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Introduction

History

The parathyroid glands, the last major organ to be discovered in humans, were first

recognized by Virchow (1863); however, it was Ivar Sandström (1852-1889) who is

generally acknowledged as the first to describe these glands in detail.
44

 Sandström

demonstrated that the glands were structures separate from the thyroid and gave

these organs their name of glandula parathyreoidea. He reported the number and

histology of these glands, but the function of these glands remained unknown until

1891, when von Recklingshausen
50

 reported the association between bone disease

and hyperparathyroidsim (HPT).

Parathyroid glands

Normal gross anatomy and embryology

In the majority of cases, the parathyroid consists of four oval bone-shaped glands
25

,

two superior and two inferior. Five percent of people have supernumerary glands

(defined as weight >5 mg and located apart from the other 4 glands).
16 

 The superior

parathyroid gland arises from the fourth branchial (pharyngeal) pouch and descends

into the neck with the thyroid gland. The inferior parathyroid glands, together with

the thymus, are derived from the third branchial pouch.

The superior glands are most commonly localized in the fatty tissue on the middle

third of the posterior lateral border of the thyroid gland, while the inferior glands are

located on the lower thyroid poles close to the inferior thyroid artery.
5

The mean weight of all four glands is approximately 120 mg in men and 130 mg in

women.
16;25

 Each gland has an average size of 4x3x1.5 mm, with the lower glands

generally larger than the upper glands.
1

 The colour varies from reddish brown to a

yellow tan depending on the amount of stromal fat.

The arterial supply of the glands is derived from branches of the superior thyroid

artery (upper parathyroid) and the inferior thyroid artery (lower parathyroid).

Venous drainage is achieved by the superior thyroid vene (upper parathyroid) and

the inferior thyroid vene (lower parathyroid).
16

Normal histology

The parathyroid glands are microscopically composed of three types of parenchymal

cells interspersed with a varying amount of stroma surrounded by a thin connective

tissue capsule. The parenchyma is composed of chief cells, oncocytic or oxyphilic

cells and water clear cells.

Chief cells are small and regular cells with an amphophylic and relatively lucent

cytoplasm. The nuclei are centrally located, with uniform chromatin and small

inconspicuous nucleoli. They are often moulded and show overlap. These cells

synthesize, transport, store, and secrete parathyroid hormone (PTH).
27;41

Oncocytic or oxyphilic cells have a more abundant cytoplasm, which is deeply

granular and acidophilic. These types of cells appear at puberty and increase in

number as age progresses. The cells are often present in the form of clusters or

nodular collections.

Water clear cells have an abundant and optically clear cytoplasm and sharply defined

cell membranes. It is suggested that the water clear cells are inactive chief cells.
16

The stromal component is composed of mature fat cells, blood vessels and a varying

amount of connective tissue. Stromal fat cells begin to appear late in the first decade

of life and increase throughout life, reaching a maximum in the third to fifth decades
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of life.
16

Parathyroid cells have a lifespan of approximately 20 yrs eventually undergoing

apoptosis
52

. Mitoses are almost never seen in normal parathyroid cells.
40

Physiology

Calcium plays a central role in a number of physiological processes that are essential

for life including neuromuscular transmission, muscle contraction, cardiac

automaticity, nerve function, cell division and movement and certain oxidative

processes. Normal calcium concentrations are maintained as a result of tightly

regulated ion transport by the kidneys, intestinal tract, and bone (see Figure 1). This

is mediated by calcaemic hormones, in particular the parathyroid hormone (PTH) and

the active form of Vitamin D.
24

PTH is a linear polypeptide containing 84 amino acid residues, whose major function

is to increase extracellular Ca
2+

 concentration. It is synthesized in the chief cells in

parathyroid gland, in the form of a large precursor molecule: preproPTH, which is

processed and shortened in the parathyroid cell. Once secreted, PTH has a half-life of

approximately 2 minutes.

The primary function of PTH is to increase serum Ca
2+

 concentration and in this way

maintain the extracellular fluid (ECF) calcium concentration within a narrow normal

range. Secretion of PTH is regulated by extracellular calcium, via a G protein-coupled

calcium-sensing receptor.
9

Figure 1
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The hormone stimulates calcium release from bone, reabsorption from the kidneys

and uptake from the intestines.
12

 The latter process is mediated by 1,25-

dihydrocholecalciferol, which is the biological active form of Vitamin D3

(cholecalciferol). PTH is required to metabolise Vitamin D3, which is formed in the

skin through the action of UV light, to 1,25-dihydrocholecalciferol in the liver.

A defect in the calcium sensing signalling cascade mentioned above can lead to

hyperparathyroidism, characterized by inappropriately high levels of PTH in relation

to extra cellular calcium levels and hyperplasia or increased cell proliferation.
10;11

Hyperparathyroidism

Etiology

Increased cell proliferation manifests as hyperplastic or neoplastic parathyroid

lesions. HPT may develop as a primary disorder, either idiopathic or familial, or as a

secondary disorder in response to a biochemical imbalance, generally due to renal

impairment. It may also arise in response to lithium treatment as a therapy for

bipolar disorder. Secondary HPT may in turn progress to a tertiary disorder; the

parathyroid hyperactivity becomes autonomous and is no longer responsive to

physiological regulation. The mechanism and molecular pathway(s) underlying this

phenomenon are unclear.

Parathyroid gland lesions

Primary hyperparathyroidism (PHPT) is caused by adenomas in 80% of the cases,

hyperplasia in 20% and carcinoma in 1% of the cases

Hyperplasia is defined as an absolute increase in parathyroid parenchymal cell mass

resulting from proliferation of chief cells, oncocytic cells and transitional oncocytic

cells in multiple parathyroid glands in the absence of a known stimulus for PTH

hypersecretion
15

A parathyroid adenoma is a benign encapsulated neoplasm usually involving a single

gland with an adjacent rim of normal glandular tissue. The presence of a

microscopically normal second gland is thought to represent the best evidence that a

given parathyroid lesion is an adenoma rather than hyperplasia.
15

Carcinomas are malignant neoplasms derived from parathyroid parenchymal cells.
26

Histology

Parathyroid tumours are genetically, clinically and histologically very heterogeneous

lesions, which often makes the diagnosis difficult if not impossible.

Benign tumours (adenoma and hyperplasia) are treated with simple

parathyroidectomy; however, there is an important distinction between adenoma and

hyperplasia in that hyperplasia will recur or persist if only one gland has been

removed. Intraoperatively, parathyroid carcinoma usually appears as a large, firm,

whitish-gray tumour that commonly has invaded surrounding structures. Despite

these defining characteristics, parathyroid carcinoma is often not recognized at the

time of initial surgery.
43

 In patients who undergo routine parathyroidectomy, as

cancer is not suspected, 50% or more will develop local recurrence.
51

 Furthermore,

almost 90% of all patients with recurrent hyperparathyroidism will eventually die of

the disease.
31

 In contrast, patients where an adequate diagnosis was possible

intraoperatively and treated by en bloc resection, local recurrence ranges from 10-

33%, and long-term survival improves significantly.
31;53

In summary, a quick (intra-operative) diagnosis of the three parathyroid tumours is

essential as it has implications for (surgical) therapy.

However, intraoperative diagnosis is difficult, as there are almost no reliable

differences between the tumours histologically. All three tumour types are

characterized by the absence of intraparenchymatous fat and are composed of chief
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cells, oncocytic cells or mixtures of these cell types. The only difference between

adenoma and hyperplasia is the amount of affected glands and thus it is virtually

impossible to differentiate between these two benign tumours purely on histological

grounds.
19

The distinction between parathyroid carcinoma and adenomas based on histology and

morphology alone is also difficult. Some authors have claimed that trabecular growth,

dense fibrous bands, spindle shape of tumour cells, mitotic figures and nuclear

atypia
45

 are helpful criteria to diagnose parathyroid carcinomas, but all these criteria

can also be observed in benign parathyroid lesions.
7;34;46

 Therefore, none of these

characteristics are specific, although the presence of several in the same tumour

increases the possibility of malignancy.
23

 An unequivocal diagnosis of parathyroid

carcinoma is only possible by demonstration of distant or local regional metastasis,

characterized histologically by blood vessel invasion and/or capsular invasion.
42

In conclusion, diagnostic accuracy of parathyroid tumours up until now has relied on

multiple markers including the recognition of the constellation of macroscopic and

microscopic features in combination with multidisciplinary correlation and not by

histology alone. Based on recent insights, including work described in this thesis,

histology might be supplemented by molecular investigations.

Primary hyperparathyroidism

PHPT is one of the most common endocrinopathies, with a prevalence of

approximately 1-3 per 1000 individuals.
2

 Sporadic PHPT is most common in post-

menopausal women, with an estimated prevalence of 34 per 1000 individuals from

this population subgroup.
33

 The majority of tumours in primary hyperparathyroidism

are sporadic. However, approximately 5% are associated with the autosomal domi-

nant hereditary cancer syndromes Multiple Endocrine Neoplasia type 1 (MEN 1; OMIM

#131100) and type 2A (MEN 2A; OMIM #171400), Hyperparathyroidism-Jaw Tumour

Syndrome (HPT-JT, OMIM #145001), and Familial Isolated Hyperparathyroidism (FIHP,

OMIM #145000).
35

MEN1 syndrome is characterized by the occurrence of tumours of the parathyroids,

pancreatic islet cells and anterior pituitary. PHPT represents the most common

endocrinopathy in MEN1, reaching nearly 100% penetrance by age 40.
8

 Parathyroid

tumours occur in 95% of the MEN1 patients.
49

The MEN1 gene consists of 10 exons that encode a 610 amino acid protein, referred

to as MENIN. MENIN appears to have a large number of potential functions through

interactions with proteins that alter cell proliferation mechanisms.
49

 The MEN1 gene

represents a tumour suppressor gene (TSG) and is located on chromosome 11q13.

The majority of tumours (95%) show additional LOH consistent with Knudsen’s two hit

theory. MEN2 (OMIM 171400) is a rare autosomal dominant disorder of multiple

endocrine neoplasms, including medullary thyroid carcinoma, pheochromocytoma,

and parathyroid adenomas. Medullary thyroid carcinoma is the most prominent

feature, as parathyroid tumours are found in 10-20% of affected family members.
30

MEN2 is caused by germline activating mutations of the RET proto-oncogene at

10q11.2
17;38

.

