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Chapter 1

Introduction

1.1 Preface

Nonrelativistic quantum mechanics is based on the Schrödinger equa-
tion, which describes particles with a quadratic dependence of energy
on momentum. Conduction electrons in metals and semiconductors fol-
low this equation. The effective mass is different from the free electron
mass, due to the effect of the lattice potential, but it does not vanish.

In recent years materials were discovered in which the energy of
excitations near the Fermi level depends linearly rather than quadrati-
cally on momentum. This is the same linear dispersion relation as for
photons, so these materials mimic the dynamics of massless relativistic
particles (although the Fermi velocity is much less than the speed of
light). The excitations could be electrons or holes in a carbon monolayer
(graphene), or they could be neutral quasiparticle excitations in an un-
conventional superconductor (with p-wave or d-wave symmetry of the
order parameter).

The massless excitations are called Dirac fermions, because they sat-
isfy a Dirac equation rather than a Schrödinger equation. The Dirac
equation was studied extensively in the context of relativistic quantum
mechanics, but questions related to the effect of disorder did not play a
role in that context. These effects are, however, central to the behavior
of Dirac fermions in condensed matter.

Localization is a purely quantum mechanical effect of disorder, dis-
covered by P.W. Anderson in 1958 [7]. Interference prevents the spread-
ing of a wave packet, turning a metal into an insulator. This effect is now
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Figure 1.1. The left panel shows the sp2-hybridized orbitals of a carbon atom,
the central panel shows their arrangement in a honeycomb lattice known as
graphene. The right panel shows the A and B sublattices that form the honey-
comb lattice, with lattice vectors a1, a2 and nearest neighbor vectors δ1, δ2, δ3.
From Ref. [22].

well understood, both by an intuitive scaling theory [1] and by field the-
oretical approaches [125]. It has been tested by numerical simulations
[65] and by experiments [37].

These studies considered massive electrons, starting from the Schrö-
dinger equation. Localization of massless Dirac fermions is qualitatively
different. Some aspects of the localization of Dirac fermions are studied
in this thesis.

In this introductory chapter we present background material, and an
outline of the following chapters. We start by introducing the physical
realizations of Dirac fermions that we will be considering.

1.2 Dirac fermions in graphene

1.2.1 Gapless graphene

Graphene is a monolayer of graphite. The atomic configuration of the
carbon atoms is 1s22s22p2, in graphene their electronic configuration is
1s22s2p3. Due to sp2-hybridization the atoms form a hexagonal lattice
(σ-bonds), see Fig. 1.1. The pz orbitals do not participate in the hy-
bridization (π-bond). Electrical conduction is due to hopping between
the pz orbitals.

The unit cell of the hexagonal lattice consists of two atoms, which
form the A and B sublattices. The tight-binding model with nearest
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neighbor hopping only couples different sublattices, corresponding to
the off-diagonal blocks in the Hamiltonian

H =

�
0 t� ∑j=1,2,3 exp(�ik � δj)

t ∑j=1,2,3 exp(ik � δj) 0

�
. (1.1)

The δj’s are three nearest neighbor vectors,

δ1 =
a
2
(1,
p

3), δ2 =
a
2
(1,�p3), δ3 = a(1, 0),

a � 1.42 Å is the lattice constant, and t � 2.8 eV is the nearest neighbor
hopping energy.

The Hamiltonian (1.1) has energy bands E(k) given by

E = �t

s
3 + 2 cos

p
3kya + 4 cos

p
3kya
2

cos
3kxa

2
. (1.2)

At the points

K =

�
2π

3a
,

2π

3
p

3a

�
, K0 =

�
2π

3a
,� 2π

3
p

3a

�

the gap in the spectrum is closed. Near these two socalled Dirac points
the energy-momentum relation is linear.

Linearization of the tight-binding Hamiltonian near a Dirac point
gives the two-dimensional massless Dirac Hamiltonian,

H = h̄vF

�
0 δkx � iδky

δkx � iδky 0

�
, (1.3)

which can be written more compactly in terms of Pauli matrices,

H = h̄vF(σxδkx � σyδky). (1.4)

The wave vector δk is measured relative to point K (upper sign) or rela-
tive to point K0 (lower sign). The Fermi velocity vF is expressed through
the parameters of the lattice as vF = 3at/2 � 106 m/s. This is relatively
large, but still much smaller than the speed of light, so the dynamics
only mimics that of relativistic particles.

The literature on graphene has exploded, since the first isolation of
carbon monolayers in 2004 by A. K. Geim and K. S. Novoselov with their
group (recently honored by a Nobel prize). We refer to a comprehensive
review [22] for references.
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1.2.2 Gapped graphene

The relatively large Fermi velocity in graphene is promising for tran-
sistor applications, but the absence of a band gap is a complication: It
is impossible to completely switch off the conductivity. A band gap is
represented by an additional term mv2

Fσz in Dirac equation, which in the
relativistic analogue would correspond to a mass term,

H = mv2
Fσz + h̄vF(σxδkx � σyδky). (1.5)

The physical meaning of this term is a potential which takes on different
values on the two sublattices. Such a staggered potential can be imposed
on graphene in different ways, for example, by chemisorption of atoms
to the π-bonds or by a substrate.

Let us consider the first possibility in some more detail [27]. We
assume that the adatom deposited on graphene forms a covalent bond
with a particular carbon atom (fluorine, hydrogen, or hedroxyl groups
are known to act like this). Then the sublattice symmetry is locally
broken. In general the concentration of adatoms on the two sublattices
is almost equivalent. But spontaneous sublattice symmetry breaking
can happen if it is energetically more favorable for adatoms to be on the
same sublattice. Namely, each adsorbent locally changes the electronic
density and interacts via this change of electronic density with another
adatom, in such a way that the interaction depends on which sublattice
the adatom is placed.

If the configuration with adatoms on the same sublattice has lower
energy than with adatoms on different sublattices, then domains with
broken sublattice symmetry are generated. This can happen if the ada-
toms may move along the flake, which requires that the activation bar-
rier is smaller than the desorption barrier. This condition is not met for
hydrogen adatoms, but it can be valid for other adatoms, for example
the halogens.

Turning to the second possibility, there are substrates for graphene
which break the sublattice symmetry [46, 130], for example SiC or BN.
Such substrates have a hexagonal lattice structure and almost the same
lattice constant as graphene. The onsite potentials are different for each
sublattice, due to different atoms on the sublattices, see Fig. 1.2. If the
graphene lattice is matched with the substrate lattice, then the sublattice
symmetry is broken, which leads to a band gap (estimated in Ref. [46]
at 53 meV for BN).
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Figure 1.2. Schematic representation of crystal structure and dispersion re-
lation: a) free-standing graphene; b) boron-nitride, BN (with different atoms
represented by different colours); c) graphene on BN. As different atoms of
the substrate have different potentials, the sublattice symmetry is broken and a
gap is opened. From Ref. [89].

1.3 Dirac fermions in superconductors

In conventional superconductors an electron with spin up, momentum k
forms a Cooper pair with an electron with spin down, momentum �k.
This spin-singlet, s-wave pairing is isotropic both with respect to the
spin and with respect to the orbital degree of freedom. Superconductors
with anisotropic pairing are called unconventional. The high-Tc cuprate
superconductors are a notable example, where the Cooper pairs have
spin singlet, d-wave symmetry. Spin-triplet, p-wave pairing appears in
strontium ruthenate (Sr2RuO4). Quasiparticle excitations in these super-
conductors are Dirac fermions, as we will discuss in this section.

1.3.1 Pairing symmetry

Let us first classify the types of electron pairing, consistent with the
requirement of an antisymmetric wave function. The wave function of
two electrons consists of a spin part χ and orbital part ∆ (also called the
pair potential). The full wave function should be antisymmetric with
respect to interchange of the two fermions: ∆(k)χ12 = �∆(�k)χ21, with
k the momentum of the relative motion of the electron pair.
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The spin state is given in terms of the Pauli matrices

σx =

�
0 1
1 0

�
, σy =

�
0 �i
i 0

�
, σz =

�
1 0
0 �1

�
. (1.6)

The basis states for a single spin are the spinors

j"i =
�

1
0

�
, j#i =

�
0
1

�
. (1.7)

The basis states for two spins are

j""i =
�

1 0
0 0

�
, j"#i =

�
0 1
0 0

�
, j#"i =

�
0 0
1 0

�
, j##i =

�
0 0
0 1

�
.

(1.8)
The spin-singlet state is given by

j"#i� j#"i =
�

0 1
�1 0

�
= iσy, (1.9)

which is antisymmetric with respect to interchange of the particles. Hence
for spin-singlet superconductivity the Cooper pair wave function is

Ψ = ∆(k)iσy, (1.10)

with ∆(�k) = ∆(k).
For s-wave pairing the pair potential ∆ = ∆0 is a constant. The

superconducting gap is then isotropic, equal to ∆0. For d-wave pairing
one has an anisotropic pair potential,

∆(k) = (∆0/k2
F)(k

2
x � k2

y). (1.11)

The gap in this case vanishes along the nodal lines jkxj = jkyj.
Spin-triplet pairing is described by the wave function

Ψ = ∆""(k) j""i+ ∆"#(k)(j"#i+ j#"i) + ∆##(k) j##i. (1.12)

An equivalent representation is in terms of the three-dimensional vector
d(k) and the vector of Pauli matrices σ,

Ψ = i(d � σ)σy =

��dx + idy dz

dz dx + idy

�
. (1.13)

For p-wave pairing the function d(k) is linear in k. In Sr2RuO4 it has
the form [57]

d(k) = (∆0/kF)(kx � iky)d0. (1.14)

This state breaks time-reversal symmetry (by choosing the sign �). It is
called a chiral p-wave state.
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Figure 1.3. Ellipsoidal equal-energy contours of low-energy excitations in the
Brillouin zone of superconductor with dxy symmetry. The contours are centered
at the four nodal points (solid dots), where the order parameter vanishes on
the Fermi surface. From Ref. [9].

1.3.2 Dirac fermions in d-wave superconductors

In the vicinity of the nodal lines (where the pair potential (1.11) van-
ishes) the Hamiltonian for the quasiparticle excitations can be linearized,
resulting in a Dirac Hamiltonian, see Fig. 1.3.

To see how this works out, we start from a tight-binding Hamiltonian
in second quantization,

H = ∑
ij
(c†

i", ci#)

�
tij � µδij ∆ij

∆ij �tij + µδij

��
cj"
c†

j#

�
. (1.15)

Here ciσ is the annihilation operator for an electron with spin σ on site
i of a square lattice (lattice constant a), the tij’s are hopping matrix ele-
ments, µ is the Fermi energy, and ∆ij is the d-wave pair potential.

Upon particle-hole transformation d" = c", d# = c†
#, rotation of op-

erators (d", d#) � d 7! exp(iπσx/4)d, and Fourier transformation the
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Hamiltonian becomes:

H = ∑
k

d† �(t(k)� µ)σy + ∆(k)σx
�

d, (1.16)

with t(k) = t0[cos(kxa) + cos(kya)] and ∆(k) = ∆0[cos(kxa)� cos(kya)].
For a half-filled band, the superconducting gap closes at the Fermi

level in four points, namely at (kx, ky) = (�π/2a,�π/2a). Expansion
near these four nodal points, kx = �π/2a + δkx, ky = �π/2a + δky,
gives the linear dispersion relation

E = �a
q

t2
0(δkx + δky)2 + ∆2

0(δkx � δky)2. (1.17)

The linearized Hamiltonian takes the form, after rotation by π/4 +
πn/2, of an anisotropic Dirac Hamiltonian,

H = h̄vF

�
0 δkx � i(∆0/t0)δky

δkx + i(∆0/t0)δky 0

�
, (1.18)

with vF = at0/h̄. The anisotropy is typically large, ∆0/t0 ' 0.07 in the
cuprate superconductor YBa2Cu3O7�ε.

Electrostatic potential fluctuations move the location of the nodal
points, thereby shifting the vector δk 7! δk + A by some offset vector
A. If the potential varies slowly on the scale of 1/a, different nodal
points remain uncoupled and we may fully account for the potential
fluctuations by the effect on each node separately. The slowly varying
function A(r) then enters into the Dirac equation as a fictitious vector
potential.

1.3.3 Dirac fermions in chiral p-wave superconductors

The chiral p-wave superconductor Sr2RuO4 is a two-dimensional layered
structure in the x� y plane. The vector d0 in Eq. (1.14) is oriented along
the perpendicular z-direction in zero magnetic field, which implies the
antiparallel-spin-triplet pairing j"#i+ j#"i. In a perpendicular magnetic
field, it is energetically more favorable for d0 to lie in the x � y plane,
where it can rotate freely. This implies equal-spin pairing, with decou-
pled pairs j""i and j##i.

Chiral p-wave superconductors with equal-spin pairing can be in two
topologically distinct phases, distinguished by the sign of the mass term
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in the Dirac equation [122]. To see how this arises, we start from the
pairing Hamiltonian

H = ∑
k

�
ξkc†

kck + 1
2 (∆

�
kc�kck + ∆kc†

kc†
�k)

�
. (1.19)

The operator ck is the fermionic annihilation operator (wave vector k,
spin omitted). We denote by ξk = h̄2k2/2m� µ the single-particle kinetic
energy (relative to the Fermi energy µ). The pair potential has the chiral
p-wave form

∆k = (∆0/kF)(kx � iky), (1.20)

where we have chosen a specific chirality.
The Hamiltonian (1.19) is diagonalized, H = ∑k α†

kαk + constant, via
a Bogoliubov transformation,

αk = ukck � vkc†
�k, α†

k = u�kc†
k � v�kc�k. (1.21)

The electron and hole wave amplitudes uk and vk satisfy the Bogoliubov-
De Gennes equations,

Ekuk = ξkuk � ∆�
kvk, Ekvk = �ξkvk � ∆kuk. (1.22)

Upon substitution of Eq. (1.20), we see that the electron-hole wave
function ψ = (u, v) is an eigenstate of the Hamiltonian

H =

�
ξk (∆0/kF)(�kx � iky)

(∆0/kF)(�kx + iky) �ξk

�
= ξkσz + (∆0/kF)(�kxσx + kyσy), (1.23)

which is a Dirac Hamiltonian with a k-dependent mass ξk.
At low energies, k ! 0 and we may approximate ξk � �µ. The sign

of µ is a topological invariant, in the sense that it cannot change without
closing the excitation gap in the system. Superconductors have typically
µ > 0, so a negative mass in the Dirac equation. This is the socalled
weak-pairing state. (The strong-pairing state with µ < 0 and positive
mass can appear in superfluids [122].)

