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Chapter 4

Majorana bound states
without vortices in topological
superconductors with
electrostatic defects

4.1 Introduction

Two-dimensional superconductors with spin-polarized-triplet, p-wave
pairing symmetry have the unusual property that vortices in the or-
der parameter can bind a nondegenerate state with zero excitation en-
ergy [64, 124, 97, 53]. Such a midgap state is called a Majorana bound
state, because the corresponding quasiparticle excitation is a Majorana
fermion — equal to its own antiparticle. A pair of spatially separated
Majorana bound states encodes a qubit, in a way which is protected
from any local source of decoherence [62]. Since such a qubit might
form the building block of a topological quantum computer [84], there
is an intensive search [57, 116, 105, 106, 68, 4] for two-dimensional super-
conductors with the required combination of broken time-reversal and
spin-rotation symmetries (symmetry class D [6]).

The generic Bogoliubov-De Gennes Hamiltonian H of a chiral p-
wave superconductor is only constrained by particle-hole symmetry,
σx H�σx = �H. At low excitation energies E (to second order in mo-
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mentum p = �ih̄∂/∂r) it has the form

H = ∆
�

pxσx + pyσy
�
+
�
U(r) + p2/2m

�
σz, (4.1)

for a uniform (vortex-free) pair potential ∆. The electrostatic potential
U (measured relative to the Fermi energy) opens up a band gap in the
excitation spectrum. At U = 0 the superconductor has a topological
phase transition (known as the thermal quantum Hall effect) between
two localized phases, one with and one without chiral edge states [123,
109, 121, 122].

Figure 4.1. Emergence of a pair of zero-energy MS states as the defect po-
tential U0 + δU is made more and more negative, at fixed positive background
potential U0 = 0.3. (All energies are in units of γ � h̄∆/a.) The energy lev-
els are the eigenvalues of the Hamiltonian (4.1) on a square lattice (dimension
100 a � 100 a, β � h̄2/2ma2 = 0.4 γ, periodic boundary conditions). The line
defect has length 50 a. The dense spectrum at top and bottom consists of bulk
states.

4.2 Majorana-Shockley bound states in lattice Hamil-
tonians

Our key observation is that the Hamiltonian (4.1) on a lattice has Majo-
rana bound states at the two end points of a linear electrostatic defect
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(consisting of a perturbation of U on a string of lattice sites). The mech-
anism for the production of these bound states goes back to Shockley
[110]: The band gap closes and then reopens upon formation of the de-
fect, and as it reopens a pair of states splits off from the band edges
to form localized states at the end points of the defect (see Fig. 4.1).
Such Shockley states appear in systems as varied as metals and narrow-
band semiconductors [31], carbon nanotubes [107], and photonic crys-
tals [77]. In these systems they are unprotected and can be pushed out
of the band gap by local perturbations. In a superconductor, in contrast,
particle-hole symmetry requires the spectrum to be �E symmetric, so
an isolated bound state is constrained to lie at E = 0 and cannot be
removed by any local perturbation.

We propose the name Majorana-Shockley (MS) bound state for this
special type of topologically protected Shockley states. Similar states
have been studied in the context of lattice gauge theory by Creutz and
Horváth [30, 29], for an altogether different purpose (as a way to restore
chiral symmetry in the Wilson fermion model of QCD [126]).

Consider a square lattice (lattice constant a), at uniform potential U0.
The Hamiltonian (4.1) on the lattice has dispersion relation

E2 = [U0 + 2β(2� cos akx � cos aky)]
2 + γ2 sin2 akx + γ2 sin2 aky. (4.2)

(We have defined the energy scales β = h̄2/2ma2, γ = h̄∆/a.) The spec-
trum becomes gapless for U0 = 0, �4β, and �8β, signaling a topological
phase transition [95]. The number of edge states is zero for U0 > 0 and
U0 < �8β, while it is unity otherwise (with a reversal of the direction
of propagation at U0 = �4β). The topologically nontrivial regime is
therefore reached for U0 negative, but larger than �8β.

We now introduce the electrostatic line defect by changing the po-
tential to U0 + δU on the N lattice points at r = (na, 0), n = 1, 2, . . . N.
In Figs. 4.1 and 4.2 we show the closing and reopening of the band gap
as the defect is introduced, accompanied by the emergence of a pair of
states at zero energy. The eigenstates for which the gap closes and re-
opens have wave vector kx parallel to the line defect equal to either 0 or
�π/a (in the limit N ! ∞ when kx is a good quantum number).