HPT-JT (OMIM 145001) is an autosomal dominant syndrome characterised by

parathyroid adenoma or carcinoma, ossifying fibroma of the mandible or maxilla, and

renal lesions including Wilms tumour, renal cysts and tumours and uterine

tumours.
14;22

 About 80% of the patients present with hyperparathyroidism in late

childhood or early adulthood
35

. The incidence of carcinoma in HPT-JT syndrome is

reported to be 10-15%.
13;35

 The high incidence of cystic change is another unique

feature of parathyroid neoplasia in this syndrome.
34

The gene causing HPT-JT is localized at chromosome 1q24-q32 and is known as the

HRPT2 gene (also known as Cdc73) and is thought to function as a tumour

suppressor gene.
47
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A number of families with HPT alone (known as FIHP) have been described. A disease

with an autosomal dominant pattern of inheritance, FIHP is known to be a genetically

heterogeneous condition with germline mutations in CASR but also linkage to MEN1
48

and the HRPT2 region.
37

Sporadic parathyroid tumours

The etiology of sporadic HPT has long been unknown, until recently when several

genetic mechanisms have been revealed that play a role in the development of

sporadic parathyroid tumours. CCND1 and MEN1 have been established as having

important roles in parathyroid tumourigenesis.

A translocation between CCND1 and PTH resulting in the overexpression of CCND1

has been found in a number of parathyroid adenomas. 
6

 Furthermore mutations in

MEN1 are reported in up to 30% of sporadic parathyroid adenomas.
18;28;36

Chromosomal aberrations and genetic abnormalities in parathyroid

tumours

Chromosomal losses and gains have been characterized in parathyroid tumours

using comparative genomic hybridization and LOH studies. In general, parathyroid

carcinomas show more chromosomal aberrations compared to adenomas (1.3x more

losses and 3x more gains). In adenomas, more losses (2.7x) than gains have been

found.

Regions frequently (in >10% of cases) lost in carcinomas are 1p, 13q, 6q, 9p, 4q,

18q and 2q. Regions frequently (in >10% of cases) gained in carcinomas are

chromosomal regions xq, 1q, 16p, 9q, xp, 19q, 20q, 17q and 5q. Adenomas show

frequently loss of chromosomal regions 11q, 11p, 15q, 1p, 13q and 22q. Gains are

only seen in adenomas in chromosomal region 19p.
4;20;32;39

Reports considering chromosomal changes in hyperplasia show conflicting results.

Several studies using CGH
21 

and LOH
29

 report a relative lack of numerical

chromosomal alterations (besides a gain of 12q in 11% of cases as reported by

Imanishi et al). Other reported changes occurred in less than 10% of the cases,

although Afonso et al
3

 found by CGH analysis several regions with numerical chan-

ges.

Regions frequently lost in secondary hyperparathyroidism according this last study

are 1p, 19p/q, 22p/q, 20q, 16q and 17p/q. Tertiary hyperplasia show in the same

study losses in 1p, 20q, 12q, 19p/q and 22pq
3

.

Gains are described in chromosomal region 6q, 13q, 5q, 4q and 12q in secondary

hyperparathyroidism, tertiary HPT show gains in 4q and 6q. See Figure 2 for an

overview.
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FIGURE 2A

FIGURE 2B
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FIGURE 2C

Figure 2 A, B and C depict the regions frequently (in >10% of cases) lost and gained

in carcinomas (A) ,adenomas (B) and hyperplasia (C) found by CGH

analysis.
3;4;20;32;39

. In C percentages of gains and losses are indicated in a similar way

as in A/B.
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Scope of this thesis

HPT-JT syndrome is a rare disease characterized by parathyroid tumours (with a high

percentage of carcinomas), jaw and kidney tumours.

In this thesis, the clinical and genetic features of the HPT-JT syndrome and the

relationship between the HRPT2 gene and parathyroid tumours were investigated.

Furthermore, we tried to gain insight in the molecular mechanisms of parathyroid

tumourigenesis to improve the accuracy of diagnosis of these tumours.

Chapter 2 describes a clinical and histopathological study of a large kindred in which

affected members presented with either parathyroid adenoma or carcinoma,

although additional tumours were also found. Linkage analysis was performed to

determine the genetics of this disease and the HRPT2 region (locus associated with

HPT-JT) was narrowed.

In chapter 3, we refined the HRPT2 region to 1q25-q32 by genotyping 26 affected

kindreds. Furthermore, we report the identification of the gene responsible for the

hyperparathyroidism–jaw tumour (HPT–JT) syndrome. The proposed role of HRPT2 as

a tumour suppressor was investigated by mutation screening in parathyroid

adenomas with cystic features.

The HRPT2 mutation status was determined in several types of parathyroid tumours

in chapter 4 including adenomas, carcinomas and hyperplasia both in a sporadic and

familial context. Loss of heterozygosity analysis at 1q24-q32 was also performed on

a subset of these tumours.

In chapter 5, we hypothesize that loss of parafibromin, the protein product of the

HRPT2 gene, would distinguish carcinoma from benign tissue. We describe the

immunohistochemical analysis of a newly generated antiparafibromin monoclonal

antibody in mostly unequivocal carcinoma specimens, benign tumours en HPT-JT

related tumours

In chapter 6, morphological characteristics of primary parathyroid carcinomas and

metastases were studied. Furthermore, immunohistochemical expression profiles

were determined for parathyroid carcinomas, adenomas and hyperplasia using a

tissue micro array. Loss of heterozygosity (LOH) of the chromosome 1q region

containing the HRPT2 gene and

chromosome 11q (MEN1) was determined in the carcinomas.

The aim of the study described in chapter 7 was to further evaluate the role of MEN1

and HRPT2 mutations in sporadic formalin fixed paraffin embedded parathyroid

tumours fulfilling histological criteria for malignancy. HRPT2 and MEN1 were analyzed

by direct DNA sequencing in formalin fixed paraffin embedded parathyroid carcinoma

tissue.

Chapter 8 describes a study based on microarray expression profiling of hereditary

and sporadic benign and malignant parathyroid neoplasms to better define the

molecular genetics of parathyroid tumours. A class discovery approach was used to

identify distinct groups and gene sets able to distinguish between the groups. Several

antibodies, selected based on the RNA profile, were analysed to discover potential

useful markers for parathyroid carcinomas.

The aim of the study described in chapter 9 was to find a method to rapidly screen

parathyroid tumours for chromosomal aberrations. We applied a newly developed

multiplex ligation-dependent probe amplification assay (MLPA) especially designed to

detect genomic deletions and duplications in parathyroid neoplasms. Adenomas,

carcinomas and normal tissue were analyzed.

Finally, chapter 10 and 11 cover the concluding remarks, English summary and

summary in Dutch, respectively.
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Abstract

Objective

The objective of the present study was to develop a genomic assay based on Multiplex

Ligation-dependent Probe Amplification (MLPA) for the rapid characterisation of

parathyroid carcinomas based on a combination of known chromosomal amplification

and deletions.

Patients and design

Formalin-fixed, paraffin-embedded (FFPE) parathyroid tissues from 33 carcinoma cases

and 16 adenoma cases identified in the period 1985-2003 in the Netherlands were

studied. Histologically normal parathyroid tissues from 22 patients were taken from

paraffin blocks and used together with a pool of 6 different normal colon appendices to

serve as a reference. A MLPA probe kit was designed based on reported chromosomal

amplification and deletions in parathyroid tumours.

Results

Chromosomal loss in carcinomas was found on chromosome 1p (27%), 3q (21%) and

13q (21%) but was even more prominently and significantly deleted in HRPT2 mutated

carcinomas as compared to adenomas and carcinomas without a HRPT2 mutation.

Chromosome 1p, 3q and 13q showed loss in 3/5, 3/5 (both 60%) and 5/5 (100%) of the

HRPT2 mutated carcinomas, respectively.

Conclusion

These results suggest that loss of chromosome arms 1p, 3q and especially 13q play a

role in HRPT2 driven tumorigenesis. Furthermore, MLPA is a useful tool to study parathyroid

tumorigenesis because of the specificity/sensitivity and speed of the analysis.

Introduction

Hyperparathyroidism is a common endocrinopathy believed to affect three in 1,000

adults 
1

 and may result from a single parathyroid adenoma (80-85%) or from hyperplasia

(15-20%) but rarely (less than 1%) from carcinomas.
24

Although parathyroid carcinomas are mostly slow growing, they have a high propensity

(50% or more) to recur locally when not recognized at the initial surgery and treated by

a simple parathyroidectomy.
37

 Importantly, the recurrent disease is difficult to eradicate

and almost 90% of all patients with recurrent hyperparathyroidism will die of the disease.
20

In contrast, in patients where an adequate diagnosis was made intraoperatively and

who were subsequently treated by en bloc resection, local recurrence ranges from 10-

33%, and long term survival improves significantly.
20,38

Intraoperatively, parathyroid carcinoma usually appears as a large, firm, whitish-grey

tumor that has often invaded surrounding structures. Despite these defining

characteristics, parathyroid carcinoma is often not recognized at the time of initial surgery.

The distinction between parathyroid carcinomas and adenomas based on histology is

also difficult since the histopathological features of parathyroid carcinoma and adenoma

may overlap. Some authors have claimed that trabecular growth, dense fibrous bands,

spindle shape of tumour cells, mitotic figures and nuclear atypia
30

 are helpful criteria in
diagnosing parathyroid carcinomas, but all these criteria can also be observed in benign parathyroid

lesions.
5,23,33

 An unequivocal diagnosis of parathyroid carcinoma is only possible by

demonstration of distant or locoregional metastasis, as well as histologically by blood

vessel invasion and/or capsular invasion.
29

 This stresses the importance of adequate
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diagnosis. Therefore, there is an ongoing search for markers to provide reproducible

and both biologically and clinically meaningful predictions for the diagnosis of malignancy

and/or aggressive tumour behaviour that is not based on subjective histological criteria

to a large degree.

So far, a variety of methods for finding and detecting molecular markers have been

used, like detection of loss of heterozygosity (LOH) by microsatellite repeat analysis,

comparative genomic hybridisation (CGH) CGH, immunohistochemistry (IHC) and

microarray expression analysis. Results from CGH, supported by LOH studies, suggested

that in those carcinomas having a physical loss of regions on chromosomes 1p (41%)

and 13q (26%), there is inactivation of  possible tumour suppressor genes. Chromosomal

gain and thus the existence of potential oncogenes in these tumours were found in

regions 1q (21%), 9q (12%) and 19p (13%).