Electrostatic potential fluctuations cause fluctuations in µ and hence
in the mass of the Dirac fermions in the chiral p-wave superconductor.
This is in contrast to what we saw in the previous subsection for the d-
wave superconductor, where electrostatic potential fluctuations appear
as a vector potential for the Dirac fermions.
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1.4 Majorana fermions

The Bogoliubov-De Gennes equations (1.22) have particle-hole symme-
try, such that if

�
u(r), v(r)

�
is an eigenstate at energy E then (v�(r), u�(r))

is an eigenstate at energy �E. (We work in real space, with k = �i∂/∂r.)
In terms of the quasiparticle annihilation operator α(E) of an eigenstate
at energy E, this symmetry relation reads α(E) = α†(�E). At zero ex-
citation energy, α = α†, so the excitation is a Majorana fermion (particle
equal to antiparticle). Because zero energy is measured relative to the
Fermi level, at the center of the excitation gap, such Majorana bound
states are midgap states.

Chiral p-wave superconductors can have Majorana bound states, trapped
inside the normal core of a magnetic vortex [122]. A vortex in a conven-
tional s-wave superconductor also traps states inside the gap, but these
are displaced from E = 0 by the energy ∆2

0/EF of zero-point motion, so
they are not midgap states.

Because the Majorana bound states are all at the same energy, tunnel-
ing from one vortex to the other is a resonant process. For a sufficient
density of vortices the wave functions extend throughout the system,
rather than being localized inside the vortices. The superconductor is
then a thermal metal rather than a thermal insulator. The adjective “ther-
mal” is added because the excitations in a superconductor are charge
neutral, so they transport thermal energy but no electrical charge.

One of the findings of our thesis, is that Majorana fermions can be
created in chiral p-wave superconductors by a purely electrostatic mech-
anism, without requiring a magnetic vortex. A change in the sign of the
mass µ(r) along a line defect creates Majorana bound states at the two
end points.

One might wonder whether this mechanism would be operative also
in graphene, if a staggered potential would create a similar line defect.
The answer is negative, as we will show later in the thesis, for the fol-
lowing reason: A sign change in the mass will only produce a Majorana
bound state if the mass has a nonzero k2 term. This is the case for
the mass term ξk = h̄2k2/2m � µ in the chiral p-wave superconductor
Hamiltonian (1.23), but not for the graphene Hamiltonian (1.5).
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Figure 1.4. Typical wavefunction for a) delocalized and b) localized states, with
the mean free path l and the localization length ξ indicated. From Ref. [69].

1.5 Scaling theory of localization

We will study the phase transition from a thermal metal to a thermal
insulator within the context of the scaling theory of localization [69].
A summary of that theory is presented here, for the electrical metal-
insulator transition. We will see later in the thesis what qualitative dif-
ferences appear for the thermal metal-insulator transition.

1.5.1 Single-parameter scaling

The single-parameter scaling hypothesis [1] states that the conductance
of a d-dimensional conductor of linear size L depends on the micro-
scopic parameters of the system through a single length scale ξ, called
the localization length in the insulator and the correlation length (or
mean free path) in the metal. (See Fig. 1.4.) In units of e2/h, the dimen-
sionless conductance g = f (L/ξ) is therefore a function of the ratio L/ξ.
The function f may depend on the dimensionality d and on fundamental
symmetries of the system (for example, the presence or absence of time-
reversal symmetry), but it may not depend on microscopic parameters
(such as the mean free path l).

In a metal, Ohm’s law implies that g ∝ Ld�2 depends as a power law
on L. In an insulator, the conductance decays exponentially, g ∝ e�L/ξ .
In order to interpolate between these two limits, it is convenient to work
with the logarithmic derivative β = d ln g/d ln L. According to single-
parameter scaling, β(g) can be expressed as a function of g itself. The
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gc

ln g

d>2

d=2

d<2

β=
d ln g
d ln L

Figure 1.5. Schematic β-function for the electrical metal-insulator transition in
different dimensions, in the presence of time-reversal symmetry.

two limits are
β(g) = ln(g/gc), (1.24)

in an insulator and
β(g) = d� 2 + δ(g), (1.25)

in a metal. The first quantum correction to Ohm’s law, δ(g) = a/g with
a < 0, can be calculated by perturbation theory.

The β-function for the electrical metal-insulator transition is shown
in Fig. 1.5, for different dimensions and in the presence of time-reversal
symmetry [1]. (We also assumed that spin is a conserved quantity.) For
d = 3 there is a critical point gc where the β-function equals zero, mean-
ing that the conductance of the system is scale invariant (independent
of L). This fixed point signals the metal-insulator transition. It is an
unstable fixed point, since on one side the system scales to a metal and
on the other side to an insulator.

1.5.2 Critical exponent

The critical exponent ν quantifies how unstable the fixed point is. Let
us assume that 1/ν is the slope of the β-function at gc, with β(gc) = 0.
Integration of β(g) = d ln g/d ln L from the metallic side gives

ln
g
gc

=

�
L
λ

�1/ν

ln
gλ

gc
, (1.26)
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where (λ, gλ) is some point on the scaling curve in the vicinity of gc with
β(gλ) > 0. Integration from the insulating side gives

g � gc exp(�BLδgν/λ), (1.27)

with B a constant and δg = gc � g.
In the metallic regime the point β(gξ) = 1 is determined by the

correlation length

ξ = λ

�
1
ν

ln
gλ

gc

��ν

. (1.28)

The correlation length (or mean free path) is the minimal length when
Ohm’s law is applicable. In the insulating regime the localization length
ξ following from the definition g = gc exp(�L/ξ) is

ξ =
λ

Bδgν
. (1.29)

1.5.3 Finite-size scaling

The hypothesis of single-parameter scaling holds in the large-L limit.
For finite L corrections appear, which one needs to take into account in
order to reliably determine the critical conductance and critical exponent
[65].

Let us consider a finite system which is characterized by several pa-
rameters fxig, for example, mean free path, electron density, etc. We
consider the L dependence of a variable F which becomes scale invari-
ant at the metal-insulator transition. Typically, F is the conductance, but
other quantities can be useful in computer simulations.

According to the scaling hypothesis, the function FL = F(fxig, L) can
be written in the form

FL = F(χL1/ν, φ1Ly1 , φ2Ly2 , . . . ), (1.30)

with ν > 0 the critical exponent and all yi < 0. So in the large-L limit
the terms with yi die out and the parameters φi become irrelevant.

Near the phase transition χ as a function of a control parameter x
can be expanded as

χ = χ1(x� xc) + χ2(x� xc)
2 + . . . . (1.31)

The vanishing of χ at the phase transition xc implies that F becomes
scale invariant in the large-L limit.
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1.5.4 Symmetry classes

The electrical metal-insulator transition discussed so far, with the scal-
ing function shown in Fig. 1.5, holds for electrons described by the
Schrödinger equation, in the presence of time-reversal symmetry and
spin-rotation symmetry. This symmetry class is denoted as AI. (The
name comes from the mathematics literature.)

The thermal metal-insulator transition in a chiral p-wave supercon-
ductor is in a different universality class: The excitations are described
by a Dirac equation, with time-reversal symmetry and spin-rotation
symmetry both broken, but with an additional symmetry, which is par-
ticle-hole symmetry. This symmetry class is denoted as BD or D (de-
pending on whether or not there is vortex disorder).

There are in total 10 symmetry classes in the theory of localiza-
tion, depending on the presence or absence of time-reversal symmetry,
spin-rotation symmetry, particle-hole symmetry, and sublattice (or chi-
ral) symmetry [36]. In this thesis we will be concerned mainly with
class BD/D. One other symmetry class will appear for d-wave super-
conductors, which is class AIII (chiral symmetry without time-reversal
symmetry).

The β-function is different in each symmetry class. In particular, in
class BD there can be a metal-insulator transition already in two dimen-
sions, which is not possible in class AI. In class AIII there is no insulating
phase at all.

1.6 Dirac fermions on a lattice

Our numerical studies of localization of Dirac fermions are based on a
transfer matrix discretization of the Dirac equation, either in real space
or in momentum space. We will introduce the different discretization
schemes in this section.

An alternative approach, which we have not taken, is based on mod-
els which are in the same universality class D as the Dirac equation, but
which do not approach the Dirac equation in the continuum limit [36].
These generic class D models are variations of the Chalker-Coddington
network model [24]. Our preference for a discretization of the Dirac
equation is that we can stay closer to a specific physical system (graphene
or a chiral p-wave superconductor) and have direct access to a physical
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observable (electrical or thermal conductance).
One obvious requirement of any discretization is that it should pre-

serve Hermiticity of the Hamiltonian. In a transfer matrix formulation
this requirement appears as the requirement of current conservation.
Two further requirements are special for Dirac fermions: we should
avoid fermion doubling and preserve symplectic symmetry.

1.6.1 Avoid fermion doubling

Dirac fermions on a lattice were introduced in the context of QCD [100].
It was discovered in that context that a straightforward discretization
of the Dirac equation introduces a spurious second Dirac point in the
spectrum. This is the notorious fermion doubling problem.

A simple one-dimensional discretization shows the nature of the
problem. Let us assume that there is a lattice with lattice spacing a
and number of lattice points N. We want to discretize on it the equation

�i∂xψ(x) = λψ(x). (1.32)

Notice that the spectrum of the continuous equation is λ(k) = k. A naive
discretization of the derivative,

∂xψ(x) �! ψ(x + a)� ψ(x)
a

, (1.33)

does not produce a Hermitian operator �i∂xψ on the lattice. There is a
simple way to make it Hermitian, namely by symmetrization,

∂xψ(x) �! ψ(x + a)� ψ(x� a)
2a

. (1.34)

Fourier transformation, ψ(x) = ∑p exp(ipx)ψ(p) with p = 2πm/aN,
m = 1, 2, . . . , N, gives the spectrum

λ(p) = sin(pa)/a. (1.35)

Near p = 0 we recover the linear spectrum of the continuous equa-
tion (1.32). The derivative ∂λ/∂p > 0 near p = 0, so the particles are
right-moving. But in the vicinity of p = π/a there is one more zero
in the dispersion relation (see Fig. 1.6), with ∂λ/∂p < 0, so a second
species of left-moving particles has appeared — which is not present in
the continuous equation.
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Figure 1.6. Illustration of fermion doubling in one dimension. From Ref. [30].

The Nielsen-Ninomiya “no-go” theorem [85] states that fermion dou-
bling (with an equal number of left-movers and right-movers) is un-
avoidable for a discretization scheme which is Hermitian, local, and
translationally invariant. The reason is that periodicity in lattice mo-
mentum p gives an equal number of zeros with positive and negative
slopes.

If some of the conditions of the theorem are not met, then it is
possible to avoid fermion doubling. The transfer matrix discretization
schemes that we will use in this thesis (in real space and momentum
space) are nonlocal. This complicates the algorithm, but it has the great
advantage that it preserves the symplectic symmetry of the Dirac equa-
tion. An alternative approach is to make one of the two fermion species
massive (Wilson fermion). This produces an easier algorithm, but breaks
symplectic symmetry.

1.6.2 Conserve current and preserve symmetries

The transfer matrix of the Dirac Hamiltonian

H = vF(pxσx + pyσy) + m(r)v2
Fσz + u(r), (1.36)

can be calculated by integrating the eigenvalue equation HΨ = EΨ in
the form

∂xΨ =

�
�ipyσz/h̄� iU(r)σx � M(r)σy

�
Ψ, (1.37)
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with U = (u� E)/h̄vF and M = mvF/h̄.
For this integration we discretize a rectangular strip on an M � N

lattice, with M columns in the x-direction and N rows in the y-direction.
We take periodic boundary conditions in the y-direction. The values
Ψm,n = Ψ(xm, yn) of the wave function at a lattice point are collected
into a set vectors Ψm. The transfer matrix Tm of slice m is defined by

Ψm+1 = TmΨm. (1.38)

The transfer matrix T through the entire strip is then the product of the
Tm’s.

Current conservation, with current operator Jx along the strip, re-
quires that

hΨ1jJxjΨ1i = hΨMjJxjΨMi ) Jx = T †JxT . (1.39)

Preservation of symplectic symmetry imposes an additional condi-
tion on the transfer matrix. Symplectic symmetry is the invariance of
the Hamiltonian under inversion of momentum and spin. It is broken
by a mass term, so this is not an important requirement if one studies,
for example, gapped graphene.

For massless Dirac fermions in a scalar potential u the Hamiltonian
H = vFp � σ + u(r) is invariant under inversion p 7! �p, σ 7! �σ.
This symmetry can equivalently be written as H = σyH�σy, where the
complex conjugation is carried out in the real space basis (when p =
�ih̄∂/∂r). The condition on the transfer matrix is

T = σyT �σy. (1.40)

The Dirac Hamiltonian H = vF(pxσx + pyσy) + mv2
Fσz with a mass

term, but without the scalar potential, has no symplectic symmetry but
instead has particle-hole symmetry: σx H�σx = �H. This is the relevant
Hamiltonian for a chiral p-wave superconductor. The corresponding
symmetry relation for the transfer matrix is

T (E) = σxT �(�E)σx. (1.41)

1.6.3 Real space discretization

The transfer matrix resulting from the real space discretization of Eq.
(1.37) was calculated in Ref. [119], using the staggered fermion approach
from QCD [100]. We summarize this method.
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Figure 1.7. Square lattice (filled circles) on which the wave function Ψ is
discretized as Ψm,n. The finite differences are evaluated at the displaced points
indicated by crosses. The Dirac equation (1.37) is applied at the empty circles,
by taking the mean of the contributions from the two adjacent crosses. From
Ref. [119].

