The handle http://hdl.handle.net/1887/32076 holds various files of this Leiden University dissertation

Author: Junjiang Liu
Title: On p-adic decomposable form inequalities
Issue Date: 2015-03-05
Chapter 4

Decomposable form in n variables of degree $n + 1$

Recall that Theorem 2.1.4 in Chapter 2 provides an asymptotic formula for the number of solutions of a decomposable form inequality in n variables of degree d. Unfortunately in this formula, the error term depends on the coefficients of F.

A lot of work on removing the dependence of the error term on F has been done by Thunder. We recall some results of his below. The following notation is needed. Consider the inequality

$$|F(x)| \leq m \text{ in } x = (x_1, x_2, \ldots, x_n) \in \mathbb{Z}^n.$$

Define the discriminant $D(F)$ of a decomposable form $F = aL_1, \ldots, L_d \in \mathbb{Z}[X_1, \ldots, X_n]$ to be

$$D(F) = a^{2(d-1)} \prod_{1 \leq i_1 < \cdots < i_n \leq d} (\det(L_{i_1}, \ldots, L_{i_n}))^2.$$

Put $A_F(m) = \{x \in \mathbb{R}^n : |F(x)| \leq m\}$ and $A_F = A_F(1)$. Denote the volume of A_F by $\mu^n_{\infty}(A_F)$ and the number of integer solutions in $A_F(m)$ by $N_F(m)$.

Theorem 4.0.10 (Thunder [18]). Let $F \in \mathbb{Z}[X, Y]$ be a binary cubic form in two var-
ables that is irreducible over \(\mathbb{Q} \). Then

\[
|N_F(m) - m^{2/3} \mu_\infty^2(\mathbb{A}_F)| \leq 9 + \frac{2008m^{3/2}}{|D(F)|^{1/12}} + 3156m^{1/3} \text{ for all } m \geq 1.
\]

Later, Thunder proved a Theorem concerning decomposable forms \(F \in \mathbb{Z}[X_1, \ldots, X_n] \) of degree \(n + 1 \) of finite type (hence \(D(F) \neq 0 \)).

Theorem 4.0.11 (Thunder [20]).

\[
|N_F(m) - m^{n/(n+1)} \mu_\infty^n(\mathbb{A}_F)| \ll \frac{m^{(n-1)/n}}{|D(F)|^{1/(2n(n+1))}} (1 + \log m)^{n-2} + m^{(n-1)/(n+1)} (1 + \log m)^{n-1}.
\]

where the implicit constant depends only on \(n \).

The goal of this Chapter is to prove a \(p \)-adic generalization of Theorem 4.0.11, removing the dependence on \(F \) of the error term in Theorem 2.1.4. Thunder’s main idea is to find an equivalent form \(G \) of \(F \) such that it is possible to give a upper bound for \(\mathcal{H}(G) \) in terms of its discriminant \(D(F) \). In our proof, we first give the \(p \)-adic generalization of this idea.

4.1 Statement of the Theorem

Let \(F(X) \in \mathbb{Z}[X_1, \ldots, X_n] \) be a decomposable form of degree \(n+1 \). Let \(S = \{\infty, p_1, \ldots, p_r\} \) be a finite subset of \(M_\mathbb{Q} \). We consider the inequality

\[
\prod_{p \in S} |F(x)|_p \leq m \quad \text{in} \quad x = (x_1, x_2, \ldots, x_n) \in \mathbb{Z}^n
\]

with \(\gcd(x_1, x_2, \ldots, x_n, p_1 \cdots p_r) = 1 \). (4.1.1)
Recall the notation

\[I(F) := \text{the set of all ordered linearly independent } n \text{-tuples among } L_1, \ldots, L_d, \]

\[a(F) := \max_{(L_{i_1}, \ldots, L_{i_j}) \subset I(F) \ 1 \leq j \leq n-1} \max_j \left| \left\{ L_i \in \text{span} \{L_{i_1}, \ldots, L_{i_j}\} \right\} \right|, \]

\[A^n_S = \prod_{p \in S} \mathbb{Q}^n_p, \]

\[A_{F,S}(m) := \left\{ (x_p)_p \in A^n_S : \prod_{p \in S} |F(x_p)|_p \leq m, \ x_p|_p = 1 \text{ for } p \in S_0 \right\}, \]

\[N_{F,S}(m) := \left| \left\{ x \in \mathbb{Z}^n : \prod_{p \in S} |F(x)|_p \leq m, \ \gcd(x_1, x_2, \ldots, x_n, p_1 \cdots p_r) = 1 \right\} \right|. \]

Recall that \(\mu_\infty \) is the normalized Lebesgue measure on \(\mathbb{R} = \mathbb{Q}_\infty \) such that \(\mu_\infty([0, 1]) = 1 \) and that \(\mu_p \) is the normalized Haar measure on \(\mathbb{Q}_p \) such that \(\mu_p(\mathbb{Z}_p) = 1 \). Define the product measure \(\mu^n = \prod_{p \in S} \mu^n_p \) on \(A^n_S \).

For each \(p \in S \), we can decompose \(F \) as

\[F = a_p L_{p,1} \cdots L_{p,n+1} \]

where \(a_p \in \mathbb{Q}^*_p \) and \(\{ L_{p,1}, \ldots, L_{p,n+1} \} \) are linear forms in \(\mathbb{Q}_p[X_1, \ldots, X_n] \) such that the decomposition is \(\mathbb{Q}_p \)-symmetric. It means that each element of \(\text{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p) \) permutes the linear forms \(L_{p,1}, \ldots, L_{p,n+1} \).

For \(p \in S \), put \(\Delta_F^p = \Delta_{p,1} \cdots \Delta_{p,n+1} \) where

\[\Delta_{pi} = \det(L_{p,1}, \ldots, \widehat{L}_{pi}, \ldots, L_{p,n+1}) \text{ for } i = 1, \ldots, n + 1. \]

Then

\[\sum_{j=1}^{n+1} (-1)^j \Delta_{pj} \cdot L_{pj} = 0. \tag{4.1.2} \]

In what follows, the constants implied by the occurring Vinogradov symbols \(\ll \) and \(\gg \) will be effectively computable and depend only on \(n \) and \(S \). We prove the following Theorem.
Theorem 4.1.1. Let \(F \in \mathbb{Z}[X_1, \ldots, X_n] \) be a decomposable form of degree \(n + 1 \). Suppose \(F(x) \neq 0 \) for every non-zero \(x \in \mathbb{Z}^n \). Also suppose \(a(F|_T) < \frac{d}{\dim T} \) for every linear subspace \(T \) of dimension at least 2 of \(\mathbb{Q}^n \). Then we have \(D(F) \neq 0 \) and

\[
|N_{F,S}(m) - \mu^n(\mathbb{A}_{F,S}(m))| \ll \frac{m^{(n-1)/n}(1 + \log m)^{|S|(n+1)}}{(\prod_{p \in S} |D(F)|_p)^2m^{n+1}} + m^{n-1}(1 + \log m)^{|S|(n-1)}.
\]

4.2 About discriminants of decomposable forms

In this section, we collect some facts about discriminants of decomposable forms. We can be more general by letting \(F \) vary for each \(p \in S \) and \(\mathbb{K} \) be a field with \(\text{char} \mathbb{K} = 0 \).

Definition 4.2.1. Let \(F = aL_1, \ldots, L_d \in \mathbb{K}[X_1, \ldots, X_n] \) be a decomposable form where \(a \in \mathbb{K}^* \) and \(L_1, \ldots, L_d \in \mathbb{K}[X_1, \ldots, X_n] \) are linear forms. We say that \(F \) is in general position if \(\det(L_{i_1}, \ldots, L_{i_n}) \neq 0 \) for each \(\{i_1, \ldots, i_n\} \subseteq \{1, \ldots, d\} \).

Definition 4.2.2. The discriminant \(D(F) \) of a decomposable form \(F = aL_1, \ldots, L_d \in \mathbb{K}[X_1, \ldots, X_n] \) in general position is defined to be

\[
D(F) = a^{2(d-1)} \cdot \prod_{1 \leq i_1 < \cdots < i_n \leq d} \left(\det(L_{i_1}, \ldots, L_{i_n}) \right)^2.
\]

It is easy to check that \(D(F) \) is independent of the choice of \(a, L_1, \ldots, L_d \).