Both CGH and LOH analysis showed that loss of 11q is a frequent event in adenomas

and also in combination with MEN1 mutations (95% in familial MEN1 syndrome and 20-

30% in sporadic adenomas). However, in a recently published paper, a high percentage

(50%) of carcinomas with LOH of 11q was also detected, suggesting that it also plays a

role in parathyroid carcinoma formation. 
16

Recently it was shown that HRPT2 mutations are found in HPT-JT syndrome and in a

substantial portion of sporadic parathyroid carcinomas, suggesting that this gene plays

a pivotal role in malignant transformation of parathyroid tumours. Parafibromin encoded

by HRPT2 shows downregulation in such tumours. Furthermore, expression microarray

analysis revealed that HRPT2 mutated tumours have a unique and distinct expression

profile as compared to other parathyroid tumour types. LMNA, FGFR1, FGFR4, DDEF1,

IGSF4, ITMB2, APP, and CDH1 are the genes that are significantly up or down regulated

in the microarray analysis of a group of parathyroid carcinomas and tumours with

HRPT2 mutations. Other genes that are involved in parathyroid tumorigenensis are

CASR and CyclinD1 (CCND1).

Overexpression of the cyclin D1 protein has been demonstrated in up to 40% of

parathyroid adenomas, and overexpression of PRAD1/cyclin D1, following a

rearrangement with the PTH gene, has been shown in a few cases.
3,18

 Two recent

publications showed evidence that parafibromin downregulation causes an increase in

CCND1 protein levels 
39,40

. Furthermore CASR germline mutations can cause familial

hypocalciuric hypercalcemia or neonatal severe hyperparathyroidism when partially or

markedly deficient
28

. Mutations are also found in families suffering from FIHP.
8

 Also,

CASR is considered to have a potentially important secondary role in the manifestations

of sporadic parathyroid tumours 
4

, although up till now no mutations have been described

in sporadic parathyroid tumours.

Multiplex ligation dependent probe amplification (MLPA) is a recently developed technique

for the relative quantification of DNA sequences that can detect chromosomal deletions

or amplifications.
31

 The principle of MLPA relies on the hybridisation of sequence-specific

oligonucleotides to genomic DNA, followed by ligation of the oligonucleotides and

subsequent amplification of the probe. The relative peak heights or band intensities

from each target indicate their initial concentration 
32

 and can be semi-quantitatively

analysed. 
25

MLPA has several advantages over currently used techniques. The first

advantage is the amount of loci that can be analysed in one reaction. Furthermore, no

(paired) normal tissue is needed. Finally, it is a sensitive and relatively fast technique;

only a small amount of DNA is required (20 ng is sufficient for one reaction in which 40

loci are tested) and results are available within 2 days. The method is useful for archival,

formalin-fixed, paraffin-embedded (FFPE) tissue as the probe target sequences are

small (50-70bp).

The objective of the present study was to develop an MLPA based assay for the diagnosis

of parathyroid carcinomas based on a combination of known chromosomal amplification

and deletions.
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Materials and methods

Samples

Formalin-fixed, paraffin-embedded tumour tissue from 28 primary parathyroid

carcinomas, 4 regional lymph node metastases, and one lung metastasis taken from 30

patients was obtained from different laboratories in the Netherlands using PALGA (Dutch

National Information System
 

for Pathology, Utrecht, The Netherlands) and the archives

of the Leiden University Medial Center. The samples were collected over the past 18

years (1985-2003). All but three of these samples were previously described
6

Included were 30 samples with clear carcinoma features, i.e. presence of vasoinvasion

and/or metastasis
11

, based on evaluation of representative haematoxylin and eosin

stained slides of each tumour by a pathologist (HM)) and the initial pathology report.

Three cases (9,11,25) were diagnosed as carcinomas based on their clinical presentation;

definitive vasoinvasion was not found in these cases.

Furthermore formalin-fixed, paraffin-embedded tumour tissues from 16 parathyroid

adenoma samples taken from 16 patients were obtained from the archives of the LUMC.

One adenoma (48) and 1 parathyroid carcinoma (30) came from a documented HPT-JT

family.
17

Normal parathyroid tissues from 22 patients were taken from paraffin blocks and used

together with a pool of 6 different normal appendices to serve as a reference for the

Multiplex Ligation-dependent Probe Amplification (MLPA).

DNA extraction

Genomic DNA from normal and tumor tissue was isolated from the paraffin-embedded

material by taking tissue cores (diameter 0.6 mm) with a tissue microarrayer (Beecher)

from tumor and normal areas selected on the basis of a hematoxylin and eosin-stained

(HE) slide. Using a chelex extraction method, DNA was isolated from three punches, re-

suspended in 96 ml of PK-1 lysis buffer (50 mM KCl, 10 mM Tris [pH 8.3], 2.5 mM MgCl2,

0.45% NP40, 0.45% Tween 20, 0.1 mg/ml gelatin) containing 5% Chelex beads (Biorad,

Hercules, California, USA) and 5 ml of proteinase K (10 mg/ml), and incubated for 12

hours at 56° C. The suspension was incubated at 100° C for 10 minutes, centrifuged at

13,000 rpm for 10 minutes, and the supernatant containing the DNA was used for PCR

reactions.

MLPA

MLPA has previously been described.
31

 In brief, MLPA is based on the ligation of two

DNA oligonucleotides that hybridize adjacently to a target DNA sequence. The ?rst

oligonucleotide was synthesized with, on average, a 26 bp (min: 21 bp, max: 39 bp)

target-speci?c part and a universal M13-forward tail. The second oligonucleotide was an

M13-derived single-stranded DNA sequence containing, on average, a 42 bp (min: 31

bp, max: 50 bp) target speci?c-part, a stuffer sequence of variable length (130-480

base pairs) and an M13-reversed tail. Thus, a probe consists of 2 oligonucleotides of

which the target-speci?c parts hybridize adjacently and ligate. The M13 forward and

reversed tails are attached to all probes, and the different length of each probe made it

possible to perform a single primer multiplex PCR.
25

An MLPA kit was assembled by MRC-Holland (Amsterdam,The Netherlands). Details of

MLPA can be found at http://www.mlpa.com. The MLPA kit was designed especially/

specifically to investigate parathyroid tumours and consisted of 42 probes of

chromosomal regions (based on CGH analysis
2,14,21,26

) and genes (based on microarray
15

and mutation data 
7,9

) frequently altered in parathyroid tumours. For three important

genes, we took two (MEN1) or three (CASR and HRPT2) different probes.

Thirty-eight experiments were performed in triplicate or more, and ten were performed

in duplicate.

After denaturing 15 to 250 ng of DNA for 5 minutes at 95°C, the probe mix containing all
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the probe sets was added. After overnight hybridization at 60°C, the hybridized probes

were ligated for 15 minutes at 54°C with a DNA ligase. An aliquot was taken out of the

ligation mix and the ligated products were ampli?ed in a multiplex PCR reaction using

forward and reverse M13 primers for 20 seconds at 95°C, 30 seconds at 60°C and 60

seconds at 72°C for 33 cycles in an Applied Biosystems® 9700 PCR machine. After

PCR, 3 μl of the PCR products were mixed with one μL of 500 TAMRA (Applied

Biosystems®) internal size marker and 20 μl deionised formamide and injected for 5

seconds in an ABI310® capillary ?lled with POP5 polymer. After a 30 minute run, the

data were collected and analyzed with Genescan analysis and Genotyper software

(Applied Biosystems®) (Figure 1). A Genotyper output ?le was generated combining

probe set number, size and peak heights. This table was exported to a comparative

access in-house adapted database where probe annotation is added to the data table.

Subsequently, normalization and diagnosis of the pro?les were performed.

Data analysis for MLPA. Normalization.

The MLPA traces were analyzed using the MLPAanalyzer application (http://

sourceforge.net/projects/mlpaanalyzer/). Peak heights were dependent on sample quality,

DNA concentration, hybridization parameters and instrument settings. Peaks from different

probe sets also differed in magnitude in a systematic way. To normalize the raw data,

MLPAanalyzer performs the following steps:

1. Distinguishe focus probes and reference probes (5 loci usually unaltered in parathyroid

tumours).

2. Select the reference probes from the control (non-tumour) samples. Performs steps

3 to 5 with this subset of data.

3. Within each sample divide all peak heights by the median peak height of the sample.

This is to correct for the sample-to-sample variation.

4. Within each probe, divide all peak heights by the median peak height of the probe.

This is to correct for systematic differences between probes. The results of 3 and 4 we

call normalized peak heights.

5. Determine which of the (reference) probes are most stable. Subtract 1 from each

normalized peak height and take the absolute value. Compute the median of these

numbers for each probe. This is the median of the absolute deviations: MAD.

6. Select the 5 reference probes with the lowest MAD. These 5 reference probes are

named calibration probes and are used to normalize the complete experiment as

described in step 7 and 8.

7. Within each sample (parathyroid tumour and normal control samples), divide all

peak heights by the median peak height of the 5 calibration probes of the sample of

concern. This is to correct for the sample-to-sample variation.

8. Within each probe (focus and reference probes), take the median peak height of the

control samples. Then, within each probe (focus and reference probes), divides all peak

heights (parathyroid tumour and normal control samples) by the median peak height of

the probe of concern. This is to correct for systematic differences between probes.

Data visualization and interpretation.

Each experiment was normalized and analysed separately. Scatter plots for each individual

tumour and normal tissue were generated in Matlab (Figure 1) and anonymized.

To determine amplification and deletion in the analysis of the individual probes, a cut off

value (amplification>1.3, deletion<0.7) was used. The evaluation of the regions was

based on multiple (at least 2) probes and therefore we could use a less strict cut off; for

amplification>1.2 and deletion<0.8.

To analyze the regions/chromosomal arms, we used 25 probes (region 1p: 4 probes;

1q:6 probes; 3q: 4 probes; 9p: 3 probes, 9q:2 probes, 11q: 6 probes; 13q: 5 probes).

A region was considered “deleted” or “amplified” if more than 50% of the probes within
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that particular region were “deleted” or “amplified” (i.e:2/2 (100%) of the probes, 2/3

(67%) of the probes, 3/4 of the probes (75%), 3/5 of the probes (60%), 4/6 of the

probes (67%)) such that they had normalized peak heights of at least 0.2 below (deletion)

or above (amplification) the median normalized peak height of the reference probes.

Sequence analysis

HRPT2 mutations and MEN1 mutations were analysed in 27 and 23 sporadic parathyroid

carcinoma samples/patients, respectively, as previously described.
6

LOH analysis

From 20 parathyroid carcinoma samples, LOH status of chromosomes 1q and 11q was

previously determined using microsatellite markers
16

IHC parafibromin

From 27 patients, expression of parafibromin was previously determined with IHC as

described 
35

.

Results

A MLPA probe set (Table 1) was constructed based on the following three criteria: a) the

inclusion of genomic regions previously implicated in parathyroid tumorigenesis in the

literature, such as chromosomes 1p, 1q, 3q, 9p, 9q, 11q, 13q and 19p (
2,14,21,26

); b) the

inclusion of two crucial genes for parathyroid tumorigenesis; HRPT2 on chromosome 1q

and MEN1 on chromosome 11q; and c) probes were included from several genes from

a parathyroid carcinoma /HRPT2 genecluster as identified by cDNA expression array

analysis. 
15

We studied 49 parathyroid tumours, 16 adenomas and 33 carcinomas. In five parathyroid

carcinomas and one adenoma, somatic and/or germline HRPT2 mutations were identified.