Discretized operators are defined at points of the displaced lattice
shown in Fig. 1.7. The differential operators are discretized by

∂xΨ ! 1
2a

(Ψm+1,n + Ψm+1,n+1 �Ψm,n �Ψm,n+1), (1.42)

∂yΨ ! 1
2a

(Ψm,n+1 + Ψm+1,n+1 �Ψm,n �Ψm+1,n). (1.43)

The potential and mass terms are replaced by averages over adjacent
lattice points,

MσzΨ ! 1
4 Mm,nσz

�
Ψm+1,n + Ψm+1,n+1 + Ψm,n + Ψm,n+1

�
, (1.44)

UΨ ! 1
4Um,n

�
Ψm+1,n + Ψm+1,n+1 + Ψm,n + Ψm,n+1

�
, (1.45)

with Mm,n = M(xm + a/2, yn + a/2) and Um,n = U(xm + a/2, yn + a/2).
The zero-energy Dirac equation HΨ = 0 is applied at the points

(xm + a/2, yn) by averaging the terms at the two adjacent points (xm +
a/2, yn � a/2). The resulting finite difference equation can be written in
a compact form with the help of the Ny � Ny tridiagonal matrices J , K,



1.6 Dirac fermions on a lattice 19

M(m), defined by the following nonzero elements:

Jn,n = 1, Jn,n+1 = Jn,n�1 = 1
2 , (1.46)

Kn,n+1 = 1
2 , Kn,n�1 = � 1

2 , (1.47)

M(m)
n,n = 1

2 (Mm,n + Mm,n�1), M(m)
n,n+1 = 1

2 Mm,n,M(m)
n,n�1 = 1

2 Mm,n�1,
(1.48)

V (m)
n,n = 1

2 (Um,n + Um,n�1), U (m)
n,n+1 = 1

2Um,n,U (m)
n,n�1 = 1

2Um,n�1. (1.49)

In accordance with the periodic boundary conditions in the transverse
direction, the indices n� 1 should be evaluated modulo Ny.

The discretized Dirac equation is expressed in terms of the matrices
(1.46)–(1.49) by

1
2a
J (Ψm+1 �Ψm) =

�
� i

2a
σzK� 1

4
v2σyM(m) � i

4
v2σxV (m)

�
(Ψm + Ψm+1).

(1.50)

Rearranging Eq. (1.50) we arrive at Eq. (1.38) with the transfer matrix

Tm =
�
J + iσzK+ 1

2 v2aσyM(m)
��1 �J � iσzK� 1

2 v2aσyM(m)
�

. (1.51)

For a uniform mass Mmn = M and uniform potential Umn = ε, we
may calculate the eigenvalues eikxa of Tm analytically. This gives the
dispersion relation

tan2(kxa/2) + tan2(kya/2) + (MavF/2h̄)2 = (ε/2)2, (1.52)

with ky = 2πl/Ny, l = 1, 2, . . . Ny. The zero of the dispersion relation at
kx = π/a, responsible for the fermion doubling, is replaced by a pole.
The nonlocality of the staggered discretization scheme works around the
no-go theorem.

This discretization scheme conserves the current operator

Jx = 1
2 vσxJ . (1.53)

It preserves symplectic symmetry for M = 0 and obeys particle-hole
symmetry for U = 0.
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1.6.4 Momentum space discretization

An alternative momentum space discretization was developed in Ref.
[11]. The differential equation (1.37) is integrated in the x-direction by
a straightforward discretization in real space, but in the y-direction the
discretization of py is carried out in momentum space. The combination
of these two discretizations produces a nonlocal transfer matrix, which
works around the no-go theorem for fermion doubling, preserving cur-
rent and all symmetries.

The algorithm is simplified by carrying out the two discretizations
in separate steps. One step accounts for scattering S by disorder in a
single slice, another step accounts for free propagation P from one slice
to the next:

Sm = exp(�iUmσx � Mmσy), (1.54)

P = exp(�ipyσza/h̄). (1.55)

Here Um and Mm are diagonal matrices containing the potential and
mass at column m on the diagonal.

The transfer matrix is the product

T = PUSMU †PU � � � S2U †PUS1U †P , (1.56)

with U the matrix that Fourier transforms from real space to momentum
space. The size of this matrix is made finite by truncating the transverse
momentum py at some large value.

1.7 This thesis

We summarize the contents of the following chapters.

1.7.1 Chapter 2

This chapter is a numerical study of quasiparticle localization in symme-
try class BD (realized, for example, in chiral p-wave superconductors),
by means of a staggered-fermion lattice model for two-dimensional Dirac
fermions with a random mass. For sufficiently weak disorder, the sys-
tem size dependence of the average (thermal) conductivity σ is well de-
scribed by an effective mass Meff, dependent on the first two moments
of the random mass M(r). The effective mass vanishes linearly when the
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average mass M̄ ! 0, reproducing the known insulator-insulator phase
boundary with a scale invariant dimensionless conductivity σc = 1/π
and critical exponent ν = 1. For strong disorder a transition to a metal-
lic phase appears, with larger σc but the same ν. The intersection of the
metal-insulator and insulator-insulator phase boundaries is identified as
a repulsive tricritical point.

1.7.2 Chapter 3

In this chapter we look at quasiparticle localization in symmetry class
D. It is different from class BD by absence of the bound states at zero
energy. The system is modeled by staggered fermions in momentum
space and uses convergence in momentum space to realize a smooth
potential landscape in real space. Graphene with a random gap in a
known realization of such system. It is known that fluctuations in the
electrostatic potential allow for metallic conduction (nonzero conductiv-
ity in the limit of an infinite system) if the carriers form a single species
of massless two-dimensional Dirac fermions. A nonzero uniform mass
M̄ opens up an excitation gap, localizing all states at the Dirac point
of charge neutrality. Here we investigate numerically whether fluctua-
tions δM � M̄ 6= 0 in the mass can have a similar effect as potential
fluctuations, allowing for metallic conduction at the Dirac point. Our
negative conclusion confirms earlier expectations, but does not sup-
port the recently predicted metallic phase in a random-gap model of
graphene [131].

1.7.3 Chapter 4

Vortices in two-dimensional superconductors with broken time-reversal
and spin-rotation symmetry can bind states at zero excitation energy.
These socalled Majorana bound states transform a thermal insulator
into a thermal metal and may be used to encode topologically protected
qubits. We identify an alternative mechanism for the formation of Majo-
rana bound states, akin to the way in which Shockley states are formed
on metal surfaces: An electrostatic line defect can have a pair of Majorana
bound states at the end points. The Shockley mechanism explains the ap-
pearance of a thermal metal in vortex-free lattice models of chiral p-wave
superconductors and (unlike the vortex mechanism) is also operative in
the topologically trivial phase.
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1.7.4 Chapter 5

The bulk microwave conductivity of a dirty d-wave superconductor is
known to depend sensitively on the range of the disorder potential:
long-range scattering enhances the conductivity, while short-range scat-
tering has no effect. In this chapter we show that the three-terminal elec-
trical conductance of a normal-metal–d-wave superconductor–normal-
metal junction has a dual behavior: short-range scattering suppresses
the conductance, while long-range scattering has no effect.

1.7.5 Chapter 6

In this chapter we investigate nanomechanical properties, namely the
conductivity of a clean graphene sheet, deformed by a gate electrode.
The effect of the deformation on the conductivity is twofold: The lattice
distortion can be represented as a pseudovector potential in the Dirac
equation, whereas the gate causes a inhomogeneous density redistribu-
tion. We use elasticity theory to find the profile of the graphene sheet
and then evaluate the conductivity by means of the transfer matrix ap-
proach. We find that the two effects provide qualitatively different con-
tributions to the conductivity. For small deformations and not too high
residual stress the correction due to the charge redistribution dominates
and leads to the enhancement of the conductivity. For stronger defor-
mations, the effect of the lattice distortion becomes more important and
eventually leads to the suppression of the conductivity. We consider
homogeneous as well as local deformation. We also suggest that the
effect of the charge redistribution can be best measured in a setup con-
taining two gates, one fixing the overall charge density and another one
deforming graphene locally.



Chapter 2

Effective mass and tricritical
point for lattice fermions
localized by a random mass

2.1 Introduction

Superconductors with neither time-reversal symmetry nor spin-rotation
symmetry (for example, having chiral p-wave pairing) still retain one
fundamental symmetry: the charge-conjugation (or particle-hole) sym-
metry of the quasiparticle excitations. Because of this symmetry, quasi-
particle localization in a disordered chiral p-wave superconductor is in a
different universality class than in a normal metal [36]. The difference is
particularly interesting in two dimensions, when the quantum Hall ef-
fect governs the transport properties. The electrical quantum Hall effect
in a normal metal has the thermal quantum Hall effect as a supercon-
ducting analogue [97, 109, 121], with different scaling properties because
of the particle-hole symmetry.

The thermal quantum Hall transition is analogous to the electrical
quantum Hall transition at the center of a Landau level, but the scal-
ing of the thermal conductivity σ near the phase boundary is different
from the scaling of the electrical conductivity because of the particle-hole
symmetry. A further difference between these two problems appear if
the superconducting order parameter contains vortices [97, 17, 98]. A
vortex contains a Majorana bound state at zero excitation energy, in the
weak-pairing regime [124, 47]. A sufficiently large density of Majorana
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Figure 2.1. Phase diagram in symmetry class BD, calculated numerically from
the lattice model of staggered fermions described in Sec. 2.3. (A qualitatively
similar phase diagram was calculated for a different model [28] in Refs. [23]
and [55].) The thermal conductivity decays exponentially ∝ e�L/ξ in the local-
ized phase and increases ∝ ln L in the metallic phase. The thermal conductivity
is scale invariant on the metal-insulator (M–I) phase boundary (red solid line),
as well as on the insulator-insulator (I–I) phase boundary (blue dashed line).
The M–I and I–I phase boundaries meet at the tricritical point δM�.

bound states allows for extended states at the Fermi level, with a ther-
mal conductivity increasing ∝ ln L with increasing system size L [109].
This socalled thermal metal has no counterpart in the electronic quan-
tum Hall effect.

The Bogoliubov-De Gennes Hamiltonian of a disordered chiral p-
wave superconductor can be approximated at low energies by a Dirac
Hamiltonian with a random mass (see Sec. 2.2). For that reason, it is
convenient to parameterize the phase diagram in terms of the average
mass M̄ and the fluctuation strength δM. As indicated in Fig. 2.1, there
are two types of phase transitions [23, 55], a metal-insulator (M–I) transi-
tion upon decreasing δM at constant M̄ and an insulator-insulator (I–I)
transition upon decreasing M̄ through zero at constant (not too large)
δM. The I–I transition separates phases with a different value of the
thermal Hall conductance, while the M–I transition separates the ther-
mal metal from the thermal insulator. Only the I–I transition remains if
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there are no vortices, or more generally, if there are no Majorana bound
states [97, 17, 98]. In the nomenclature of Ref. [17], the symmetry class
is called BD with Majorana bound states and D without.

The primary purpose of this chapter is to investigate, by numerical
simulation, to what extent the scale dependence of localization by a ran-
dom mass can be described in terms of an effective non-fluctuating mass:
σ(L, M̄, δM) = σ(L, Meff, 0), for some function Meff(M̄, δM). Because
there is no other length scale in the problem at zero energy, σ(L, Meff, 0)
can only depend on L and Meff through the dimensionless combina-
tion LMeffv/h̄ � L/ξ. The effective-mass hypothesis thus implies one-
parameter scaling: σ(L, M̄, δM) = σ0(L/ξ). Two further implications
concern the critical conductivity σc (which is the scale invariant value of
σ on the phase boundary M̄ = 0) and the critical exponent ν (governing
the divergence of the localization length ξ ∝ M̄�ν).

Both σc and ν follow directly from the effective mass hypothesis.
By construction, the scaling function σ0 is the conductivity of ballistic
massless Dirac fermions, which has been calculated in the context of
graphene. For a system with dimensions L�W, and periodic boundary
conditions in the transverse direction, it is given by [58, 118]

σ0(L/ξ) = G0
L
W

∞

∑
n=�∞

cosh�2
q

(2πnL/W)2 + (L/ξ)2

W�L���! G0
1
π

Z ∞

0
dq cosh�2

q
q2 + (L/ξ)2. (2.1)

A scale invariant conductivity

lim
ξ!∞

σ0(L/ξ) � σc = G0
L
W

∞

∑
n=�∞

cosh�2(2πnL/W) (2.2)

is reached for vanishing effective mass. In the limit of a large aspect
ratio W/L � 1 we recover the known value σc = G0/π of the critical
conductivity for a random mass with zero average [75]. The critical
exponent ν = 1 follows by comparing the expansion of the conductivity

σ(L, M̄, δM) = σc + [L1/ν M̄ f (δM)]2 +O(M̄)4 (2.3)

in (even) powers of M̄ with the expansion of the scaling function (2.1)
in powers of L. This value for ν is aspect-ratio independent and agrees
with the known result for the I–I transition [36].
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The description in terms of an effective mass breaks down for strong
disorder. We find that the scaling function at the M–I transition differs
appreciably from σ0, with an aspect-ratio independent critical conduc-
tivity σc � 0.4 G0. The critical exponent remains close to or equal to
ν = 1 (in disagreement with earlier numerical simulations [55]).

The secondary purpose of this chapter is to establish the nature of the
tricritical point δM� at which the two insulating phases and the metallic
phase meet. The existence of such a fixed point of the scaling flow is
expected on the basis of general arguments [17], but whether it is a
repulsive or attractive fixed point has been a matter of debate. From the
scale dependence of σ near this tricritical point, we conclude that it is a
repulsive fixed point (in the sense that σ scales with increasing L to larger
values for δM > δM� and to smaller values for δM < δM�). An attractive
tricritical point had been suggested as a possible scenario [80, 56], in
combination with a repulsive critical point at some δM�� < δM�. Our
numerics does not support this scenario.

The outline of this chapter is as follows. In the next two Sections we
introduce the Dirac Hamiltonian for chiral p-wave superconductors and
the lattice fermion model that we use to simulate quasiparticle localiza-
tion in symmetry class BD. We only give a brief description, referring
to the Section 1.6.2 and Ref. [119] for a more detailed presentation of
the model. The scaling of the thermal conductivity and the localization
length near the insulator-insulator and metal-insulator transitions are
considered separately in Secs. 2.4 and 2.5, respectively. The tricritical
point, at which the two phase boundaries meet, is studied in Sec. 2.6.
We conclude in Sec. 2.7.

2.2 Chiral p-wave superconductors

The quasiparticles in a superconductor have electron and hole compo-
nents ψe, ψh that are eigenstates, at excitation energy ε, of the Bogoliubov-
De Gennes equation

�
H0 � EF ∆

∆† �H�
0 + EF

��
ψe

ψh

�
= ε

�
ψe

ψh

�
. (2.4)

In a chiral p-wave superconductor the order parameter ∆ = 1
2fχ(r), px �

ipyg depends linearly on the momentum p = �ih̄∂/∂r, so the quadratic
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terms in the single-particle Hamiltonian H0 = p2/2m + U(r) may be
neglected near p = 0.