Lemma 4.2.3. Let \(F \in \mathbb{K}[X_1, \ldots, X_n] \) be a decomposable form of degree \(d \). Then

(a) \(D(F) \in \mathbb{K}^* \).

(b) \(D(\lambda F) = (\lambda)^{2\binom{d-1}{n-1}} D(F) \) for \(\lambda \in \mathbb{K}^* \).

(c) \(D(F_T) = (\det T)^2 \binom{d}{n} D(F) \) for \(T \in GL_n(\mathbb{K}) \).

Proof. (b) and (c) are straightforward.
(a) For every \(\sigma \in \text{Gal}(\overline{\mathbb{K}}/\mathbb{K}) \) there is a permutation \(\hat{\sigma} \) of \(\{1, \ldots, d\} \) such that \(\sigma(L_i) = \lambda_i L_{\hat{\sigma}(i)} \) with \(\lambda_i \in \overline{\mathbb{K}}^* \) and \(\lambda_1 \cdots \lambda_d = 1 \). Hence

\[
\sigma(D(F)) = a^{2(\frac{d-1}{n-1})} \prod_{1 \leq i_1 < \cdots < i_n \leq d} (\lambda_{i_1} \cdots \lambda_{i_n})^2 \left(\det(L_{\hat{\sigma}(i_1)}, \ldots, L_{\hat{\sigma}(i_n)}) \right)^2
\]

\[
= (a\lambda_1 \cdots \lambda_d)^{2(\frac{d-1}{n-1})} \prod_{1 \leq i_1 < \cdots < i_n \leq d} \left(\det(L_{\hat{\sigma}(i_1)}, \ldots, L_{\hat{\sigma}(i_n)}) \right)^2
\]

\[
= a^{2(\frac{d-1}{n-1})} \prod_{1 \leq i_1 < \cdots < i_n \leq d} \left(\det(L_{i_1}, \ldots, L_{i_n}) \right)^2 = D(F).
\]

\[\square\]

Let \((F_p : p \in S) \) be a system of decomposable forms with \(F_p \in \mathbb{Q}_p[X_1, \ldots, X_n] \) of degree \(d \). For each \(T_p \in \text{GL}_n(\mathbb{Q}_p) \), define \((F_p)_{T_p}(X) = F_p(T_pX) \).

Recall that

\[
\mathcal{A}(F_p : p \in S) := \left\{ (x_p)_p \in \prod_{p \in S} \mathbb{A}^n_S : |F_p(x_p)|_p \leq 1, |x_p|_p = 1 \text{ for } p \in S_0 \right\}.
\]

Lemma 4.2.4. Let \((F_p : p \in S) \) with \(F_p \in \mathbb{Q}_p[X_1, \ldots, X_n] \) for \(p \in S \) be a system of decomposable forms of degree \(d \) in general position. Let \(\lambda_p \in \mathbb{Q}_p^* \) and \(T_p \in \text{GL}_n(\mathbb{Q}_p) \) for \(p \in S \). Then

\[
\left(\prod_{p \in S} |D(\lambda_p F_{T_p})|_p^{\frac{1}{n}} \right) \cdot \mu^n \left(\mathcal{A}(\lambda_p F_{T_p} : p \in S) \right) = \left(\prod_{p \in S} |D(F_p)|_p^{\frac{1}{n}} \right) \cdot \mu^n \left(\mathcal{A}(F_p : p \in S) \right)
\]

(where possibly both sides of the identity are infinite).

Proof. This is a combination of Lemmas 1.3.3, 1.3.4 and 4.2.3 \[\square\]

Lemma 4.2.5. For \(p \in S \), let \(F_p \in \mathbb{Q}_p[X_1, \ldots, X_n] \) be a homogeneous polynomial of degree \(d \). Assume that \(|F_p|_p = 1 \) for \(p \in S_0 \). Then

\[
\mu^n \left(\left\{ (x_p)_p \in \mathbb{A}^n_S : \prod_{p \in S} |F_p(x_p)|_p \leq 1, |x_p|_p = 1 \text{ for } p \in S_0 \right\} \right) =
\]

\[
\mu^n \left(\left\{ (x_\infty) \in \mathbb{R}^n : |F_\infty(x_\infty)| \leq 1 \right\} \right) \cdot \prod_{p \in S_0} \left(\sum_{r_p=0}^{d-1} p^{-r_p} \cdot \mu_p^n \left(\left\{ y_p \in \mathbb{Q}_p^n : |F_p(y_p)|_p = p^{-r_p} \right\} \right) \right)
\]

95
Proof. We can express the set under consideration as a disjoint union
\[
\prod_{k=(k_p) \in S_0 \in (\mathbb{Z}_{\geq 0})^{\mid S_0 \mid}} \left\{ (x_p)_{p \in S} \in \mathbb{A}_S^n : \begin{array}{l}
|F_\infty(x_\infty)| \leq \prod_{p \in S_0} p^{k_p} \\
|F_p(x_p)|_p = p^{-k_p}, |x_p|_p = 1 \text{ for } p \in S_0
\end{array} \right\}.
\]

Thus, the measure to be computed can be expressed as
\[
\sum_{k \in (\mathbb{Z}_{\geq 0})^{\mid S_0 \mid}} \mu_\infty^n \left\{ x_\infty \in \mathbb{R}^n : |F_\infty(x_\infty)| \leq \prod_{p \in S_0} p^{k_p} \right\} \cdot \prod_{p \in S_0} \mu_p^n \left\{ x_p \in \mathbb{Q}_p^n : |F_p(x_p)|_p = p^{-k_p}, |x_p|_p = 1 \right\}
\]

\[
= \mu_\infty^n \left\{ x_\infty \in \mathbb{R}^n : |F_\infty(x_\infty)| \leq 1 \right\} \cdot \prod_{p \in S_0} \sum_{k_p=0}^\infty (p^{k_p})^{n/d} \mu_p^n \left\{ x_p \in \mathbb{Q}_p^n : |F_p(x_p)|_p = p^{-k_p}, |x_p|_p = 1 \right\}
\]

We have to rewrite the sums occurring in the product. Write \(k_p = d l_p + r_p \) with \(0 \leq r_p \leq d - 1 \). Then
\[
\mu_p^n \left\{ x_p \in \mathbb{Q}_p^n : |F_p(x_p)|_p = p^{-k_p}, |x_p|_p = 1 \right\}
\]

\[
= \sum_{r_p=0}^{d-1} \sum_{l_p=0}^\infty (p^{k_p})^{n/d} p^{-rl_p} \mu_p^n \left\{ y_p \in \mathbb{Q}_p^n : |F_p(y_p)|_p = p^{-r_p}, |y_p|_p = p^{l_p} \right\}
\]

\[
= \sum_{r_p=0}^\infty (p^{k_p})^{n/d} \mu_p^n \left\{ y_p \in \mathbb{Q}_p^n : |F_p(y_p)|_p = p^{-r_p}, |y_p|_p \geq 1 \right\}
\]

since if \(|y_p| \leq 1/p \) then \(|F(y_p)|_p \leq p^{-d} \) contradicting \(|F(y_p)|_p = p^{-r_p} \). This implies the lemma. \(\square \)
Let \(p \in S_0 \). Further, let \(F \in \mathbb{Q}_p[X_1, \ldots, X_n] \) be a decomposable form of degree \(n + 1 \) with \(|F|_p = 1 \) and \(D(F) \neq 0 \). We compare

\[
A_{p,r}(F) := \mu^n_p \left(\{ x_p \in \mathbb{Q}_p^n : |F(x_p)|_p = p^{-r} \} \right)
\]

with \(|D(F)|_p \). Notice that for \(T \in \text{GL}_n(\mathbb{Q}_p) \), we have

\[
A_{p,r}(F T) = |\det T|_p^{-1} A_{p,r}(F).
\]

We prove the following:

Lemma 4.2.6. \(A_{p,r}(F)|D(F)|_p \frac{1}{2^{(n+1)!}} \ll 1 \) where the implicit constant is effectively computable and depends only on \(n \) and \(p \).

