapelets, and both techniques are equivalent to a weighting scheme.

Now, assuming that we know the effective PSF, a valid assumption according
to Cypriano et al. (2010), we may use the wavelength-integrated image Iobs(θ)
to derive an estimate of the pre-seeing image Iest(θ):

Iobs(θ) = Iest(θ) ⊗
∫

dλ F (λ)T (θ, λ) (2.40)
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where as above, F (λ) is the flux of the galaxy at a given wavelength and Iest(θ)
is not necessarily equal to I0(θ, λ). In the general case there will therefore be
a bias since we will not have enough information to reconstruct I0(θ, λ), even
with perfect knowledge of T (θ, λ) and Iobs(θ). To quantify this discrepancy we
create simulations to mimic galaxies with colour gradients as observed through
a broad-band filter.

2.4.2 Simulations

Figure 2.7 Simulated image representative of the simulations created for each
galaxy in our sample. There are 8 identical galaxy images rotated in equal steps
of 22.5◦ before a shear has been applied. In the top right corner is a star image
representing the PSF.

The simulations we create to assess the impact of colour gradients on shape
measurement consist of nearly 20 000 real galaxies taken from the All-Wavelength
Extended Groth Strip International Survey (AEGIS; Davis et al., 2007) imaged
with the Advanced Camera for Surveys (ACS) onboard the Hubble Space Tele-
scope (HST). Our specific aim here is to evaluate the significance of this bias for
Euclid, and the planned diffraction limit of this future telescope is twice the size
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of the HST limit. We therefore use only AEGIS galaxies that are well resolved
and can thus disregard the small effect of the HST PSF on the images.

Each galaxy has been observed in both the F606W (V-band) and the F814W
(I-band) filters, and in general both the size and the flux of a galaxy will be
greater in the redder band due in part to morphology and in part to telescope
optics. We also have access to photometric redshifts for 11260 objects via the
overlap with CFHTLS-Deep3 which gives us the ability to evaluate the bias as a
function of redshift. This is in fact an important aspect of our tests because as
they evolve, galaxies change morphologies and therefore their colour gradients.
Our simulations then consist of a series of images with each one corresponding
to a single AEGIS galaxy, as exemplified in Figure 2.7. In order to minimise
noise in our simulations we choose not to use the galaxy image directly, but
we decompose the observed AEGIS galaxy in each band into Shapelets. This
Shapelets representation is then duplicated and rotated to create eight iden-
tical galaxy models with different orientations. The differing orientations of
the galaxy images allows us to perform a ‘ring test’ which reduces the noise
generated by the intrinsic galaxy morphology. After rotating, the same shear
is applied to each galaxy realisation before we convolve them with a PSF and
add them to the simulated image using a pixel-scale of 0.05 arcsec. To ensure
that their brightness distributions do not overlap we place the galaxies at set
positions on the image. A representation of the PSF acting on a point source
(a ‘star’) with the same flux as the galaxy is also inserted in each image of eight
galaxy realisations. This allows for the shape measurement software to be run
as it normally would be on real survey images.

The shear we apply to our simulated galaxies is relatively large compared
to the other simulation sets described in this Chapter, but still well within the
weak lensing regime at γ1 = 0.05, γ2 = 0.00. A subtlety of our approach is that
since we use real objects as a basis for our simulations, the original galaxies have
already been sheared by foreground structure which results in a slightly different
response compared to the true intrinsic galaxy. This effect is small however and
will not significantly impact our ability to quantify the bias induced by colour
gradients.

To simulate a broad-band Euclid-like PSF, we approximate a diffraction-
limited Airy disk using a Gaussian profile with a frequency dependent FWHM.
The FWHM is chosen to be FWHMF606W

PSF = 0.17 arcsec for the bluer filter and
FWHMF814W

PSF = 0.21 arcsec for the redder one, though we note that the Eculid
PSF has extended wings and may therefore effectively be slightly larger. We
convolve the galaxy image in the red filter with the red PSF, and similarly for
blue. Combining the two as described below results in a total PSF which is
the weighted mean of the blue and red PSFs, and which thus has a different
response depending on wavelength.