For a uniform order parameter χ(r) = χ0, the quasiparticles are
eigenstates of the Dirac Hamiltonian

HDirac = v(pxσx + pyσy) + v2M(r)σz, (2.5)

with velocity v = χ0 and mass M = (U � EF)/χ2
0 (distinct from the

electron mass m). The Pauli matrices are

σx =

�
0 1
1 0

�
, σy =

�
0 �i
i 0

�
, σz =

�
1 0
0 �1

�
. (2.6)

The particle-hole symmetry for the Dirac Hamiltonian is expressed by

σx H�
Diracσx = �HDirac. (2.7)

Randomness in the electrostatic potential U(r) translates into ran-
domness in the mass M(r) = M̄+ δM(r) of the Dirac fermions. The sign
of the average mass M̄ determines the thermal Hall conductance [97,
109, 121], which is zero for M̄ > 0 (strong pairing regime) and quan-
tized at G0 = π2k2

BT/6h for M̄ < 0 (weak pairing regime).
The Dirac Hamiltonian (2.5) provides a generic low-energy descrip-

tion of the various realizations of chiral p-wave superconductors pro-
posed in the literature: strontium ruthenate [57], superfluids of fermionic
cold atoms [116, 105], and ferromagnet-semiconductor-superconductor
heterostructures [106, 68, 4]. What these diverse systems have in com-
mon, is that they have superconducting order with neither time-reversal
nor spin-rotation symmetry. Each of these systems is expected to ex-
hibit the thermal quantum Hall effect, described by the phase diagram
studied in this work.

2.3 Staggered fermion model

Earlier numerical investigations [23, 80, 55, 56] of the class BD phase
diagram were based on the Cho-Fisher network model [28]. Here we
use a staggered fermion model in the same symmetry class, originally
developed in the context of lattice gauge theory [113, 14] and recently
adapted to the study of transport properties in graphene [119]. An at-
tractive feature of the lattice model is that, by construction, it reduces
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to the Dirac Hamiltonian on length scales large compared to the lattice
constant a.

The model is defined on a square lattice in a strip geometry, extend-
ing in the longitudinal direction from x = 0 to x = L = Nxa and in
the transverse direction from y = 0 to y = W = Nya. We use periodic
boundary conditions in the transverse direction. The transfer matrix T
from x = 0 to x = L is derived in Ref. [119]1, and we refer to that paper
and to 1.6.2 for explicit formulas.

The dispersion relation of the staggered fermions,

tan2(kxa/2) + tan2(kya/2) +
�

Mav
2h̄

�2

=
� εa

2h̄v

�2
, (2.8)

has a Dirac cone at wave vectors jkja � 1 which is gapped by a nonzero
mass. Staggered fermions differ from Dirac fermions by the pole at the
edge of Brillouin zone (jkxj ! π/a or jkyj ! π/a), which is insensitive
to the presence of a mass. We do not expect these large-wave number
modes to affect the large-length scaling of the conductivity, because they
preserve the electron-hole symmetry.

The energy is fixed at ε = 0 (corresponding to the Fermi level for
the superconducting quasiparticles). The transfer matrix T is calcu-
lated recursively using a stable QR decomposition algorithm [65]. An
alternative stabilization method [119] is used to recursively calculate the
transmission matrix t. Both algorithms give consistent results, but the
calculation of T is more accurate than that of t because it preserves the
electron-hole symmetry irrespective of round-off errors.

The random mass is introduced by randomly choosing values of M
on each site uniformly in the interval (M̄ � δM, M̄ + δM). Variations
of M(r) on the scale of the lattice constant introduce Majorana bound
states, which place the model in the BD symmetry class [127]. In prin-
ciple, it is possible to study also the class D phase diagram (without
Majorana bound states), by choosing a random mass landscape that is
smooth on the scale of a. Such a study was recently performed [12],
using a different model [11], to demonstrate the absence of the M–I
transition in class D [97, 17, 98]. Since here we wish to study both the
I–I and M–I transitions, we do not take a smooth mass landscape.

1This paper considers scattering of staggered fermions by a potential V rather than
by a mass M, but one simply needs to replace V by v2 Mσz to obtain the transfer matrix
required here.
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Figure 2.2. Average conductivity σ (with error bars indicating the statistical
uncertainty) at fixed disorder strength δM = 2.5 h̄/va, as a function of system
size L. The aspect ratio of the disordered strip is fixed at W/L = 5. Data sets
at different values of M̄ (listed in the figure in units of h̄/va) collapse upon
rescaling by ξ onto a single curve (solid line), given by Eq. (2.1) in terms of an
effective mass Meff = h̄/vξ.

2.4 Scaling near the insulator-insulator transition

2.4.1 Scaling of the conductivity

In Fig. 2.2 we show the average (thermal) conductivity σ = (L/W)hTr tt†i
(averaged over some 103 disorder realizations) as a function of L for a
fixed δM in the localized phase. Data sets with different M̄ collapse on
a single curve upon rescaling with ξ. (In the logarithmic plot this rescal-
ing amounts simply to a horizontal displacement of the entire data set.)
The scaling curve (solid line in Fig. 2.2) is the effective mass conductiv-
ity (2.1), with Meff = h̄/vξ. Fig. 2.3 shows the linear scaling of σ with
(M̄L)2 for small M̄, as expected from Eq. (2.3) with ν = 1.

We have studied the aspect ratio dependence of the critical conduc-
tivity σc. As illustrated in Fig. 2.4 (blue data points), the convergence
for W/L ! ∞ is to the value σc = 1/π expected from Eq. (2.1). The
conductivity of ballistic massless Dirac fermions also has an aspect ratio
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Figure 2.3. Plot of the average conductivity σ versus (M̄L)2, for fixed δM =
2.5 h̄/va and W/L = 3. The dashed line is a least-square fit through the data,
consistent with critical exponent ν = 1.

dependence,[118] given by Eq. (2.2) (for periodic boundary conditions).
The comparison in Fig. 2.4 of σc with Eq. (2.2) shows that σc at the I–I
transition follows quite closely this aspect ratio dependence (unlike at
the M–I transition discussed in Sec. 2.5.1).

2.4.2 Scaling of the Lyapunov exponent

The transfer matrix T provides an independent probe of the critical scal-
ing through the Lyapunov exponents. The transfer matrix product T T †

has eigenvalues e�µn with 0 � µ1 � µ2 � � � � . The n-th Lyapunov
exponent αn is defined by

αn = lim
L!∞

µn

L
. (2.9)

The dimensionless product Wα1 � Λ is the inverse of the MacKinnon-
Kramer parameter.[76] We obtain α1 by increasing L at constant W until
convergence is reached (typically for L/W ' 103). The large-L limit is
self-averaging, but some improvement in statistical accuracy is reached
by averaging over a small number (10–20) of disorder realizations.
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Figure 2.4. Dependence on the aspect ratio W/L of the critical conductivity
at the insulator-insulator (I–I) transition (M̄ = 0, δM = 2.5 h̄/va) and at the
metal-insulator (M–I) transition (M̄ = 0.032 h̄/va, δM tuned to the transition).
The dashed curve is the aspect ratio dependence of the conductivity of ballistic
massless Dirac fermions [Eq. (2.2)]. It describes the I–I transition quite well, but
not the M–I transition.

We seek the coefficients in the scaling expansion

Λ = Λc + c1W1/ν(M̄� Mc) +O(M̄� Mc)
2, (2.10)

for fixed δM. The fit in Fig. 2.5 gives Λc = 0.03, ν = 1.05, Mc = 7 � 10�4,
consistent with the expected values [23] Λc = 0, ν = 1, Mc = 0.

2.5 Scaling near the metal-insulator transition

2.5.1 Scaling of the conductivity

To investigate the scaling near the metal-insulator transition, we in-
crease δM at constant M̄. Results for the conductivity are shown in
Fig. 2.6. In the metallic regime δM > δMc the conductivity increases
logarithmically with system size L, in accord with the theoretical pre-
diction [109, 36]:

σ/G0 =
1
π

ln L + constant. (2.11)
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Figure 2.5. Plot of Λ = Wα1 (with α1 the first Lyapunov exponent) as a
function of M̄ near the insulator-insulator transition, for fixed δM = 2.5 h̄v/a
and different values of W. The dashed lines are a fit to Eq. (2.10).

(See the dashed line in Fig. 2.6, upper panel.)

In the insulating regime δM < δMc the conductivity decays expo-
nentially with system size, while it is scale independent at the critical
point δM = δMc. Data sets for different δM collapse onto a single func-
tion of L/ξ, but this function is different from the effective mass scaling
σ0(L/ξ) of Eq. (2.1). (See the dashed curve in Fig. 2.6, lower panel.) This
indicates that the effective mass description, which applies well near the
insulator-insulator transition, breaks down at large disorder strengths
near the metal-insulator transition. The two transitions therefore have a
different scaling behavior, and can have different values of critical con-
ductivity and critical exponent (which we denote by σ0c and ν0).

Indeed, the critical conductivity σ0c = 0.41 G0 is significantly larger
than the ballistic value G0/π = 0.32 G0. Unlike at the insulator-insulator
transition, we found no strong aspect-ratio dependence in the value of
σ0c (red data points in Fig. 2.4). To obtain the critical exponent ν0 we
follow Ref. [8] and fit the conductivity near the critical point including
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Figure 2.6. Average conductivity σ at fixed average mass M̄ = 0.032 h̄/va, as
a function of system size L. (The two panels show the same data on a different
scale.) The aspect ratio of the disordered strip is fixed at W/L = 5. Data sets
at different values of δM (listed in the figure in units of h̄/va) collapse upon
rescaling by ξ onto a pair of curves in the metallic and insulating regimes. The
metal-insulator transition has a scale invariant conductivity σ0

c, larger than the
value G0/π which follows from the effective mass scaling (dashed curve in
the lower panel). The upper panel shows that the conductivity in the metallic
regime follows the logarithmic scaling (2.11).
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Figure 2.7. Plot of the average conductivity σ as a function of δM near the
metal-insulator transition, for fixed M̄ = 0.032 h̄/va. The length L is varied at
fixed aspect ratio W/L = 3. The dashed curves are a fit to Eq. (2.12).

terms of second order in δM� δMc:

σ = σ0c + c1L1/ν0

[δM� δMc + c2(δM� δMc)
2]

+ c3L2/ν0

(δM� δMc)
2. (2.12)

Results are shown in Fig. 2.7, with ν0 = 1.02� 0.06. The quality of the
multi-parameter fit is assured by a reduced chi-squared value close to
unity (χ2 = 0.95). Within error bars, this value of the critical exponent is
the same as the value ν = 1 for the insulator-insulator transition.

2.5.2 Scaling of the Lyapunov exponent

As an independent measurement of ν0, we have investigated the finite-
size scaling of the first Lyapunov exponent. Results are shown in Fig.
2.8. Within the framework of single-parameter scaling, the value of ν0

should be the same for σ and Λ, but the other coefficients in the scaling
law may differ,

Λ = Λc + c01L1/ν0

[δM� δM0
c + c02(δM� δM0

c)
2]

+ c03L2/ν0

(δM� δM0
c)

2. (2.13)
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Figure 2.8. Plot of Λ = Wα1 (with α1 the first Lyapunov exponent) as a
function of δM near the metal-insulator transition, for fixed M̄ = 0.032 h̄v/a
and different values of W. The dashed curves are a fit to Eq. (2.13).

Results are shown in Fig. 2.8, with ν0 = 1.06� 0.05. The chi-squared
value for this fit is relatively large, χ2 = 5.0, but the value of ν0 is con-
sistent with that obtained from the conductivity (Fig. 2.7).

2.6 Tricritical point

As indicated in the phase diagram of Fig. 2.1, the tricritical point at M̄ =
0, δM = δM� is the point at which the insulating phases at the two sides
of the I–I transition meet the metallic phase. We have searched for this
tricritical point by calculating the scale dependence of the conductivity
σ on the line M̄ = 0 for different δM. Results are shown in Fig. 2.9.

The calculated scale dependence is consistent with the identification
of the point δM� = 3.44 h̄/va as a repulsive fixed point. The conductivity
increases with increasing L for δM > δM�, while for δM < δM� it
decreases towards the scale invariant large-L limit σc.
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Figure 2.9. Conductivity σ as a function of δM on the critical line M̄ = 0, for
different values of L at fixed aspect ratio W/L = 3. (The dotted lines through
data points are guides to the eye.) The tricritical point δM� is indicated, as well
as the scale invariant large-L limit σc for δM < δM�.

2.7 Discussion

We have studied quasiparticle localization in symmetry class BD, by
means of a lattice fermion model [119]. The thermal quantum Hall
effect [97, 109, 121] in a chiral p-wave superconductor at weak disor-
der is in this universality class, as is the phase transition to a thermal
metal [109] at strong disorder.

For weak disorder our lattice model can also be used to describe
the localization of Dirac fermions in graphene with a random gap [12,
131, 132] (with σ the electrical, rather than thermal, conductivity and
G0 = 4e2/h the electrical conductance quantum). The metallic phase
at strong disorder requires Majorana bound states [97, 17, 98], which
do not exist in graphene (symmetry class D rather than BD). We there-
fore expect the scaling analysis in Sec. 2.4 at the insulator-insulator (I–I)
transition to be applicable to chiral p-wave superconductors as well as
to graphene, while the scaling analysis of Sec. 2.5 at the metal-insulator
(M–I) transition applies only in the context of superconductivity. (Here
we disagree with Refs. [131, 132], which maintain that the M–I transition
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exists in graphene as well.)
Our lattice fermion model is different from the network model [28]

used in previous investigations [23, 80, 55, 56], but it falls in the same
universality class so we expect the same critical conductivity and criti-
cal exponent. For the I–I transition analytical calculations [36, 75] give
σc = G0/π and ν = 1, in agreement with our numerics. There are no
analytical results for the M–I transition. We find a slightly larger critical
conductivity (σ0c = 0.4 G0), which has the qualitatively more significant
consequence that the effective mass scaling which we have demonstrated
at the I–I transition breaks down at the M–I transition (compare Figs. 2.2
and 2.6, lower panel).

We conclude from our numerics that the critical exponents ν at the
I–I transition and ν0 at the M–I transition are both equal to unity within
a 5% error margin, which is significantly smaller than the result ν =
ν0 = 1.4 � 0.2 of an earlier numerical investigation [55], but close to
the value found in later work by these authors [56]. The logarithmic
scaling (2.11) of the conductivity in the thermal metal phase, predicted
analytically [109, 36], is nicely reproduced by our numerics (Fig. 2.6,
upper panel).