Proof. Let \(\mathbb{E}_p \) be the splitting field of \(F \) over \(\mathbb{Q}_p \). Denote by \(e \) the ramification index of \(\mathbb{E}_p \). Then \(e \) divides \([\mathbb{E}_p : \mathbb{Q}_p] \), so \(e \leq (n+1)! \).

We factor \(F \) as \(F = L_1 \cdots L_{n+1} \) with \(L_i \) a linear form in \(\mathbb{E}_p[X_1, \ldots, X_n] \).

Let \(\delta_i := \det(L_{i+1}, \ldots, L_{n+1}, L_1, \ldots, L_{i-1}) \) and put \(L'_i = \delta_i L_i \) for \(i = 1, \ldots, n+1 \).

Then

\[
L'_1 + \cdots + L'_{n+1} = 0, \quad (4.2.1)
\]

\[
L'_1 \cdots L'_{n+1} = \pm D(F)^{1/2} F, \quad (4.2.2)
\]

the coefficients of \(L'_1, \ldots, L'_{n+1} \) are integral over \(\mathbb{Z}_p \), \((4.2.3) \)

\{\(L'_1, \ldots, L'_{n+1} \)\} is up to sign \(\text{Gal}(\mathbb{E}_p/\mathbb{Q}_p) \)-symmetric \((4.2.4) \)

(see [1.2.9] for definition).

Only (4.2.3) and (4.2.4) require some explanation. As for (4.2.3), by the ultrametric inequality and Gauss Lemma, we have

\[
|L'_i|_p = |\det(L_{i+1}, \ldots, L_{n+1}, L_1, \ldots, L_{i-1})|_p |L_i|_p \leq |F|_p = 1 \quad (i = 1, \ldots, n + 1).
\]

As for (4.2.4), for every \(\sigma \in \text{Gal}(\mathbb{E}_p/\mathbb{Q}_p) \) there is a permutation \(\hat{\sigma} \) of \(\{1, \ldots, n+1\} \) such that \(\sigma(L'_i) = \lambda_{\sigma,i} L'_{\hat{\sigma}(i)} \) for some \(\lambda_{\sigma,1} \cdots \lambda_{\sigma,n+1} = 1 \). Thus,

\[
\sigma L'_i = \det(\lambda_{\sigma,i+1} L_{\hat{\sigma}(i+1)}, \ldots, \lambda_{\sigma,i-1} L_{\hat{\sigma}(i-1)}) \lambda_{\sigma,i} L_{\hat{\sigma}(i)} = \pm L_{\hat{\sigma}(i)} \quad (\text{for } \sigma \in \text{Gal}(\mathbb{E}_p/\mathbb{Q}_p)).
\]
Let $|D(F)|^{1/2} = p^{-s/e}$. Notice that for $x \in \mathbb{Q}_p^n$ with $|F_p(x)|_p = p^{-r}$ we have

$$\max\{|L'_1(x)|_p, \ldots, |L'_{n+1}(x)|_p\} \geq |L_1'(x) \cdots L'_{n+1}(x)|_p^{\frac{1}{n+1}}$$

$$= \left(|D(F)|^{1/2}F(x)\right)^{\frac{1}{n+1}} = p^{\frac{l-er+s}{e(n+1)}}.$$

So in fact,

$$\max\{|L'_1(x)|_p, \ldots, |L'_{n+1}(x)|_p\} = p^{\frac{l-er+s}{e(n+1)}} \text{ with } l \in \mathbb{Z}_{\geq 0}. \quad (4.2.5)$$

Further, we may write

$$|L'_i(x)|_p = p^{\frac{l-er+s-m_i}{e(n+1)}} \text{ with } m_i \in \mathbb{Z}_{\geq 0} \text{ for } i = 1, \ldots, n+1. \quad (4.2.6)$$

We have collected some properties of the integers m_1, \ldots, m_{n+1}:

$$m_1 + \cdots + m_{n+1} = (n+1)l \text{ (by (4.2.2))}, \quad (4.2.7)$$

at least two among m_1, \ldots, m_{n+1} are 0 (by (4.2.1), (4.2.5)), \quad (4.2.8)

$$m_i = m_j \text{ if there is } \sigma \in \text{Gal}(\mathbb{E}_p/\mathbb{Q}_p) \text{ with } \hat{\sigma}(i) = j. \quad (4.2.9)$$

We consider the set of $x \in \mathbb{Q}_p^n$ satisfying (4.2.6) for some tuple of integers $m = (m_1, \ldots, m_{n+1})$ with (4.2.7), (4.2.8) and (4.2.9). Since $\{L'_1, \ldots, L'_{n+1}\}$ is up to sign, a $\text{Gal}(\mathbb{E}_p/\mathbb{Q}_p)$-symmetric system, we have

$$\mu^n_p \left(\left\{ x \in \mathbb{Q}_p^n : |L'_i(x_p)| = p^{\frac{l-er+s-m_i}{e(n+1)}} \text{ for } i = 1, \ldots, n+1 \right\} \right)$$

$$\leq \mu^n_p \left(\left\{ x \in \mathbb{Q}_p^n : |L'_i(x_p)| \leq p^{\frac{l-er+s-m_i}{e(n+1)}} \text{ for } i = 1, \ldots, n+1 \right\} \right)$$

$$\ll \min_{1 \leq j \leq n+1} \left| \det(L_{j+1}, \ldots, L_{n+1}, L_1, \ldots, L_{j-1}) \right|_p$$

$$\ll \frac{p^{\frac{n^2}{e(n+1)}}}{|D(F)|^{1/2}} \cdot p^{\frac{-l}{e(n+1)}} = |D(F)|^{\frac{1}{p^{(n+1)}}} \cdot p^{\frac{-l}{e(n+1)}}.$$
Summing over all $l \in \mathbb{Z}_{\geq 0}$ and all tuples m with (4.2.7), (4.2.8) and (4.2.9), we get

$$\mu_p^n(\{x \in \mathbb{Q}_p^n : |F(x)|_p = p^{-r}\}) \ll |D(F)|_p^{-(n+1)/2} \sum_{l=0}^{\infty} \left(\sum_{m \text{ with (4.2.7), (4.2.8), (4.2.9)}} 1 \right) p^{-l/2(n+1)}$$

$$\ll |D(F)|_p^{-(n+1)/2} \sum_{l=0}^{\infty} \binom{n+1}{l} p^{-l/2(n+1)}$$

$$\ll |D(F)|_p^{-(n+1)/2} \sum_{l=0}^{\infty} \binom{n+1}{l} p^{-l/2(n+1)^2} = \left(1 - p^{-l/2(n+1)^2} \right)^{-(n+1)} |D(F)|_p^{-(n+1)/2}$$

$$\ll |D(F)|_p^{-(n+1)/2}.$$

Lemma 4.2.7. For $p \in S$, let $F_p \in \mathbb{Q}_p[X_1, \ldots, X_n]$ be a decomposable form of degree $n+1$ with $D(F_p) \neq 0$. Assume that $|F_p|_p = 1$ for $p \in S_0$. Then

$$\left(\prod_{p \in S} |D(F_p)|_p \right)^{1/(2(n+1))} \mu^n(\mathbb{A}(F_p : p \in S)) \leq C$$

where C is an effectively computable number depending only on n and S.

Proof. Combine Theorem of Bean and Thunder in [1] (for $p = \infty$) with Lemma 4.2.5 and Lemma 4.2.6 (for $p \in S_0$).

Remark 4.2.8. This is a p-adic generalization of the result of Bean and Thunder [1] on n-variable decomposable forms of degree $n+1$ with non-zero discriminant. In the case $S = \{\infty\}$, Bean and Thunder [1] proved a more general result: for arbitrary decomposable forms $F \in \mathbb{C}[X_1, \ldots, X_n]$ of degree d, we have

$$|D(F)|^{\frac{(d-n)n!}{2d}} \mu^n(\mathbb{A}_F) \leq C$$

where C is an effectively computable number depending only on n. It is still open to generalize their result in the p-adic setting.
4.3 Auxiliary Lemmas

In this section, let \(F \in \mathbb{Z}[X_1, \ldots, X_n] \) be a decomposable form in \(n \) variables of degree \(n + 1 \) in general position. Assume that \(I(F) \neq \emptyset \) and \(F(x) \neq 0 \) for \(x \in \mathbb{Z}^n \setminus \{0\} \).

