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Chapter 6

Piezoconductivity of gated
suspended graphene

6.1 Introduction

Graphene is a novel material with highly unusual electron properties,
related to the Dirac form of its energy spectrum at low energies, and
demonstrated in many seminal experiments (for review see [13, 22]).
Experiments on single-layer graphene have been performed on the flakes
obtained by exfoliation as well as grown on a substrate.

Graphene also has excellent mechanical properties. Indeed, the elas-
tic properties have been measured on suspended graphene flakes me-
chanically deposited over a hole by indentation in an atomic force mi-
croscope [67, 94, 39]; the results showed that graphene is incredibly stiff,
with the breaking strength of the order of 40N/m, the Young modulus
of 1 TPa, and possibility to be stretched elastically up to 20%. Bend-
ing properties have been determined experimentally for several-layer
graphene flakes [94] and are not yet available for a monolayer. Theoret-
ically, these properties have been predicted from the calculations using
the analytical form of the interatomic potential, and from molecular dy-
namic studies [52, 51]. Graphene is currently one of the most prospective
candidates for high-frequency nanomechanical resonators [21, 25], with
the quality factor and eigenfrequency extracted from measurements to
be Q � 75, f0 = 70.5 MHz for a monolayer, and Q � 120, f0 = 42 MHz
for 15nm thick graphite. Quality factor further increases with decreas-
ing temperature. An alternative method to investigate elastic properties
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of graphene is to put the film on a flexible substrate and deform the
substrate [60, 82]. The strain influences optical phonon spectrum [82],
which has been measured by Raman spectroscopy.

Recent experiments combine mechanical and electrical properties
of graphene by measuring conductivity [18, 19, 120, 33] of suspended
graphene flakes. This is a very promising direction since suspended
graphene flakes exhibit much higher mobility than graphene on sub-
strate due to much weaker disorder [18, 19]. Potentially electrons can
produce back-action on the resonator. Graphene resonators are expected
to have high sensitivity to mass and prebuilt strain [25], so that they can
be used to ultra-sensitive mass detection.

Suspension of graphene flakes always leads to their deformation,
which in turn affects the conduction properties of graphene. Deforma-
tion creates inhomogeneous elongation of the lattice constant [92, 38]
which locally affects the electron spectrum of graphene. One way to
look at the variations of the band structure of the strained graphene is to
perform density functional calculations [99]. Alternatively, the variation
of the lattice constant can be represented at the level of Dirac equation
in the form of pseudomagnetic fields [115]. Ref. [38] pointed out that
local shifts of the Fermi surface in suspended graphene in the vicinity
of the Dirac point can block the conductivity — if the Fermi-surfaces
at different parts of the flake do not overlap, the conduction is tunnel
rather than metallic. Effects of disorder due to charged impurities and
midgap states, optical and acoustic phonons were taking into account for
calculating conductivity of gated graphene in [112]. For strong enough
deformation, graphene quasiparticles can become localized [61].

In experiments, graphene flakes are typically suspended over a back-
gate. This gate redistributes the electron density in the flake due to the
spatial variation of the capacitance. The regions in the center of the
suspended part of the flake have higher electron density then the regions
near the clamping edges, as the central part is closer to the gate. This
density redistribution affects the transmission coefficients through the
entire flake. The corresponding effect on the piezoresistivity in ballistic
regime is of the first order in the maximum deformation of the flake in
the transverse direction, and it increases the conductivity. This has to be
contrasted with the effect of the pseudomagnetic fields which suppress
the conductivity. The contribution from pseudovector potential depends
on the strain [38] over the flake and is of the second order in the maxi-
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mum deformation. Thus, this contribution is expected to be weaker than
effect from the charge redistribution. We will show however that this
effect can be important for graphene under high enough residual stress.
Inhomogeneous deformation of graphene yields the corrections to the
conductivity which are of the fourth order in the maximum deformation,
which is even smaller.

In this Chapter, we calculate the effect of the gate-induced density
redistribution on the conductivity of the graphene flake. We find that,
indeed, for high residual stress the correction resulting from the pseu-
dovector potential is important, and the correction to the conductivity is
negative. We mostly focus on the regime of low residual stress and show
that the correction from the charge redistribution becomes the most im-
portant.

Experimentally, influence of deformation on the conductivity would
be difficult to observe on a suspended graphene flake with one gate
since the main effect of the gate is the global shift of the density rather
than its redistribution. To separate density redistribution and elastic de-
formation, one needs to employ two gates. For instance, one can use
the configuration with a large bottom gate and a narrow top gate. The
bottom gate deforms the graphene flake and determines the maximum
transverse deformation ξmax. When voltage is switched on the narrow
top gate it does not influence much of deformation of the flake depleting
the charge density below the top gate. Since the region under the top
gate has the lowest density it determines the conductivity of the whole
flake. If this region is brought to the Dirac point, the correction to con-
ductivity is determined only by the deformation of graphene [38] and
is proportional to

�
ξmax(Vg)/L

�2, with Vg and L being the voltage ap-
plied to the bottom gate and the length of the strip under the top gate.
However, for higher voltages the charge redistribution is more impor-
tant, and the correction to conductivity is proportional to ξmax(Vg)/d, d
being the distance to the bottom gate. Instead of the top gate, one can
use an AFM tip.

The chapter is organized as follows. In Section 6.2 we derive equa-
tions for the deformation of suspended graphene from general theory
of elasticity. We consider two situations — graphene deformed homo-
geneously by a gate and graphene deformed locally by an AFM tip.
The capacitance between the gate and suspended graphene varies due
to deformation of the flake. We calculate the density redistribution over
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Figure 6.1. Side view of a deformed graphene flake suspended over a gate. The
deformation is caused only by the interaction with a gate (left) or by the gate
and an AFM-tip (right).

the flake taking into account the shape of the flake. In Section 6.3, we
use these results to evaluate correction to the conductivity. We use the
perturbation theory to calculate the transmission eigenvalues, and the
correction to the conductivity is obtained using the Landauer formula.
This correction can be big for sufficiently strong deformations of the
flake which can be produced by an AFM tip. In Section 6.4 we discuss
the results and the not considered in this Chapter.

6.2 Deformation of the graphene sheet

In this Section, we calculate the profile of the graphene sheet formed
by electrostatic forces induced by the gates. For this purpose, we de-
compose the total energy of the flake as the sum of electrostatic and
elastic energies. We consider a graphene flake of the length L (direction
x) and the width W (direction y). For simplicity, we assume W � L.
An undeformed sheet occupies a part of the plain z = 0; the electro-
statically induced deflection is ξ(x, y). Below we only consider small
deformations so that we can stay within the limits of linear theory of
elasticity (Hooke’s law). At stronger deformations, as expected from the
general theory [66] and also confirmed by theoretical modeling [10] and
by experiments [21] on graphene, non-linear terms become important.
However, there is a considerable parameter range, with the displace-
ments up to 50 nm for length of the flake about 1 µm, where the linear
regime is still valid. We discuss the terms which go beyond Hooke’s
law [10] in Section 6.4.