The nature of the tricritical point has been much debated in the lit-
erature [80, 56]. Our numerics indicates that this is a repulsive critical
point (Fig. 2.9). This finding lends support to the simplest scaling flow
along the I–I phase boundary [75], towards the free-fermion fixed point
at M̄ = 0, δM = 0.

In conclusion, we hope that this investigation brings us closer to a
complete understanding of the phase diagram and scaling properties of
the thermal quantum Hall effect. We now have two efficient numerical
models in the BD universality class, the Cho-Fisher network model [28]
studied previously and the lattice fermion model [119] studied here.
There is a consensus on the scaling at weak disorder, although some
disagreement on the scaling at strong disorder remains to be resolved.
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Chapter 3

Absence of a metallic phase in
charge-neutral graphene with
a random gap

3.1 Introduction

Two-dimensional Anderson localization in the Dirac equation shows a
much richer phase diagram than in the Schrödinger equation [75]. The
discovery of graphene [45] has provided a laboratory for the exploration
of this phase diagram and renewed the interest in the transport proper-
ties of Dirac fermions [36]. One of the discoveries resulting from these
recent investigations [11, 86, 108] was that electrostatic potential fluctu-
ations V(r) induce a logarithmic growth of the conductivity σ ∝ ln L
with increasing system size L. In contrast, in the Schrödinger equation
all states are localized by sufficiently strong potential fluctuations [69]
and the conductivity decays exponentially with L.

Localized states appear in graphene if the carriers acquire a mass
M(r), for example due to the presence of a sublattice symmetry break-
ing substrate [46, 130] or due to adsorption of atomic hydrogen [35, 20].
Anderson localization due to the combination of (long-range) spatial
fluctuations in M(r) and V(r) appears in the same way as in the quan-
tum Hall effect (QHE) [75, 87]: All states are localized except on a phase
boundary1 of zero average mass M̄ = 0, where σ takes on a scale in-

1The localized phases at the two sides of the phase boundary at M̄ = 0 are distin-
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variant value of the order of the conductance quantum G0 = 4e2/h (the
factor of four accounts for the two-fold spin and valley degeneracies in
graphene).

An altogether different phase diagram may result if only the mass
fluctuates, at constant electrostatic potential tuned to the charge neu-
trality point (Dirac point, at energy E = 0). The universality class is
now different from the QHE, because of the particle-hole symmetry
σx H�σx = �H of the single-valley Dirac Hamiltonian

HDirac = v(pxσx + pyσy) + v2M(r)σz. (3.1)

The Pauli matrices σi act on the spinor (ψA, ψB), containing the wave
function amplitudes on the A and B sublattices of graphene. The term
proportional to σz represents a staggered sublattice potential, equal to
v2M (�v2M) on sublattice A (B). Anderson localization in the presence
of particle-hole symmetry has been studied extensively [28, 109, 23, 80,
55] in the context of superconductivity, where the Dirac spectrum ap-
pears from the superconducting order parameter rather than from the
band structure. The (numerical) models used in those studies contain
randomly distributed vortices in the order parameter, and are therefore
not appropriate models for graphene.

It is the purpose of this chapter to identify, by numerical simulation,
what is the phase diagram of the Dirac Hamiltonian with a random
mass M(r) = M̄ + δM(r) — in the absence of any other source of dis-
order. This study was motivated by recent analytical work by Ziegler in
the context of graphene [131], which predicted a transition into a metal-
lic phase upon increasing the disorder strength δM at constant average
mass M̄ 6= 0. Such a metal-insulator transition was known in the context
of superconductivity [109], but it was understood that this requires vor-
tex disorder [97, 17, 98]. In order to resolve this controversy, we perform
a numerical scaling analysis of the conductivity and find no metallic
phase as we increase δM.

guished by the presence or absence of chiral edge states. This is similar to the QHE, but
the edge states produced by a mass in graphene do not lead to a Hall voltage because
they are counterprogating in the two valleys. In the computer simulations we use pe-
riodic boundary conditions, so there are no edge states and the two sides of the phase
boundary are equivalent.
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Figure 3.1. Contour plot of a random mass with Gaussian correlator (5.27), for
K0 = 10. The zero-mass contours are indicated in black.

3.2 Results

We calculate the conductivity σ for a two-dimensional strip geometry
between electron reservoirs (at x = 0 and x = L, see inset in Fig. 3.2),
with periodic boundary conditions in the transverse direction (at y = 0
and y = W). The Fermi level is tuned to the Dirac point in the strip,
while it lies infinitely far above the Dirac point in the reservoirs. For
zero mass M and large aspect ratio W/L the conductivity has the scale
independent value [58, 118] σ0 = G0/π. We generate a random mass
with Gaussian correlator

hδM(r)δM(r0)i = (h̄/v)2K0

2πξ2 e�jr�r0j2/2ξ2
, (3.2)

characterized by a correlation length ξ and a dimensionless strength

K0 = (v/h̄)2
Z

dr hδM(0)δM(r)i. (3.3)

A contour plot for a single realization of the disorder is shown in Fig.
3.1.



42 Chapter 3. Absence of a metallic phase . . .

Figure 3.2. Average conductivity σ as a function of length L (for fixed W =
800 ξ). The average mass is set at M̄ = 0, while the mass fluctuations are
varied by varying K0. The dashed line is at σ0/G0 = 1/π. The inset shows
the layout of the disordered charge neutral strip (dotted rectangle) between
infinitely doped electron reservoirs at a voltage difference V (gray rectangles).

The N�N transmission matrix t through the strip is calculated from
HDirac by application of the numerical method of Ref. [11] to a random
mass rather than to a random scalar potential. We obtain t from the
transfer matrix T , which relates jψ(x = L)i = T jψ(x = 0)i and is given
by

T =
NL

∏
n=1

e
1
2 δxQδTne

1
2 δxQ, Q = �iσz

∂

∂y
� v

h̄
M̄σy. (3.4)

Scattering from the fluctuating mass δM(r) in the slice (n� 1)δx < x <
nδx, of incremental length δx = L/NL, is approximated by the transfer
matrix

δTn =
1� 1

2 δMn(y)σy

1 + 1
2 δMn(y)σy

, (3.5a)

δMn(y) =
v
h̄

Z nδx

(n�1)δx
dx δM(r). (3.5b)
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Figure 3.3. Same as Fig. 3.2, but now for a nonzero average mass M̄ = 5 �
10�3 h̄/vξ (solid curves, W = 800 ξ) and M̄ = 5 � 10�2 h̄/vξ (dashed curves,
W = 400 ξ). The lower panel shows the same data on a logarithmic horizontal
scale, rescaled by ξloc = ξ/ f (K0, M̄).
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The approximation (3.5) becomes exact in the limit NL ! ∞. More-
over, for any NL it satisfies the requirements of particle-hole symmetry
(σxT �σx = T ) as well as current conservation (σxT †σx = T �1).

We thus obtain the conductance G = G0Tr tt† and the conductivity
σ = G � L/W. The number of transverse modes N and longitudinal
slices NL are truncated at a finite value, which is increased until a sample
specific convergence is reached. For the data presented, this is typically
achieved when N = 400—800 and NL = 300—600, the larger values
needed for larger values of K0. The sample width W = 400ξ—800ξ is
chosen large enough that the conductivity is independent of the ratio
W/L. (Typically, W/L & 3—5, with the larger values needed for smaller
values of M̄.) Averages over a large number of disorder configurations
(typically 1000) produce the results plotted in Figs. 3.2 and 3.3.

For M̄ = 0 (Fig. 3.2) the conductivity stays close to the scale invari-
ant value σ0 (dashed line), no matter how large the disorder strength,
while for nonzero M̄ (Fig. 3.3) the conductivity decays with increas-
ing L. For sufficiently large L/ξ we expect single-parameter scaling,
meaning that the data for different K0 and M̄ should all fall on a single
curve upon rescaling L ! f (K0, M̄)L. (This amounts to a horizontal
displacement of data sets on a logarithmic horizontal scale.) The length
ξloc = ξ/ f (K0, M̄) can then be identified with the localization length
(up to a multiplicative constant). As one can see in the lower panel of
Fig. 3.3, the data sets collapse reasonably well onto a single curve upon
rescaling. (The remaining deviations may well be due to finite-size ef-
fects.)

For weak disorder (K0 < 1) our results are similar to earlier work
on the superconducting random mass model [28]. That model how-
ever shows a metal-insulator transition at values of K0 = Kc of order
unity [23, 55] (weakly dependent on M̄), such that for larger disorder
the conductivity increases logarithmically with system size [36, 109]:

σ = σ0 ln(L/ξ), for K0 > Kc ' 1. (3.6)

As argued by Read, Green, and Ludwig [97, 98] and by Bocquet, Serban,
and Zirnbauer [17], metallic conduction in a random mass landscape re-
quires resonant transmission through contours of zero mass (the black
contours in Fig. 3.1). These contours support a bound state at zero
energy, if and only if they enclose an odd number of vortices. With-
out vortices, the phase shift accumulated upon circulating once along
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a zero-mass contour equals π — so there can be no bound state and
hence no resonant transmission. (The π phase shift is the Berry phase
of the rotating pseudospin σ in HDirac, without any dynamical phase
shift because the energy is zero.) Our numerical finding that there is
no metallic conduction in the random mass landscape without vortex
disorder is therefore consistent with these analytical considerations.

From the more recent analytical work by Ziegler [131] we would
expect a transition into a phase with a scale invariant conductivity

σc = σ0[1� (M̄/Mc)
2�, (3.7)

when Mc = (h̄/vξ) exp(�π/K0) becomes larger than M̄ with increasing
disorder strength K0. The corresponding critical disorder strength Kc =
π/ ln jvξ/h̄M̄j � 0.6—1.0 for the values of M̄ in Fig. 3.3. The numerical
findings of Fig. 3.3, with a decaying conductivity for K0 > 10Kc, do not
support this prediction of a nonzero Mc. Note that the numerical data
of Fig. 3.2, with a scale invariant conductivity σc = σ0 for M̄ = 0, does
agree with Eq. (3.7) — it is the M̄ > 0 data that is in disagreement.

3.3 Discussion

In conclusion, we have presented numerical calculations that demon-
strate the absence of metallic conduction for the Dirac Hamiltonian (3.1),
in a random mass landscape with nonzero average and dimensionless
variance K0 � 1. The decay of the conductivity with system size L is
slower for larger disorder strengths, but no metal-insulator transition is
observed. A transition into a metallic phase (with σ ∝ ln L) has been
attributed to vortex disorder [97, 17, 98]. Our numerical results are con-
sistent with this attribution, since our model contains no vortices and
has no metallic phase even if K0 � 1.
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Chapter 4

Majorana bound states
without vortices in topological
superconductors with
electrostatic defects

4.1 Introduction

Two-dimensional superconductors with spin-polarized-triplet, p-wave
pairing symmetry have the unusual property that vortices in the or-
der parameter can bind a nondegenerate state with zero excitation en-
ergy [64, 124, 97, 53]. Such a midgap state is called a Majorana bound
state, because the corresponding quasiparticle excitation is a Majorana
fermion — equal to its own antiparticle. A pair of spatially separated
Majorana bound states encodes a qubit, in a way which is protected
from any local source of decoherence [62]. Since such a qubit might
form the building block of a topological quantum computer [84], there
is an intensive search [57, 116, 105, 106, 68, 4] for two-dimensional super-
conductors with the required combination of broken time-reversal and
spin-rotation symmetries (symmetry class D [6]).

The generic Bogoliubov-De Gennes Hamiltonian H of a chiral p-
wave superconductor is only constrained by particle-hole symmetry,
σx H�σx = �H. At low excitation energies E (to second order in mo-
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mentum p = �ih̄∂/∂r) it has the form

H = ∆
�

pxσx + pyσy
�
+
�
U(r) + p2/2m

�
σz, (4.1)

for a uniform (vortex-free) pair potential ∆. The electrostatic potential
U (measured relative to the Fermi energy) opens up a band gap in the
excitation spectrum. At U = 0 the superconductor has a topological
phase transition (known as the thermal quantum Hall effect) between
two localized phases, one with and one without chiral edge states [123,
109, 121, 122].

Figure 4.1. Emergence of a pair of zero-energy MS states as the defect po-
tential U0 + δU is made more and more negative, at fixed positive background
potential U0 = 0.3. (All energies are in units of γ � h̄∆/a.) The energy lev-
els are the eigenvalues of the Hamiltonian (4.1) on a square lattice (dimension
100 a � 100 a, β � h̄2/2ma2 = 0.4 γ, periodic boundary conditions). The line
defect has length 50 a. The dense spectrum at top and bottom consists of bulk
states.

4.2 Majorana-Shockley bound states in lattice Hamil-
tonians

Our key observation is that the Hamiltonian (4.1) on a lattice has Majo-
rana bound states at the two end points of a linear electrostatic defect
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(consisting of a perturbation of U on a string of lattice sites). The mech-
anism for the production of these bound states goes back to Shockley
[110]: The band gap closes and then reopens upon formation of the de-
fect, and as it reopens a pair of states splits off from the band edges
to form localized states at the end points of the defect (see Fig. 4.1).
Such Shockley states appear in systems as varied as metals and narrow-
band semiconductors [31], carbon nanotubes [107], and photonic crys-
tals [77]. In these systems they are unprotected and can be pushed out
of the band gap by local perturbations. In a superconductor, in contrast,
particle-hole symmetry requires the spectrum to be �E symmetric, so
an isolated bound state is constrained to lie at E = 0 and cannot be
removed by any local perturbation.

We propose the name Majorana-Shockley (MS) bound state for this
special type of topologically protected Shockley states. Similar states
have been studied in the context of lattice gauge theory by Creutz and
Horváth [30, 29], for an altogether different purpose (as a way to restore
chiral symmetry in the Wilson fermion model of QCD [126]).

Consider a square lattice (lattice constant a), at uniform potential U0.
The Hamiltonian (4.1) on the lattice has dispersion relation

E2 = [U0 + 2β(2� cos akx � cos aky)]
2 + γ2 sin2 akx + γ2 sin2 aky. (4.2)

(We have defined the energy scales β = h̄2/2ma2, γ = h̄∆/a.) The spec-
trum becomes gapless for U0 = 0, �4β, and �8β, signaling a topological
phase transition [95]. The number of edge states is zero for U0 > 0 and
U0 < �8β, while it is unity otherwise (with a reversal of the direction
of propagation at U0 = �4β). The topologically nontrivial regime is
therefore reached for U0 negative, but larger than �8β.