We have calculated that the gap closing at kx = 0 happens at a critical
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Figure 4.2. Main plot: Closing and reopening of the excitation gap at U0 = 0.3,
β = 0.4 (in units of γ), for states with kx = 0 (black solid curve) and kx = π/a
(black dashed curve). The MS states exist for defect potentials in between
two gap-closings, indicated as a function of U0 by the shaded regions in the
inset. (The red solid and blue dashed curves show, respectively U0 + δU0 and
U0 + δUπ . The label T indicates the topologically trivial phase.)

potential δU = δU0 given by (derived in Section 4.A)

δU0 =

8><
>:
�pU0(U0 + 4β) + γ2 for U0 > 0,p

U0(U0 + 4β) + γ2 for U0 < �4β,
no finite value otherwise.

(4.3)

The critical potential δUπ for closing of the gap at kx = �π/a is obtained
from Eq. (4.3) by the replacement of U0 with U0 + 4β. The MS states
appear for defect potentials U0 + δU in between two subsequent gap
closings, as indicated in the inset of Fig. 4.2.

We conclude that MS states exist for any value of U0. In contrast,
Majorana bound states in vortices exist only in the topologically non-
trivial regime [97, 47]. The index theorem [101] for the production of
zero-energy modes by the vortex mechanism, which requires the topo-
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Figure 4.3. Closing and reopening of the excitation gap at U0 = �0.3, β = 0.4
(in units of γ), for states with kx = 0 (red curves) and kx = π/a (black
curves). The results were obtained from numerical calculations using a constant
isotropic pair potential ∆ (solid lines) as in Fig. 4.2 as well as a spatially de-
pendent, anisotropic pair potential (∆x(r), ∆y(r)) determined self-consistently
from the gap equation (dashed lines), Sec. 4.B.

logically nontrivial phase, is therefore not applicable to the Shockley
mechanism.

Our reasoning so far has relied on the assumption of a constant pair
potential ∆, unperturbed by the defect. In order to demonstrate the ro-
bustness of the Majorana-Shockley mechanism, we have performed nu-
merical calculations that determine the pair potential self-consistently
by means of the gap equation [44], Sec. 4.B. In Fig. 4.3 we show a com-
parison of the closing and reopening of the band gap as obtained from
calculations with and without self-consistency, in the relevant weak pair-
ing regime (U0 < 0). The self-consistency does not change the qualitative
behavior. In particular, the gap only closes at kx = π/a for the param-
eters chosen (c.f. inset in Fig. 4.2) and the self-consistent determination
of ∆ only shifts the critical potential δU slightly.

In Fig. 4.4 we demonstrate that the MS states are localized at the end
points of the line defect. The exponentially small, but nonzero overlap



52 Chapter 4. Majorana bound states without vortices . . .

Figure 4.4. Probability density of the paired (ψ+) and unpaired (ψ1, ψ2) Ma-
jorana bound states at the end points of a line defect of length 50 a, calculated
for U0 = 0.1 γ, U0 + δU = �1.3 γ, β = 0.4 γ.

of the pair of states displaces their energy from 0 to �E (with corre-
sponding eigenstates ψ� = σxψ�

+ related by particle-hole symmetry).
The unpaired Majorana bound states ψ1 and ψ2 are given by the linear
combinations

ψ1 = 1
2 (1� i)ψ+ + 1

2 (1 + i)ψ�, (4.4a)

ψ2 = 1
2 (1 + i)ψ+ + 1

2 (1� i)ψ�, (4.4b)

shown also in Fig. 4.4. These states are particle-hole symmetric, ψ1,2 =
σxψ�

1,2, so the quasiparticle in such a state is indeed equal to its own
antiparticle (hence, it is a Majorana fermion).

If the line defect has a width W which extends over several lattice
sites, multiple gap closings and reopenings appear at kx = 0 upon in-
creasing the defect potential U0 + δU � �(h̄kF)

2/2m to more and more
negative values at fixed positive background potential U0. In the contin-
uum limit W/a ! ∞, the gap closes when qW = nπ + ν, n = 0, 1, 2, . . .
(Sec. 4.C), with q = [k2

F � (m∆)2]1/2 the real part of the transverse wave
vector and ν 2 (0, π) a phase shift that depends weakly on the potential.
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Figure 4.5. Average density of states for a potential that fluctuates randomly
from site to site (Ū = 0.01 γ, ∆U = 2 γ, β = 0.2 γ). The lattice has size
400 a � 400 a. The right inset shows the same data as in the main plot, over
a larger energy range. The left inset has a logarithmic energy scale, to show the
dependence ρ ∝ ln jEj expected for a thermal metal (red dashed line).