Recall that: we say that two decomposable forms \(F, G \in \mathbb{Z}[X_1, \ldots, X_n] \) are \(S \)-equivalent if there exist \(T \in GL(n, \mathbb{Z}_S) \) and \(t \in \mathbb{Z}_S^* \) such that \(G = t \cdot F_T \). For the definition of \(H(G) \), see [1.1.2].

Lemma 4.3.1. There exists a decomposable form \(G \in \mathbb{Z}[X_1, \ldots, X_n] \) in the \(S \)-equivalent class of \(F \) such that
\[
H(G) \leq c_1 \cdot (\prod_{p \in S} |D(G)|_p)^{\frac{2}{n+1}}
\]
where \(c_1 \) is an effectively computable constant depending only on \(n \) and \(S \).

Proof. For \(p \in S \), we choose a factorization \(F = a_p L_{p,1} \cdots L_{p,n+1} \) where \(a_p \in \mathbb{Q}_p^* \) and \(\{L_{p,1}, \ldots, L_{p,n+1}\} \) is a \(\mathbb{Q}_p^* \)-symmetric system of linear forms.

For \(p = \infty \), we assume that
\[
\begin{align*}
L_{\infty i} &\in \mathbb{C}^n \ (i = 1, \ldots, 2r), \quad L_{\infty i} \in \mathbb{R}^n \ (i = 2r + 1, \ldots, n+1) \\
L_{\infty i} &= L_{\infty,i+r} \ (i = 1, \ldots, r).
\end{align*}
\]

If \(r \) is even, put
\[
\begin{align*}
M_{\infty 1} &= \text{Re}(\Delta_{\infty 1} L_{\infty 1}), \quad M_{\infty 2} = \text{Im}(\Delta_{\infty 1} L_{\infty 1}), \ldots, \quad M_{\infty,2r-1} = \text{Re}(\Delta_{\infty r} L_{\infty r}), \\
M_{\infty,2r} &= \text{Im}(\Delta_{\infty r} L_{\infty r}), \quad M_{\infty i} = \Delta_{\infty i} L_{\infty i} \ (i = 2r + 1, \ldots, n+1), \\
M_{pi} &= \Delta_{pi} L_{pi} \ (p \in S_0, i = 1, \ldots, n+1).
\end{align*}
\]

If \(r \) is odd, put
\[
\begin{align*}
M_{\infty 1} &= \text{Im}(\Delta_{\infty 1} L_{\infty 1}), \quad M_{\infty 2} = \text{Re}(\Delta_{\infty 1} L_{\infty 1}), \ldots, \quad M_{\infty,2r-1} = \text{Im}(\Delta_{\infty r} L_{\infty r}), \\
M_{\infty,2r} &= \text{Re}(\Delta_{\infty r} L_{\infty r}), \quad M_{\infty i} = \Delta_{\infty i} L_{\infty i} \ (i = 2r + 1, \ldots, n+1), \\
M_{pi} &= \Delta_{pi} L_{pi} \ (p \in S_0, i = 1, \ldots, n+1).
\end{align*}
\]
With these choices, we have rank\(\{M_{p2}, \ldots, M_{p,n+1}\} = n\) for \(p \in S\). Consider the following symmetric convex body:

\[
C := \left\{ (x_p)_p \in \mathbb{A}^n_S : \begin{array}{l}
|M_{\infty i}(x_\infty)| \leq 1 \quad (i = 2, \ldots, n + 1), \\
|M_{pi}(x_p)|_p \leq 1 \quad (i = 2, \ldots, n + 1, \, p \in S_0)
\end{array} \right\}.
\]

Let \(\lambda_1, \ldots, \lambda_n\) be the successive minima of \(C\) with respect to \(\mathbb{Z}^n_S\).

By a Theorem of K. Mahler in [11], \(\mathbb{Z}^n_S\) has a basis \(\{a_1, \ldots, a_n\}\) such that

\[
|M_{\infty i}(a_j)| \leq \max\{1, j/2\} \lambda_j \quad \text{for} \quad i = 2, \ldots, n + 1, \quad j = 1, \ldots, n,
\]

\[
|\Delta_{pi} L_{p i}(a_j)|_p \leq 1 \quad \text{for} \quad i = 2, \ldots, n + 1, \quad p \in S_0, \quad j = 1, \ldots, n.
\]

By Lemma 3.3.5 in [4, Chap. 4], there exist a permutation \(\sigma\) of \(\{1, \ldots, n\}\) and another basis \(\{a'_1, \ldots, a'_n\}\) of \(\mathbb{Z}^n_S\) such that

\[
|M_{\infty i,j+1}(a'_j)| \leq n4^n \min\{\lambda_{\sigma(i)}, \lambda_j\} \quad \text{for} \quad i = 1, \ldots, n, \quad j = 1, \ldots, n. \tag{4.3.4}
\]

Further, \(a'_1, \ldots, a'_n\) are \(\mathbb{Z}\)-linear combinations of \(a_1, \ldots, a_n\). As a consequence

\[
|M_{p,i,j+1}(a'_j)|_p \leq 1 \quad \text{for} \quad i = 1, \ldots, n, \quad p \in S_0, \quad j = 1, \ldots, n. \tag{4.3.5}
\]

Denote the matrix with columns \(a'_1, \ldots, a'_n\) by

\[
T := (a'_1, \ldots, a'_n). \tag{4.3.6}
\]

Write \(G = u \cdot F_T\) where \(T \in GL_n(\mathbb{Z}_S)\) and \(u \in \mathbb{Z}^*_S\) such that \(G\) is primitive. Then

\[
D(G) = u^{2n} \cdot \det(T)^2 D(F)
\]

and hence

\[
\prod_{p \in S} |D(G)|_p = \prod_{p \in S} |D(F)|_p = \prod_{p \in S} \left|a'_1\right|_p^{2n} \left|\Delta_p F\right|_p^2. \tag{4.3.7}
\]

Consider again \(C\). By Lemma [1.2.10] we know that

\[
\lambda_1 \cdots \lambda_n \ll \prod_{p \in S} |\det(M_{p2}, \ldots, M_{p,n+1})| \ll \prod_{p \in S} |\Delta_p F|_p \tag{4.3.8}
\]

101
and also
\[
\lambda_1 \cdots \lambda_n \gg \prod_{p \in S} |\Delta_p^F|_p. \tag{4.3.9}
\]

We bound \(\lambda_1 \) from below and \(\lambda_n \) from above. There is a non-zero \(x \in \mathbb{Z}_n^S \) such that
\[
|M_{\infty,i+1}(x)| \leq \lambda_1 \quad \text{for } i = 1, \ldots, n,
\]
\[
|M_{p,i+1}(x)|_p \leq 1 \quad \text{for } i = 1, \ldots, n, \ p \in S_0.
\]

By our assumption that \(F(x) \neq 0 \) for \(x \in \mathbb{Q}^n \setminus \{0\} \), we have \(\prod_{p \in S} |F(x)|_p \geq 1 \).