6.2 Deformation of the graphene sheet 85

For electrostatic energy, similarly to Ref. [104], we model the sys-
tem as a capacitor between the flake and the gate, with the distributed
capacitance Cg dependent on the profile of the flake,

Cg =
Z

c[ξ(x, y)]dxdy. (6.1)

Electrostatic coupling to the leads is modeled via contact capacitances
CL, CR and resistances RL, RR, see. Fig (6.1). The total electrostatic
energy of the system carrying the charge Q is

Felectr = � Q2

2C0
+

Q
C0

(CLVL + CgVg)� CLCgVLVg

2C0
+

+
CLV2

L (C0 � CL)

2C0
++

CgV2
g (C0 � Cg)

2C0
,

with C0 = CL + CR + Cg.
From now on, we assume that the contacts are ideal, CL = CR = 0,

and thus the electrostatic energy is

Felectr = � Q2

2Cg
+ QVg. (6.2)

The effect of non-ideal contacts is discussed in Section 6.4.

6.2.1 Elastic energy

We evaluate the elastic energy in the thin-plate approximation. The
elastic energy consists of the bending contribution F1(ξ(x, y)) and the
stretching contribution F2(uαβ(x, y)), where uαβ(x, y) is the deformation
tensor, and α and β denote the coordinates in the plane of the sheet (x
and y). In the linear regime, the bending contribution is less impor-
tant than the stretching one, however, we consider both contributions
for completeness. Explicitly, we have [66]

F1(ξ) =
D
2

Z Z
dxdy

�
∂2ξ

∂x2 +
∂2ξ

∂y2

�2

+

+
Z Z

dxdy(1� ν2)

"�
∂2ξ

∂x∂y

�2

� ∂2ξ

∂x2
∂2ξ

∂y2

#
(6.3)
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and
F2(uαβ) = h0

uαβσαβ

2
. (6.4)

Here D = Eh3
0/(12(1� ν2)) is the bending rigidity, E is the Young mod-

ulus, ν is the Poisson ratio, h0 is the thickness of the plate (graphene
flake) , and σαβ is the stress tensor.

In addition, if a local force (for instance, an AFM tip) acts on the
graphene flake, it is best represented by external pressure Pext(x, y). The
work of this external pressure to deform the flake by δξ(x, y) is F3 =R

Pextδξ(x, y)d f , where d f is the surface element.
The profile of the sheet is determined by minimizing its total energy.

Performing the variation, we find the equation describing the shape of
the flake,

D∆2ξ � ∂

∂xβ
(h0σαβ

∂ξ

∂xα
) = Pel(x, y) + Pext(x, y), (6.5)

∂σαβ

∂xβ
= 0, (6.6)

with Pel(x, y) being the electrostatic pressure on the plate, induced by
the variation of electrostatic energy (6.2). For ideal contacts, Pel(x, y) =
n2(x, y)/2ε0. Here n(x, y) is the electron density. Eq. (6.5) is the most
general equation for ξ(x, y) in the linear approximation of elasticity the-
ory. For an infinitely wide graphene flake, W � L, the deformation in
the y direction is homogeneous.

At sufficiently small deformations, the tension along the sheet is con-
stant over the sheet (6.6), h0σ0

αβ = Tδαβ. The tension T is the sum of two
contributions:

T = T0 + TH, TH =
Eh0

1� ν2 ∆L/L (6.7)

The first one, T0, is the residual stress which results from the fabrication
process or is induced by the ripple formation [94, 67]. The second con-
tribution, TH, is an internal force due to the relative elongation ∆L/L
(Hooke’s law). If we take this term into account, we can go beyond
the thin-plate approximation and consider deformations bigger then the
thickness of the graphene layer.

In the two following Subsections, we solve the above equations for
two specific situations: homogeneous external force (which can be pro-
duced by a bulk bottom gate), and local force (produced for example by
an AFM tip).
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6.2.2 Homogeneous force: Deformation by a bottom gate

Applying a voltage on a bottom gate is a standard way to vary electron
density in graphene. If the suspended graphene flake is charged, it is
subject to a mechanical force proportional to the charge density. If the
area of the gate is much larger than the area of the flake, the electron
density induced by the gate is constant almost everywhere, n = Q/WL,
except for the clamping points of the flake, where it is determined not
only by the solution of the Poisson equation (providing singularities at
the capacitor edges), but also by the metallic leads to which the flake is
clamped. Indeed, experimental evidence for this charge inhomogeneity
exist and can be accessed by asymmetry of the Dirac peak in conductiv-
ity [102]. However, these density inhomogenities at the clamping areas
very little affect the deformation, since the displacement vanishes at the
edges of the flake. Therefore we can approximate the effect of the gate
by homogeneous electrostatic pressure over the flake, P = ε0V2

g /2d2, Vg

and d being the gate voltage and the distance to the gate. The profile of
the graphene sheet is found from the equation

D
∂4ξ

∂x4 � T
∂2ξ

∂x2 = P, (6.8)

where the stress T is constant over the sheet (6.7) and the deformation-
dependent contribution to it depending has to be found self-consistently,

TH =
Eh0

2(1� ν2)

Z L

0
ξ 02(x)dx (6.9)

(the case for inhomogeneous TH derived in Ref. [10] is discussed in Sec-
tion 6.4 and does not induce significant difference in results). For the
boundary condition corresponding to the clamping the sheet, ξ(0) =
ξ(L) = ξ 0(0) = ξ 0(L) = 0, the profile is

ξ(x) =
PL

2Tµ

�
sinh µL

cosh µL� 1
(cosh µx� 1)� sinh µx + µx

� µx2

L

�
, µ =

r
T
D

. (6.10)

The profile (6.10) is parabolic in the middle of the strip (as noted in Ref.
[38]). As we show below, in graphene the dimensionless parameter µL
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assumes large values. In this case, the profile can be simplified, and near
the middle of the strip has the form

ξ(x) =
PL
2T

�
x� x2

L

�
. (6.11)

Close to the edges, the profile becomes ξ(x) = PµLx2/4T. Substituting
this shape into Eqs. (6.3) and (6.4), we find the values of the parameters
F1 and F2,

F1 =
P2LW

16Tµ2(�8 + µL)
, (6.12)

and

F2 =
T2WL(1� ν2)

Eh0
. (6.13)

The maximum vertical displacement obeys the equation

ξmax =
PL2

8(T0 + 8Eh0ξ2
max/(3(1� ν2)L2))

. (6.14)

The deformation of the sheet leads to the redistribution of the elec-
tron density, which in the Thomas-Fermi approximation is

n(x) = Vgε0/(d� ξ(x)).

In its turn, the density redistribution affects the profile of the sheet, and
needs, in principle, to be calculated self-consistently. However, as soon
as the displacement ξmax is much smaller than the distance to the gate,
the later effect is insignificant (of the order of ξmax/d), and we will use
the shape (6.10) not modified by the density redistribution.