We now have eight sheared and PSF-convolved realisations for each galaxy
combined into a single image for each of two narrow filters. To simulate a broad
filter similar to the one proposed for Euclid, we stack the two narrow-band
images by adding them:

Iobs(θ) = Iobs,F606W (θ) + Iobs,F814W (θ) (2.41)

= I0,F606W (θ) ⊗ TF606W (θ) + I0,F814W (θ) ⊗ TF814W (θ)(2.42)

The wavelength-dependent PSF is thus approximated as the sum of two Gaus-

58



2.4. NON-MONOCHROMATIC TESTS

sian profiles of different width:

T (θ, λ) ≃ 1

Ftot

[

FF606WTF606W (θ) + FF814WTF814W (θ)
]

(2.43)

Since we do not have access to a perfect shape measurement method and
thus expect a bias even without colour gradients, we have to quantify the bias
associated with the method itself. To this end we create two control images
for each set of galaxy realisations. The control images consist of galaxies that
have no colour gradient, but that are subjected to the same PSF as the Euclid-
like simulations above. Comparing our results on the broad-band simulations
to these control images will convey the additional bias induced through the
assumption of monochromaticity. We thus first convolve the F606W galaxy
image with a Gaussian PSF of the same width as the F814W simulation, and
vice versa:

Iobs,1(θ) = I0,F606W (θ) ⊗ TF814W (θ) (2.44)

Iobs,2(θ) = I0,F814W (θ) ⊗ TF606W (θ) (2.45)

To account for the normalisations of the PSFs, we ensure that the control images
are created using the appropriate proportions:

Ictrl,F606W (θ) = Iobs,F606W (θ) +
FF814W

FF606W
Iobs,1(θ) (2.46)

Ictrl,F814W (θ) = Iobs,F814W (θ) +
FF606W

FF814W
Iobs,2(θ) (2.47)

Ictrl,F606W is thus a galaxy with no colour gradient, but with the intensity
distribution observed in F606W and convolved with our approximate Euclid
PSF, and similarly for Ictrl,F814W . As mentioned above, the important feature of
these two control images is that they both have the same PSF as our broad-band
simulation. This is crucial because we have to compare images with identical
PSFs in order to avoid introducing another source of bias discrepancy between
filters.

We note here that our approach does entail a simplification of the problem
since we base our simulations on galaxies observed in two filters which are
themselves fairly broad. One of our assumptions is therefore that the colour of a
galaxy in one filter is that of the central wavelength, and that the spectral energy
distribution (SED) can be approximated through an interpolation between the
two filters. Ideally we would use data from several narrower filters, but we do
find via analytical tests that this assumption does not impact our knowledge of
the bias significantly.

2.4.3 Results

We use the MV pipeline to estimate the shear in both the control images and
in the stacked simulated broad-band image. Since we do not have access to
a perfect shape measurement method, we want to minimise the bias inherent
in the method itself. Our simulations are created with Shapelets, and there-
fore a Shapelets shear measurement pipeline should be the optimal technique
for analysing these images. However, because the PSF consists of two stacked
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Figure 2.8 Bias measured in the non-monochromatic simulations as a function
of different galaxy parameters. Filled black points represent the average mul-
tiplicative bias 〈m〉 = 0.5(m606 + m814) determined in the narrow-band filters,
while open green points represent the bias measured in the Euclid-like stack, mbb.
FWHMbb is the size measured in the stack, and the magnitude and redshift data
are obtained via CFHTLS-Deep3.

Gaussian profiles of different widths the resulting simulation is no longer as ideal
and thus there will still be a bias present. The control images are therefore vi-
tal in determining which bias is due to limitations of the shape measurement
method, and which is due to galaxy colour gradients and PSF wavelength de-
pendence.

We determine the multiplicative bias by obtaining the mean shear in each
bin, dividing it by the input shear and subtracting 1 such that a perfectly
recovered shear would result in maeg = 0:

maeg,bin =
〈γ1,bin〉
γ1,in

− 1 (2.48)

where we are only considering the first shear component as the second compo-
nent has been set to zero at input. The bias we measure in these simulations, as
shown in Figure 2.8, is in general positive since the galaxies are very high S/N
and the MV pipeline is optimised for images with lower S/N. In the top two
panels of Figure 2.8 we display the average bias determined in each filter F606W
and F814W, and that measured in the broad-band simulations, as a function
of galaxy size and CFHTLS i′-band magnitude. We see that the bias measured
initially increases as galaxies become bigger and brighter, and the trend then
plateaus. In the lower panel the bias is shown as a function of photometric
redshift and colour.

The biases measured in each band only carries information about the partic-
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Figure 2.9 Difference between the multiplicative bias measured in the simulated
stack, mbb, and that measured in the narrow-band filters on average, 〈m〉 =
0.5(m606 + m814), as a function of different galaxy parameters. FWHMbb is the
size measured in the stack, and the magnitude and redshift data are obtained via
CFHTLS-Deep3.