Since
\[
|\Delta_{\infty,i+r}L_{\infty,i+r}(x)| = |\Delta_{\infty}L_{\infty}(x)| = |M_{\infty,2i-1}(x) \pm \sqrt{-1} \cdot M_{\infty,2i}(x)| \ll \lambda_1 \quad \text{for } i = 2, \ldots, r
\]
we have
\[
|\Delta_{\infty}L_{\infty}(x)| \leq \sum_{j=2}^{n+1} |\Delta_{\infty,j}L_{\infty,j}(x)| \ll \lambda_1,
\]
therefore
\[
\prod_{p \in S} |\Delta_p^F|_p \leq \prod_{p \in S} |\Delta_p^F F(x)|_p
\]
\[
= \prod_{p \in S} |a_p|_p \cdot \left(|\Delta_{\infty}L_{\infty}(x)| \prod_{j=2}^{n+1} |\Delta_{\infty,j}L_{\infty,j}(x)| \right) \cdot \prod_{p \in S_0} \left(|\Delta_{p1}L_{p1}(x)|_p \prod_{j=2}^{n+1} |\Delta_{pj}L_{pj}(x)|_p \right)
\]
\[
\ll \prod_{p \in S} |a_p|_p \cdot n \lambda_1 \cdot (\lambda_1)^{2r-1} \cdot (\lambda_1)^{n+1-2r}
\]
\[
\ll \prod_{p \in S} |a_p|_p \cdot (\lambda_1)^{n+1}.
\]

This implies
\[
\lambda_1 \gg \left(\prod_{p \in S} |a_p|_p \right)^{\frac{1}{n+1}} \tag{4.3.10}
\]
and
\[
\lambda_n \ll \prod_{p \in S} |\Delta_p^F|_p \leq \prod_{p \in S} |\Delta_p^F|_p \leq \left(\prod_{p \in S} |\Delta_p^F|_p \right)^{\frac{2}{n+1}} \left(\prod_{p \in S} |a_p|_p \right)^{\frac{n-1}{n+1}}. \tag{4.3.11}
\]

102
Since
\[|M_{\infty, i+1}(a'_j)| \ll \min \{ \lambda_{\sigma(i)}, \lambda_j \} \text{ for } i = 1, \ldots, n, \quad j = 1, \ldots, n, \]
we have
\[|M_{\infty 1}(a'_j)| \leq \sum_{i=1}^{n} |M_{\infty, i+1}(a'_j)| \ll \lambda_j \text{ for } j = 1, \ldots, n, \]
\[|M_{\infty, i+1}(a'_j)| \ll \lambda_{\sigma(i)} \text{ for } i = 1, \ldots, n, \quad j = 1, \ldots, n, \]
and hence
\[|(M_{\infty 1}(a'_1), \ldots, M_{\infty 1}(a'_n))|_{\infty} \ll \lambda_n, \]
\[|(M_{\infty, i+1}(a'_1), \ldots, M_{\infty, i+1}(a'_n))|_{\infty} \ll \lambda_{\sigma(i)} \text{ for } i = 1, \ldots, n. \]
This leads to
\[
\prod_{p \in S} |\Delta_{p}^F|_p \cdot \mathcal{H}(G) = \prod_{p \in S} |a_{p}|_p \cdot \prod_{p \in S} \left(\prod_{i=1}^{n+1} (|\Delta_{p_{1+1}(a'_1)}, \ldots, \Delta_{p_{1+1}(a'_n)})|_p \right)
\]
\[
\leq \prod_{p \in S} |a_{p}|_p \cdot \prod_{p \in S_0} \prod_{i=1}^{n+1} \max \{ |M_{p_i}(a'_1)|_p, \ldots, |M_{p_i}(a'_n)|_p \}
\]
\[
\cdot \prod_{i=1}^{n+1} \left| \sum_{j=1}^{n} M_{\infty, 2i-1}(a'_j)X_j + \sqrt{-1} \cdot \sum_{j=1}^{n+1} M_{\infty, 2i}(a'_j)X_j \right|_{\infty} \cdot \sum_{i=2r+1}^{n+1} \left| \sum_{j=1}^{n} M_{\infty, i}(a'_j)X_j \right|_{\infty}
\]
\[
\ll \prod_{p \in S} |a_{p}|_p \cdot \lambda_n \cdot \prod_{i=n-r+2}^{n} \lambda_i^2 \cdot \prod_{j=r+1}^{n-r+1} \lambda_j
\]
\[
\ll \prod_{p \in S} |a_{p}|_p \cdot \frac{\lambda_n^2 \prod_{i=1}^{n} \lambda_i^2}{\prod_{i=1}^{n-r+1} \lambda_i} \leq \prod_{p \in S} |a_{p}|_p \cdot \frac{\lambda_n^2 \prod_{i=1}^{n} \lambda_i^2}{\lambda_{n+1}^2} \]
By (4.3.8), (4.3.10) and (4.3.11), the last expression is at most
\[
\ll \prod_{p \in S} |a_{p}|_p \cdot \left(\prod_{p \in S} |\Delta_{p}^F|_p \right)^\frac{4n}{n+1} \cdot \left(\prod_{p \in S} |\Delta_{p}|_p \right)^\frac{2n-2}{n+1} \cdot \left(\prod_{p \in S} |\Delta_{p}^F|_p \right)^2 \cdot \prod_{p \in S} |a_{p}|_p \cdot \frac{\prod_{p \in S} |a_{p}|_p}{\prod_{p \in S} |\Delta_{p}|_p}.
\]
Hence we get
\[\mathcal{H}(G) \ll \left(\prod_{p \in S} |a_{p}|_p \right)^\frac{4n}{n+1} \cdot \left(\prod_{p \in S} |\Delta_{p}|_p \right)^\frac{4}{n+1} \]
and then an application of (4.3.7) completes the proof. \(\square \)
Lemma 4.3.2. Let \(L \) show that

Proof. Put \(G \) These lead to decompositions by Lemma 4.2.4. So for proving Theorem 4.1.1, we may as well work with \(G \) and \(F, G \) are \(\sigma \) where \(\sigma \) and \(\sigma \) that by our choice of \(\sigma \) and \(\sigma \), where the linear forms \(M \) Define the linear forms \(M \) Further, by (4.3.9) we have

From now on, we will work with the decomposable form \(G \) as in Lemma 4.3.1. Since \(F, G \) are \(\mathbb{Z}_S \)-equivalent, we have \(N_{F,S}(m) = N_{G,S}(m) \) and \(\mu^n(\mathbb{A}_{F,S}(m)) = \mu^n(\mathbb{A}_{G,S}(m)) \) by Lemma 4.2.4. So for proving Theorem 4.1.1, we may as well work with \(G \).

Recall that we have chosen a decomposition \(F = a_p L_{p1} \cdots L_{p,n+1} \) for each \(p \in S \). These lead to decompositions \(G = u F_T = a'_p \cdot L'_{p1} \cdots L'_{p,n+1} \) where \(a'_p = u a_p \in \mathbb{Q}_p^* \) and \(L'_{pi}(X) = \sum_{j=1}^n L_{pi}(a'_j) X_j \). Note that formula (4.1.2) still holds for \(G \).

Lemma 4.3.2. Let \((x_p)_{p \in S} \in \mathbb{A}_S \) such that \(x_p \neq 0 \) for each \(p \in S \). Then there is a set of indices \(J := \{ j_p \in \{1, \ldots, n+1\} : p \in S \} \) such that

\[
\prod_{p \in S} \prod_{i \neq j_p} |L'_{pi}(x_p)|_p \leq c_2 \prod_{p \in S} \frac{|G(x_p)|_p}{|x_p|_p|D(G)|^{1/2(n+1)}}
\]

where \(c_2 \) is an effectively computable constant depending only on \(n \) and \(S \).

Proof. Put \(y_p = T x_p \) for \(p \in S \) where \(T \) is given by (4.3.6). Using (4.3.7), it suffices to show that

\[
\prod_{p \in S} \prod_{i \neq j_p} |L_{pi}(y_p)|_p \ll \prod_{p \in S} |F(y_p)|_p \ll \prod_{p \in S} |T^{-1} y_p|_p|D(F)|^{1/2(n+1)}. \tag{4.3.12}
\]

Define the linear forms \(M'_{pi} := M_{pi}T = \sum_{j=1}^n M_{pi}(a'_j) X_j \) (\(p \in S, i = 1, \ldots, n+1 \)) where the linear forms \(M_{pi} \) (\(p \in S, i = 1, \ldots, n+1 \)) have been defined by (4.3.2). Recall that by our choice of \(\sigma \) and \(\sigma \), we have \(\lambda_{\sigma(i)} \) (\(i = 1, \ldots, n \)), \(|M'_{\infty,i+1}|_\infty \ll \lambda_{\sigma(i)} \) (\(i = 1, \ldots, n \)), \(|M'_{p,i+1}|_p \ll 1 \) (\(p \in S_0, i = 1, \ldots, n \)). \tag{4.3.13}