The charge over the graphene flake is determined from minimization
of the total energy of the system with respect to electron density n,

�Vg +
nd
ε0

�
1� 8

3
ξmax

d
+

�
1 +

1
2

�
ξmax

dµL
+

1
3

ξmax

d

�
= 0, (6.15)

where the maximum deformation of the sheet in the middle, ξmax (6.14),
depends on charge density. The second term in the brackets and 1 from
the third term come from electrostatic energy and originate from the
redistribution of the charge density due to variation of the distance be-
tween parts of deformed graphene and the gate. The rest (1/2) of the
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Figure 6.2. Dependence of the maximum deviation on the gate voltage,
ξmax(Vg). The solid curves represent the self-consistent solution of nonlinear
coupled equations for the deformation of the flake and the charge induced by
the gate, Eqs. (6.14) and (6.16). The distance to the gate is d = 300 nm (top
panel) and d = 100 nm (bottom panel). Other parameters of the graphene
flake, length L = 1 µm, Young’s modulus E = 1 TPa, Poisson ratio ν = 0.15,
and the thickness of the flake h0 = 0.34 nm, are chosen in order to model real
experimental data. The results are given for the different values of the residual
stress: the curve 1 is for T0 = 0.001 N/m, 2 is for T0 = 0.01 N/m, 3 is for
T0 = 0.1 N/m. For each value of the residual stress, the asymptotic curves at
low gate voltages (6.17) are shown as dashed lines, the curve 3 for high resid-
ual stress coincide perfectly with its asymptote. The asymptotic curves for low
residual stress, Eq. (6.19), are shown by dashed-dotted lines. The correspon-
dence between the solution of equations and asymptotes for low residual stress
is not perfect. The reason is that the asymptotes are calculated for the linear
charge-voltage dependence, and n(Vg) is non-linear according to Eq. (6.16) for
sufficiently high gate voltages on the flake.
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third term comes from bending energy. The fourth term takes into ac-
count dependence of the stretching force T over the flake on the charge
density via the deflection (Eq. (6.9)). Calculations are made under the
assumption µL � 1, which is realistic for available experiments. Simpli-
fying Eq. (6.15), we obtain

�Vg +
nd
ε0

�
1� 7

3
ξmax

d
+

3
2

ξmax

dµL

�
= 0 (6.16)

At low gate voltages, Eq. (6.16) yields the linear gate voltage dependence
of the electron density, n0 � Vgε0/d. There is non-linear deviation from
this dependence at higher gate voltages and at rather low initial strain
T0.

The maximum deformation can be expressed analytically in two lim-
iting cases. First, if the residual stress T0 is stronger than the induced
stress TH, it mostly accounts for the deformation of the sheet,

TH =
Eh0P2L2

24(1� ν2)T2
0
� T0,

�
Eh0P2L2

24(1� ν2)

�1/3

� T0,

ξmax =
ε0V2

g L2

16d2T0
, (6.17)

n� n0

n0
=

7
3

ξmax

d

�
1� 72

7
p

T0/DL

�
. (6.18)

In the case of low residual stress, one obtains

T0 � TH =
1
2

�
Eh0P2L2

3(1� ν2)

�1/3

,

ξmax =
1
4

 
3V2

g ε0(1� ν2)L4

2d2Eh0

!1/3

, (6.19)

n� n0

n0
=

7
3

ξmax

d
� 12

s
3D(1� ν2)

2Eh0
. (6.20)

The maximum deviation ξmax, obtained from the numerical solution
of coupled nonlinear equations Eqs. (6.14), (6.16), as well as asymptotic
expressions (6.17) and (6.19), are shown in Fig. 6.2 for different values
of initial stress T0. According to Eqs. (6.18) and (6.20), the nonlinear
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Figure 6.3. Regimes of the deformation of suspended graphene. For large
residual stress T0 the asymptotics Eq. (6.17) are valid, and the charge on the
flake follows the gate voltage linearly. For small T0 the asymptotes Eq. (6.19)
are valid, the charge is linear with the gate voltage at low gate voltages and
starts to follow non-linear dependence with increasing voltage. At high gate
voltages, when the deformation of the flake is bigger than ξmax/d � 0.1, one
needs to solve self-consistently the electrostatic problem and the problem of
elasticity, analytical results for this region are not available.

part of the charge induced on the graphene flake follows the depen-
dence ξmax(V)/d. Consequently, we encounter several regimes for the
deformation,

� at large T0 the charge–voltage dependence is linear for realistic
parameters because the maximum deformation is not too large for
realistic characteristics of graphene flake. It is shown in Fig. 6.2
for T0 = 0.1 N/m that the maximum deformation is in a good
agreement with Eq. (6.17);

� at small T0 and low gate voltages Vg the charge–voltage depen-
dence can be in linear regime, and the maximum deformation fol-
lows Eq. (6.19). We illustrate this for the flake with the parameters
T0 = 0.001 N/m and distance to the gate d = 300 nm (See. Fig. 6.2,
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Figure 6.4. Dependence of the maximum deformation ξmax on the applied force
P2l for the case of the point force in the middle of the graphene sheet. Only the
curve for T0 = 0 is shown, since the residual stress is not important for this case:
The strain created by deformation becomes large (more than 0.1 N/m) already
at moderate deformations in the middle, ξmax � 10 nm. Other parameters of
the flake are L = 1µm, d = 300 nm, E = 1 TPa, ν = 0.15, h0 = 0.34nm.

top), where the solutions of coupled electrostatic and elastic equa-
tions, Eq. (6.14), (6.16), follow asymptotic expression Eq. (6.19).
The charge redistribution does not need to be taken into account;

� at small T0 and large Vg the system is in the non-linear charge
regime. This situation can be realized for small distances to the
gate when the coupling of the graphene sheet to the gate is large,
so that it is possible to create large deformations using low gate
voltages. For example, at d = 100 nm the non-linear charge regime
influences the deformation already at voltage Vg = 2 V, at the
bottom plot Fig. 6.2 we can see the intersection of the asymptotical
curve (6.19) and the actual solution of Eqs. (6.14), (6.16).

The schematic representation of these regimes is shown in Fig. 6.3.
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6.2.3 Local force: Deformation by an AFM tip

Next, we consider a concentrated force acting on graphene. This force
can be provided, for example, by an AFM tip. The effect of the tip
is modeled by strong pressure exerted on a narrow area of the width
l � L. We assume that the problem is still homogeneous in the y-
direction, which simplifies the calculations enormously. Inclusion of a
pressure action in a narrow circle, which is experimentally relevant for
an AFM tip, is not expected to bring qualitatively new features. We
consider pressure P(x) = P1, 0 < x < L/2� l/2, L/2 + l/2 < x < L and
P(x) = P2, L/2� l/2 < x < L/2+ l/2. Here P2 is the local pressure, and
P1 can describe homogeneous pressure due to electrostatics, for realistic
setups local pressure is much larger than pressure due to interaction
with the gate P1 � P2.

