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Chapter 2

Effective mass and tricritical
point for lattice fermions
localized by a random mass

2.1 Introduction

Superconductors with neither time-reversal symmetry nor spin-rotation
symmetry (for example, having chiral p-wave pairing) still retain one
fundamental symmetry: the charge-conjugation (or particle-hole) sym-
metry of the quasiparticle excitations. Because of this symmetry, quasi-
particle localization in a disordered chiral p-wave superconductor is in a
different universality class than in a normal metal [36]. The difference is
particularly interesting in two dimensions, when the quantum Hall ef-
fect governs the transport properties. The electrical quantum Hall effect
in a normal metal has the thermal quantum Hall effect as a supercon-
ducting analogue [97, 109, 121], with different scaling properties because
of the particle-hole symmetry.

The thermal quantum Hall transition is analogous to the electrical
quantum Hall transition at the center of a Landau level, but the scal-
ing of the thermal conductivity σ near the phase boundary is different
from the scaling of the electrical conductivity because of the particle-hole
symmetry. A further difference between these two problems appear if
the superconducting order parameter contains vortices [97, 17, 98]. A
vortex contains a Majorana bound state at zero excitation energy, in the
weak-pairing regime [124, 47]. A sufficiently large density of Majorana
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Figure 2.1. Phase diagram in symmetry class BD, calculated numerically from
the lattice model of staggered fermions described in Sec. 2.3. (A qualitatively
similar phase diagram was calculated for a different model [28] in Refs. [23]
and [55].) The thermal conductivity decays exponentially ∝ e�L/ξ in the local-
ized phase and increases ∝ ln L in the metallic phase. The thermal conductivity
is scale invariant on the metal-insulator (M–I) phase boundary (red solid line),
as well as on the insulator-insulator (I–I) phase boundary (blue dashed line).
The M–I and I–I phase boundaries meet at the tricritical point δM�.

bound states allows for extended states at the Fermi level, with a ther-
mal conductivity increasing ∝ ln L with increasing system size L [109].
This socalled thermal metal has no counterpart in the electronic quan-
tum Hall effect.

The Bogoliubov-De Gennes Hamiltonian of a disordered chiral p-
wave superconductor can be approximated at low energies by a Dirac
Hamiltonian with a random mass (see Sec. 2.2). For that reason, it is
convenient to parameterize the phase diagram in terms of the average
mass M̄ and the fluctuation strength δM. As indicated in Fig. 2.1, there
are two types of phase transitions [23, 55], a metal-insulator (M–I) transi-
tion upon decreasing δM at constant M̄ and an insulator-insulator (I–I)
transition upon decreasing M̄ through zero at constant (not too large)
δM. The I–I transition separates phases with a different value of the
thermal Hall conductance, while the M–I transition separates the ther-
mal metal from the thermal insulator. Only the I–I transition remains if
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there are no vortices, or more generally, if there are no Majorana bound
states [97, 17, 98]. In the nomenclature of Ref. [17], the symmetry class
is called BD with Majorana bound states and D without.

The primary purpose of this chapter is to investigate, by numerical
simulation, to what extent the scale dependence of localization by a ran-
dom mass can be described in terms of an effective non-fluctuating mass:
σ(L, M̄, δM) = σ(L, Meff, 0), for some function Meff(M̄, δM). Because
there is no other length scale in the problem at zero energy, σ(L, Meff, 0)
can only depend on L and Meff through the dimensionless combina-
tion LMeffv/h̄ � L/ξ. The effective-mass hypothesis thus implies one-
parameter scaling: σ(L, M̄, δM) = σ0(L/ξ). Two further implications
concern the critical conductivity σc (which is the scale invariant value of
σ on the phase boundary M̄ = 0) and the critical exponent ν (governing
the divergence of the localization length ξ ∝ M̄�ν).

Both σc and ν follow directly from the effective mass hypothesis.
By construction, the scaling function σ0 is the conductivity of ballistic
massless Dirac fermions, which has been calculated in the context of
graphene. For a system with dimensions L�W, and periodic boundary
conditions in the transverse direction, it is given by [58, 118]

σ0(L/ξ) = G0
L
W

∞

∑
n=�∞

cosh�2
q

(2πnL/W)2 + (L/ξ)2

W�L���! G0
1
π

Z ∞

0
dq cosh�2

q
q2 + (L/ξ)2. (2.1)

A scale invariant conductivity

lim
ξ!∞

σ0(L/ξ) � σc = G0
L
W

∞

∑
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cosh�2(2πnL/W) (2.2)

is reached for vanishing effective mass. In the limit of a large aspect
ratio W/L � 1 we recover the known value σc = G0/π of the critical
conductivity for a random mass with zero average [75]. The critical
exponent ν = 1 follows by comparing the expansion of the conductivity