Further, by (4.3.9) we have

\[
\lambda_1 \ldots \lambda_n \gg \prod_{p \in S} |\det(M_{p2}, \ldots, M_{pn+1})|_p = \prod_{p \in S} |\det(M'_{p2}, \ldots, M'_{pn+1})|_p. \tag{4.3.14}
\]

hence

\[
\prod_{p \in S} \prod_{i=1}^n |M'_{p,i+1}|_p \ll \prod_{i=1}^n \lambda_{\sigma(i)} \ll \prod_{p \in S} |\det(M'_{p2}, \ldots, M'_{pn+1})|_p.
\]
On the other hand, by Hadamard's inequality we have

\[
\prod_{p \in S} |\det(M'_{p2}, M'_{p3}, \ldots, M'_{p,n+1})|_p \ll \prod_{p \in S} \prod_{i=1}^n |M'_{p,i+1}|_p.
\]

So in fact,

\[
\prod_{p \in S} |\det(M'_{p2}, M'_{p3}, \ldots, M'_{p,n+1})|_p \gg \prod_{p \in S} \prod_{i=1}^n |M'_{p,i+1}|_p. \tag{4.3.15}
\]

By Lemma 2.2.1, there is a set of indices \(\{i_p \in \{2, \ldots, n + 1\} : p \in S\}\) such that

\[
\prod_{p \in S} \frac{|M'_{i_p}(x_p)|_p}{|M'_{i_p}|_p} \gg \prod_{p \in S} \frac{|x_p|_p |\det(M'_{p2}, M'_{p3}, \ldots, M'_{p,n+1})|_p}{\prod_{i=1}^n |M'_{p,i+1}|_p}. \tag{4.3.16}
\]

Thus (4.3.15) and (4.3.16) imply

\[
\prod_{p \in S} |M_{i_p}(y_p)|_p = \prod_{p \in S} |M'_{i_p}(x_p)|_p \gg \prod_{p \in S} |x_p|_p |M'_{i_p}|_p = \prod_{p \in S} |T^{-1}y_p|_p |M'_{i_p}|_p. \tag{4.3.17}
\]

By (4.3.13), we also have

\[
\prod_{p \in S} \prod_{i \neq 1 \atop i+1 \neq p}^n |M'_{p,i+1}|_p \ll \prod_{i=2}^n \lambda_{\sigma(i)} \ll \prod_{i=2}^n \lambda_i
\]

and together with (4.3.14), (4.3.15) this implies

\[
\prod_{p \in S} |M'_{p,i_p}|_p \gg \lambda_1.
\]

Together with (4.3.10), this implies

\[
\prod_{p \in S} |M'_{p,i_p}|_p \gg \left(\frac{\prod_{p \in S} |\Delta_p^F|_p}{\prod_{p \in S} |a_p|_p}\right)^{1/(n+1)}.
\]

Inserting this into (4.3.17), we obtain

\[
\prod_{p \in S} |M_{i_p}(y_p)|_p \gg \left(\frac{\prod_{p \in S} |\Delta_p^F|_p}{\prod_{p \in S} |a_p|_p}\right)^{1/(n+1)} \prod_{p \in S} |T^{-1}y_p|_p.
\]
For each $p \in S$ there is a $j_p \in \{1, \ldots, n + 1\}$ such that $|M_{p,i_p}(y_p)| \leq |\Delta_{p,j_p}L_{p,j_p}(y_p)|_p$. So we have

$$\prod_{p \in S} |\Delta_{p,j_p}L_{p,j_p}(y_p)|_p \gg \left(\prod_{p \in S} |\Delta_p|_p \right)^{1/(n+1)} \prod_{p \in S} |T^{-1}y_p|^p.$$

By multiplying this on both sides with

$$\prod_{p \in S} (|a_p|_p \prod_{i \neq j_p} |\Delta_{pi}L_{pi}(y_p)|_p)$$

we get

$$\prod_{p \in S} |\Delta_p^F(y_p)|_p \gg \prod_{p \in S} |a_p|_p^{n/(n+1)} \cdot \prod_{p \in S} \prod_{i \neq j_p} |L_{pi}(y_p)|_p \cdot \prod_{p \in S} |\Delta_p|_p^{1/(n+1)} \cdot \prod_{p \in S} |T^{-1}y_p|^p$$

which implies (4.3.12).

\[\Box\]

4.4 Proof of Theorem 4.1.1

We separate the proof into two cases: the small discriminant case and the large discriminant case.

4.4.1 The small discriminant case

Assume

$$\prod_{p \in S} |D(G)|_p \leq m^{2(n+1)}.$$

Put

$$B_0 = \frac{m^{1/n}}{\left(\prod_{p \in S} |D(G)|_p \right)^{1/(2n(n+1))}}.$$

Note that $B_0 \geq 1$.

For $l \in \mathbb{Z}_{\geq 0}$, let

$$B_l = e^l B_0, \quad C_l = e \cdot B_l, \quad A_l = c_2 \frac{B_{l_0}}{B_l}$$

where c_2 is the constant from Lemma 4.3.2.
We recall that

\[A_{G,S}(m, B_0) = \left\{ (x_p)_p \in A_{G,S}(m) : |x_\infty| \leq B_0 \right\}. \]

By Proposition 1.4.6, we have

\[\left| A_{G,S}(m, B_0) \cap \mathbb{Z}^n \right| - \mu^n(A_{G,S}(m, B_0)) \ll B_0^{n-1}(1 + \log(H(G)B_0))^{(n+1)|S_0|. \] (4.4.1)

Now by Lemma 4.3.2, for each \((x_p)_p \in A_{G,S}(m)\) with \(x_p \neq 0\) for \(p \in S\) and \(|x_\infty| \geq B_l\), there is a set of indices \(J := \{j_p : p \in S\}\) such that

\[\prod_{p \in S} \prod_{i \neq j_p} \left| L'_p(x_p)_p \right| p \leq c_2 \prod_{p \in S} \left| G(x_p)_p \right| D(G)_p^{1/2(n+1)} \leq c_2 \frac{m}{\|x_\infty\|} \cdot \prod_{p \in S} \left| D(G)_p \right|^{1/2(n+1)} \leq c_2 \frac{B_0^{n-1}}{B_l} = A_l. \]

Note that

\[|S|(n - 1) \cdot n^{2|S|} \cdot (\log(n^{n/2}n! \prod_{p = S_0} (pd)^{nd/2} \cdot A_l))^{S(n-1)-1} \leq |S| \cdot n^{2|S|+1} \cdot (\log(B_0e^{2l+(n-1)(l+1)})^{S(n-1)-1} \leq |S| \cdot n^{2|S|+1} \cdot (\log B_0 + (n + 1)(l + 1))^{S(n-1)-1} \]

and

\[|S| \cdot n^{2|S|+1} \cdot (\log B_0 + (n + 1)(l + 1))^{S(n-1)-1} \geq (n!)^{S(n-1)}. \]

Using Lemma 2.2.12 and counting the possibilities of \(j_p (p \in S)\), we deduce that for every \(l \geq 0\) the set

\[S_l := \left\{ (x_p)_p \in A^n_S : \prod_{p \in S} \prod_{i \neq j_p} \left| L'_p(x_p)_p \right| p \leq A_l, B_l \leq |x_\infty| \leq C_l \right\} \]

can be covered by at most

\[(n + 1)^{|S|} \cdot |S| \cdot n^{2|S|+1} \cdot (\log B_0 + (n + 1)(l + 1))^{S(n-1)-1} \]

sets of the form

\[C := \left\{ (x_p)_p \in A^n_S : \left| N'_p(x_p)_p \right| p \leq a_{pi}, i = 1, \ldots, n, p \in S \right\} \] (4.4.2)
where $N'_{p_1}, N'_{p_2}, \ldots, N'_{p_n}$ are linear forms in $\mathbb{Q}_p[X_1, \ldots, X_n]$ with

$$|\det(N'_{p_1}, N'_{p_2}, \ldots, N'_{p_n})|_p = 1, |N'_{p_1}|_p = \cdots = |N'_{p_n}|_p = 1$$

for $p \in S$ and the a_{pi} ($p \in S, i = 1, \ldots, n$) are reals with

$$\prod_{p \in S} \prod_{i=1}^n a_{pi} < \frac{C_i A_i}{B_i} \cdot n^{n/2} n! \prod_{p \in S_0} (pd)^{nd/2} \cdot e^{|S|(n-1)+1} \ll e^{-l} A_0.$$