We now introduce the electrostatic line defect by changing the po-
tential to U0 + δU on the N lattice points at r = (na, 0), n = 1, 2, . . . N.
In Figs. 4.1 and 4.2 we show the closing and reopening of the band gap
as the defect is introduced, accompanied by the emergence of a pair of
states at zero energy. The eigenstates for which the gap closes and re-
opens have wave vector kx parallel to the line defect equal to either 0 or
�π/a (in the limit N ! ∞ when kx is a good quantum number).

We have calculated that the gap closing at kx = 0 happens at a critical



50 Chapter 4. Majorana bound states without vortices . . .

Figure 4.2. Main plot: Closing and reopening of the excitation gap at U0 = 0.3,
β = 0.4 (in units of γ), for states with kx = 0 (black solid curve) and kx = π/a
(black dashed curve). The MS states exist for defect potentials in between
two gap-closings, indicated as a function of U0 by the shaded regions in the
inset. (The red solid and blue dashed curves show, respectively U0 + δU0 and
U0 + δUπ . The label T indicates the topologically trivial phase.)

potential δU = δU0 given by (derived in Section 4.A)

δU0 =

8><
>:
�pU0(U0 + 4β) + γ2 for U0 > 0,p

U0(U0 + 4β) + γ2 for U0 < �4β,
no finite value otherwise.

(4.3)

The critical potential δUπ for closing of the gap at kx = �π/a is obtained
from Eq. (4.3) by the replacement of U0 with U0 + 4β. The MS states
appear for defect potentials U0 + δU in between two subsequent gap
closings, as indicated in the inset of Fig. 4.2.

We conclude that MS states exist for any value of U0. In contrast,
Majorana bound states in vortices exist only in the topologically non-
trivial regime [97, 47]. The index theorem [101] for the production of
zero-energy modes by the vortex mechanism, which requires the topo-
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Figure 4.3. Closing and reopening of the excitation gap at U0 = �0.3, β = 0.4
(in units of γ), for states with kx = 0 (red curves) and kx = π/a (black
curves). The results were obtained from numerical calculations using a constant
isotropic pair potential ∆ (solid lines) as in Fig. 4.2 as well as a spatially de-
pendent, anisotropic pair potential (∆x(r), ∆y(r)) determined self-consistently
from the gap equation (dashed lines), Sec. 4.B.

logically nontrivial phase, is therefore not applicable to the Shockley
mechanism.

Our reasoning so far has relied on the assumption of a constant pair
potential ∆, unperturbed by the defect. In order to demonstrate the ro-
bustness of the Majorana-Shockley mechanism, we have performed nu-
merical calculations that determine the pair potential self-consistently
by means of the gap equation [44], Sec. 4.B. In Fig. 4.3 we show a com-
parison of the closing and reopening of the band gap as obtained from
calculations with and without self-consistency, in the relevant weak pair-
ing regime (U0 < 0). The self-consistency does not change the qualitative
behavior. In particular, the gap only closes at kx = π/a for the param-
eters chosen (c.f. inset in Fig. 4.2) and the self-consistent determination
of ∆ only shifts the critical potential δU slightly.

In Fig. 4.4 we demonstrate that the MS states are localized at the end
points of the line defect. The exponentially small, but nonzero overlap
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Figure 4.4. Probability density of the paired (ψ+) and unpaired (ψ1, ψ2) Ma-
jorana bound states at the end points of a line defect of length 50 a, calculated
for U0 = 0.1 γ, U0 + δU = �1.3 γ, β = 0.4 γ.

of the pair of states displaces their energy from 0 to �E (with corre-
sponding eigenstates ψ� = σxψ�

+ related by particle-hole symmetry).
The unpaired Majorana bound states ψ1 and ψ2 are given by the linear
combinations

ψ1 = 1
2 (1� i)ψ+ + 1

2 (1 + i)ψ�, (4.4a)

ψ2 = 1
2 (1 + i)ψ+ + 1

2 (1� i)ψ�, (4.4b)

shown also in Fig. 4.4. These states are particle-hole symmetric, ψ1,2 =
σxψ�

1,2, so the quasiparticle in such a state is indeed equal to its own
antiparticle (hence, it is a Majorana fermion).

If the line defect has a width W which extends over several lattice
sites, multiple gap closings and reopenings appear at kx = 0 upon in-
creasing the defect potential U0 + δU � �(h̄kF)

2/2m to more and more
negative values at fixed positive background potential U0. In the contin-
uum limit W/a ! ∞, the gap closes when qW = nπ + ν, n = 0, 1, 2, . . .
(Sec. 4.C), with q = [k2

F � (m∆)2]1/2 the real part of the transverse wave
vector and ν 2 (0, π) a phase shift that depends weakly on the potential.
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Figure 4.5. Average density of states for a potential that fluctuates randomly
from site to site (Ū = 0.01 γ, ∆U = 2 γ, β = 0.2 γ). The lattice has size
400 a � 400 a. The right inset shows the same data as in the main plot, over
a larger energy range. The left inset has a logarithmic energy scale, to show the
dependence ρ ∝ ln jEj expected for a thermal metal (red dashed line).

(Similar oscillatory coupling energies of zero-modes have been found in
Refs. [26, 73].) The MS states at the two ends of the line defect alternat-
ingly appear and disappear at each subsequent gap closing.

4.3 Electrostatic disorder in p-wave superconductors

So far we constructed MS states for a linear electrostatic defect. More
generally, we expect a randomly varying electrostatic potential to create
a random arrangement of MS states. To test this, we pick U(r) at each
lattice point uniformly from the interval (Ū � ∆U, Ū + ∆U) and calcu-
late the average density of states ρ(E). The result in Fig. 4.5 shows the
expected peak at E = 0. This peak is characteristic of a thermal metal,
studied previously in models where the Majorana bound states are due
to vortices [17, 23, 80]. The theory of a thermal metal [109] predicts a
logarithmic profile, ρ(E) ∝ ln jEj, for the peak in the density of states,
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which is consistent with our data.
Without Majorana bound states, the chiral p-wave superconductor

would be in the thermal insulator phase, with an exponentially small
thermal conductivity at any nonzero Ū [97, 17, 98, 12]. Our findings
imply that electrostatic disorder can convert the thermal insulator into a
thermal metal, thereby destroying the thermal quantum Hall effect. Nu-
merical results for this insulator-metal transition are shown in chapter 2.

4.4 Continuum limit for electrostatic defects

These results are all for a specific model of a chiral p-wave superconduc-
tor. We will now argue that our findings are generic for symmetry class
D (along the lines of a similar analysis of solitons in a polymer chain
[54]). Let p be the momentum along the line defect and α a parameter
that controls the strength of the defect. Assume that the gap closes at
α = α0 and at p = 0. (Because of particle-hole symmetry the gap can
only close at p = 0 or p = �h̄π/a and these two cases are equivalent.)
For α near α0 and p near 0 the Hamiltonian in the basis of left-movers
and right-movers has the generic form

H(α) =

�
(v0 + v1)p �i(α� α0)
i(α� α0) �(v0 � v1)p

�
, (4.5)

with velocities 0 < v1 < v0. No other terms to first order in p = �ih̄∂/∂x
and α� α0 are allowed by particle-hole symmetry, H(α) = �H�(α).

The line defect is initially formed by letting α depend on x on a scale
much larger than the lattice constant. We set one end of the defect at
x = 0 and increase α from α(�∞) < α0 to α(+∞) > α0. Integration
of H[α(x)]ψ(x) = 0 then gives the wave function of a zero-energy state
bound to this end point,

ψ(x) =
�p

v0/v1 � 1p
v0/v1 + 1

�
exp

0
@� Z x

0

α(x0)� α0q
v2

0 � v2
1

dx0

1
A . (4.6)

This is one of the two MS states, the second being at the other end of the
line defect. We may now relax the assumption of a slowly varying α(x),
since a pair of uncoupled zero-energy states cannot disappear without
violating particle-hole symmetry.
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4.5 Outlook

We have identified a purely electrostatic mechanism for the creation
of Majorana bound states in chiral p-wave superconductors. The zero-
energy (mid-gap) states appear in much the same way as Shockley states
in non-superconducting materials, but now protected from any local
perturbation by particle-hole symmetry. An experimentally relevant
consequence of our findings is that the thermal quantum Hall effect
is destroyed by electrostatic disorder (in marked contrast to the electri-
cal quantum Hall effect). A recent proposal to realize Wilson fermions
in optical lattices [16] also opens the possibility to observe Majorana-
Shockley states using cold atoms.

Our analysis is based on a generic model of a two-dimensional class-
D superconductor (broken time-reversal and spin-rotation symmetry).
An interesting direction for future research is to explore whether Majo-
rana-Shockley bound states exist as well in the other symmetry classes
[6]. Since an electrostatic defect preserves time-reversal symmetry, we
expect the Majorana-Shockley mechanism to be effective also in class
DIII (when only spin-rotation symmetry is broken). That class includes
proximity-induced s-wave superconductivity at the surface of a topolog-
ical insulator [42] and other experimentally relevant topological super-
conductors [96, 103, 43].

It would also be interesting to investigate the braiding of two elec-
trostatic defect lines, in order to see whether one obtains the same non-
Abelian statistics as for the braiding of vortices [53].

Appendix 4.A Line defect in lattice fermion models

We calculate the closing and reopening of the excitation gap upon in-
troduction of a line defect in a lattice fermion model with particle-hole
symmetry. First we treat the Wilson fermion model [126] considered in
the main text, and introduced in the context of topological insulators in
Refs. [15, 41]. Then, in order to demonstrate the generic nature of the
results, we consider an alternative lattice model, the staggered fermion
(or Kogut-Susskind) model [63, 113, 14], introduced in the context of
graphene in Refs. [119, 79].
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4.A.1 Wilson fermions

The Wilson fermion model has Hamiltonian

H = ∑
n

c†
nEncn � ∑

n,m (nearest neighb.)

c†
nTnmcm. (4.7)

Each site n on a two-dimensional square lattice (lattice constant a) has
electron and hole states jei and jhi. Fermion annihilation operators for
these two states are collected in a vector cn = (cn,e, cn,h). States on the
same site are coupled by the 2 � 2 potential matrix En and states on
adjacent sites by the 2� 2 hopping matrix Tnm, defined by [15, 41]

En =

�
Un 0
0 �Un

�
, Tnm =

�
β γeiθnm

γe�iθmn �β

�
. (4.8)

Here Un is the electrostatic potential on site n and θnm 2 [0, π] is the
angle between the vector rn � rm and the positive y-axis (so θmn = π �
θnm). In the continuum limit a ! 0, the tight-binding Hamiltonian (4.7)
is equivalent to the chiral p-wave Hamiltonian (4.1), with β = h̄2/2ma2

and γ = h̄∆/a.
It is convenient to transform from position to momentum represen-

tation. For that purpose we take periodic boundary conditions in the
y-direction, so that the transverse wavevector (in units of 1/a) has the
discrete values kl = 2πl/N, l = �(N � 1)/2, . . . ,�1, 0, 1, . . . , (N � 1)/2
(for an odd number N of sites in the y-direction). The Fourier transfor-
mation from position to momentum representation is carried out by the
unitary matrix with elements [F ]nl = N�1/2einkl . We take an infinitely
long system in the x-direction, so the longitudinal wavevector k varies
continuously in the interval (�π, π].

For a uniform potential, Un � U0 for all n, the Fourier transformed
Hamiltonian H0(k) has matrix elements

[H0(k)]ll0 = δll0El(k), (4.9)

El(k) = U0σz + 2βσz(2� cos k� cos kl) + γ(σx sin k + σy sin kl). (4.10)

The corresponding dispersion relation is

E(k, kl)
2 = [U0 + 2β(2� cos k� cos kl)]

2

+ γ2(sin2 k + sin2 kl), (4.11)
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cf. Eq. (4.2).
A line defect at row n0 (parallel to the x-axis) adds to H0 the pertur-

bation
[δH]ll0 = N�1ein0(kl0�kl)δUσz. (4.12)

The determinantal equation Det (H0 + δH � E) = 0 for eigenenergy E
reads

Det (1 +F †
0 δUσzF0(H0 � E)�1) = 0, (4.13)

in terms of an 1 � N matrix F0 with elements [F0]1l = N�1/2ein0kl .
Sylvester’s theorem, Det(1 + AB) = Det(1 + BA), allows us to rewrite
the determinant in the form

Det (1 + δUσzF0(H0 � E)�1F †
0 ) = 0, (4.14)

which reduces to

0 = Det

 
1 + δUσz

1
N ∑

l

1
El(k)� E

!

= Det

 
1 + δUσz

1
N ∑

l

El(k) + E
E(k, kl)2 � E2

!
. (4.15)

A zero-mode is a pair of states (one left-mover and one right-mover)
at energy E = 0. This can only occur at k = 0 or k = π (because for any
eigenenergy E at k there must also be an eigenenergy �E at �k). From
Eqs. (4.10) and (4.15) we obtain the condition for such a zero-mode,

1
N ∑

l

U0 + 2β(1 + δ� cos kl)

[U0 + 2β(1 + δ� cos kl)]2 + γ2 sin2 kl
= � 1

δU
, (4.16)

where δ = 0 if k = 0 and δ = 2 if k = π. In the limit N ! ∞ we may
replace the sum by an integral, N�1 ∑l ! (2π)�1

R π
�π dkl , which can be

evaluated by contour integration. The resulting critical value of δU is
given in the main text [Eq. (4.3) and following].

4.A.2 Staggered fermions

The staggered fermion model is a discretization of the Hamiltonian (4.1)
without the p2 term. It is formulated in Refs. [113, 14, 119] in terms
of the transfer matrix Mm, which relates the transverse wave functions
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Ψm+1 = MmΨm at columns m and m + 1 (parallel to the y-axis). For a
line defect along the x-axis, the transfer matrix is m-independent, so we
can omit the column number m.