Figure 2.10 Error on the multiplicative bias difference between the simulated
stack and the narrow-band images, as a function of galaxy properties.
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2. THE MV PIPELINE AND GALAXY COLOUR GRADIENTS

ular shape measurement method used (the MV pipeline in this case). It is en-
couraging that the accuracy of the shear measurements is at percent level, but to
assess the impact of a wavelength-dependent PSF we have to contrast the accu-
racy in the broad-band filter with that in each individual narrow-band filter. In
Figure 2.9 we therefore show the difference in bias ∆m = mbb−0.5(m606+m814)
as a function of the same parameters as before. Though there is a positive sig-
nal, indicating a higher bias in the broad-band filter than in the narrower ones,
it is consistently sub-percentage in size so it is much smaller than the bias in-
duced by the shape measurement software. There are some trends in the colour
gradient bias, particularly as a function of redshift and average colour. These
trends will need to be carefully modelled in order to account for this bias in
future surveys. It is still complicated to interpret the results, however, since
some of the difference in bias could still be explained by the results in individ-
ual bands. If for instance the galaxy is smaller when observed in F606W than
when observed in the broad-band filter then the bias in the broad-band filter
will be greater simply due to the size-dependence of the bias (see Figure 2.8).

The results we have presented here are an indication of what may be expected
in terms of the bias induced by a wavelength-dependent PSF. However, the
simulations have been created using two filters only and though these filters are
narrower than the one proposed for Euclid, the wavelength resolution may still
be too low to properly represent the colour gradient in the observed galaxy.
We have also used real galaxies which have been sheared before being observed
in AEGIS and this causes a small uncertainty in our bias. With more data
observed in several narrow bands we will be able to constrain the bias further,
but the results displayed here show that the shape measurement bias induced
by assuming monochromaticity despite the use of a broad-band and the loss
of colour information that entails, is lower than the bias inherent in the shape
measurement method. It is also important to note that due to the noisiness of
the shape measurements and due to the limited galaxy sample available, the
errors on the additional bias (as shown in Figure 2.10) are a good indication
of the true errors. Thus we are able to determine the level of bias, given the
constraints described above, accurately. By studying the bias in more detail we
will therefore most likely be able to correct for this small effect in surveys such
as Euclid.

2.5 Conclusion

We have in this Chapter described and tested a new weak lensing shape mea-
surement software suite with the capability of measuring higher order distortions
known as flexion, as well as shear: the MV pipeline. Based on the Shapelets
formalism, it is a new incarnation and an extension of the software described
in Kuijken (2006) with which it was contrasted in the context of the GREAT08
challenge. The GREAT08 simulations provided an ideal testbed for testing the
shear recovery accuracy under different observing conditions. The MV pipeline
did very well in this challenge in nearly all regimes with very competitive quality
factor values of Q ∼ 100 and above. The exception was very faint and barely
resolved galaxies where the S/N was just too low and this resulted in an overall
Q-value of Q ∼ 25.

To test the MV pipeline for the accuracy of the flexion measurements we
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created our own simulations which we named FLASHES. These simulations were
generated using software very similar to the one used to produce the GREAT08
simulations, but with the important difference of flexion distortions being added
to the lensing potential. FLASHES mimic the survey conditions of the space-
based COSMOS survey, and were kept generally low-noise to assess any biases
induced by other factors. We confirmed that the input shear could be recovered
with high accuracy, with a multiplicative bias of a few percent in most cases.
The flexions displayed a greater bias in general, and a greater sensitivity to
the intrinsic brightness profile of the sources. Additionally, the F flexion in
particular showed a trend with S/N which may need to be calibrated in lower-
quality data.

While the GREAT08 and FLASHES simulation sets were monochromatic,
care is needed in future surveys where the PSF may be wavelength-dependent.
If a galaxy with an intrinsic colour gradient, such as a redder core and a bluer
disk, is observed through a broad filter with an imaging system which results
in such a PSF, then there may be additional shear measurement bias induced.
With perfect knowledge of the PSF and the intrinsic colour gradient, this may
be corrected for but such perfect knowledge is not feasible for surveys such as
Euclid. We therefore created simulations based on real galaxies observed in
two bands as part of the HST AEGIS survey. Comparing the bias measured
in each narrow-band with that measured in a simulated broad-band, we found
that the additional bias induced by the galaxy colour gradient was at most at
the percentage level, with some variation with redshift, magnitude, size and
overall colour. This additional bias may be partly explained by inherent biases
in the MV pipeline but the results indicate that it will be possible to accurately
determine the magnitude of this effect and thus correct for it. To get a more
precise bias estimate we will in the near future create simulations with more
realistic intrinsic colour gradients and observe them through several yet narrower
bands.

The MV pipeline has been shown here to be both accurate and versatile.
We will in the next Chapter apply it to the real COSMOS survey and measure
a flexion signal around galaxies for the first time.
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