The maximum displacement of the flake (realized at the central point)
is easy to write down for µL � 1 and l � L:

ξmax =
P1
�
(µL/2)2eµl/2 � 2e�µl

�
2µ2T

+

+
P2
�
e�µl + eµlµ2lL/4

�
µ2T

. (6.21)

For P1 � P2 and 1 � eµl/2Lµlµ/4 we obtain

ξmax =
P2lL
4T

. (6.22)

The profile of the graphene sheet in this approximation becomes

ξ(x) =
2ξmax

L
jx� L/2j. (6.23)

In the limits of weak and strong residual stress the deformation is
determined by

TH =
Eh0

8(1� ν2)

�
P2l
T0

�2

� T0,
�

Eh0

8(1� ν2)
P2

2 l2
�1/3

� T0,

ξmax =
P2lL
4T0

; (6.24)
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and

T0 � TH =
1
2

�
Eh0P2

2 l2

1� ν2

�1/3

,

ξmax = L
�

P2l(1� ν2)

8Eh0

�1/3

. (6.25)

The dependence of the maximum deformation on the applied exter-
nal local force is shown in Fig. 6.4. The deformation produced by this
force is much bigger than the deformation caused by electrostatic pres-
sure of the gate. The electrostatic problem for this case can be solved
separately from the problem of elasticity.

6.3 Piezoconductivity of graphene flake

It was shown experimentally [19] that suspended graphene flakes are
described with good precision as purely ballistic. Theoretically, conduc-
tance is determined by Landauer formula [118]

G = 4e2/h
N�1

∑
n=0

Tn, (6.26)

where Tn is the transmission eigenvalue in the transport channel n, and
the factor 4e2/h is conductance of a single transport channel which takes
into account valley and spin degeneracy. The number of open transport
channels N = WkF/π is proportional to the Fermi momentum kF =
(πn/e)1/2, and thus the conductivity, σ = GL/W, is proportional to the
square root of the electron density n, σ ∝

p
n.

The conductivity of graphene flake suspended over a gate can devi-
ate from this dependence. To start with, due to electrostatic interaction
with the gate, the density becomes inhomogeneous [111]. In particular,
Poisson equation leads to the square root divergence of the electron den-
sity at the clamping points, as in any capacitor (see e.g. Ref. [83], 1). To
treat this divergence properly, one has to take into account electrostatic
interaction with the contacts near the edge of the graphene strip, which
modifies significantly the electron density near the edge, removing the

1For the case of edges of half-infinite capacitor [83] and the distance between the
plates of capacitor d = 300 nm the region near the edge where the electrostatic diver-
gence plays role is about 200 nm.
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divergence. However, the effect of this inhomogeneous density close to
the contacts does not affect the piezoconductivity of the flake, since the
deformation close to the clamping points is very weak, and thus it can
be included into the contact resistance at the clamping points.

We now turn to the effects of the deformation on the conductiv-
ity. Deformation of graphene can change the conductivity by inducing
changes in the band structure (which results in pseudo-magnetic fields)
as well as by changing the electron density over the flake. We consider
both these mechanisms and will show that typically the effect of the
density redistribution dominates.

Electrons in graphene obey Dirac equation. Deformation of the flake
influences on the Dirac equation in three ways — it shifts the K-points by
a certain amount δk/kF (pseudomagnetic field), renormalizes the Fermi
velocity by δvF/vF, and induces the variation of the electron density on
the flake δn/n. The deformation correction to the conductivity is thus a
function of these three dimensionless parameters.

The pseudomagnetic field, produced by the shift of the K-point, is
caused by stretching and bending. The shift of the K-point due to
stretching generates the vector potential [115, 38]

Astr
y =

Cβ̃

a
(uxx � uyy), Astr

x = �2
Cβ̃

a
uxy, (6.27)

where C is the order of 1, and β̃ = �∂ log(t)/∂ log(a), t and a being
the overlap integral in the tight-binding model and the lattice param-
eter, respectively. For L � W one has uxy = 0, and hence Astr

x = 0.
The deformation is homogeneous within the limits of applicability of
Hooke’s law, and thus uxx = const and Astr

y = const. This means that
there is no pseudomagnetic field over the graphene flake. The pseudo-
magnetic field only appears in the region where the flake goes from the
substrate to the suspended state [38] and, as noted above, its effect to
the piezoconductivity is small, of the second order in ξmax/L,

δσK

σ
=

Astr
y

kF
, (6.28)

where the deformation on the edges has been estimated as

uxx = ξ2
max/L2 + T0(1� ν2)/Eh0,
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and kF =
p

πε0Vg/de. Taking into account the value of Cβ̃/a 2, we
obtain

δσK

σ
= 205

s
d[µm]

Vg[V]

�
ξ2

max

L2 +
T0(1� ν2)

Eh0

�
. (6.29)

Note the contribution from two terms induced by deformation stress
and residual stress, as well as multiplication with the big prefactor 205.

The underlying physical picture for the model of Ref. [38] is that the
graphene flake is "glued" to the walls at the suspension point. Whereas
this has been realized in some experiments [67], it describes the situa-
tion when the residual strain T0 is of the same order or higher than the
strain induced by the gate voltage. The residual strain results from the
fabrication process and is most likely to be created by impurities in the
substrate. It can be made low on purpose since the strain is reduced after
annealing [25]. In the opposite situation, when the residual stress is not
significant, the pseudomagnetic field is inhomogeneous and distributed
over the whole suspension area.

The pseudomagnetic field is also inhomogeneous if one considers
the bending contribution. Bending leads to the inhomogeneous mod-
ification of the overlap of the orbitals, and the resulting pseudovector
potential has the form [50]

Abend
y =

tbend

a

 
θ2(a, x)

2
� θ2( a

2 , x)
2

!
, (6.30)

θ(a, x) being the angle between normal vectors to the graphene surface
at the points x and x + a, and the constant [59] tbend = 3.21 3. The shape
dependence of θ(a, x) has the form

θ2(a, x) = a2
�

∂2ξ

∂x2

�2
 

1 +

�
∂ξ

∂x

�2
!�1

.

2Parameter Cβ̃/a can be taken in the form 3tstrβ/ka, where according to calcula-
tions [128] k = 8.98N/m2, β/a = 0.4 N/m2, and the parameter β/(ka) = 0.0445, tstr can

be determined by different methods, it is approximately tstr = 2Å
�1

(from femtosec-

ond time-resolved photoemission experiement [48], tstr � 1Å
�1

, from analitycal esti-

mations [93] and optical spectrum of polyacetylene, tstr � 2.0Å
�1

, from tight-binding

approximation tstr � 2.5Å
�1

). Finally, the estimation of the Cβ̃/a is 0.27Å
�1

.
3follows from consideration of orbital overlapping.
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Figure 6.5. Schematic behavior of piezoconductivity. For low residual stress T0
the correction is mainly due to the charge redistribution and has positive sign.
For high residual stress the correction is negative.

This yields Abend
y � (3tbend/8a)(ξmaxa/L2)2. Hence the contribution from

bending is approximately (a/L)2 times smaller than from stretching
without residual stress, and is thus negligibly small, even though the
resulting magnetic field is not homogeneous.