The transfer matrix (at energy E) has the form

M =
1� iX
1 + iX

, (4.17)

X = (γJ )�1(γσzK+ 1
2 EσxJ � 1

2 iσyU ). (4.18)

In reference to Eq. (4.1), the parameter γ = h̄∆/a for lattice constant a.
The N � N matrices J and K have nonzero elements

Jn,n = 1, Jn,n+1 = Jn,n�1 = 1
2 , (4.19)

Kn,n+1 = 1
2 , Kn,n�1 = � 1

2 , (4.20)

while the potential matrix U (for a line defect at row n0) is given by

Unn0 = U0Jnn0 + 1
2 δU(δn,n0 δn,n0 + δn,n0 δn,n0+1

+ δn+1,n0 δn,n0 + δn,n0+1δn0,n0). (4.21)

In momentum representation, the matrix X has elements

Xll0 = Alδll0 � i(δU/2γ)σy
v�l vl0

4 cos2(kl/2)
, (4.22)

where we have defined

Al = iσz tan(kl/2) + (E/2γ)σx � i(U0/2γ)σy, (4.23)

vl = N�1/2ein0kl (1 + eikl ). (4.24)

The dispersion relation of the staggered fermions is tan2(k/2) = A(k, kl)
2,

with
A(k, kl)

2 = (E/2γ)2 � tan2(kl/2)� (U0/2γ)2. (4.25)

An eigenstate at energy E and longitudinal wavevector k is an eigen-
state of X with eigenvalue � tan(k/2). The determinantal equation
Det[X + tan(k/2)] = 0 can again be simplified using Sylvester’s theo-
rem. The result, analogous to Eq. (4.15), is

0 = Det

 
1� δU

2γ
iσy

1
N ∑

l

1
Al + tan(k/2)

!

= Det

 
1� δU

2γ
iσy

1
N ∑

l

Al � tan(k/2)
A(k, kl)2 � tan2(k/2)

!
. (4.26)
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Figure 4.6. Main plot: Closing and reopening of the excitation gap in the stag-
gered fermion model. The MS states exist for defect potentials in the shaded
regions in the inset. (All energies are in units of γ.)

Because of the pole in the dispersion relation at k = π, the zero-mode
now exists only at k = 0. The condition for this zero-mode, analogous
to Eq. (4.16), is

1
N ∑

l

U0/2γ

(U0/2γ)2 + tan2(kl/2)
= � 2γ

δU
, (4.27)

For N ! ∞ we may again transform the sum into an integral, and thus
obtain the critical potential

δU =

(
�U0 � 2γ if U0 > 0,
�U0 + 2γ if U0 < 0.

(4.28)

Upon varying the potential U0 + δU of the line defect, at fixed bulk
potential U0, the closing and reopening of the gap thus happens at
U0 + δU = �2γ sign (U0) (see Fig. 4.6). The inset shows the region in pa-
rameter space where the Majorana-Shockley states exist in the staggered
fermion model. This phase diagram is much simpler than the corre-
sponding phase diagram for Wilson fermions (Fig. 4.2, inset), because
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of the absence of the extra parameter β (which quantifies the strength of
the p2 term in the Wilson fermion model).

Appendix 4.B Self-consistent determination of the
pair potential

In order to determine the pair potential self-consistently in a spatially
non-homogeneous situation, it is necessary to allow for a position-de-
pendent, anisotropic pair potential ∆(r) = (∆x(r), ∆y(r)). The Hamilto-
nian then reads [44]

H = 1
2 f∆x(r), pxg σx +

1
2

�
∆y(r), py

	
σy

+
�
U(r) + p2/2m

�
σz, (4.29)

where f�, �g denotes the anticommutator. In the discretization of this
Hamiltonian on a square lattice, the spatial dependence of ∆(r) is taken
into account in the hopping between neighbors as an average value of
∆(r) on the two lattice points.

When the pair potential is homogeneous, the lattice Hamiltonian has
the spectrum

E2 = [U0 + 2β(2� cos akx � cos aky)]
2

+ γ2
x sin2 akx + γ2

y sin2 aky (4.30)

with γx = h̄∆x/a, γy = h̄∆y/a and β = h̄2/2ma2.
The Hamiltonian must be solved self-consistently together with the

equation for the pair potential. These read [44] (with derivatives dis-
cretized on the lattice)

γx(r) = �ig ∑
En>0

(un(x + a, y)� un(x� a, y)) v�n(x, y)

� un(x, y) (v�n(x + a, y)� v�n(x� a, y)),

γy(r) = g ∑
En>0

(un(x, y + a)� un(x, y + a)) v�n(x, y)

� un(x, y) (v�n(x, y + a)� v�n(x, y + a)). (4.31)

Here un and vn are the electron and hole component of the wave func-
tion, respectively, and assumed to be from the tight-binding model, i.e.
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they are dimensionless and represent the probability amplitude per lat-
tice point (x, y).

The coupling constant g must be chosen such that it gives the correct
pair potential γ in the bulk. It can be calculated as

γ

g
=

1
π2

Z π

�π
d(akx)

Z π

�π
d(aky) sin(akx) u(k)v�(k)

=
�i
π2

Z π

�π
d(akx)

Z π

�π
d(aky) sin(aky) u(k)v�(k), (4.32)

where u(k) and v(k) are the electron and hole coefficients of the plane
wave solutions of the bulk lattice Hamiltonian with E > 0.

In the particular case of a system that is translationally invariant in
x-direction, as is the case for an infinitely extended line defect, the gap
equations can be written as:

γx(r) =
4g
Nx

∑
En>0,kx

un(kx, y)v�n(kx, y) sin(akx)

γy(r) =
g

Nx
∑

En>0,kx�
(un(kx, y + a)� un(kx, y + a)) v�n(kx, y)

� un(kx, y) (v�n(kx, y + a)� v�n(kx, y + a))
�

, (4.33)

summing over Nx longitudinal momenta kx, and solving the tight-binding
problem for each kx individually.

The self-consistent solution of the tight-binding Hamiltonian and the
gap equation (4.33) is obtained in an iterative procedure. In the itera-
tion, we neglect the influence of the vector potential arising from local
currents [44] as those effects are expected to be minor for the examples
considered in this work. Furthermore, we also avoid adjusting the chem-
ical potential U0 to obtain a fixed number of electrons in the system and
instead use a large unit cell so that the bulk value of ∆ is recovered away
from the defect.

Appendix 4.C Line defect in the continuum limit

We calculate the closing and reopening of the excitation gap upon intro-
duction of a line defect in the Hamiltonian (4.1), which is the continuum
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Figure 4.7. The red solid curves are the solution of Eq. (4.38) for W = 4h̄/m∆.
The MS states exist in the shaded regions.

limit (a ! 0) of the Wilson fermion lattice model of App. 4.A.1. The
mode matching calculation presented here is the one-dimensional ver-
sion of the two-dimensional calculation in Refs. [73, 72, 74].

The line defect, of width W, is formed by the electrostatic potential
profile

U(r) =

(
U0 if jyj > W/2,
U0 + δU if jyj < W/2.

(4.34)

A zero-mode ψ = (u, v) is a (doubly degenerate) eigenstate of the Hamil-
tonian (4.1) at E = 0, px = 0. The zero-mode should thus satisfy

(U + p2
y/2m)u = i∆pyv, (4.35a)

(U + p2
y/2m)v = i∆pyu. (4.35b)

For uniform U the solution is a plane wave,

ψss0 = eikss0 y
�

1
s

�
, s, s0 = �1, (4.36)
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with transverse wave vector

kss0 = (m/h̄)
�
is∆ + s0

p
�∆2 � 2U/m

�
. (4.37)

In the region jyj < W/2 the zero-mode ψ is a superposition of the
four states ψ++, ψ+�, ψ�+, ψ��. For y > W/2 two decaying states with
Im kss0 > 0 appear in the superposition, while for y < �W/2 the other
two states with Im kss0 < 0 appear. In total ψ has eight unknown coef-
ficients, which we determine by demanding continuity of ψ and dψ/dy
at y = W/2 and y = �W/2. The determinant of this set of equations
should vanish, in order to have a nontrivial solution. There is only a
zero-mode for U0 > 0, U0 + δU < �m∆2/2, determined by

tan qW =
2qq0

q2 � q2
0

. (4.38)

We have defined

q = (m/h̄)
q
�∆2 � (2/m)(U0 + δU), (4.39)

q0 = (m/h̄)
p

∆2 + 2U0/m. (4.40)

The MS states exist in between subsequent gap closings, as indicated in
Fig. 4.7 (shaded regions).
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Chapter 5

Effects of disorder on the
transmission of nodal
fermions through a d-wave
superconductor

5.1 Introduction

As pointed out by Lee in an influential paper [70], disorder has two
competing effects on the microwave conductivity of a layered supercon-
ductor with d-wave symmetry of the pair potential. On the one hand,
disorder increases the density of low-energy quasiparticle excitations,
located in the Brillouin zone near the intersection of the Fermi surface
with the nodal lines of vanishing excitation gap. On the other hand, dis-
order reduces the mobility of these nodal fermions. For short-range scat-
tering the two effects cancel [40], producing a disorder independent mi-
crowave conductivity σ0 ' (e2/h)kFξ0 per layer in the low-temperature,
low-frequency limit (with ξ0 the coherence length and kF the Fermi wave
vector). For long-range scattering the first of the two effects wins [34, 90],
which explains the conductivity enhancement measured in the high-Tc

cuprates [71, 49] (where long-range scattering dominates [32]).
The microwave conductivity is a bulk property of an unbounded

system, of length L and width W large compared to the mean free path l.
A finite system makes it possible to study the crossover from diffusive to
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Figure 5.1. Geometry to measure the transmission of quasiparticles at the
nodes (red circles) of the pair potential with dxy symmetry.

ballistic transport, as L and W become smaller than l. We have recently
shown [9] that the transmission of nodal fermions over a length L in the
range ξ0 � L � l, W is pseudodiffusive: The transmission probability
has the W/L scaling of a diffusive system, even in the absence of any
disorder. The corresponding conductance G0 is close the value (W/L)σ0
which one would expect from the microwave conductivity, up to a small
correction of order (kFξ0)�2 � 1.

It is the purpose of this Chapter to investigate the effects of disor-
der on the pseudodiffusive conductance, as L becomes larger than l. We
find a qualitatively different behavior than for the microwave conductiv-
ity, with an exponentially suppressed conductance in the case of short-
range scattering and an unaffected conductance G ' G0 for long-range
scattering.



5.2 Formulation of the problem 67

5.2 Formulation of the problem

The geometry to measure the transmission of nodal fermions is illus-
trated in Fig. 5.1. It consists of a superconducting strip S between two
normal metal contacts N1 and N2. The transverse width W of the super-
conductor is assumed to be large compare to the separation L of the NS
interfaces, in order to avoid edge effects. Contact N1 is at an elevated
voltage V, while S and N2 are both grounded. The current I2 through
contact N2 measures the transmitted charge, which is carried entirely
by nodal fermions if L � ξ0. The nodal lines are the x and y axes, ori-
ented at an angle α relative to the normal to the NS interfaces. There
are four nodal points A, B, C, D in the Brillouin zone, at the intersection
of the nodal lines and the Fermi surface. The nodal fermions have an
anisotropic dispersion relation, with a velocity vF parallel to the nodal
axis and a much smaller velocity v∆ = vF/kFξ0 perpendicular to the
nodal axis.

The (three-terminal) conductance G = I2/V was calculated in Ref. 9
in the clean limit L � l, with the result (per layer)

Gclean =
2e2

h
W
L

v2
F + v2

∆
πvFv∆

Γ1Γ2

(2� Γ1)(2� Γ2)
, (5.1)

independent of α. The factors Γ1, Γ2 2 (0, 1) are the (mode-independent)
transmission probabilities of tunnel barriers at the N1S and N2S inter-
faces. We have assumed that the tunnel barriers do not couple the nodes,
which requires α � ξ0/L and π/4� α � ξ0/L. Since ξ0/L � 1, this is
the generic case.

We now wish to move away from the clean limit and include scatter-
ing by electrostatic potential fluctuations. We distinguish two regimes,
depending on the magnitude of the correlation length lc of the poten-
tial fluctuations. In the regime kFlc � 1 of long-range disorder, the
nodes remain uncoupled and can be treated separately. We consider
this regime of intranode scattering first, and then include the effects of
internode scattering when lc becomes smaller than 1/kF.

5.3 Intranode scattering regime

In the absence of internode scattering, the electron and hole components
of the wave function Ψ = (Ψe, Ψh) of nodal fermions (at excitation en-
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ergy ε) are governed by the anisotropic Dirac equation HΨ = εΨ. Near
node A the Hamiltonian takes the form [5]

H = �ih̄(vFσz∂x + v∆σx∂y) + Vµσz + V∆σx. (5.2)

The two terms Vµ(x, y) and V∆(x, y) describe, respectively, long-range
disorder in the electrostatic potential and in the s-wave component of
the pair potential. These two types of disorder preserve time-reversal
symmetry. The Hamiltonian anti-commutes with the Pauli matrix σy,
belonging to the chiral symmetry class AIII of Ref. 5.

Following Refs. 108, 117, at zero energy, the disorder potentials can
be transformed out from the Dirac equation by means of the transfor-
mation Ψ 7! exp(iφ + χσy)Ψ0, with fields φ and χ determined by

vF∂xφ + v∆∂yχ = �Vµ/h̄, (5.3a)

vF∂xχ� v∆∂yφ = V∆/h̄. (5.3b)

If HΨ = 0 then also H0Ψ0 = 0, where H0 is the Dirac Hamiltonian
without disorder (Vµ � 0 and V∆ � 0).

The transformation from Ψ to Ψ0 leaves the particle current density
unaffected but not the electrical current density: The particle current
density j reads

(jx, jy) = Ψ†(vFσz, v∆σx)Ψ = Ψ†
0(vFσz, v∆σx)Ψ0, (5.4)

while for the electrical current density i one has

iy = 0, ix = evFΨ†Ψ = evFΨ†
0 exp(2χσy)Ψ0. (5.5)

This is consistent with the findings of Durst and Lee [34], that the low-
energy effects of intranode scattering on the density-of-states and on the
mobility cancel for the thermal conductivity (proportional to the particle
current) but not for the electrical conductivity (which is increased by
disorder).

As we now show, for the conductance of a finite system, the effect
of intranode scattering is entirely different. Following Ref. [9], the con-
ductance is determined by the transfer matrix M relating right-moving
and left-moving states Φ1 = (Φ+

1 , Φ�
1 ) in N1 to right-moving and left-

moving states Φ2 = (Φ+
2 , Φ�

2 ) in N2. It is convenient to rotate the coor-
dinate system from x and y along the nodal axes to coordinates s and t
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perpendicular and parallel to the NS interfaces. The transfer matrix is
defined by

Φ2(L, t) =
Z

dt0M(t, t0)Φ1(0, t0). (5.6)

For wave vectors in the normal metal coupled to node A, the right-
movers are electrons Φ+

e and the left-movers are holes Φ�
h , so an electron

incident from contact N1 can only be transmitted into contact N2 as an
electron, not as a hole. The corresponding transmission matrix tee is
determined by the transfer matrix via

tee =
�
M†

11

��1
, M =

�M11 M12
M21 M22

�
. (5.7)

The contribution GA to the electrical conductance from node A then
follows from

GA =
2e2

h
Tr teet

†
ee, (5.8)

with a factor of two to account for both spin directions. The full con-
ductance contains an additional contribution from node B, determined
by similar expressions with α replaced by α� π/2.