The average amount of deletions in adenomas was 3.3 (range 0-14), the average for

amplification in adenomas was 5.9 (range 0-13). Parathyroid carcinomas showed an

average amount of 6.7 deletions (range 0-12) and average amount of 5.8 amplifications

(range 0-19). HRPT2 mutated samples had an average of 8.6 deletions (range 6-13)

and 3 amplifications (range 1-8).

Deletion and amplification of chromosomal regions

In parathyroid carcinomas, deletion of chromosomes 1p (41%) and 13q (26%) are

relatively frequently described 
2,14,21,26

, although for chromosome 13q the frequency is

only slightly increased in comparison to adenomas (Table 1). We also observed losses

of these chromosomes in parathyroid carcinomas using MLPA (1p, 27.3% 9/33; 13q,

21.2% 7/33 respectively), with the losses being most notable in the HRPT2 mutated

subset of carcinomas (3/5 of 1p; 5/5 of 13q). Chromosome 13q loss was also seen for

one HRPT2 mutated adenoma. On chromosome 13q, the probes for BRCA2 (13q12),

ITM2B (13q14), RB (13q14, less clear), DACH (13q21) and ING1 (13q34) were deleted

in HRPT2 mutated samples (Figure 1). Also, chromosomes 3q and 9p were deleted in a

relatively high percentage of HRPT2 mutated carcinomas (3/5 and 2/5, respectively).

The most frequently found chromosomal aberration in adenomas using CGH analysis is

deletion of 11q. Using MLPA, the latter was not confirmed.

Using CGH, chromosomal gains were previously found in parathyroid carcinomas of the

regions 1q (21%), 9q (12%) and 19p (13%). We found in both carcinomas and in HRPT2

mutated samples amplification of chromosome 1q in 9.1% and 1/5, respectively.

Adenomas showed no amplification. MLPA of chromosome 9q did not confirm the pattern

observed by CGH (amplification in 12% of carcinomas and deletion in 8% of adenomas).
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Using MLPA for chromosome 19p, the observation seen in CGH (amplification in 13% of

carcinomas, deletion in 5% of adenomas) was not seen with a high amplification rate in

both carcinomas and adenomas.

In conclusion, using MLPA in tumours with HRPT2 mutations, there is a significant deletion

of chromosomes 1p, 3q and 13q as compared to adenomas and carcinomas without a

HRPT2 mutation (P<0.05).

HRPT2 and MEN1 MLPA

Deletion of HRPT2 was considered if more than 2 of the 3 HRPT2 probes were deleted.

This was the case in 3.6% (1/28) of overall carcinomas and in none of the HRPT2

mutated samples and adenomas. Deletion of MEN1 (in both probes) was not found in

any of the adenomas and in only 9.1% of carcinomas, whereas frequently a low

amplification was scored in both adenomas and carcinomas.

MLPA of differentially expressed genes

MLPA gene probes for 9 genes that were significantly up- (LMNA, FGFR1, FGFR4, DDEF1,

CCND1, APP and CDH1) or downregulated (CASR, IGSF4, ITMB2) in HRPT2 mutated

samples using cDNA expression array analysis were analysed. Nonsignificant trends in

the amplification/deletion of different probes were seen that mimicked the observed

relative expression patterns. However, the CASR on chromosome 3q was scored as

deleted in 33.3 % of carcinomas versus 18.8% of adenomas (nonsignificant) with frequent

low amplification scores in both adenomas and carcinomas. Moreover, 4/6 HRPT2 mutated

tumours clearly showed loss of CASR. The trend towards amplification of CDH1 on

chromosome 16q in carcinomas and particularly in HRPT2 mutated carcinomas (3/5)

correlated with a relatively high expression of this gene.

TABLE 1

The chromosomal locations of the probes are shown on the x-axis. The y-axis shows in log scale amplification

(scoring in triplicate more than 1.3), retention (around 1) and deletion(scoring in triplicate less than 0.7).

Abbreviations: ref CGH: average loss of regions found by comparative genomic hybridisation analysis as

reported in previous papers; MA: microarray. * including three cases with somatic MEN1 mutations
6

 and

five cases with HRPT2 mutations. All data are percentages; the negative percentages indicate loss in the

ref CGH columns, the positive percentages represent gain
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FIGURE 1       Scatter plot of 2 parathyroid carcinoma samples.FIGURE 1       Scatter plot of 2 parathyroid carcinoma samples.

Case no.2 (carcinoma without HRPT2/MEN1 mutation) showed loss of region 1p and 11q. Case no. 23

(carcinoma with HRPT2 mutation) showed loss of region 1p and 13q.
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Discussion

MLPA was used to analyse copy number variation of chromosomal regions implicated in

parathyroid tumorigenesis. In the HRPT2 mutated carcinomas, chromosomes 3q and

9p and particularly chromosome 13q showed deletions. Loss of chromosome 13q is an

event found in both sporadic adenomas (19%) and carcinomas (26%), although the

prevalence is higher in carcinomas.
2,14,21,26

MLPA analysis showed the same trend, with the deletion of 13q found in both adenomas

and carcinomas but to a greater extent in carcinomas. Remarkable is that all carcinomas

and the one adenoma with a HRPT2 mutation showed deletion of 13q. The implication

that 13q deletion plays a role in malignant parathyroid tumorigenesis was previously

reported by Hunt et al.
19

 The region of loss on chromosome 13q in parathyroid tumours

has been shown to include two known tumour suppressor genes, the retinoblastoma

gene (RB, RB1
10,12,27

) and BRCA2. 
27

 Cryns et al
10

 were the first to suggest that inactivation

of the RB1 gene might help to distinguish benign from malignant parathyroid tumours

and thus have potential prognostic and therapeutic implications. Other authors have

cast doubts on the usefulness of RB1 gene studies in the differential diagnosis between

parathyroid carcinomas and adenomas, as abnormalities of the RB gene and/or protein

are not a specific features of parathyroid malignancy.
22,27,34

 The above illustrates that

loss of 13q is more frequently found in carcinomas than in adenomas. Although this loss

is not specific for parathyroid carcinomas, it now seems to be specific for HRPT2 mutated

tumours. Additional experiments are required to further support the role of 13q in

HRPT2 driven tumorigenesis.

Chromosome 1p is the only region of significant loss common to all tumour classes.

This region is the area of most frequent loss in both malignant (41%) and benign tumours

(secondary (72%) and tertiary HPT (73%), and adenomas (16%)).
26

 Hunt et al
19

 reported

that although almost all adenomas and carcinomas showed loss of markers for 1p, the

benign parathyroid diseases (adenomas and hyperplasia) had a low mean fractional

allelic loss (11% and 15%, respectively). The parathyroid carcinomas, in contrast,

showed high mean fractional allelic loss (63%). The current MLPA analysis confirms

this; we also found loss in both tumour types, but the percentage of loss and the amount

of probes lost was higher in parathyroid carcinomas.

Välimäki et al (2002)
36

 reported, furthermore, that deletion mapping studies by LOH

and CGH implicate that the 1p target regions in adenomas are more distally located at

1p34-pter and are thus different from parathyroid carcinomas where the deletions cluster

at 1p21-p22.

The 1p21-22 region, found to be specifically deleted in carcinomas in the study of

Välimäki et al, was also more frequently lost in carcinomas than in adenomas, but the

loss of the distal part of chromosome 1p in parathyroid adenomas could not be confirmed.

Downregulation of CASR mRNA has been described in adenomas
13

 but  has also recently

been shown to be downregulated and to a higher extent in the HRPT2/parathyroid gene

cluster.
15

 On a protein level, a strong downregulation has also been reported in parathyroid

carcinomas. Up till now, no mutations have been found in sporadic adenomas, although

to our knowledge no mutation analysis has been carried out on malignant tumours.

In the current MLPA analysis, deletion of 3q and especially of the CASR region is a

frequently seen event in parathyroid carcinomas. Once again this deletion is more

specific for tumours with a HRPT2 mutation than those without, suggesting that the

CASR might also play a role in HRPT2 driven tumorigenesis. We now also show that

downregulation of CASR mRNA is partly based on the physical deletion of a region of

chromosome 3q containing CASR. Mutation analysis should further prove the complete

inactivation of this gene.

Recently we showed the use of 6K SNP-arrays on FFPE material in order to detect copy

number variation and copy neutral LOH. The latter information cannot be obtained

using the MLPA panel. For diagnostic purposes, however, MLPA is more easily applicable.



103

Multiplex ligation-dependent probe amplification analysis in parathyroid tumours

1. Adami,S., Marcocci,C., & Gatti,D. (2002) Epidemiology of primary hyperparathyroidism in

Europe. J.Bone Miner.Res. 17 Suppl 2, N18-N23.

2. Agarwal,S.K., Schrock,E., Kester,M.B., Burns,A.L., Heffess,C.S., Ried,T., & Marx,S.J. (1998)

Comparative genomic hybridization analysis of human parathyroid tumors. Cancer

Genet.Cytogenet. 106, 30-36.

3. Arnold,A., Motokura,T., Bloom,T., Rosenberg,C., Bale,A., Kronenberg,H., Ruderman,J.,

Brown,M., & Kim,H.G. (1992) PRAD1 (cyclin D1): a parathyroid neoplasia gene on 11q13.

Henry.Ford.Hosp.Med.J. 40, 177-180.

4. Arnold,A., Shattuck,T.M., Mallya,S.M., Krebs,L.J., Costa,J., Gallagher,J., Wild,Y., & Saucier,K.

(2002) Molecular pathogenesis of primary hyperparathyroidism. J.Bone Miner.Res. 17 Suppl

2, N30-N36.

5. Bondeson,L., Sandelin,K., & Grimelius,L. (1993) Histopathological variables and DNA

cytometry in parathyroid carcinoma. Am.J.Surg.Pathol. 17, 820-829.

6. C.J.Haven, M.van Puijenbroek, M.H.Tan, B.T.Teh, GJ Fleuren, T.van Wezel, and

H.Morreau. Identification of MEN1 and HRPT2 somatic mutations in paraffin embedded

(sporadic) parathyroid carcinomas. Clin.Endocrinol.(Oxf) . 2007.