The easiest way to estimate inhomogeneous stretching of graphene
is to take Hooke’s law in the local form, TH(x) = Eh0uxx(x). Since
the maximum relative deformation can be estimated as uxx = ξ2

max/L2,
naively, the correction from non-homogeneous stretching is of the same
order as the one from delta-functional pseudomagnetic field at the clamp-
ing edges. We show below, however, that the correction from non-
uniform stretching is of the order of ξ4

max/L4, but still due to large pref-
actor it can reduce the conductivity at low gate voltages.
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Another effect induced by the deformation is the renormalization of
the Fermi velocity. The renormalized value of the velocity can be derived
from the tight-binding model. Assuming that the graphene sheet is only
deformed in the x-direction, we find that the x-component of the Fermi
velocity is unchanged wheres the y-component is renormalized,

vFy = vF(1� Cβ̃uxx), (6.31)

so that approximately vFy � vF(1� ξ2
max/L2). The effect of the renor-

malization on the conductivity is not significant and has the order of
magnitude ξ2

max/L2. Note that this is the same dependence on ξmax/L
as for pseudomagnetic fields, however, it is not enhanced by a big pref-
actor.

The influence on conductivity of such change in Fermi velocity is not
significant. This influence can be in principle measured experimentally
as the conductivity variation at the Dirac point, similarly to how we
explain below in Subsection 6.3.2.

6.3.1 Correction to conductivity due to the charge redistribu-
tion

Redistribution of electric charge due to interactions with the gate is
found from the assumption that the potential along the graphene sheet is
constant, U(x) = δQ(x)/δC(x) = const, where δC(x) is the capacitance
of the element of the length δx of graphene, δC(x) = ε0Wδx/(d� ξ(x)),
and δQ(x) = n(x)Wδx is the charge of this element. In the first order
approximation, this gives δn(x)/n0 = ξ(x)/d.

The conductivity of graphene is proportional to charge density n,
and thus the contribution to conductivity due to charge redistribution
is expected to be linear in the maximum deviation from the homoge-
neous density, δnmax. Thus, the correction to conductivity is expected to
be δσ/σ � ξmax/d. Before starting the calculation of the correction to
conductivity, we estimate the range where this correction of the order
of ξmax/d is more important than the correction due to pseudovector
potential which we considered above, Fig. 6.5,

T0[N/m] < 10�3 L
d

s
V5/2

g [V]

d3/2[µm]
. (6.32)
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Figure 6.6. The correction to conductivity. Parameters of the flake are the same
as for Fig. 6.2 (top). Asymptotic expressions for the high gate voltage are shown
by the dashed-dotted lines. Additionally, the correction (with the opposite sign)
due to the delta-functional pseudomagnetic field at the suspension regions [38],
Eq. (6.29), is shown by dotted lines (1’, 3’).

As noticed in Ref. [38] the pseudovector potential at low gate voltages
blocks conductivity, this is seen from Eq. (6.29). For large deforma-
tion the expressions (6.19) are valid, residual stress is not important any
more, and thus the gate voltage should be large enough to see the de-
crease of conductivity,

Vg[V] > 2.8
L4

d4
1

d[µm]
. (6.33)

This deformation is so strong that in can not be reached in practice.
For the deformation with AFM the residual stress is not important

and at deviations

ξmax[nm] > 2.5
L2[µm]

d[µm]

s
Vg[V]

d[µm]
(6.34)

correction to pseudovector potential starts to suppress the conductivity.
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Figure 6.7. Dependence of the piezocorrection to conductivity on the gate volt-
age for fixed deformation, obtained by solving the Dirac equation by exact
transfer matrix method. Here, δσU , the curve marked 1, is the correction with
only charge redistribution taken into account, and δσA,U , the curve 2, encom-
passes both contributions, the one due to non-uniform tension and the one due
to charge redistribution. At low gate voltages the correction δσA,U is mostly
caused by pseudomagnetic field and is negative, for higher gate voltages it
changes sign and approaches δσU . The correction only due to pseudomag-
netic field according to Eq. (6.40) is proportional to 1/

p
Vg, so that it vanishes

at large gate voltages. The parameters of the graphene flake are L = 1µm,
d = 300 nm, E = 1 TPa, ν = 0.15, h0 = 0.34nm.

To calculate the correction due to the charge redistribution, we notice
that the density variation is translated into the correction for conductiv-
ity via the variation of the transmission probabilities Tn, which are the
eigenvalues of the matrix t̂† t̂, t̂ being the transmission matrix of the
graphene sheet. The transmission eigenvalues tq are determined in Ap-
pendix by the transfer matrix method. The correction to the conductivity
is linear in the density shift δn, and consequently in the maximum defor-
mation ξmax (as is shown above from simple qualitative considerations).
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It has the form (see Appendix)

δσU = L
W ∑

q
4
��tq
��2 q2k2

F
k3 sin kL

�
Z L

0
dx

ξ(x)
d

sin k(L� x) sin kx, (6.35)

where jtqj2 = (cos2 kL + k2
F sin2 kL/k2)�1 is the transmission probability

for the mode labeled by the transverse momentum q = 2πn/W, n being
an integer number, and k is a wave number in the direction along the
strip, so that k2

F = k2 + q2.
To carry out more detailed analysis, we consider specific deformation

setups discussed in Section 6.2 — homogeneous and local deformation.
Eq. (6.35) can be analyzed analytically for small and large values

of the parameter kFL, which characterizes the charge density over the
flake. The correction to conductivity for the homogeneous deformation
(bottom gate) has the following asymptotic behavior for small and large
values of kFL (for more details, see Appendix),

δσU

σ
=

(
ξmax/2d, 1 � kFL;
0.021ξmax(kFL)2/d, kFL � 1.

(6.36)

Taking into account the functional dependence of the maximum de-
viation for small and large initial stress T0, Eqs. (6.19) and (6.17), we get
the asymptotic dependence of the correction to conductivity on the gate
voltage, for TH � T0:

δσU(Vg)

σ(Vg)
∝

(
L2V2

g /T0d3, 1 � kFL;
L4V3

g /T0d4, kFL � 1,
(6.37)

and for T0 � TH:

δσU(Vg)

σ(Vg)
∝

(
L4/3V2/3

g /d5/3, 1 � kFL;�
VgL2/d2

�5/3 , kFL � 1.
(6.38)

Fig. 6.6 shows the exact result of summation over modes Eq. (6.35).
At both high (kFL � 1) and low (kFL � 1) gate voltages, the correc-
tion follows the asymptotic behavior both for weak and strong residual
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Figure 6.8. Dependence of the piezocorrection to conductivity on the maximum
deviation, δσ(ξmax)/σ, at the fixed gate voltage Vg = 0.03 V (top), 3 V (bottom).
We show both the correction related to the term due to non-uniform pseudovec-
tor potential, and the contribution without this term. For Vg = 0.03 V, we also
include the best fit V = αξmax + βξ4

max which represent the sum of linear in
ξmax correction due to charge redistribution and the correction due to nonuni-
form pseudovector potential βξ4

max. The parameters of the graphene flake are
L = 1µm, d = 300 nm, E = 1 TPa, ν = 0.15, h0 = 0.34nm.
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stress T0, Eqs. (6.38) and (6.37). On the same plot we compare the correc-
tion we found with the correction due to pseudomagnetic fields at the
edges [38]. The latter one has a different sign (conductivity decreases
with an increasing the stress). For high residual stress this correction is
more important than due to charge redistribution, according to Ref. [38]
it can block conductivity. For low residual stress it is about 10 times
lower than the increasing conductivity correction. The oscillations of
δσ/σ have the period of kFL and are associated with the shift of Fabry-
Perot resonances in conductivity for deformed graphene flake as com-
pared with an undeformed flake. This shift occurs since the effective
longitudinal wave vector of an electron in graphene depends on the de-
formation since it feels different charge density over the graphene flake.
Note also that the contribution from pseudomagnetic fields does not os-
cillate since the value of kF is the same for the whole flake. The first
order perturbation theory in ξmax/d is valid until this parameter reaches
a rather large value, ξmax/d � 0.1 (see Appendix for more details).