σ(L, M̄, δM) = σc + [L1/ν M̄ f (δM)]2 +O(M̄)4 (2.3)

in (even) powers of M̄ with the expansion of the scaling function (2.1)
in powers of L. This value for ν is aspect-ratio independent and agrees
with the known result for the I–I transition [36].
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The description in terms of an effective mass breaks down for strong
disorder. We find that the scaling function at the M–I transition differs
appreciably from σ0, with an aspect-ratio independent critical conduc-
tivity σc � 0.4 G0. The critical exponent remains close to or equal to
ν = 1 (in disagreement with earlier numerical simulations [55]).

The secondary purpose of this chapter is to establish the nature of the
tricritical point δM� at which the two insulating phases and the metallic
phase meet. The existence of such a fixed point of the scaling flow is
expected on the basis of general arguments [17], but whether it is a
repulsive or attractive fixed point has been a matter of debate. From the
scale dependence of σ near this tricritical point, we conclude that it is a
repulsive fixed point (in the sense that σ scales with increasing L to larger
values for δM > δM� and to smaller values for δM < δM�). An attractive
tricritical point had been suggested as a possible scenario [80, 56], in
combination with a repulsive critical point at some δM�� < δM�. Our
numerics does not support this scenario.

The outline of this chapter is as follows. In the next two Sections we
introduce the Dirac Hamiltonian for chiral p-wave superconductors and
the lattice fermion model that we use to simulate quasiparticle localiza-
tion in symmetry class BD. We only give a brief description, referring
to the Section 1.6.2 and Ref. [119] for a more detailed presentation of
the model. The scaling of the thermal conductivity and the localization
length near the insulator-insulator and metal-insulator transitions are
considered separately in Secs. 2.4 and 2.5, respectively. The tricritical
point, at which the two phase boundaries meet, is studied in Sec. 2.6.
We conclude in Sec. 2.7.

2.2 Chiral p-wave superconductors

The quasiparticles in a superconductor have electron and hole compo-
nents ψe, ψh that are eigenstates, at excitation energy ε, of the Bogoliubov-
De Gennes equation

�
H0 � EF ∆

∆† �H�
0 + EF

��
ψe

ψh

�
= ε

�
ψe

ψh

�
. (2.4)

In a chiral p-wave superconductor the order parameter ∆ = 1
2fχ(r), px �

ipyg depends linearly on the momentum p = �ih̄∂/∂r, so the quadratic
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terms in the single-particle Hamiltonian H0 = p2/2m + U(r) may be
neglected near p = 0.

For a uniform order parameter χ(r) = χ0, the quasiparticles are
eigenstates of the Dirac Hamiltonian

HDirac = v(pxσx + pyσy) + v2M(r)σz, (2.5)

with velocity v = χ0 and mass M = (U � EF)/χ2
0 (distinct from the

electron mass m). The Pauli matrices are

σx =

�
0 1
1 0

�
, σy =

�
0 �i
i 0

�
, σz =

�
1 0
0 �1

�
. (2.6)

The particle-hole symmetry for the Dirac Hamiltonian is expressed by

σx H�
Diracσx = �HDirac. (2.7)

Randomness in the electrostatic potential U(r) translates into ran-
domness in the mass M(r) = M̄+ δM(r) of the Dirac fermions. The sign
of the average mass M̄ determines the thermal Hall conductance [97,
109, 121], which is zero for M̄ > 0 (strong pairing regime) and quan-
tized at G0 = π2k2

BT/6h for M̄ < 0 (weak pairing regime).
The Dirac Hamiltonian (2.5) provides a generic low-energy descrip-

tion of the various realizations of chiral p-wave superconductors pro-
posed in the literature: strontium ruthenate [57], superfluids of fermionic
cold atoms [116, 105], and ferromagnet-semiconductor-superconductor
heterostructures [106, 68, 4]. What these diverse systems have in com-
mon, is that they have superconducting order with neither time-reversal
nor spin-rotation symmetry. Each of these systems is expected to ex-
hibit the thermal quantum Hall effect, described by the phase diagram
studied in this work.

2.3 Staggered fermion model

Earlier numerical investigations [23, 80, 55, 56] of the class BD phase
diagram were based on the Cho-Fisher network model [28]. Here we
use a staggered fermion model in the same symmetry class, originally
developed in the context of lattice gauge theory [113, 14] and recently
adapted to the study of transport properties in graphene [119]. An at-
tractive feature of the lattice model is that, by construction, it reduces
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to the Dirac Hamiltonian on length scales large compared to the lattice
constant a.