Ref Type: In Press

7. Carpten,J.D., Robbins,C.M., Villablanca,A., Forsberg,L., Presciuttini,S., Bailey-Wilson,J.,

Simonds,W.F., Gillanders,E.M., Kennedy,A.M., Chen,J.D., Agarwal,S.K., Sood,R., Jones,M.P.,

Moses,T.Y., Haven,C., Petillo,D., Leotlela,P.D., Harding,B., Cameron,D., Pannett,A.A., Hoog,A.,

Heath,H., III, James-Newton,L.A., Robinson,B., Zarbo,R.J., Cavaco,B.M., Wassif,W.,

Perrier,N.D., Rosen,I.B., Kristoffersson,U., Turnpenny,P.D., Farnebo,L.O., Besser,G.M.,

Jackson,C.E., Morreau,H., Trent,J.M., Thakker,R.V., Marx,S.J., Teh,B.T., Larsson,C., &

Hobbs,M.R. (2002) HRPT2, encoding parafibromin, is mutated in hyperparathyroidism-jaw

tumor syndrome. Nat.Genet. 32, 676-680.

8. Cetani,F., Pardi,E., Ambrogini,E., Lemmi,M., Borsari,S., Cianferotti,L., Vignali,E., Viacava,P.,

Berti,P., Mariotti,S., Pinchera,A., & Marcocci,C. (2006) Genetic analyses in familial isolated

hyperparathyroidism: implication for clinical assessment and surgical management.

Clin.Endocrinol.(Oxf) 64, 146-152.

9. Chandrasekharappa,S.C., Guru,S.C., Manickam,P., Olufemi,S.E., Collins,F.S., Emmert-

Buck,M.R., Debelenko,L.V., Zhuang,Z., Lubensky,I.A., Liotta,L.A., Crabtree,J.S., Wang,Y.,

Roe,B.A., Weisemann,J., Boguski,M.S., Agarwal,S.K., Kester,M.B., Kim,Y.S., Heppner,C.,

Dong,Q., Spiegel,A.M., Burns,A.L., & Marx,S.J. (1997) Positional cloning of the gene for

multiple endocrine neoplasia-type 1. Science 276, 404-407.

10. Cryns,V.L., Thor,A., Xu,H.J., Hu,S.X., Wierman,M.E., Vickery,A.L., Jr., Benedict,W.F., & Arnold,A.

(1994) Loss of the retinoblastoma tumor-suppressor gene in parathyroid carcinoma.

N.Engl.J.Med. 330, 757-761.

11. DeLellis RA,L.R.H.P.E.C. (2006) World health organisation classification of tumours. Pathology

and genetics of tumours of endocrine organs  AIRC press, Lyon.

12. Dotzenrath,C., Goretzki,P.E., Farnebo,F., Teh,B.T., Weber,G., Roher,H.D., & Larsson,C. (1996)

Molecular genetics of primary and secondary hyperparathyroidism.

Exp.Clin.Endocrinol.Diabetes 104 Suppl 4, 105-107.

13. Farnebo,F., Auer,G., Farnebo,L.O., Teh,B.T., Twigg,S., Aspenblad,U., Thompson,N.W.,

Grimelius,L., Larsson,C., & Sandelin,K. (1999) Evaluation of retinoblastoma and Ki-67

immunostaining as diagnostic markers of benign and malignant parathyroid disease. World

J.Surg. 23, 68-74.



104

Chapter 9

14. Farnebo,F., Kytola,S., Teh,B.T., Dwight,T., Wong,F.K., Hoog,A., Elvius,M., Wassif,W.S.,

Thompson,N.W., Farnebo,L.O., Sandelin,K., & Larsson,C. (1999) Alternative genetic pathways

in parathyroid tumorigenesis. J.Clin.Endocrinol.Metab 84, 3775-3780.

15. Haven,C.J., Howell,V.M., Eilers,P.H., Dunne,R., Takahashi,M., van Puijenbroek,M., Furge,K.,

Kievit,J., Tan,M.H., Fleuren,G.J., Robinson,B.G., Delbridge,L.W., Philips,J., Nelson,A.E.,

Krause,U., Dralle,H., Hoang-Vu,C., Gimm,O., Morreau,H., Marsh,D.J., & Teh,B.T. (2004)

Gene expression of parathyroid tumors: molecular subclassification and identification of

the potential malignant phenotype. Cancer Res. 64, 7405-7411.

16. Haven,C.J., van Puijenbroek,M., Karperien,M., Fleuren,G.J., & Morreau,H. (2004) Differential

expression of the calcium sensing receptor and combined loss of chromosomes 1q and 11q

in parathyroid carcinoma. J.Pathol. 202, 86-94.

17. Haven,C.J., Wong,F.K., van Dam,E.W., van der,J.R., van Asperen,C., Jansen,J., Rosenberg,C.,

de Wit,M., Roijers,J., Hoppener,J., Lips,C.J., Larsson,C., Teh,B.T., & Morreau,H. (2000) A

genotypic and histopathological study of a large Dutch kindred with hyperparathyroidism-

jaw tumor syndrome. J.Clin.Endocrinol.Metab 85, 1449-1454.

18. Hemmer,S., Wasenius,V.M., Haglund,C., Zhu,Y., Knuutila,S., Franssila,K., & Joensuu,H. (2001)

Deletion of 11q23 and cyclin D1 overexpression are frequent aberrations in parathyroid

adenomas. Am.J.Pathol. 158, 1355-1362.

19. Hunt,J.L., Carty,S.E., Yim,J.H., Murphy,J., & Barnes,L. (2005) Allelic loss in parathyroid

neoplasia can help characterize malignancy. Am.J.Surg.Pathol. 29, 1049-1055.

20. Koea,J.B. & Shaw,J.H. (1999) Parathyroid cancer: biology and management. Surg.Oncol. 8,

155-165.

21. Kytola,S., Farnebo,F., Obara,T., Isola,J., Grimelius,L., Farnebo,L.O., Sandelin,K., & Larsson,C.

(2000) Patterns of chromosomal imbalances in parathyroid carcinomas. Am.J.Pathol. 157,

579-586.

22. Lloyd,R.V., Carney,J.A., Ferreiro,J.A., Jin,L., Thompson,G.B., Van Heerden,J.A., Grant,C.S., &

Wollan,P.C. (1995) Immunohistochemical Analysis of the Cell Cycle-Associated Antigens

Ki-67 and Retinoblastoma Protein in Parathyroid Carcinomas and Adenomas. Endocr.Pathol.

6, 279-287.

23. Mallette,L.E., Malini,S., Rappaport,M.P., & Kirkland,J.L. (1987) Familial cystic parathyroid

adenomatosis. Ann.Intern.Med. 107, 54-60.

24. Marx,S.J. (2000) Hyperparathyroid and hypoparathyroid disorders. N.Engl.J.Med. 343, 1863-

1875.

25. Natte,R., van Eijk,R., Eilers,P., Cleton-Jansen,A.M., Oosting,J., Kouwenhove,M., Kros,J.M., &

van Duinen,S. (2005) Multiplex ligation-dependent probe amplification for the detection of

1p and 19q chromosomal loss in oligodendroglial tumors. Brain Pathol. 15, 192-197.

26. Palanisamy,N., Imanishi,Y., Rao,P.H., Tahara,H., Chaganti,R.S., & Arnold,A. (1998) Novel

chromosomal abnormalities identified by comparative genomic hybridization in parathyroid

adenomas. J.Clin.Endocrinol.Metab 83, 1766-1770.

27. Pearce,S.H., Trump,D., Wooding,C., Sheppard,M.N., Clayton,R.N., & Thakker,R.V. (1996)

Loss of heterozygosity studies at the retinoblastoma and breast cancer susceptibility

(BRCA2) loci in pituitary, parathyroid, pancreatic and carcinoid tumours. Clin.Endocrinol.(Oxf)

45, 195-200.



105

Multiplex ligation-dependent probe amplification analysis in parathyroid tumours

28. Pollak,M.R., Brown,E.M., Chou,Y.H., Hebert,S.C., Marx,S.J., Steinmann,B., Levi,T.,

Seidman,C.E., & Seidman,J.G. (1993) Mutations in the human Ca(2+)-sensing receptor

gene cause familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism.

Cell 75, 1297-1303.

29. Rawat,N., Khetan,N., Williams,D.W., & Baxter,J.N. (2005) Parathyroid carcinoma. Br.J.Surg.

92, 1345-1353.

30. Schantz,A. & Castleman,B. (1973) Parathyroid carcinoma: a study of 70 cases. Cancer 31,

600-605.

31. Schouten,J.P., McElgunn,C.J., Waaijer,R., Zwijnenburg,D., Diepvens,F., & Pals,G. (2002)

Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe

amplification. Nucleic Acids Res. 30, e57.

32. Sellner,L.N. & Taylor,G.R. (2004) MLPA and MAPH: new techniques for detection of gene

deletions. Hum.Mutat. 23, 413-419.

33. Snover,D.C. & Foucar,K. (1981) Mitotic activity in benign parathyroid disease. Am.J.Clin.Pathol.

75, 345-347.

34. Szijan,I., Orlow,I., Dalamon,V., Vergani,P., Danilowicz,K., Mezzadri,N., Cordon-Cardo,C., &

Bruno,O.D. (2000) Alterations in the retinoblastoma pathway of cell cycle control in

parathyroid tumors. Oncol.Rep. 7, 421-425.

35. Tan,M.H., Morrison,C., Wang,P., Yang,X., Haven,C.J., Zhang,C., Zhao,P., Tretiakova,M.S., Korpi-

Hyovalti,E., Burgess,J.R., Soo,K.C., Cheah,W.K., Cao,B., Resau,J., Morreau,H., & Teh,B.T.

(2004) Loss of parafibromin immunoreactivity is a distinguishing feature of parathyroid

carcinoma. Clin.Cancer Res. 10, 6629-6637.

36. Valimaki,S., Forsberg,L., Farnebo,L.O., & Larsson,C. (2002) Distinct target regions for

chromosome 1p deletions in parathyroid adenomas and carcinomas. Int.J.Oncol. 21, 727-

735.

37. Wang,C.A. & Gaz,R.D. (1985) Natural history of parathyroid carcinoma. Diagnosis,

treatment, and results. Am.J.Surg. 149, 522-527.

38. Wiseman,S.M., Rigual,N.R., Hicks,W.L., Jr., Popat,S.R., Lore,J.M., Jr., Douglas,W.G.,

Jacobson,M.J., Tan,D., & Loree,T.R. (2004) Parathyroid carcinoma: a multicenter review of

clinicopathologic features and treatment outcomes. Ear Nose Throat J. 83, 491-494.

39. Woodard,G.E., Lin,L., Zhang,J.H., Agarwal,S.K., Marx,S.J., & Simonds,W.F. (2005) Parafibromin,

product of the hyperparathyroidism-jaw tumor syndrome gene HRPT2, regulates cyclin

D1/PRAD1 expression. Oncogene 24, 1272-1276.