For the case of local deformation, using the graphene profile (6.23)
and using the same technique as in Appendix, we find the correction for
conductivity due to the charge redistribution,

δσU

σ
=

(
ξmax/2d, 1 � kFL;
0.088ξmax(kFL)2/d, kFL � 1.

(6.39)

Note that the asymptotic behavior for large kFL has the same form
as for homogeneous deformation.

We can also estimate the influence of inhomogeneous pseudomag-
netic field assuming the local form of Hooke’s law as in [10] and using
the perturbation theory for the transfer matrix, as detailed in Appendix.
We find that the first order perturbation theory correction in pseudovec-
tor potential vanishes, whereas the second order correction can be esti-
mated as

δσA

σ
� 5.5 � 105 ξ4

max

L4

s
d[µm]

Vg[V]
. (6.40)

At low gate voltages and large deformations (for instance, induced by
local deformation), this correction can be more important that the one
from the charge redistribution, and thus the conductivity will be sup-
pressed. From comparison of Eqs. (6.40) and (6.39) this supression hap-
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pens for deformations:

ξmax

L
> 10�2 6

s
d[µm]

Vg[V]

�
L
d

�1/2

. (6.41)

We demonstrate this by solving numerically by transfer matrix method
the Dirac equation with additional potential due to charge redistribution
and pseudovector potential, Fig. 6.7. At fixed large ξmax = 12 nm (es-
timated using Eq. (6.41)) and at low voltages the conductivity starts to
decrease due to inhomogeneous tension distribution in the flake, and at
higher voltages increases again due to the effect of charge redistribution.
Fig. 6.8 shows that for small gate voltages lower maximum deformation
ξmax is required to reach the point where the conductivity starts to de-
crease, in agreement with Eq. (6.40). For high gate voltages Vg � 3 V
pseudomagnetic fields lead to saturation of the conductivity rather than
to its decrease.

6.3.2 Two-gate geometry

Conductivity can also be used to measure relative stretching of de-
formed suspended graphene. Note that the influence of stretching on
the conductivity of graphene deposited on a substrate has been demon-
strated experimentally [60]. For suspended graphene it is more difficult
to extract the value of stretching than from the graphene on the sub-
strate, since the gate voltage simultaneously varies the concentration
and deforms graphene, as shown above.

To measure relative stretching of suspended graphene, we propose
the two-gate geometry (Fig. 6.9). The deformation of the graphene flake
is created by the large bottom gate, the influence of the top gate on the
deformation is small as the top gate is narrow. The top gate is used to
vary the charge density in the region underneath it. In this geometry
at the fixed voltage at the bottom gate one can move through the Dirac
point by varying the voltage at the top gate (the experiment for bilayer
with two gates on the substrate [91]). The value of conductivity at this
point depends on the deformation.

The stretching of the graphene flake, as discussed above, induces
variations of the conductivity for two reasons. First, it induces pseudo-
magnetic fields. These, however, can be gauged away of Dirac equation
[75] at the Dirac point and do not influence the conductivity. Second,
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Figure 6.9. Schematic dependence of conductivity of suspended graphene on
the top gate voltage for several fixed bottom gate voltages. The conductivity at
the Dirac point is slightly shifted due to change in Fermi velocity caused by de-
formation. The difference between the values of conductivity of the Dirac peaks
for different bottom gate voltages, Vb1 and Vb2, is proportional to the difference
in relative deformations, (σD(Vb1)� σD(Vb2))/σD � uxx(Vb1)� uxx(Vb2).

it shifts the Fermi velocity. The relative shift is proportional to the de-
formation, δvF/vF � ξ2

max/L2, and leads to the positive correction of
the conductivity at the Dirac point, δσ/σ � δvF/vF � ξ2

max/L2. Thus,
for different bottom gate voltages, which is equivalent to different max-
imum deformations ξmax, the conductivity at the Dirac point is slightly
different, and the relative graphene stretching can be restored from this
dependence. For example, consider the dependence of conductivity on
the top gate voltage for different bottom gate voltages (Fig. 6.9). At
a fixed value of the bottom gate voltage, the conductivity as a func-
tion of the top gate voltage exhibits a peak dependence, with the min-
imum corresponding to the Dirac point. The difference between the
values of conductivity at Dirac peaks, σD, for different bottom gate volt-
ages, Vb1 and Vb2, is proportional to the difference in relative deforma-
tion, (σD(Vb1)� σD(Vb2))/σD � uxx(Vb1)� uxx(Vb2) (we remember that
uxx � ξ2

max/L2).
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6.4 Discussion

In this Chapter, we investigated two mechanisms which affect the con-
ductivity of suspended graphene — charge redistribution induced by
the gate(s), and pseudomagnetic fields induced by the deformation of
graphene. We find that for the small residual stress T0, the charge re-
distribution mechanism dominates. For low gate voltages and strong
deformation, which experimentally is best realized by using AFM, the
correction due to nonuniform pseudomagnetic fields is more significant.
The correction due to pseudovector potential at the region of suspension
can decrease conductivity at the large residual stress [38]. It is important
that the two mechanisms provide corrections to conductivity which are
of different signs. Indeed, the correction from pseudomagnetic fields
suppresses the conductivity [38] by shifting K-points due to the vector
potential. The shift is different at different points of the suspended sam-
ple, and if the deformation is big enough, the Fermi circles at the clamp-
ing points and at the centre of the flake do not overlap: The system
becomes insulating. If now we take into account the effects of the gate,
not only the Fermi circles are shifted, but their radii are greater at the
center of the flake since the charge density is greater in the areas closer
to the gate. The increase of the radii and the shift of the center compete,
and we find that typically the radius increase is more important.

It is difficult to measure piezoconductivity only by using a bottom
gate since the gate voltage not only bends graphene and produces the
correction to the conductivity, but also shifts the overall charge density.
The density dependence of the conductivity is different from the density
dependence of the correction. Thus, to extract the value of piezoconduc-
tivity, one has to compare the conductance of deformed and undeformed
graphene sheet at the same density, which can only be done in the one-
gate geometry by comparing the results with the theoretical prediction.
In contrast, the two-gate setup, with a bottom gate fixing the overall
density and the top gate (which can be an AFM tip) creating the defor-
mation is more convenient to extract piezoconductivity. One can fix the
voltage on the bottom gate and start to deform the flake with the AFM
tip. At low gate voltages the conductivity decreases due to the pseudo-
magnetic fields, whereas at higher voltages it starts to grow due to the
charge redistribution.