(Similar oscillatory coupling energies of zero-modes have been found in
Refs. [26, 73].) The MS states at the two ends of the line defect alternat-
ingly appear and disappear at each subsequent gap closing.

4.3 Electrostatic disorder in p-wave superconductors

So far we constructed MS states for a linear electrostatic defect. More
generally, we expect a randomly varying electrostatic potential to create
a random arrangement of MS states. To test this, we pick U(r) at each
lattice point uniformly from the interval (Ū � ∆U, Ū + ∆U) and calcu-
late the average density of states ρ(E). The result in Fig. 4.5 shows the
expected peak at E = 0. This peak is characteristic of a thermal metal,
studied previously in models where the Majorana bound states are due
to vortices [17, 23, 80]. The theory of a thermal metal [109] predicts a
logarithmic profile, ρ(E) ∝ ln jEj, for the peak in the density of states,
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which is consistent with our data.
Without Majorana bound states, the chiral p-wave superconductor

would be in the thermal insulator phase, with an exponentially small
thermal conductivity at any nonzero Ū [97, 17, 98, 12]. Our findings
imply that electrostatic disorder can convert the thermal insulator into a
thermal metal, thereby destroying the thermal quantum Hall effect. Nu-
merical results for this insulator-metal transition are shown in chapter 2.

4.4 Continuum limit for electrostatic defects

These results are all for a specific model of a chiral p-wave superconduc-
tor. We will now argue that our findings are generic for symmetry class
D (along the lines of a similar analysis of solitons in a polymer chain
[54]). Let p be the momentum along the line defect and α a parameter
that controls the strength of the defect. Assume that the gap closes at
α = α0 and at p = 0. (Because of particle-hole symmetry the gap can
only close at p = 0 or p = �h̄π/a and these two cases are equivalent.)
For α near α0 and p near 0 the Hamiltonian in the basis of left-movers
and right-movers has the generic form

H(α) =

�
(v0 + v1)p �i(α� α0)
i(α� α0) �(v0 � v1)p

�
, (4.5)

with velocities 0 < v1 < v0. No other terms to first order in p = �ih̄∂/∂x
and α� α0 are allowed by particle-hole symmetry, H(α) = �H�(α).

The line defect is initially formed by letting α depend on x on a scale
much larger than the lattice constant. We set one end of the defect at
x = 0 and increase α from α(�∞) < α0 to α(+∞) > α0. Integration
of H[α(x)]ψ(x) = 0 then gives the wave function of a zero-energy state
bound to this end point,

ψ(x) =
�p

v0/v1 � 1p
v0/v1 + 1

�
exp

0
@� Z x

0

α(x0)� α0q
v2

0 � v2
1

dx0

1
A . (4.6)

This is one of the two MS states, the second being at the other end of the
line defect. We may now relax the assumption of a slowly varying α(x),
since a pair of uncoupled zero-energy states cannot disappear without
violating particle-hole symmetry.
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4.5 Outlook

We have identified a purely electrostatic mechanism for the creation
of Majorana bound states in chiral p-wave superconductors. The zero-
energy (mid-gap) states appear in much the same way as Shockley states
in non-superconducting materials, but now protected from any local
perturbation by particle-hole symmetry. An experimentally relevant
consequence of our findings is that the thermal quantum Hall effect
is destroyed by electrostatic disorder (in marked contrast to the electri-
cal quantum Hall effect). A recent proposal to realize Wilson fermions
in optical lattices [16] also opens the possibility to observe Majorana-
Shockley states using cold atoms.

Our analysis is based on a generic model of a two-dimensional class-
D superconductor (broken time-reversal and spin-rotation symmetry).
An interesting direction for future research is to explore whether Majo-
rana-Shockley bound states exist as well in the other symmetry classes
[6]. Since an electrostatic defect preserves time-reversal symmetry, we
expect the Majorana-Shockley mechanism to be effective also in class
DIII (when only spin-rotation symmetry is broken). That class includes
proximity-induced s-wave superconductivity at the surface of a topolog-
ical insulator [42] and other experimentally relevant topological super-
conductors [96, 103, 43].

It would also be interesting to investigate the braiding of two elec-
trostatic defect lines, in order to see whether one obtains the same non-
Abelian statistics as for the braiding of vortices [53].