40. Zhao,J., Yart,A., Frigerio,S., Perren,A., Schraml,P., Weisstanner,C., Stallmach,T., Krek,W., &

Moch,H. (2007) Sporadic human renal tumors display frequent allelic imbalances and

novel mutations of the HRPT2 gene. Oncogene 26, 3440-3449.



106

Chapter 9



107

Chapter 10

Concluding Remarks



108

Chapter 10



109

Concluding remarks

In this thesis, parathyroid tumourigenesis was studied focusing on the underlying

defects and the diagnosis.

HRPT2 gene

During the last 20 years, new insights in the pathogenesis, diagnosis and

management of parathyroid tumours became apparent. An important milestone was

the recent discovery of the HRPT2 gene. The HRPT2 gene is ubiquitously expressed,

evolutionary conserved and consists of 17 exons encoding a protein of 531 amino

acids, referred to as parafibromin.

Germ-line mutations in this gene are responsible for the HPT-JT syndrome.

Furthermore, sporadic parathyroid carcinomas often show (somatic) mutations in the

HRPT2 gene (this thesis, chapter 4 and chapter 7). The percentage of identified

HRPT2 mutations in sporadic parathyroid carcinomas varies in different publications,

partly due to different inclusion criteria. In 70% of carcinomas with local recurrence

or metastasis HRPT2 mutations have been observed.
3;6;9;11;16

 In a Dutch cohort of

parathyroid carcinomas selected primarily on histological grounds (i.e. with

vasoinvasion and capsule invasion), the prevalence of HRPT2 mutations was only

15%, although mutation analysis was performed in archival paraffin embedded

tissue.

Somatic HRPT2 mutations were also reported in HPT-JT associated tumours other

than parathyroid. Somatic HRPT2 mutations were found in two renal carcinomas, one

clear cell carcinoma and one Wilms tumour.
32

 Also, somatic mutations were identified

in benign ossifying fibromas of the jaw.
26

 Interestingly, these tumours showed

retained expression of parafibromin. As IHC is not a quantitative analysis it could be

possible that haploinsufficiency might play a role in tumour formation, which also

might explain the benign behaviour in contrast to the aggressive behaviour of

parathyroid tumours with total loss of expression of parafibromin due to double

mutations in HRPT2 or to the combination of one mutation and loss of the wildtype

allele. Frequent allelic imbalance (LOH) of the HRPT2 locus was detected in different

subtypes of sporadic renal tumours and LOH analyzed by microsatellite markers and

arrayCGH of the HRPT2 locus is associated with an adverse clinical outcome. 
18,24

 A

role of the HRPT2 was also suggested in tumour types other than typically found in

the HPT-JT spectrum, as illustrated in chapter 2 where tumours of the thyroid, testis

and pancreas were found in a large HPT-JT family. Also uterine tumours are found to

be associated with HRPT2.
3

 Selvarajan et al showed altered immunohistochemical

parafibromin staining in breast carcinomas.
28

 In the future the development of knock-

out mouse models for HPT-JT could help to gain more insight in the role of HRPT2 in

the development of all these tumours

HPT-JT syndrome

Patients with germ-line HRPT2 mutations show a wide variation of clinical features.

Such individuals can develop tumours in different organs or tissues, mostly in the

parathyroids, kidneys, or jaws. Additionally, tumours in the thyroid, testes, pancreas

(this thesis) and uterus 
3

 are described. HPT-JT has an autosomal dominant mode of

inheritance, with incomplete penetrance as reported in the large Dutch family

described in this thesis (chapter 2). The incomplete penetrance might also explain the

relatively high percentage of germline mutations found in apparently sporadic

parathyroid carcinomas (this thesis, chapters 7 and 4).
29

 Some individuals with germ-

line HRPT2 mutations develop only parathyroid gland tumours. The latter is illustrated

by the finding that about 5% of the patients suffering from familial isolated

hyperparathyroidism (FIHP) carry HRPT2 mutations.
6;22

 Despite the reported rarity of
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HRPT2 mutations in FIHP, FIHP patients with aggressive tumours are likely to carry

HRPT2 mutations and are therefore serious candidates for HRPT2 germ-line testing. 
14

Parafibromin

Parafibromin is evolutionary conserved and binds to RNA polymerase II as part of a

PAF1 transcriptional regulatory complex. PAF is comprised of five subunits that

include PD2/hPaf1, parafibromin, hLeo1, hCtr9 and hSki8. The mechanism by which

loss of parafibromin function can lead to neoplastic transformation is poorly

understood. It has been suggested that parafibromin is involved in transcriptional

regulation, histone modification, cell proliferation (including cell cycle progression
7;12

,

apoptosis
19

 and wnt signalling.
23,2;27;30-32

We suggested by both gene and protein expression that Histone 1 Family 2

(HIST1H1C), amyloid beta precursor protein (APP), and E-cadherin (CDH1) might

play a role in HRPT2 driven tumourigenesis.

APP overexpression both at the mRNA and protein level
17

 and abnormal cleavage is

associated with the neuropathological abnormalities of Alzheimer’s disease. It was

recently shown that a soluble cleavage product of APP has a growth promoting effect

in thyroid, skin, pancreas, colon and oral squamous cells by activating MAP kinase,

epithelial growth factor
10;25

, serine protease inhibitors
21

, PKC and Ras pathways. 
15

Although a role for APP in EGF mediated growth of parathyroid cells similar to that of

the mechanism in thyroid cells
25

 can be expected, the direct interaction between

parafibromin and APP has to be elucidated. Konishi et al
16

 concluded that HIST1H1C

has a role in transmitting apoptotic signals, while Lin et al
19

 suggested that

proapoptotic activity of endogenous parafibromin is also likely to be important in its

role as a tumour suppressor.

E-cadherin is a cell adhesion molecule that interacts with the wnt signalling pathway.

A role for parafibromin in Wnt signalling is also reported
23

, in which parafibromin is

thought to activate the Wnt/Wg target gene transcription by directly associating with

beta catenin. Cyclin D1 (CCND1) was initially cloned and recognized as an oncogene

in the development of the parathyroid tumours
1

. We demonstrated both on gene

expression as well as on protein level overexpression of CCND1 in parathyroid

carcinomas. Two recent publications showed evidence that parafibromin

downregulation causes indeed an increase in CCND1 protein levels. 
30;32

Diagnosis of parathyroid carcinoma

Diagnosis based on histology alone is sometimes difficult because unequivocal

diagnostic findings can be absent in individual cases and histological features of

malignant and benign parathyroid tumours overlap. As a result of this histopathologic

uncertainty, the best possible diagnosis can be unsatisfying referring to entities like

“equivocal carcinoma” or “atypical adenoma”. Recently in the WHO atlas
8

 it is

favoured to use the term atypical adenoma.

As the majority of parathyroid carcinomas with aggressive behaviour carry HRPT2

mutations, somatic DNA sequence analysis of this gene in tumours is a valid

approach for the diagnosis of both HPT-JT and sporadic parathyroid carcinoma.

Despite the presence of mutation ‘‘hot-spots’’ in exons 1, 2, and 7 of HRPT2 where

approximately 80% of all mutations occur
4;9;11

, the time and resources for molecular

analysis of HRPT2 are beyond the means of most surgical pathology laboratories. We

and others
5;9;13

 showed the absence or reduced staining of parafibromin in sporadic

and HPT-JT carcinomas. Conversely, two recent studies
5;13

 have shown that negative

parafibromin immunostaining is almost invariably associated with HRPT2 mutations

and confirm that loss of parafibromin staining strongly predicts parathyroid

malignancy. A point to remember however is that HPT-JT adenomas might also show
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reduced staining possibly indicating their potential to progress into carcinomas.
9;13

Also, additional information is needed regarding the reproducibility and the use of

parafibromin in atypical adenomas/equivocal carcinomas in order to predict possible

clinical behaviour.
20

 Despite this, parafibromin testing seems to be a promising

molecular marker for the diagnosis of parathyroid carcinoma. However, an

exceptionally positive staining for parafibromin could still be compatible with HRPT2

mutation in the case of missense mutations, for example. In addition, we have shown

that molecules such as APP, E-cadherin, CASR might play a role in HRPT2 driven

tumourigenesis. Immunohistochemical analysis of APP, E-cadherin and CASR (i.e.

strong cytoplasmic staining of APP, irregular membranous staining or deposits/

droplets in the cell of E-cadherin and absence of clear membranous staining of

CASR) might give circumstantial evidence to support the diagnosis of malignancy.

There is no role for MEN1 mutation testing in parathyroid tumours suspected for

malignancy since parathyroid adenomas often show somatic mutations of MEN1

together with loss of the wild-type allele.

Future perspective

There are still several aspects of parathyroid disease requiring further investigation:

Can biomarkers be identified that can be used for molecular imaging of (abnormal)

parathyroid glands? Such biomarkers might be highly expressed membrane bound

molecules specific for parathyroid tissue. Although parathyroid carcinoma is a rare

disease, in individual cases the disease can take a dramatic course. For such cases,

the identification of specific parathyroid tumourigenesis pathways that can be

targeted by designer molecules might be crucial. A third issue that should be

addressed concerns the switch from secondary to tertiary hyperparathyroidism. What

are the molecular switches that lead to such autonomous behaviour of an individual

parathyroid gland? Only such insights might lead to the finding of novel therapies.
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Summary

In this thesis tumourigenesis and tools for improved diagnosis of parathyroid tumours

were studied with a special focus on parathyroid carcinomas.

In chapter 2 we described a large, previously unreported Dutch kindred in which 13

affected members presented with either parathyroid adenoma or carcinoma; in 5

affected individuals, cystic kidney disease was found. Additionally, pancreatic

adenocarcinoma, renal cortical adenoma, papillary renal cell carcinoma, testicular

mixed germ cell tumour with major seminoma component, and Hürthle cell thyroid

adenoma were also identified. We determined that the disease in this family was

linked to the presumed HRPT2 locus on chr 1q and we were able to localize the

region of the gene to 14cM. We concluded that HPT-JT is a clinically heterogeneous

syndrome and that the HRPT2 gene might play a role in development of several

tumours.