In the real experimental situation, the AFM tip has a point shape,
whereas in this Chapter we considered for illustration the deformation
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homogeneous in one direction, i.e. replaced the tip by a rod. Non-
homogeneous deformation in all directions creates pseudomagnetic fields,
with the conductivity depending not only on the transverse displace-
ment, but also locally on the position over the graphene sheet. The
conductivity is the largest if the tip is placed in the middle of the sheet,
and decreases if the tip moves to the side. We can understand this be-
havior from a simple reasoning. Indeed, the electrons which from the
two sides of the tip feel the pseudomagnetic fields and interfere simi-
larly to an Aharonov-Bohm ring. The interference is more destructive if
the tip is further from the center, and thus the conductivity decreases.

Another parameter which affects the conductivity is the residual
stress T0. It can be varied experimentally for instance if one uses graphene
suspended over piezosubstrate. Putting voltage on the substrate would
induce extra stress on graphene, and one can move from the situation
where pseudovector potential blocks the conductivity at low gate volt-
ages to the case where residual stress does not play a role and the cor-
rection due to charge redistribution increases the conducitivity.

In this Chapter, we considered ideal ballistic graphene. In particular,
we disregarded the contact resistance, assuming the clamping points to
be ideal contacts. Finite transparency of the contacts would suppress
both the conductivity itself and the piezocorrection to the conductivity;
in addition, it would raise the amplitude of Fabry-Perot resonances.

For strong deformations of the graphene sheet, the problem becomes
much more complicated, since one has now to solve elasticity equations
self-consistently, taking into account that the displacement depends on
the charge redistribution. This leads to additional terms in the equations
of the elasticity theory. Taking into account influence of the density
redistribution on the term with electrostatic pressure in the equation of
deformation, one can show that the self-consistency condition increases
the deformation in the middle of the graphene sheet. This effect only
becomes important at sufficiently strong deformations.

In real experiments the charge inhomogeneity of the graphene flake
is not only due to surrounding electrodes but also e.g. charge redistri-
bution due to charge impurities in the substrate, puddles in the non-
suspended part of graphene, or left-over dopants from the process of
fabrication.

First we consider the effect of the leads and inhomogeneities in the
substrate or over the substrate. These density inhomogeneities are cre-
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ated by external electrostatic potential (see Sec. 6.2.2). This potential is
not expected to change by gate voltage and merely shifts the position of
the Dirac point. In this case all results involving gate voltage Vg should
be corrected by the finite gate voltage offset of the Dirac point VgD as
Vg �! (Vg � VgD). Moreover, due to the screening effects in graphene
the influence of the substrate impurities is weakened.

Second, we consider intrinsic charge puddles in graphene, though
according to the experiments where fractional quantum Hall effect was
observed [33] in suspended graphene, even in the presence of charge
puddles the overall electron density remains almost homogeneous. For
instance, it is reasonable to assume that every puddle contains an ex-
tra electron[78]. The gate voltage variation leads to the variation of the
total potential (intrinsic plus electrostatic) over the graphene flake, and
eventually one more electron enters the system. This additional electron
is delocalized over the flake and shifts the conductance as discussed
above. estimation by the means discussed in the Chapter. The gate volt-
age at which this extra electron enters the system is approximately e/C
(δV � 1meV for d = 300nm, L = W = 1µm). Thus, at noticeable gate
voltages (V > 0.1V for these parameters), when the number of delocal-
ized electrons is large, the influence of intrinsic puddles is insignificant
with respect to the contribution of delocalized electrons, and the conclu-
sions of the Chapter remain unchanged. At low gate voltages, however,
the puddle contribution may become significant.

Finally, we assumed that undeformed graphene is flat. In reality,
it is always rippled, and, in principle, one needs to use the elasticity
theory for membranes. However, we do not expect that taking ripples
into account would significantly affect the results of this chapter. First,
the ripples are small and have a large radius of curvature, which means
they are very little affected by the overall deformation of the graphene
sheet. Second, the main effect of the ripples is to renormalize the energy
over the graphene sheet [108]. We thus expect that our results are valid,
but for renormalized energy over the flake (energy is determined by gate
voltage in clean case, and is renormalized in the rippled case).
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Appendix 6.A Perturbative corrections to conductiv-
ity

In this Appendix, we calculate the corrections to the conductivity due to
both charge redistribution and pseudomagnetic fields, using the pertur-
bation theory.

The Dirac equation for one valley in graphene has the form

vF~σ~p + δU(x, y) = E , (6.42)

with~σ = (σx, σy), ~p = (px, py),

px = �ih̄∂x + Ax, py = �ih̄∂y + Ay,

Ax(x, y) and Ay(x, y) being the components of the pseudomagnetic vector-
potential, given by Eq. (6.27), and δU(x, y) is the additional electrostatic
potential due to the charge redistribution over the graphene flake. It
is determined by local variations of the Fermi energy over the flake.
Since the Fermi energy depends on the charge density over the flake,
EF(x) = h̄vFkF(x), kF(x) =

p
πn(x)/e, one has

δU(x)/E = δkF(x)/kF = δn(x)/2n = ξ(x)/2d.

We only consider the deformation homogeneous in y-direction.Then
both Ay and δU only depend on the coordinate x, and Ax = 0 (see
Section 6.3). The problem becomes effectively one-dimensional since the
momentum q in y-direction is conserved. It is convenient to use the
transfer matrix representation of Dirac equation [108] to calculate the
correction to the conductivity caused by the deformation Ay(x), δU(x),

TH (x2, x1) = T0H(x2, x1)� (6.43)

�
Z x2

x1

dxT0H(x2, x)
�
σzδU(x) + iσx Ay(x)

� TH(x, x1) ,

where TH is the Hadamard transformed transfer matrix, and T0H is the
Hadamard transformed transfer matrix of the unperturbed system,

T0H = exp (iσzkFL + σxqL) . (6.44)

We perform the perturbation expansion of the integral form for Eq. (6.44),
and in the first order in δU(x) and Ay(x) we obtain

T1(x2, x1) = T0(x2, x1)� (6.45)

�i
Z x2

x1

dxT0(x2, x)
�
σzδU(x) + iσx Ay(x)

� T0(x, x1).
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Figure 6.10. Dependence of the relative correction to conductivity on kFL,
δσ/σ(kFL) for constant ξmax/d = 1/3000, for the correction of the first order
in ξmax/d, Eq. (6.47), the curve 1, and exact transfer matrix solution of integral
equation, the curve 2. The correction from the exact solution has the same de-
pendence on kFL as the first order correction, the oscillations are in the same
phase. Asymptotes for small and large kFL, Eq. (6.35), are shown as dashed
lines. The parameters of the graphene flake are L = 1µm, d = 300 nm, E = 1
TPa, ν = 0.15, h0 = 0.34nm.