The model is defined on a square lattice in a strip geometry, extend-
ing in the longitudinal direction from x = 0 to x = L = Nxa and in
the transverse direction from y = 0 to y = W = Nya. We use periodic
boundary conditions in the transverse direction. The transfer matrix T
from x = 0 to x = L is derived in Ref. [119]1, and we refer to that paper
and to 1.6.2 for explicit formulas.

The dispersion relation of the staggered fermions,

tan2(kxa/2) + tan2(kya/2) +
�

Mav
2h̄

�2

=
� εa

2h̄v

�2
, (2.8)

has a Dirac cone at wave vectors jkja � 1 which is gapped by a nonzero
mass. Staggered fermions differ from Dirac fermions by the pole at the
edge of Brillouin zone (jkxj ! π/a or jkyj ! π/a), which is insensitive
to the presence of a mass. We do not expect these large-wave number
modes to affect the large-length scaling of the conductivity, because they
preserve the electron-hole symmetry.

The energy is fixed at ε = 0 (corresponding to the Fermi level for
the superconducting quasiparticles). The transfer matrix T is calcu-
lated recursively using a stable QR decomposition algorithm [65]. An
alternative stabilization method [119] is used to recursively calculate the
transmission matrix t. Both algorithms give consistent results, but the
calculation of T is more accurate than that of t because it preserves the
electron-hole symmetry irrespective of round-off errors.

The random mass is introduced by randomly choosing values of M
on each site uniformly in the interval (M̄ � δM, M̄ + δM). Variations
of M(r) on the scale of the lattice constant introduce Majorana bound
states, which place the model in the BD symmetry class [127]. In prin-
ciple, it is possible to study also the class D phase diagram (without
Majorana bound states), by choosing a random mass landscape that is
smooth on the scale of a. Such a study was recently performed [12],
using a different model [11], to demonstrate the absence of the M–I
transition in class D [97, 17, 98]. Since here we wish to study both the
I–I and M–I transitions, we do not take a smooth mass landscape.

1This paper considers scattering of staggered fermions by a potential V rather than
by a mass M, but one simply needs to replace V by v2 Mσz to obtain the transfer matrix
required here.
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Figure 2.2. Average conductivity σ (with error bars indicating the statistical
uncertainty) at fixed disorder strength δM = 2.5 h̄/va, as a function of system
size L. The aspect ratio of the disordered strip is fixed at W/L = 5. Data sets
at different values of M̄ (listed in the figure in units of h̄/va) collapse upon
rescaling by ξ onto a single curve (solid line), given by Eq. (2.1) in terms of an
effective mass Meff = h̄/vξ.

2.4 Scaling near the insulator-insulator transition

2.4.1 Scaling of the conductivity

In Fig. 2.2 we show the average (thermal) conductivity σ = (L/W)hTr tt†i
(averaged over some 103 disorder realizations) as a function of L for a
fixed δM in the localized phase. Data sets with different M̄ collapse on
a single curve upon rescaling with ξ. (In the logarithmic plot this rescal-
ing amounts simply to a horizontal displacement of the entire data set.)
The scaling curve (solid line in Fig. 2.2) is the effective mass conductiv-
ity (2.1), with Meff = h̄/vξ. Fig. 2.3 shows the linear scaling of σ with
(M̄L)2 for small M̄, as expected from Eq. (2.3) with ν = 1.

We have studied the aspect ratio dependence of the critical conduc-
tivity σc. As illustrated in Fig. 2.4 (blue data points), the convergence
for W/L ! ∞ is to the value σc = 1/π expected from Eq. (2.1). The
conductivity of ballistic massless Dirac fermions also has an aspect ratio
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Figure 2.3. Plot of the average conductivity σ versus (M̄L)2, for fixed δM =
2.5 h̄/va and W/L = 3. The dashed line is a least-square fit through the data,
consistent with critical exponent ν = 1.

dependence,[118] given by Eq. (2.2) (for periodic boundary conditions).
The comparison in Fig. 2.4 of σc with Eq. (2.2) shows that σc at the I–I
transition follows quite closely this aspect ratio dependence (unlike at
the M–I transition discussed in Sec. 2.5.1).