The family described in chapter 2 was of great importance for the discovery of the

HRPT2 gene as described in chapter 3. By combining data from 26 families suffering

from the HPT-JT syndrome, the HRPT2 region was narrowed down to 12 cM. Using a

positional candidate cloning approach in 14/26 cases from fourteen families,

heterozygous germline mutations in c1orf28 (HRPT2) were found. Inactivating

somatic mutations in this gene were also found in 3/48 parathyroid (cystic)

adenomas supporting the probable tumour suppressor effect of the gene. The gene is

evolutionary conserved and consists of 17 exons encoding a protein of 531 amino

acids and was named parafibromin. Parathyroid tumours show higher malignancy

frequencies in HPT-JT syndrome than in other familial parathyroid tumour syndromes

such as MEN1. Here we suggest that mutations in HRPT2 may be responsible for this

difference. To test this hypothesis we analyzed, as described in chapter 4, 60

different (benign and malignant, mostly sporadic) parathyroid tumours. HRPT2

somatic mutations were detected in all (4/4) sporadic parathyroid carcinoma cases

and 5/5 HPT-JT tumours and 2/3 FIHP tumours. No mutations were detected in any of

the other (benign) tumours. ‘‘Two-hits’’ (double mutations or one mutation and loss of

heterozygosity at 1q24-32) affecting HRPT2 were found in 2/4 sporadic carcinomas,

2/5 HPT-JT-related and 2/3 FIHP related tumours.

These data supported the role of HRPT2 as a causative gene in the development of

parathyroid malignancy both in familial and sporadic tumours and it provided

evidence of a role for HRPT2 as a tumour suppressor gene.  We hypothesized that

HRPT2 mutation is an early event that may lead to parathyroid malignancy and

therefore suggested that mutations of HRPT2 are markers for malignant potential of

parathyroid tumours, both familial and sporadic.

In chapter 5 we hypothesized, based on this high prevalence of HRPT2 gene

mutations and biallelic inactivation in parathyroid carcinoma, that loss of

parafibromin, the protein product of the HRPT2 gene, could distinguish carcinoma

from benign tissue. To study this, a novel antiparafibromin monoclonal antibody was

generated and immunostaining on both benign and malignant parathyroid tumours

was tested. We reported that the loss of parafibromin nuclear immunoreactivity had a

high sensitivity and specificity in diagnosing carcinoma. Parafibromin thus seems a

promising molecular marker in the diagnoses of parathyroid carcinoma.

In chapter 6 the morphological, immunohistochemical and molecular characteristics

of 26 primary parathyroid carcinomas and seven metastases were studied. Down-

regulation of the calcium sensing receptor (CASR) was demonstrated in 31% of

carcinomas, and this was significantly correlated with a high Ki-67 proliferation index.

Chromosome 1q and chromosome 11q LOH were found in 12 of 22 (55%) and 11 of

22 (50%) carcinomas tested, respectively. Combined 1q and 11q LOH was seen in 8

of 22 (36%) carcinomas, in contrast to the low percentage of LOH reported in both

regions in adenomas. We concluded that both loss of CASR protein expression in
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combination with an increased proliferation rate and the combined 1q/11q loss could

be used as supportive criteria in the diagnosis of parathyroid carcinoma.

Furthermore, the high percentage of LOH at 1q found in our set of sporadic

parathyroid carcinomas seemed to confirm the tumour suppressor function of HRPT2

also described in chapter 3 and the importance of the gene in the development of

malignant parathyroid tumours. The high percentage of LOH of 11q also suggested

involvement of the MEN1 gene in the tumourigenesis of a part of parathyroid

carcinomas. This hypothesis was tested in chapter 7 where we evaluated the role of

MEN1 and HRPT2 mutations in sporadic parathyroid tumours fulfilling histological

criteria for malignancy. Formalin fixed, paraffin embedded (FFPE) parathyroid

carcinoma tissue from 28 Dutch cases was studied. HRPT2 (27/28 cases) and MEN1

(23/28 cases) were analyzed by direct sequencing. Somatic MEN1 mutations were

found in 3/23 (13%) sporadic parathyroid carcinoma cases, six HRPT2 mutations

were found in 4/27 cases (15%). These results again confirmed the role of HRPT2 in

sporadic parathyroid cancer formation, but also showed parathyroid carcinomas with

MEN1 mutations possibly suggesting that an adenoma with a MEN1 mutation can

progress into a carcinoma when untreated.

In chapter 8 we undertook expression profiling of 53 hereditary and sporadic

parathyroid tumours. A class discovery approach identified three distinct groups,

mainly consisting of respectively (1) adenomas, (2) HRPT2 mutated tumours, and (3)

hyperplasia. The most robust cluster identified in this study consisted of sporadic

parathyroid carcinomas, tumours from HPT-JT patients (both benign and malignant),

and tumours from two FIHP patients. Eleven of 12 of these cases were shown to

carry HRPT2 mutations. We concluded that parathyroid tumours with HRPT2

mutations follow pathways distinct from that of other tumours. Based on the

expression data, we confirmed the differential expression of Histone H1, amyloid βA4

precursor protein, Cyclin D1 and E-cadherin using IHC.

The objective of the study described in chapter 9 was to develop a Multiplex

Ligation-dependent Probe Amplification (MLPA) based genomic assay for the rapid

diagnosis of parathyroid carcinomas using a combination of known chromosomal

amplifications and deletions. In this study we again confirmed that parathyroid

tumours with HRPT2 mutations follow pathways distinct from that of other benign and

malignant tumours. We suggested that genes on chromosome 1p, 3q but especially

chromosome 13 play a role in HRPT2 driven tumourigenesis.
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Samenvatting

De mens heeft 4 bijschildklieren gelegen, zoals de naam al zegt, bij de schildklier in

de hals. De bijschildklier heeft een belangrijke functie in de kalk (calcium) huishou-

ding in ons lichaam. Calcium speelt een centrale rol in een groot aantal fysiologische

processen zoals neuromusculaire signaaldoorgave, spiercontractie (waaronder van

het hart), celdeling en celbeweging. Het door de bijschildklier geproduceerde hor-

moon (Parathyreoid Hormoon; PTH) houdt het bloed calcium niveau binnen de

grenzen van normaal.

Overactiviteit van een of meerdere bijschildklieren leidt tot zogenaamde

hyperparathyreoidie (HPT). Vaak gaat deze overactiviteit gepaard met vergrote

bijschildklieren die teveel PTH maken waardoor het gehalte van dit hormoon in het

bloed te hoog wordt.

HPT kan voorkomen als een primaire, een secundaire en een tertiaire afwijking. Met

primair wordt bedoeld dat de oorzaak van de HPT gelegen is in de bijschildklier zelf,

secundair als reactie op een biochemische verstoring in het bloed, meestal als gevolg

van nierfalen. Secundaire reactieve hyperparathyreoidie kan medicamenteus worden

behandeld. Op een bepaald moment reageert de patient(e) hier niet meer op en

blijkt er sprake van een autonoom functionerende bijschildklier, waarbij gesproken

wordt van een tertiaire HPT.

Primaire hyperparathyreoidie is een veel voorkomende afwijking met een prevalentie

van 1-3 per 1000 individuen. Het merendeel van de tumoren ontstaat in een sporadi-

sche context, geen duidelijke oorzaak is aantoonbaar. In vijf procent van de primaire

HPT ontstaat de ziekte echter in een familiaire (erfelijke) context (Multiple Endocrine

Neoplasia syndrome (MEN) type 1 en 2A, Familiaire Geïsoleerde Hyperparathyreoidie

(FIHP) en Hyperparathyreoidie-Kaak-Tumorsyndroom (HPT-JT)). De meeste gevallen

van FIHP ontstaan ten gevolge van een erfelijk defect in de “calcium-sensing”, het

meten van de calcium waarden in het bloed door de bijschildklier. In alle overige

familiaire gevallen toont een “tumor onderdrukkend” gen een DNA fout (de genen

MEN1, RET, en HRPT2 respectievelijk).

Het doel van dit proefschrift was om meer inzicht te krijgen in onbegrepen molecu-

laire mechanismen leidend tot tumorontwikkeling in de bijschildklier. Dit zou theore-

tisch tot betere diagnostiek en behandeling kunnen leiden van onbegrepen familiaire

vormen van HPT. Met name ook de categorie van de kwaadaardige bijschildklier

tumoren, de carcinomen, behoeft verbetering van diagnostiek en behandeling.

In hoofdstuk 2 beschrijven we een grote Nederlandse familie waarvan 13 individuen

zich presenteerden met bijschildklier tumoren waaronder de kwaadaardige vorm. Bij

5 van deze 13 individuen werden ook nog cysteuze nieren ontdekt. Er werd eveneens

een breed scala van andere tumoren gediagnosticeerd in deze familie waaronder een

kwaadaardig proces van de pancreas, een zaadbal tumor en een goedaardige

schildklier tumor en kleine nier tumoren.

Eerst werd een MEN1 syndroom uitgesloten middels DNA onderzoek. Zogenaamd

koppelings onderzoek  toonde aan dat de ziekte in deze familie geassocieerd was

met chromosoom 1q25-32, waar het reeds eerder veronderstelde, doch nog niet

gevonden HRPT2 gen zou moeten liggen. Door onderzoek in onderhavige familie

werd echter het chromosomale gebied waarin dit gen zou moeten liggen verkleind tot

14 cM (een genetische afstandsmaat). Wij postuleerden tevens dat het HRPT2 gen

mogelijk een rol speelt in de ontwikkeling van verschillende andere tumoren.

In de zoektocht naar het HRPT2 gen werd de bovenbeschreven familie nogmaals

geanalyseerd als onderdeel van een groot internationaal onderzoeksconsortium,

beschreven in hoofdstuk 3. Allereerst werd de potentiële regio verder verkleind

naar 12 cM door gebruik te maken van de koppelingsdata van 26 HPT-JT families.
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Daarna werd gericht naar DNA mutaties in kandidaat genen in het gebied gezocht. In

14 van deze 26 families werden enkelvoudige inactiverende kiembaan mutaties

gevonden in het gen c1orf 28 (HRPT2). Ook werden er inactiverende DNA mutaties

gevonden in HRPT2 in 3/48 willekeurige doch cysteuze bijschildklier tumoren. Een

tumor onderdrukkende functie van HRPT2 leek aannemelijk. Het HRPT2 gen wordt in

min of identieke vorm bij diverse dieren of organismen gevonden (is evolutionair

geconserveerd) en bestaat uit 17 coderende DNA blokken (exonen) die in  een eiwit

bestaande uit 531 aminozuren worden vertaald. Dit eiwit werd parafibromine ge-

noemd. Bijschildkliertumoren gevonden in HPT-JT families zijn vaker kwaadaardig

(15%) dan in andere familiaire bijschildklier tumorsyndromen zoals MEN1(<1%).

Derhalve kon worden geconcludeerd dat een mutatie in het HRPT2 gen hiervan de

oorzaak zou kunnen zijn.

Deze hypothese werd getest als beschreven in hoofdstuk 4. Zestig willekeurige

(sporadische) bijschildklier tumoren zowel goedaardig als kwaadaardig werden

onderzocht op mutaties in het HRPT2 gen. Zogenaamde somatische HRPT2 mutaties

werden gevonden in alle (4/4) sporadische kwaadaardige bijschildklier tumoren, in 5/

5 HPT-JT tumoren en in 2/3 FIHP tumoren. In geen van alle andere (goedaardige)

bijschildklier tumoren werden dergelijke mutaties gevonden.