The conductance of the graphene sheet is determined by Landauer
formula (6.26). According to general scattering theory [108], the trans-
mission matrix element t̂ is an inverse element of TH,

t̂ =
�T ��

H

��1 . (6.46)

Taking into account Eq. (6.45), Landauer formula (6.26), and the defini-
tion (6.46), the first order corrections to conductivity due to electrostatics
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and pseudo-magnetic field are

δσU =
L
W ∑

q
4
��tq
��4 IUkFL

q2kF

k3 sin kL, (6.47)

IU =
Z L

0

dx
L

ξ(x)
2d

sin k(L� x) sin kx,

δσA =
L
W ∑

q
2
��tq
��4 kFq

k2 IA, (6.48)

IA =
Z L

0
dxδA(x)�

� (sin2 kL� 2 cos kL sin kx sin k(L� x)), (6.49)

where q = 2πn/W is a wave vector in the y-direction, n is an integer
number, and k is a wave vector along the strip,

k2 + q2 = k2
F.

Furthermore, tq is the transmission probability for clean system for the
mode q, and ��tq

��2 = (cos2 kL + k2
F sin2 kL/k2)�1.

Note that the first-order correction due to the pseudo-vector potential
(6.48) only contains odd powers of q, so that the sum over q vanishes.
Thus, the first-order correction to the conductivity is determined solely
by the density redistribution. It is linear in the maximum deviation
ξmax/d for small deviations.

First, we remark on the validity of Eq. (6.47). The expansion of the
expression

1� 4(tqt†
q)

2 IUkFL
q2kF

k3 sin kL

has been made under assumption that the second term is small in com-
parison with unity due to the small prefactor ξmaxkFL/d. Following this
argument, the expression for the first order correction to the conduc-
tivity in ξmax/d is formally only valid for ξmax/dkFL � 1. However,
solving the integral equation numerically, we find that this expression
is valid for a broader parameter range. We compare results of calcula-
tions for the first order correction Eq. (6.47) and numerical solution of
Eq. (6.44) for the two cases: for the fixed ratio ξmax/d and for the fixed
value of kFL. For the first case, the dependence of δσ/σ on kFL shows
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the same oscillation period and the same asymptotic behavior at large
kFL, Fig. 6.10. For the second case, at large kFL � 40 (for the distance
to the gate d = 300 nm this corresponds to the gate voltage Vg = 3
V) the expansion clearly ceases to be valid, see Fig. 6.11. We thus con-
clude from the results of our numerical solution that the expression for
the correction linear in ξmax/d is applicable until ξmax/d � 1, which is
weaker than the perturbation theory suggestion ξmaxkFL/d � 1.

The second order correction to conductivity contains also a term with
the pseudo-vector potential, the magnitude of the term being (ξmax/L)4.

We consider both corrections separately. Now we perform the anal-
ysis of Eq. (6.47) for deformation with constant pressure. For this case,
the shape of the strip is nearly parabolic (Section 6.2) and can be ap-
proximated as

ξ(x) =
4ξmax

L2 (x� L/2)2.

The integral with the induced potential δU(x) from Eq. (6.47), IU , is

IU =
ξmax

12d
kL(6� (kL)2) cos kL� 3(2� (kL)2) sin kL

(kL)3 . (6.50)

Now we can perform the summation over modes for δσ, Eq. (6.47), ana-
lytically in two asymptotic cases: kFL � 1 and kFL � 1.

For kFL � 1, the evanescent modes give the most important contri-
bution to the conductivity [13],

σ(kFL � 1) =
L
W

W
2πL

Z ∞

�∞

dx

cosh2 x
=

1
π

, (6.51)

and to the correction to the conductivity,

δσU(kFL � 1) =
L
W

ξmax

3d
W

2πL
(kFL)2 I , (6.52)

with

I = 2
Z ∞

0

dx sinh x(x(6 + x2) cosh x� 3(2 + x2) sinh x)

x4 cosh4 x
,

and its numerical value is I � 0.124. The relative correction to conduc-
tivity reads

δσU

σ
=

ξmax I
6d

(kFL)2 � 0.021
ξmax

d
(kFL)2. (6.53)
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Figure 6.11. Dependence of the relative correction to conductivity on the max-
imum deformation, δσ(ξmax)/σ for constant kFL = 40, in the first order in
ξmax/d, Eq. (6.47), the curve 2, and the exact transfer matrix solution of integral
equation, the curve 2. Both the expansion and summation of the (T ��)�1 are
not valid for ξmaxkFL/d > 1 for small parameter as mentioned in the text. The
dashed line, the curve 3, is the summation result. The exact solution shows
linear dependence on deviation even for rather large deviation, and this linear
dependence is close both to the correction Eq. (6.47) and to the correction aver-
aged over fast oscillations, ξmax/2d. The parameters of the graphene flake are
L = 1µm, d = 300 nm, E = 1 TPa, ν = 0.15, h0 = 0.34nm.

For kFL � 1 we average over fast oscillations. In this case, only the
propagating modes contribute significantly to the conductivity.

To perform the averaging, we replace the summation over q by the
integration,

∑
q
�! W

2π

Z
dq.

To simplify subsequent calculations, we make the change of variables
q = kF sin φ, k = kF cos φ, and then go from the integral over dq to the
integral over dφ. The correction to the conductivity Eq. (6.47) has the
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form

δσU =
L
W

kFW
π

ξmax

d
�

�
Z π/2

0
dφ

cos φ sin2 φ sin2(kFL cos φ)

(cos2 φ cos2(kFL cos φ) + sin2(kFL cos φ))2
.

In this expression only the term with 3 sin kL/kL from Eq.(6.50) sur-
vived: All terms with cos kL vanish after averaging, and the term with
�6 sin kL/(kL)3 is smaller than one which is taken into account). For
large kFL the terms cos(kFL cos φ) and sin(kFL sin φ) in Eq. (6.47) oscil-
late very rapidly. We can represent

R π/2
0 dφ as a sum of fast oscillating

terms, with each term being an average over the period,

R π/2
0 dφ �!

∑Nmax
n=0

R φn+1
φn

dφ f (φn+1/2, cos(kFL cos φ), sin(kFL cos φ)),

with kFL sin φn = 2πn. The integrand f is determined by structure of
Eq. (6.47) and Eq. (6.50),

Z 2π

0
f (φ) =

Z 2π

0

sin2 xdx
(a2 cos2 x + sin2 x)2

=
2π

a
.

The sum over n remains, and this yields to What is left is the sum over
n,

δσU =
L
W

ξmax

d
kFW

π
2π ∑

n

q
1� (xn/kFL)2, (6.54)

xn = π(2n + 1). Finally,

δσU =
L
W

ξmax

8d
kFW. (6.55)

The conductivity after averaging over fast oscillations becomes σ =
kFW/4L/W, and the relative correction to the conductivity is

δσU

σ
=

ξmax

2d
.

From general physical considerations about the correction (see main
text), one also expects the dependence δσ/σ � ξmax/d for δσ/σ.
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Concerning the correction due to the pseudomagnetic fields, it is of
the second order in δA, and the analytical expressions are too cumber-
some. Instead, we illustrate our conclusions using the numerical solu-
tion of the integral equation (6.44). It is done by multiplying transfer
matrices for small intervals of the length δx. Convergence with the size
of δx is reached.
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