Appendix 4.A Line defect in lattice fermion models

We calculate the closing and reopening of the excitation gap upon in-
troduction of a line defect in a lattice fermion model with particle-hole
symmetry. First we treat the Wilson fermion model [126] considered in
the main text, and introduced in the context of topological insulators in
Refs. [15, 41]. Then, in order to demonstrate the generic nature of the
results, we consider an alternative lattice model, the staggered fermion
(or Kogut-Susskind) model [63, 113, 14], introduced in the context of
graphene in Refs. [119, 79].
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4.A.1 Wilson fermions

The Wilson fermion model has Hamiltonian

H = ∑
n

c†
nEncn � ∑

n,m (nearest neighb.)

c†
nTnmcm. (4.7)

Each site n on a two-dimensional square lattice (lattice constant a) has
electron and hole states jei and jhi. Fermion annihilation operators for
these two states are collected in a vector cn = (cn,e, cn,h). States on the
same site are coupled by the 2 � 2 potential matrix En and states on
adjacent sites by the 2� 2 hopping matrix Tnm, defined by [15, 41]

En =

�
Un 0
0 �Un

�
, Tnm =

�
β γeiθnm

γe�iθmn �β

�
. (4.8)

Here Un is the electrostatic potential on site n and θnm 2 [0, π] is the
angle between the vector rn � rm and the positive y-axis (so θmn = π �
θnm). In the continuum limit a ! 0, the tight-binding Hamiltonian (4.7)
is equivalent to the chiral p-wave Hamiltonian (4.1), with β = h̄2/2ma2

and γ = h̄∆/a.
It is convenient to transform from position to momentum represen-

tation. For that purpose we take periodic boundary conditions in the
y-direction, so that the transverse wavevector (in units of 1/a) has the
discrete values kl = 2πl/N, l = �(N � 1)/2, . . . ,�1, 0, 1, . . . , (N � 1)/2
(for an odd number N of sites in the y-direction). The Fourier transfor-
mation from position to momentum representation is carried out by the
unitary matrix with elements [F ]nl = N�1/2einkl . We take an infinitely
long system in the x-direction, so the longitudinal wavevector k varies
continuously in the interval (�π, π].

For a uniform potential, Un � U0 for all n, the Fourier transformed
Hamiltonian H0(k) has matrix elements

[H0(k)]ll0 = δll0El(k), (4.9)

El(k) = U0σz + 2βσz(2� cos k� cos kl) + γ(σx sin k + σy sin kl). (4.10)

The corresponding dispersion relation is

E(k, kl)
2 = [U0 + 2β(2� cos k� cos kl)]

2

+ γ2(sin2 k + sin2 kl), (4.11)
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cf. Eq. (4.2).
A line defect at row n0 (parallel to the x-axis) adds to H0 the pertur-

bation
[δH]ll0 = N�1ein0(kl0�kl)δUσz. (4.12)

The determinantal equation Det (H0 + δH � E) = 0 for eigenenergy E
reads

Det (1 +F †
0 δUσzF0(H0 � E)�1) = 0, (4.13)

in terms of an 1 � N matrix F0 with elements [F0]1l = N�1/2ein0kl .
Sylvester’s theorem, Det(1 + AB) = Det(1 + BA), allows us to rewrite
the determinant in the form

Det (1 + δUσzF0(H0 � E)�1F †
0 ) = 0, (4.14)

which reduces to

0 = Det

 
1 + δUσz

1
N ∑

l

1
El(k)� E

!

= Det

 
1 + δUσz

1
N ∑

l

El(k) + E
E(k, kl)2 � E2

!
. (4.15)

A zero-mode is a pair of states (one left-mover and one right-mover)
at energy E = 0. This can only occur at k = 0 or k = π (because for any
eigenenergy E at k there must also be an eigenenergy �E at �k). From
Eqs. (4.10) and (4.15) we obtain the condition for such a zero-mode,

1
N ∑

l

U0 + 2β(1 + δ� cos kl)

[U0 + 2β(1 + δ� cos kl)]2 + γ2 sin2 kl
= � 1

δU
, (4.16)

where δ = 0 if k = 0 and δ = 2 if k = π. In the limit N ! ∞ we may
replace the sum by an integral, N�1 ∑l ! (2π)�1

R π
�π dkl , which can be

evaluated by contour integration. The resulting critical value of δU is
given in the main text [Eq. (4.3) and following].