Twee van de vier sporadische bijschildklier carcinomen, 2/5 HPT-JT en 2/3 FIHP

tumoren toonden dubbele HRPT2 mutaties of één mutatie gecombineerd met verlies

van de normaal aanwezige kopie van chromosoom 1q24-32. Deze bevindingen

bevestigden de rol van HRPT2 als een oorzakelijk gen in het ontwikkelen van kwaad-

aardige bijschildklier tumoren in zowel een familiaire als in een sporadische context.

HRPT2 mutaties ontstaan in een vroege ontwikkelingsfase van de kwaadaardige

bijschildklier tumoren en kunnen daarmee gebruikt worden als biomarkers in de

diagnostiek hiervan.

In hoofdstuk 5 wordt beschreven hoe een nieuw monoclonaal antilichaam tegen

parafibromin werd gegenereerd. Immunohistochemisch verlies van de normale

parafibromine kernkleuring werd gevonden in HPT-JT en sporadische kwaadaardige

bijschildklier tumoren met een hoge sensitiviteit en specificiteit en lijkt daarmee

eveneens een veelbelovende biomarker in de diagnose van bijschildklier tumoren.

De morfologische, immunohistochemische en moleculaire eigenschappen van 26

Nederlanse gevallen van een kwaadaardige bijschildklier tumor inclusief 7

uitzaaingen werden bestudeerd (hoofdstuk 6). Eén derde van de tumoren liet een

afschakeling van de calcium sensing receptor (CASR) zien en dit was significant

gerelateerd aan een hoge (>5%) “Ki67 proliferatie” index. Tevens werd er een

“verlies van heterozygotie” analyse van de chromosomen 1q ( HRPT2 gen) en 11q

(MEN1 gen) uitgevoerd. Er werd verlies in ongeveer de helft van de carcinomen

gevonden van respectievelijk DNA sequenties op chromosoom 1q (55%) en 11q

(50%). Uniek voor carcinomen bleek het gecombineerde verlies van DNA sequenties

op de chromosomen 1q én 11q, gevonden in 36% van de carcinomen in tegenstelling

tot een zeer laag percentage hiervan bij de onderzochte goedaardige bijschildklier

tumoren. Het onverwacht hoge percentage DNA verlies op chromosoom 11q kon een

indicatie kunnen zijn dat ook het MEN1 gen een rol in kwaadaardige bijschildklier

tumoren zou kunnen spelen.

Om deze hypothese te testen werd in de HRPT2 en MEN1 genen naar DNA mutaties

gezocht in het Nederlandse cohort kwaadaardige bijschildklier tumoren (hoofdstuk

7). Deze tumoren voldeden histologisch aan de criteria van kwaadaardigheid;

aanwezigheid van bloed of lymfbaan invasie dan wel kapselinvasie en of uitzaaingen

(in lymfeklieren of op afstand). DNA mutatieanalyse werd uitgevoerd in formaline

gefixeerd paraffine ingebed tumor archief materiaal, soms wel 20 jaar oud.

Verrassenderwijs werden somatische MEN1 mutaties werden gevonden in 23%(3/23)

van de tumoren terwijl in er 6 tumoren HRPT2 mutaties werden gevonden (4/27,
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15%). Deze resultaten bevestigden weer de rol die HRPT2 speelt bij sporadische

bijschildkliercarcinomen, de resultaten lieten echter ook zien dat een aantal kwaad-

aardige tumoren MEN1 mutaties bevatten. Dit zou kunnen betekenen dat in de loop

der tijd een a priori goedaardige tumor met een MEN1 mutatie toch kwaadaardig kan

worden, het benadrukt tevens het belang van vroege opsporing en behandeling

hiervan.

Hoofdstuk 8 beschrijft de expressie van praktisch alle genen  die wij hebben

(middels zogenaamde cDNA micro-array technieken) in 53 familiaire en sporadische

tumoren. Met behulp van bioinformatica werden drie separate groepen geïdentifi-

ceerd. Deze bestonden hoofdzakelijk uit respectievelijk: (1) Adenomen (de benigne

tumoren vaak gevonden bij primaire HPT), (2) Tumoren met een HRPT2 mutatie (11

van de 12) en (3) Hyperplasieen (de benigne tumoren vaak gevonden bij secudaire

hyperparathyreoidie). De meest robuuste groep in deze studie bleek groep 2. HRPT2

gemuteerde tumoren lijken derhalve distincte karakteristieken te hebben aan de

hand van een moleculair profiel. Immunohistochemische analyse met antilichamen

gericht tegen enkele van deze moleculalen toonde inderdaad differentiële expressie

(Histone H1, Amyloid βA4 precursor protein, Cycline D1 en Ecadherine).

In hoofdstuk 9 wordt de zogenaamde “multiplex ligation dependent probe

amplification”  (MLPA) genomische analyse beschreven. Dit is een snelle diagnos-

tische methode om de aan- of afwezigheid van bekende chromosomale amplificaties

(chromosoom vermeerdering) en deleties (chromosoom verlies) in bijschildklier

tumoren te analyseren. In deze studie bevestigden we wederom dat bijschildklier

tumoren met een HRPT2 mutatie andere karakteristieke afwijkingen (op chr 1p, 3q

maar in het bijzonder chr 13) tonen dan de overige tumoren.
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FIGURE 3.2      Mutations in kindreds affected with HPT-JT.

Shaded upper left quadrant represents hyperparathyroidism, upper right quadrant represents

ossifying fibroma of the jaw, lower left quadrant represents renal cysts or other kidney tumors, and

lower right quadrant represents parathyroid carcinoma. A line drawn through a symbol represents

a deceased individual. Completely open symbols represent individuals who are currently

unaffected. Small superscript circles to the upper right of family member symbols represent those

individuals for whom DNA was available for mutational analysis. Small superscript circles with an

asterisk (*) in the middle represent those individuals who are confirmed mutation carriers. a,

Kindred-10 and chromatogram showing the heterozygous 165CG nonsense mutation in exon 2. b,

Kindred-22 and chromatogram showing the heterozygous 406AT nonsense mutation in exon 5. c,

Kindred-07 and chromatograms showing the normal allele and corresponding 636delT mutated

allele in exon 7. d, Kindred-01 and chromatograms showing the normal allele and corresponding

679insAG mutated allele in exon 7. e, Kindred-11 and chromatograms showing the normal allele

and corresponding 1238delA mutated allele in exon 14. For c-e, PCR products from single

affected individuals carrying mutations were subcloned and subsequently sequenced to obtain

sequences for both the mutated and normal alleles from the same individual.
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FIGURE 5.1      Confocal images demonstrating co-localization of the GFP-parafibromin fusion

protein with anti-parafibromin antibody within the nuclei of transfected HEK293 cells.

From left, GFP-parafibromin fusion protein expression (green); anti-parafibromin monoclonal

antibody binding, as detected by secondary Rhodamine-Red goat antimouse antibody (red);

Nomarski image of cells; 4',6-diamidino-2-phenylindole staining of nuclei (blue); superimposition

of all images demonstrating co-localization within nuclei. All images captured with a Zeiss

LSM510 META laser-scanning confocal microscope.
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FIGURE 5.3      Immunohistochemical staining representing the various staining patterns

manifested in the different pathologies through parafibromin immunostaining

A-D, magnification, 200x. A, diffuse staining (primary parathyroid hyperplasia); B, diffuse staining

(sporadic adenoma with a rim of normal tissue); C, focal loss (parathyroid carcinoma); and D,

diffuse loss (parathyroid carcinoma). E-H, higher magnifications of the respective parathyroid

pathologies at a magnification of 400x. All images were taken with a Spot Insight Camera on a

Nikon Eclipse E600.
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FIGURE 8.1      Detailed sample dendrogram of unsupervised hierarchical clustering.

Red and green indicate transcript expression levels respectively above and below the median

(black) for each gene across all samples. Grey squares indicate no results.
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FIGURE 8.3      Results of classification with a penalized logistic regression model, based on two

sets of 50 most significant genes (according to Significance Analysis of Microarray) present in all

arrays.

Top panel depicts the results of 100 bootstrap replications: means ([circle]) ±1 SD (lines) of log-

odds per array. The vertical scale is log-odds to base 10, where “0” represents equal odds, so that

in A, “2” indicates a probability of 100 to 1 that the specimen is not a cluster 2 tumor, and “–3”

alternately indicates a probability of 1000 to 1 that the specimen is a cluster 2 tumor. Outcomes

in the green (pink) regions are correctly (incorrectly) classified. A represents step-1

differentiation between non-Hyperparathyroidism-Jaw Tumor Syndrome/carcinoma tumors

(clusters 1 and 3) and Hyperparathyroidism-Jaw Tumor Syndrome/carcinoma tumors (cluster 2)

using 50 genes. B represents step-2 differentiation between adenomas (cluster 3) and the

remainder (cluster 1) using a different set of 50 genes. Bottom panel provides graphical

presentation of the log expressions with the arrays in the same order as in the top panel. The

genes have been ordered along the values of their coefficients in the model with yellow squares

indicating the highest expression.
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FIGURE 8.4      Canonical variate plot of all arrays.

The plot shows the first three canonical variates (CV1–3). CV1 consisted of 125 genes, CV2, 57

genes, and CV3, 63 genes. Among genes of significance in CV1–3 were CDH1, APP, UCHL1,

IGSF4, MOX2, and GAD1. A large separation between the carcinoma/Hyperparathyroidism-Jaw

Tumor Syndrome group and the rest of the tumors is evident. The 2 familial isolated

hyperparathyroidism specimens with HRPT2 mutations are included in the carcinoma and

Hyperparathyroidism-Jaw Tumor Syndrome group that is depicted in green. The 2 (green)

carcinomas distant from the main Hyperparathyroidism-Jaw Tumor Syndrome/carcinoma cluster

are the outliers #779G and #1798G. Clear separation of the adenoma (red), hyperplasia (purple),

and MEN 1 (light blue) groups is also evident. Two MEN 1 tumors are overlaid in this analysis and

appear as one blue spot. The pooled normal (black) is among between the adenoma, hyperplasia,

and MEN 1 groups. The 2 familial isolated hyperparathyroidism tumors with linkage at 11q13

(pink) are located between the adenomas and MEN 1 tumors. The MEN 2A (yellow) and lithium-

associated tumor (gray) are situated closest to the hyperplasia group.
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FIGURE 8.5     Immunohistochemical staining

Differential immunohistochemical staining at x200 magnification between (A) adenomas and (B)

carcinomas (overexpression) for E-cadherin (1), histone H1 (2), and amyloid ßA4 precursor

protein (3).
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