2.4.2 Scaling of the Lyapunov exponent

The transfer matrix T provides an independent probe of the critical scal-
ing through the Lyapunov exponents. The transfer matrix product T T †

has eigenvalues e�µn with 0 � µ1 � µ2 � � � � . The n-th Lyapunov
exponent αn is defined by

αn = lim
L!∞

µn

L
. (2.9)

The dimensionless product Wα1 � Λ is the inverse of the MacKinnon-
Kramer parameter.[76] We obtain α1 by increasing L at constant W until
convergence is reached (typically for L/W ' 103). The large-L limit is
self-averaging, but some improvement in statistical accuracy is reached
by averaging over a small number (10–20) of disorder realizations.
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Figure 2.4. Dependence on the aspect ratio W/L of the critical conductivity
at the insulator-insulator (I–I) transition (M̄ = 0, δM = 2.5 h̄/va) and at the
metal-insulator (M–I) transition (M̄ = 0.032 h̄/va, δM tuned to the transition).
The dashed curve is the aspect ratio dependence of the conductivity of ballistic
massless Dirac fermions [Eq. (2.2)]. It describes the I–I transition quite well, but
not the M–I transition.

We seek the coefficients in the scaling expansion

Λ = Λc + c1W1/ν(M̄� Mc) +O(M̄� Mc)
2, (2.10)

for fixed δM. The fit in Fig. 2.5 gives Λc = 0.03, ν = 1.05, Mc = 7 � 10�4,
consistent with the expected values [23] Λc = 0, ν = 1, Mc = 0.

2.5 Scaling near the metal-insulator transition

2.5.1 Scaling of the conductivity

To investigate the scaling near the metal-insulator transition, we in-
crease δM at constant M̄. Results for the conductivity are shown in
Fig. 2.6. In the metallic regime δM > δMc the conductivity increases
logarithmically with system size L, in accord with the theoretical pre-
diction [109, 36]:

σ/G0 =
1
π

ln L + constant. (2.11)
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Figure 2.5. Plot of Λ = Wα1 (with α1 the first Lyapunov exponent) as a
function of M̄ near the insulator-insulator transition, for fixed δM = 2.5 h̄v/a
and different values of W. The dashed lines are a fit to Eq. (2.10).

(See the dashed line in Fig. 2.6, upper panel.)

In the insulating regime δM < δMc the conductivity decays expo-
nentially with system size, while it is scale independent at the critical
point δM = δMc. Data sets for different δM collapse onto a single func-
tion of L/ξ, but this function is different from the effective mass scaling
σ0(L/ξ) of Eq. (2.1). (See the dashed curve in Fig. 2.6, lower panel.) This
indicates that the effective mass description, which applies well near the
insulator-insulator transition, breaks down at large disorder strengths
near the metal-insulator transition. The two transitions therefore have a
different scaling behavior, and can have different values of critical con-
ductivity and critical exponent (which we denote by σ0c and ν0).

Indeed, the critical conductivity σ0c = 0.41 G0 is significantly larger
than the ballistic value G0/π = 0.32 G0. Unlike at the insulator-insulator
transition, we found no strong aspect-ratio dependence in the value of
σ0c (red data points in Fig. 2.4). To obtain the critical exponent ν0 we
follow Ref. [8] and fit the conductivity near the critical point including
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Figure 2.6. Average conductivity σ at fixed average mass M̄ = 0.032 h̄/va, as
a function of system size L. (The two panels show the same data on a different
scale.) The aspect ratio of the disordered strip is fixed at W/L = 5. Data sets
at different values of δM (listed in the figure in units of h̄/va) collapse upon
rescaling by ξ onto a pair of curves in the metallic and insulating regimes. The
metal-insulator transition has a scale invariant conductivity σ0

c, larger than the
value G0/π which follows from the effective mass scaling (dashed curve in
the lower panel). The upper panel shows that the conductivity in the metallic
regime follows the logarithmic scaling (2.11).
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Figure 2.7. Plot of the average conductivity σ as a function of δM near the
metal-insulator transition, for fixed M̄ = 0.032 h̄/va. The length L is varied at
fixed aspect ratio W/L = 3. The dashed curves are a fit to Eq. (2.12).

terms of second order in δM� δMc:

σ = σ0c + c1L1/ν0

[δM� δMc + c2(δM� δMc)
2]

+ c3L2/ν0

(δM� δMc)
2. (2.12)

Results are shown in Fig. 2.7, with ν0 = 1.02� 0.06. The quality of the
multi-parameter fit is assured by a reduced chi-squared value close to
unity (χ2 = 0.95). Within error bars, this value of the critical exponent is
the same as the value ν = 1 for the insulator-insulator transition.