4.A.2 Staggered fermions

The staggered fermion model is a discretization of the Hamiltonian (4.1)
without the p2 term. It is formulated in Refs. [113, 14, 119] in terms
of the transfer matrix Mm, which relates the transverse wave functions
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Ψm+1 = MmΨm at columns m and m + 1 (parallel to the y-axis). For a
line defect along the x-axis, the transfer matrix is m-independent, so we
can omit the column number m.

The transfer matrix (at energy E) has the form

M =
1� iX
1 + iX

, (4.17)

X = (γJ )�1(γσzK+ 1
2 EσxJ � 1

2 iσyU ). (4.18)

In reference to Eq. (4.1), the parameter γ = h̄∆/a for lattice constant a.
The N � N matrices J and K have nonzero elements

Jn,n = 1, Jn,n+1 = Jn,n�1 = 1
2 , (4.19)

Kn,n+1 = 1
2 , Kn,n�1 = � 1

2 , (4.20)

while the potential matrix U (for a line defect at row n0) is given by

Unn0 = U0Jnn0 + 1
2 δU(δn,n0 δn,n0 + δn,n0 δn,n0+1

+ δn+1,n0 δn,n0 + δn,n0+1δn0,n0). (4.21)

In momentum representation, the matrix X has elements

Xll0 = Alδll0 � i(δU/2γ)σy
v�l vl0

4 cos2(kl/2)
, (4.22)

where we have defined

Al = iσz tan(kl/2) + (E/2γ)σx � i(U0/2γ)σy, (4.23)

vl = N�1/2ein0kl (1 + eikl ). (4.24)

The dispersion relation of the staggered fermions is tan2(k/2) = A(k, kl)
2,

with
A(k, kl)

2 = (E/2γ)2 � tan2(kl/2)� (U0/2γ)2. (4.25)

An eigenstate at energy E and longitudinal wavevector k is an eigen-
state of X with eigenvalue � tan(k/2). The determinantal equation
Det[X + tan(k/2)] = 0 can again be simplified using Sylvester’s theo-
rem. The result, analogous to Eq. (4.15), is

0 = Det

 
1� δU

2γ
iσy

1
N ∑

l

1
Al + tan(k/2)

!

= Det

 
1� δU

2γ
iσy

1
N ∑

l

Al � tan(k/2)
A(k, kl)2 � tan2(k/2)

!
. (4.26)
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Figure 4.6. Main plot: Closing and reopening of the excitation gap in the stag-
gered fermion model. The MS states exist for defect potentials in the shaded
regions in the inset. (All energies are in units of γ.)

Because of the pole in the dispersion relation at k = π, the zero-mode
now exists only at k = 0. The condition for this zero-mode, analogous
to Eq. (4.16), is

1
N ∑

l

U0/2γ

(U0/2γ)2 + tan2(kl/2)
= � 2γ

δU
, (4.27)

For N ! ∞ we may again transform the sum into an integral, and thus
obtain the critical potential

δU =

(
�U0 � 2γ if U0 > 0,
�U0 + 2γ if U0 < 0.

(4.28)

Upon varying the potential U0 + δU of the line defect, at fixed bulk
potential U0, the closing and reopening of the gap thus happens at
U0 + δU = �2γ sign (U0) (see Fig. 4.6). The inset shows the region in pa-
rameter space where the Majorana-Shockley states exist in the staggered
fermion model. This phase diagram is much simpler than the corre-
sponding phase diagram for Wilson fermions (Fig. 4.2, inset), because
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of the absence of the extra parameter β (which quantifies the strength of
the p2 term in the Wilson fermion model).

Appendix 4.B Self-consistent determination of the
pair potential

In order to determine the pair potential self-consistently in a spatially
non-homogeneous situation, it is necessary to allow for a position-de-
pendent, anisotropic pair potential ∆(r) = (∆x(r), ∆y(r)). The Hamilto-
nian then reads [44]

H = 1
2 f∆x(r), pxg σx +

1
2

�
∆y(r), py

	
σy

+
�
U(r) + p2/2m

�
σz, (4.29)

where f�, �g denotes the anticommutator. In the discretization of this
Hamiltonian on a square lattice, the spatial dependence of ∆(r) is taken
into account in the hopping between neighbors as an average value of
∆(r) on the two lattice points.