Further, Lemma 1.2.5 implies

$$\mu^n(C) \ll \prod_{p \in S} \prod_{i=1}^n a_{pi} \ll e^{-l} A_0.$$

Hence

$$\sum_{l=0}^\infty \mu^n(S_l) \ll \sum_{l=0}^\infty \left(\log B_0 + (n+1)(l+1) \right)^{|S|(n-1)-1} \cdot e^{-l} A_0$$

$$\ll (\log B_0 + 1)^{|S|(n-1)-1} \cdot A_0.$$

Therefore we have

$$|\mu^n(A_{G,S}(m)) - \mu^n(\mathbb{A}_{G,S}(m, B_0))| \ll \sum_{l=0}^\infty \mu^n(S_l) \ll (\log B_0 + 1)^{|S|(n-1)-1} \cdot A_0$$

and

$$\left| \mu^n(A_{G,S}(m)) - \mu^n(\mathbb{A}_{G,S}(m, B_0) \cap \mathbb{Z}^n) \right|$$

$$\leq \left| \mu^n(A_{G,S}(m)) - \mu^n(\mathbb{A}_{G,S}(m, B_0)) \right| + \left| \mathbb{A}_{G,S}(m, B_0) \cap \mathbb{Z}^n - \mu^n(\mathbb{A}_{G,S}(m, B_0)) \right|$$

$$\ll (\log B_0 + 1)^{|S|(n-1)-1} \cdot A_0 + B_0^{n-1} \left(1 + \log(\mathcal{H}(G)B_0) \right)^{(n+1)|S_0|}$$

$$\ll B_0^{n-1} \left(1 + \log(\mathcal{H}(G)B_0) \right)^{|S|(n+1)}.$$ \quad (4.4.3)

We next estimate the cardinality of the set

$$\mathcal{L} := \left\{ x \in \mathbb{Z}^n : \prod_{p \in S} |G(x)|_p \leq m, |x|_\infty \geq B_0, |x|_p = 1 \text{ for } p \in S_0 \right\}.$$

108
Lemma 4.4.1. The set \mathcal{L} can be covered by a union of a finite set Ω of cardinality

$$|\Omega| \ll (\log B_0 + 1)^{|S|(n-1)} \cdot B_0^{n-1}$$

and

$$\ll (1 + \log m)^{|S|(n-1)}$$

proper linear subspaces of \mathbb{Q}^n.

Proof. Similarly as in Lemma 2.4.1, we can estimate the cardinality of Ω by

$$|\Omega| \ll \sum_{l=0}^{\infty} \mu^n(S_l) \ll (\log B_0 + 1)^{|S|(n-1)} \cdot B_0^{n-1}.$$

Let

$$l_0 = \lfloor 2 \log(c_2 \cdot B_0^n) \rfloor, \quad l_1 = l_0 + \lceil \log(c_1 \cdot m^5) \rceil$$

where c_1 is the constant from Lemma 4.3.1.

Define

$$\mathcal{L}_1 = \{ x \in \mathbb{Z}^n : \prod_{p \in S} |G(x)|_p \leq m, B_0 \leq |x|_\infty \leq C_l, |x|_p = 1 \text{ for } p \in S_0 \},$$

$$\mathcal{L}_2 = \{ x \in \mathbb{Z}^n : \prod_{p \in S} |G(x)|_p \leq m, |x|_\infty \geq C_l, |x|_p = 1 \text{ for } p \in S_0 \}.$$ \hfill (4.4.4)

For any x in \mathcal{L}_2 such that $\prod_{p \in S} |G(x)|_p \neq 0$, we have $\prod_{p \in S} |G(x)|_p \geq 1$. Let x be such a solution and write $x = gx'$ with x' is primitive and $\gcd(g, \prod_{i=1}^{\ell} p_i) = 1$. Then

$$m \geq \prod_{p \in S} |G(x)|_p = g^{n+1} \prod_{p \in S} |G(x')|_p \geq g^{n+1}.$$

Thus $g \leq m^{1/(n+1)}$.

By Lemma 4.3.1 we have

$$\mathcal{H}(G) \leq c_1 \cdot (\prod_{p \in S} |D(G)|_p)^{2/\pi} \leq m^4.$$
Hence $|x'|_\infty = g^{-1}|x|_\infty \geq m^{-1/(n+1)}C_l \geq m^{-1/(n+1)}c_1 \cdot m^5C_l \geq \max\{C_l, \mathcal{H}(G)\}$.

Using Lemma 4.3.2, there is a set of indices $\mathcal{J} := \{j_p : p \in S\}$ such that

$$\prod_{p \in S} \frac{\prod_{i \neq j_p} |L'_{p_i}(x')|_p}{\det(L'_{i,p})_{i \neq j_p}} \leq c_2 \cdot \frac{B_0^n}{|x'|_\infty} \leq c_2 \cdot \frac{B_0^n}{|x'|_\infty^{1/2}C_l^{1/2}} \leq |x'|^{-1/2}. \quad (4.4.5)$$

By Lemma 1.1.6, we may assume that each linear form L'_{p_i} occurring here is defined over a number field of degree at most d. So we have

$$[\mathbb{Q}(L'_{p_i}) : \mathbb{Q}] \leq d \quad \text{and} \quad H_{\mathbb{Q}(L'_{p_i})}(L'_{p_i}) \leq \mathcal{H}(G) \leq |x'|_\infty$$

where $\mathbb{Q}(L'_{p_i})$ is the extension of \mathbb{Q} generated by the coordinates of L'_{p_i}. Therefore we can apply a version of the quantitative Subspace Theorem such as [6, Corollary] which implies that the primitive integer solutions the inequality (4.4.5) with $|x'|_\infty \geq \max\{C_l, \mathcal{H}(G)\}$

lie in the union of $\ll 1$ proper linear subspaces of \mathbb{Q}^n. Taking into account of the number of possible tuples $\{j_p : p \in S\}$, we conclude that the elements of \mathcal{L}_2 lie in $\ll 1$ proper subspaces.

A similar estimate as that for $\mu^n(S_l)$ gives that the elements $x \in \mathcal{L}_1$ with $B_0 \leq |x|_\infty \leq C_l$ lie in the union of at most

$$(\log B_0 + (n + 1)(l + 1))^{\mathcal{S}(n-1)-1}$$

convex sets \mathcal{C} of the form (4.4.2). The set of integer points in each such kind of set \mathcal{C} is contained in a proper linear subspace of \mathbb{Q}^n that is related to \mathcal{C}. Hence the solutions x with $B_0 \leq |x|_\infty \leq C_l$ that are not counted in Ω lie in the union of

$$\ll \sum_{l=0}^{l_1} \left(\log B_0 + (n + 1)(l + 1)\right)^{\mathcal{S}(n-1)-1} \ll \left(\log B_0 + (n + 1)(l_1 + 1)\right)^{\mathcal{S}(n-1)-1}

\ll (1 + \log m)^{\mathcal{S}(n-1)}$$

proper linear subspaces of \mathbb{Q}^n. \qed
By Theorem 2.1.3 we know that the number of integral solutions of (4.1.1) in a proper subspace is \(\ll m^{n+1} \). Hence Lemma 4.4.1 implies

\[
|\mathcal{L}| \ll (\log B_0 + 1)^{|S|(n-1)-1} \cdot B_0^{n-1} + (1 + \log m)^{|S|(n-1)} m^{(n-1)/(n+1)}.
\] (4.4.6)

Combining (4.4.3) and (4.4.6), we conclude our proof of Theorem 4.0.10 for the small discriminant case.

4.4.2 The large discriminant case

Fix \(\epsilon \) with \(0 < \epsilon < 1 \). One may take \(\epsilon = n/(n+1) \).

Assume

\[
\left(\prod_{p \in S} |D(G)|_p \right)^{1-\epsilon} \geq m^2.
\]

Then \(\prod_{p \in S} |D(G)|_p \geq m^2 \).

Choose \(\lambda \) with \(0 < \lambda < \epsilon/4 \) and let \(B_0 = m^{1/(n+1)} / \mathcal{H}(G)^\lambda \), \(B_l = d^l B_0 \), \(C_l = e B_l \). So \(B_0 \leq m^{1/n+1} \).