2.5.2 Scaling of the Lyapunov exponent

As an independent measurement of ν0, we have investigated the finite-
size scaling of the first Lyapunov exponent. Results are shown in Fig.
2.8. Within the framework of single-parameter scaling, the value of ν0

should be the same for σ and Λ, but the other coefficients in the scaling
law may differ,

Λ = Λc + c01L1/ν0

[δM� δM0
c + c02(δM� δM0

c)
2]

+ c03L2/ν0

(δM� δM0
c)

2. (2.13)
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Figure 2.8. Plot of Λ = Wα1 (with α1 the first Lyapunov exponent) as a
function of δM near the metal-insulator transition, for fixed M̄ = 0.032 h̄v/a
and different values of W. The dashed curves are a fit to Eq. (2.13).

Results are shown in Fig. 2.8, with ν0 = 1.06� 0.05. The chi-squared
value for this fit is relatively large, χ2 = 5.0, but the value of ν0 is con-
sistent with that obtained from the conductivity (Fig. 2.7).

2.6 Tricritical point

As indicated in the phase diagram of Fig. 2.1, the tricritical point at M̄ =
0, δM = δM� is the point at which the insulating phases at the two sides
of the I–I transition meet the metallic phase. We have searched for this
tricritical point by calculating the scale dependence of the conductivity
σ on the line M̄ = 0 for different δM. Results are shown in Fig. 2.9.

The calculated scale dependence is consistent with the identification
of the point δM� = 3.44 h̄/va as a repulsive fixed point. The conductivity
increases with increasing L for δM > δM�, while for δM < δM� it
decreases towards the scale invariant large-L limit σc.
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Figure 2.9. Conductivity σ as a function of δM on the critical line M̄ = 0, for
different values of L at fixed aspect ratio W/L = 3. (The dotted lines through
data points are guides to the eye.) The tricritical point δM� is indicated, as well
as the scale invariant large-L limit σc for δM < δM�.

2.7 Discussion

We have studied quasiparticle localization in symmetry class BD, by
means of a lattice fermion model [119]. The thermal quantum Hall
effect [97, 109, 121] in a chiral p-wave superconductor at weak disor-
der is in this universality class, as is the phase transition to a thermal
metal [109] at strong disorder.

For weak disorder our lattice model can also be used to describe
the localization of Dirac fermions in graphene with a random gap [12,
131, 132] (with σ the electrical, rather than thermal, conductivity and
G0 = 4e2/h the electrical conductance quantum). The metallic phase
at strong disorder requires Majorana bound states [97, 17, 98], which
do not exist in graphene (symmetry class D rather than BD). We there-
fore expect the scaling analysis in Sec. 2.4 at the insulator-insulator (I–I)
transition to be applicable to chiral p-wave superconductors as well as
to graphene, while the scaling analysis of Sec. 2.5 at the metal-insulator
(M–I) transition applies only in the context of superconductivity. (Here
we disagree with Refs. [131, 132], which maintain that the M–I transition
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exists in graphene as well.)
Our lattice fermion model is different from the network model [28]

used in previous investigations [23, 80, 55, 56], but it falls in the same
universality class so we expect the same critical conductivity and criti-
cal exponent. For the I–I transition analytical calculations [36, 75] give
σc = G0/π and ν = 1, in agreement with our numerics. There are no
analytical results for the M–I transition. We find a slightly larger critical
conductivity (σ0c = 0.4 G0), which has the qualitatively more significant
consequence that the effective mass scaling which we have demonstrated
at the I–I transition breaks down at the M–I transition (compare Figs. 2.2
and 2.6, lower panel).

We conclude from our numerics that the critical exponents ν at the
I–I transition and ν0 at the M–I transition are both equal to unity within
a 5% error margin, which is significantly smaller than the result ν =
ν0 = 1.4 � 0.2 of an earlier numerical investigation [55], but close to
the value found in later work by these authors [56]. The logarithmic
scaling (2.11) of the conductivity in the thermal metal phase, predicted
analytically [109, 36], is nicely reproduced by our numerics (Fig. 2.6,
upper panel).

The nature of the tricritical point has been much debated in the lit-
erature [80, 56]. Our numerics indicates that this is a repulsive critical
point (Fig. 2.9). This finding lends support to the simplest scaling flow
along the I–I phase boundary [75], towards the free-fermion fixed point
at M̄ = 0, δM = 0.

In conclusion, we hope that this investigation brings us closer to a
complete understanding of the phase diagram and scaling properties of
the thermal quantum Hall effect. We now have two efficient numerical
models in the BD universality class, the Cho-Fisher network model [28]
studied previously and the lattice fermion model [119] studied here.
There is a consensus on the scaling at weak disorder, although some
disagreement on the scaling at strong disorder remains to be resolved.
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