When the pair potential is homogeneous, the lattice Hamiltonian has
the spectrum

E2 = [U0 + 2β(2� cos akx � cos aky)]
2

+ γ2
x sin2 akx + γ2

y sin2 aky (4.30)

with γx = h̄∆x/a, γy = h̄∆y/a and β = h̄2/2ma2.
The Hamiltonian must be solved self-consistently together with the

equation for the pair potential. These read [44] (with derivatives dis-
cretized on the lattice)

γx(r) = �ig ∑
En>0

(un(x + a, y)� un(x� a, y)) v�n(x, y)

� un(x, y) (v�n(x + a, y)� v�n(x� a, y)),

γy(r) = g ∑
En>0

(un(x, y + a)� un(x, y + a)) v�n(x, y)

� un(x, y) (v�n(x, y + a)� v�n(x, y + a)). (4.31)

Here un and vn are the electron and hole component of the wave func-
tion, respectively, and assumed to be from the tight-binding model, i.e.
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they are dimensionless and represent the probability amplitude per lat-
tice point (x, y).

The coupling constant g must be chosen such that it gives the correct
pair potential γ in the bulk. It can be calculated as

γ

g
=

1
π2

Z π

�π
d(akx)

Z π

�π
d(aky) sin(akx) u(k)v�(k)

=
�i
π2

Z π

�π
d(akx)

Z π

�π
d(aky) sin(aky) u(k)v�(k), (4.32)

where u(k) and v(k) are the electron and hole coefficients of the plane
wave solutions of the bulk lattice Hamiltonian with E > 0.

In the particular case of a system that is translationally invariant in
x-direction, as is the case for an infinitely extended line defect, the gap
equations can be written as:

γx(r) =
4g
Nx

∑
En>0,kx

un(kx, y)v�n(kx, y) sin(akx)

γy(r) =
g

Nx
∑

En>0,kx�
(un(kx, y + a)� un(kx, y + a)) v�n(kx, y)

� un(kx, y) (v�n(kx, y + a)� v�n(kx, y + a))
�

, (4.33)

summing over Nx longitudinal momenta kx, and solving the tight-binding
problem for each kx individually.

The self-consistent solution of the tight-binding Hamiltonian and the
gap equation (4.33) is obtained in an iterative procedure. In the itera-
tion, we neglect the influence of the vector potential arising from local
currents [44] as those effects are expected to be minor for the examples
considered in this work. Furthermore, we also avoid adjusting the chem-
ical potential U0 to obtain a fixed number of electrons in the system and
instead use a large unit cell so that the bulk value of ∆ is recovered away
from the defect.

Appendix 4.C Line defect in the continuum limit

We calculate the closing and reopening of the excitation gap upon intro-
duction of a line defect in the Hamiltonian (4.1), which is the continuum
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Figure 4.7. The red solid curves are the solution of Eq. (4.38) for W = 4h̄/m∆.
The MS states exist in the shaded regions.

limit (a ! 0) of the Wilson fermion lattice model of App. 4.A.1. The
mode matching calculation presented here is the one-dimensional ver-
sion of the two-dimensional calculation in Refs. [73, 72, 74].

The line defect, of width W, is formed by the electrostatic potential
profile

U(r) =

(
U0 if jyj > W/2,
U0 + δU if jyj < W/2.

(4.34)

A zero-mode ψ = (u, v) is a (doubly degenerate) eigenstate of the Hamil-
tonian (4.1) at E = 0, px = 0. The zero-mode should thus satisfy

(U + p2
y/2m)u = i∆pyv, (4.35a)

(U + p2
y/2m)v = i∆pyu. (4.35b)

For uniform U the solution is a plane wave,

ψss0 = eikss0 y
�

1
s

�
, s, s0 = �1, (4.36)
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with transverse wave vector

kss0 = (m/h̄)
�
is∆ + s0

p
�∆2 � 2U/m

�
. (4.37)

In the region jyj < W/2 the zero-mode ψ is a superposition of the
four states ψ++, ψ+�, ψ�+, ψ��. For y > W/2 two decaying states with
Im kss0 > 0 appear in the superposition, while for y < �W/2 the other
two states with Im kss0 < 0 appear. In total ψ has eight unknown coef-
ficients, which we determine by demanding continuity of ψ and dψ/dy
at y = W/2 and y = �W/2. The determinant of this set of equations
should vanish, in order to have a nontrivial solution. There is only a
zero-mode for U0 > 0, U0 + δU < �m∆2/2, determined by

tan qW =
2qq0

q2 � q2
0

. (4.38)

We have defined

q = (m/h̄)
q
�∆2 � (2/m)(U0 + δU), (4.39)

q0 = (m/h̄)
p

∆2 + 2U0/m. (4.40)

The MS states exist in between subsequent gap closings, as indicated in
Fig. 4.7 (shaded regions).
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