By Lemma 4.3.2 for every solution \(x \) of inequality (4.1.1) with \(|x|_\infty \geq B_0 \), there are indices \(J := (j_p)_{p \in S} \) such that

\[
\prod_{p \in S} \frac{\prod_{i \neq j_p} |L_{p_i}'(x)|_p}{|\det(L_{p_i}')_{i \neq j_p}|_p} \leq c_2 \prod_{p \in S} \frac{|G(x)|_p^{1/2(n+1)}}{|x|_\infty \cdot \prod_{p \in S} |D(G)|_p^{1/2(n+1)}} \leq \frac{c_2 m}{|x|_\infty \cdot \prod_{p \in S} |D(G)|_p^{1/2(n+1)}}.
\]

Let

\[
t_1 = \max \left\{ \log \left(\prod_{p \in S} |D(G)|_p^{(2^n m^{n+1})} \right) + 2 \log (c_2 \cdot m), \log \left(c_1 \cdot \prod_{p \in S} |D(G)|_p^{4(1+\lambda)/(n+1)} \right) \right\}.
\]
Then by Lemma 4.3.1,
\[C_{l_1} \geq B_0 \max\{\mathcal{H}(G)^\lambda (c_2 \cdot m)^2, \mathcal{H}(G)^{1+\lambda}\} = m^{1/(n+1)} \max\{(c_2 \cdot m)^2, \mathcal{H}(G)\}. \]

Define the sets \(\mathcal{L}_1, \mathcal{L}_2 \) as in (4.4.4). We first count the cardinality of \(\mathcal{L}_2 \). Let \(x \in \mathcal{L}_2 \). As before, we write \(x = gx' \) with \(x' \) primitive. Then we have
\[g \leq m^{1/(n+1)} \text{ and } |x'|_\infty \geq C_{l_1} g \geq \max\{(c_2 \cdot m)^2, \mathcal{H}(G)\}. \]

Again by Lemma 4.3.2, we have
\[
\prod_{p \in S} \frac{\prod_{i \neq j_p} |L'_{i,p}(x')_p|}{\det(L'_{i,p})_{i \neq j_p}} \leq \frac{c_2 \cdot m}{|x'|_\infty} \prod_{p \in S} |D(G)|_p^{1/2(n+1)} \leq \frac{c_2 \cdot m}{|x'|_\infty} < \frac{1}{|x'|_\infty}. \tag{4.4.7}
\]

By the \(p \)-adic Subspace Theorem, the set of primitive integer solutions of (4.4.7) lies in the union of \(\ll 1 \) proper linear subspaces of \(\mathbb{Q}^n \). Taking into account the number of possible tuples \(\{j_p : p \in S\} \), the integer solutions of (4.1.1) with \(|x|_\infty \geq C_{l_1} \) lie in \(\ll 1 \) proper subspaces. By Theorem 2.1.3 each subspace contains \(\ll m^{n+1} \) solutions of (4.1.1), leading to
\[
|\mathcal{L}_2| \ll m^{n+1}. \tag{4.4.8}
\]

We next estimate the cardinality of \(\mathcal{L}_1 \).

Set
\[
A = \frac{c_2 \cdot m^{n+1}}{\prod_{p \in S} |D(G)|_p^{1/2(n+1)}}, \quad B = B_0, \quad C = C_{l_1} \text{ and } D = \prod_{p \in S} |D(G)|_p^{2(n+1)}(|S|^{n+1}).
\]

Using Lemma 2.2.12 and taking into consideration the number of tuples \(\{j_p, p \in S\} \), we deduce that \(\mathcal{L}_1 \) can be covered by at most
\[
\ll \left(\log_D \left(\frac{C^n}{n! \prod_{p \in S_0} (pd)^{nd/2} \cdot A} \right) \right)^{|S|/n-1}
\]
\[
\ll \left(\frac{n(log m + l_1)}{(\epsilon/2 - 2\lambda) \log(\prod_{p \in S} |D(G)|_p)} \right)^{|S|/n-1}
\]
\[
\ll (\epsilon/2 - 2\lambda)^{-|S|/n-1}
\]

112
sets of the form

\[C := \{(x_p)_p \in \mathbb{A}^n_S : |N'_p(x_p)|_p \leq a_{pi} \text{ for } i = 1, \ldots, n, \ p \in S\} \]

where \(N'_p, N'_p, \ldots, N'_p \) are linear forms in \(\mathbb{Q}_p[x_1, \ldots, x_n] \) with

\[|\det(N'_p, N'_p, \ldots, N'_p)|_p = 1, \ |N'_p|_p = \cdots = |N'_p|_p = 1, \ p \in S \]

and the \(a_{pi} \) are reals with

\[\prod_{p \in S} \prod_{i=1}^n a_{pi} < A \cdot n! \prod_{p \in S_0} (pd)^{nd/2} \cdot |S|^{-n+1} \ll m^{\frac{n-1}{n+1}}. \]

By Lemma 1.2.5, a convex set \(C \) that contains \(n \) linearly independent integral points contains \(\ll m^{\frac{n-1}{n+1}} \) integral points. For the other convex sets, the number of elements of \(\mathcal{L}_1 \) that are contained in a proper subspace is \(\ll m^{\frac{n-1}{n+1}} \) and the number of such proper subspaces is \(\ll (\epsilon - 4\lambda)^{-\left(|S|n-1\right)} \). So we have

\[|\mathcal{L}_1| \ll (\epsilon - 4\lambda)^{-\left(|S|n-1\right)} m^{\frac{n-1}{n+1}}. \quad (4.4.9) \]

It remains to bound the cardinality of \(\mathbb{A}_{G,S}(m, B_0) \cap \mathbb{Z}^n \). According to Lemma 4.2.7, for every decomposable form \(G \in \mathbb{Z}[x_1, \ldots, x_n] \) of degree \(n + 1 \) with \(D(G) \neq 0 \), we have

\[\left(\prod_{p \in S} |D(G)|_p \right)^{1/2(n+1)} \mu^n(A_{G,S}(1)) \ll 1. \]

By Lemma 1.3.1, \(\mu^n(A_{G,S}(m)) = m^{n/(n+1)} \cdot \mu^n(A_{G,S}(1)) \), hence

\[\mu^n(A_{G,S}(m)) \ll \frac{m^{n/(n+1)}}{\left(\prod_{p \in S} |D(G)|_p \right)^{1/2(n+1)}} \ll \frac{m^{n/(n+1)}}{m^{1/(n+1)}} = m^{\frac{n-1}{n+1}} (m \geq 1). \quad (4.4.10) \]

Using Lemma 1.4.6, we have

\[\left| \mathbb{A}_{G,S}(m, B_0) \cap \mathbb{Z}^n - \mu^n(\mathbb{A}_{G,S}(m, B_0)) \right| \ll (B_0 + 1)^{n-1}(1 + \log(H(G)B_0))^{(n+1)|S_0|} \ll m^{\frac{n-1}{n+1}}(1 + \log m)^{(n+1)|S_0|}. \]

113
and hence

\[|A_{G,S}(m, B_0) \cap \mathbb{Z}^n| \ll m^{\frac{n-1}{n+1}} (1 + \log m)^{(n+1)|S_0|} + \mu^n(A_{G,S}(m, B_0)) \]
\[\ll m^{\frac{n-1}{n+1}} (1 + \log m)^{(n+1)|S_0|} + \mu^n(A_{G,S}(m)) \]
\[\ll m^{\frac{n-1}{n+1}} (1 + \log m)^{(n+1)|S_0|}. \] (4.4.11)

Combining (4.4.8), (4.4.9) and (4.4.11) and choosing appropriately \(\epsilon, \lambda \), we have

\[N_{G,S}(m) \ll |A_{G,S}(m, B_0) \cap \mathbb{Z}^n| + |L_1| + |L_2| \ll m^{\frac{n-1}{n+1}} (1 + \log m)^{(n+1)|S_0|} \]

and therefore

\[|N_{G,S}(m) - \mu^n(A_{G,S}(m))| \ll N_{G,S}(m) + \mu^n(A_{G,S}(m)) \ll m^{\frac{n-1}{n+1}} (1 + \log m)^{(n+1)|S_0|}. \]

Together with the result in 4.4.1, this completes our proof of Theorem 4.1.1.