The Hamiltonian (5.2) does not apply within a coherence length ξ0
from the NS interfaces, where the depletion of the pair potential should
be taken into account. We assume weak disorder, l � ξ0, so that we
can use the clean-limit results of Ref. [9] in this interface region. For
simplicity, we do not include tunnel barriers at this stage (Γ1 = Γ2 = 1).
The transfer matrix through the superconductor is then given by

M = exp(iφR + σyχR) exp(�iLvFv∆v�2
α σy∂t + Lϕα∂t)

� exp(�iφL � σyχL), (5.9)

with the abbreviations

vα =
q

v2
F cos2 α + v2

∆ sin2 α, (5.10)

ϕα = 1
2 v�2

α (v2
F � v2

∆) sin 2α. (5.11)

The fields φL(t), χL(t) are evaluated at the left NS interface (s = 0) and
the fields φR(t), χR(t) are evaluated at the right NS interface (s = L).

We now follow Ref. [108] and use the freedom to impose boundary
conditions on the solution of Eq. (5.3). Demanding χ = 0 on the NS
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interfaces fixes both χ and φ (up to an additive constant). The trans-
fer matrix (5.9) then only depends on the disorder through the terms
exp(iφR) and exp(�iφL), which are unitary transformations and there-
fore drop out of the conductance (5.8). We conclude that the electrical
conductance (5.1) is not affected by long-range disorder.

Tunnel barriers affect the conductance in two distinct ways. Firstly, at
both NS interfaces, we need to consider all four states Φ�

e,h that have the
same component of the wave vector parallel to the NS interface (Φ+

e , Φ�
h

have the opposite perpendicular component than Φ�
e , Φ+

h ). However,
only one right-moving and one left-moving superposition of these modes,
Φ�

n , is coupled by the transfer matrix to the other side of the system:

Φ+
n = (2� Γn)

�1/2�Φ+
e + (1� Γn)

1/2Φ+
h

�
, (5.12a)

Φ�
n = (2� Γn)

�1/2�(1� Γn)
1/2Φ�

e + Φ�
h

�
. (5.12b)

The superposition of incoming electron and hole states orthogonal to
Φ+

n is fully reflected by the tunnel barrier and the superconductor, and
so plays no role in the conductance. For a detailed derivation of these
formulas see Appendix 5.A.

Secondly, the modes Φ+
n are only partially transmitted through the

barriers. We have calculated the transmission probability (see Appendix
5.A for details), and found that it can be accounted for by the following
transformation of the transfer matrix,

M 7! eγ2σyMeγ1σy , γn = 1
2 ln
�
2/Γn � 1

�
. (5.13)

With tunnel barriers, the transmission matrix contains mixed elec-
tron and hole elements,

T =

�
tee teh
the thh

�
= U†

2

�
(M†

11)
�1 0

0 0

�
U1, (5.14)

where the unitary matrices Un transform from the electron-hole basis to
the basis state Φ+

n and its (fully reflected) orthogonal complement,

Un = (2� Γn)
�1/2

�
1 (1� Γn)1/2

(1� Γn)1/2 �1

�
. (5.15)

Finally, the contribution GA to the electrical conductance from node A
follows from

GA =
2e2

h
Tr
�
teet

†
ee � thet

†
he

�
. (5.16)
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With tunnel barriers, not just nodes A and B, but nodes C and D also
contribute to the full conductance.

Collecting results, we substitute Eq. (5.9) (with χL and χR both fixed
at zero) into Eq. (5.13) to obtain the transfer matrix, and then substi-
tute the 1, 1 block into Eq. (5.14) for the transmission matrix. Disorder
only enters through the factors exp(iφR) and exp(�iφL), which mix the
modes on the superconducting side of the tunnel barriers. Since the
tunnel probabilities are assumed to be mode independent, these factors
commute with the Un’s and cancel upon taking the trace in Eq. (5.16).
We thus recover the clean-limit result (5.1), independent of any disorder
potential. Disorder would have an effect on the conductance for mode-
dependent tunnel probabilities, but since the modes in the normal metal
couple to a narrow range of transverse wave vectors in the superconduc-
tor, the assumption of mode-independence is well justified.

As an aside we mention that the thermal (rather than electrical) con-
ductance Gthermal ∝ Tr T T † would be independent of disorder also for
the case of mode-dependent tunnel probabilities, since the Un’s drop
out of the trace. The tunnel barriers would then still enter in the transfer
matrix through the terms eγnσy in Eq. (5.13), but these terms have the
same effect as delta function contributions to Vµ and can therefore be
removed by including them in Eq. (5.3). The conclusion is that the ther-
mal conductance is independent of both disorder and tunnel barriers,
while the electrical conductance is independent of disorder but depen-
dent on tunnel barriers through the factors Γn/(2� Γn). Notice that the
Wiedemann-Franz relation between thermal and electrical conductance
does not apply.

5.4 Effect of internode scattering

So far we have only considered intranode scattering. For short-range
disorder we have to include also the effects of internode scattering. In-
ternode scattering suppresses the electrical conductance, measured be-
tween the normal metals N1 and N2, because an electron injected from
N1 into nodes A or B and then scattered to nodes C or D will exit into N2
as a hole, of opposite electrical charge. (The charge deficit is drained to
ground via the superconductor.) The thermal conductance, in contrast,
remains unaffected by internode scattering because electrons and holes
transport the same amount of energy. (Again, the Wiedemann-Franz
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relation does not apply.)
We first give a semiclassical analytical theory, and then a fully quan-

tum mechanical numerical treatment.

5.4.1 Semiclassical theory

We assume that the mean free path l for intranode scattering is short
compared to the internode scattering length. Semiclassically we may
then describe the internode scattering by a (stationary) reaction-diffusion
equation for the carrier densities nν,

r � Dν �rnν + ∑
ν0 6=ν

�
γνν0 nν0 � γν0νnν

�
= 0. (5.17)

The labels ν, ν0 2 fA, B, C, Dg indicate the nodes, with diffusion tensor
Dν and scattering rate γνν0 from ν0 to ν. For simplicity we assume there
is no tunnel barrier at the NS interfaces, and seek a solution nν(s) with
boundary conditions

nν(0) =
1
2
(δν,A + δν,B)eVρF, nν(L) = 0. (5.18)

Here ρF is the density of states per node at the Fermi energy, and we
have chosen the sign of the applied voltage V such that electrons (rather
than holes) are injected into the superconductor from N1.

The diffusion tensor is diagonal in the x � y basis, with compo-
nents Dµ and D∆ in the direction of vµ and v∆, respectively. The av-
erage diffusion constant is D̄ = 1

2 (Dµ + D∆) and we also define Dα =

Dµ cos2 α + D∆ sin2 α. We distinguish internode scattering between op-
posite nodes, with rate γ1, and between adjacent nodes, with rate γ2.
Because the solution nν(s) in the s� t basis is independent of the trans-
verse coordinate t, we may replace the Laplacianr �Dν �r 7! Dνd2/ds2

with DA = DC = Dα and DB = DD = 2D̄� Dα.
We seek the current into N2, given by

I2 = �eW lim
s!L

d
ds

�
DAnA + DBnB � DCnC � DDnD

�
. (5.19)

This can be obtained by integrating the reaction-diffusion equation (5.17)
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in the way explained in Ref. 114. The result is

I2 = e2VρFW
1
2

� p
2(γ1 + γ2)Dα

sinh
p

2L2(γ1 + γ2)/Dα

+

p
2(γ1 + γ2)(2D̄� Dα)

sinh
p

2L2(γ1 + γ2)/(2D̄� Dα)

�
. (5.20)

In the small-L limit (when intervalley scattering can be neglected) we
recover an α-independent conductance I2/V ! e2ρFD̄W/L, consistent
with the expected result (5.1). For large L the conductance decays expo-
nentially ∝ e�L/linter , with

linter =
q

1
2 min(Dα, 2D̄� Dα)/(γ1 + γ2) (5.21)

the internode scattering length. For weak disorder (kFl � 1) this decay
length is much shorter than the Anderson localization length ' lekF l , so
we are justified in treating the transport semiclassically by a diffusion
equation.

5.4.2 Fully quantum mechanical solution

The Hamiltonian in the presence of internode scattering belongs to sym-
metry class CI of Ref. [5], restricted by time-reversal symmetry and
electron-hole symmetry — but without the chiral symmetry that exists
in the absence of internode scattering.

To write the Hamiltonian H of the four coupled nodes in a compact
form we use three sets of Pauli matrices: For each i = x, y, z the 2� 2
Pauli matrix σi couples electrons and holes, γi couples opposite nodes
(A to C and B to D), and τi couples adjacent nodes (A to B and C
to D). The requirements of time-reversal symmetry and electron-hole
symmetry are given, respectively, by

γxH�γx = H, (γx 
 σy)H�(γx 
 σy) = �H. (5.22)

In the absence of disorder, the Hamiltonian is given by

Hclean = px (vFτ+ 
 σz + v∆τ� 
 σx)
 γz

+ py (vFτ� 
 σz + v∆τ+ 
 σx)
 γz. (5.23)
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The momentum operator is p = �ih̄∂/∂r and we have defined τ� =
1
2 (τ0 � τz), with τ0 the 2� 2 unit matrix.

Since the effects of disorder in the electrostatic potential Vµ(r) and
in the pair potential V∆(r) are equivalent [5], we restrict ourselves to the
former. The relevant Fourier components of Vµ(r) can be represented by
the expansion

Vµ(r) =µ0(r)

+ µ1(r)ei(kC�kA)�r + µ2(r)ei(kD�kB)�r

+ µ3(r)ei(kB�kA)�r + µ4(r)ei(kC�kB)�r, (5.24)

where kX is the wave vector of node X = A, B, C, D (see Fig. 5.1). The
Fourier amplitudes µp(r) are all slowly varying functions of r, with cor-
relation length ξ � 1/kF. The amplitude µ0 is responsible for intra-
node scattering, arising from spatial Fourier components of V(r) with
wave vector � kF (long-range scattering). The other four amplitudes
arise from Fourier components with wave vector & kF (short-range scat-
tering). Of these internode scattering potentials, µ1, µ2 scatter between
opposite nodes and µ3, µ4 scatter between adjacent nodes.

The Hamiltonian H = Hclean +Hdisorder contains an electrostatic dis-
order contribution Hdisorder ∝ σz. Six combinations of Pauli matrices are
allowed by the symmetry (5.22), five of which have independent ampli-
tudes:

Hdisorder =
4

∑
n=0

Hp 
 σz, with (5.25)

H0 = µ0(r) [τ+ 
 γ0 + τ� 
 γ0] = µ0(r)τ0 
 γ0,

H1 = µ1(r)τ+ 
 γx, H2 = µ2(r)τ� 
 γx,

H3 = µ3(r)τx 
 γ0, H4 = µ4(r)τx 
 γx. (5.26)

We have solved the quantum mechanical scattering problem of the
four coupled Dirac Hamiltonians numerically, by discretizing H on a
grid. Since the electrostatic potential appears in the form of a vector po-
tential in the Dirac Hamiltonian, in our numerical discretization we are
faced with a notorious problem from the theory of lattice fermions: How
to avoid fermion doubling while preserving gauge invariance [113]. The
transfer matrix discretization method we use, from Ref. [11], satisfies
gauge invariance only in the continuum limit. We ensure that we have



5.4 Effect of internode scattering 75

Figure 5.2. Differential conductance as a function of sample length, calculated
numerically from the four coupled Dirac Hamiltonians of nodal fermions. The
solid curves are at zero voltage and the dashed curves at nonzero voltage. If
only intranode scattering is present (upper curves), the differential conductance
is close to the value Gclean from Eq. (5.1). Including also internode scattering
(lower curves) causes the conductance to decay strongly below Gclean.
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reached that limit, by reducing the mesh size of the grid until the results
have converged.

We fixed the width of the d-wave strip at W = 150 ξ, oriented at an
angle α = π/8 with the nodal lines, and increased L at fixed ξ. We
set the anisotropy at vF/v∆ = 2 and did not include tunnel barriers
for simplicity. All five amplitudes µp(r) are taken as independently
fluctuating Gaussian fields, with the same correlation length ξ. The
Gaussian fields have zero ensemble average, hµp(r)i = 0, and second
moment

Kp = (h̄vF)
�2

Z
dr hµp(0)µp(r)i. (5.27)

We took K0 = 1 and either K1 = K2 = K3 = K4 = 0 (only intranode
scattering) or K1 = K2 = K3 = K4 = 0.4 (both intranode and intern-
ode scattering). The results in Fig. 5.2 give the differential conductance
dI2/dV, both at zero voltage and at a voltage of V = 0.2 h̄vF/eξ.

Without internode scattering, we recover precisely the analytical re-
sult dI2/dV = Gclean at V = 0. At nonzero voltages, dI2/dV rises above
Gclean with increasing L, consistent with the expectations [108] for the
crossover from pseudo-diffusive to ballistic conduction at V ' h̄vF/eL.
Internode scattering causes dI2/dV to drop strongly below Gclean with
increasing L, both at zero and at nonzero voltages. The decay is approx-
imately exponential, consistent with our semiclassical theory (although
the range accessible numerically is not large enough to accurately extract
a decay rate).

5.5 Conclusion

In summary, we have shown that the effect of disorder on the electrical
current transmitted through a normal-metal–d-wave-superconductor–nor-
mal metal junction is strikingly different depending on the range of
the disorder potential: Long-range scattering has no effect, while short-
range scattering suppresses the current exponentially. This behavior is
dual to what is known [34, 90] for the bulk conductivity, which is unaf-
fected by short-range scattering and increased by long-range scattering.
Because of the exponential sensitivity ∝ e�L/linter , we propose the setup
of Fig. 5.1 as a way to measure the internode scattering length linter.

As a direction for future research, it would be interesting to study the
transmission in the geometry of Fig. 5.1 of low-energy excitations that
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+

Figure 5.3. Sketch of the normal-superconducting interface, with the plane
wave modes taking part in conduction with a fixed energy and transverse mo-
mentum. To define the modes φ+,�

e,h , a piece of normal metal with length ! 0
is inserted between the tunnel barrier I and the superconductor S.

are not located near the nodal points of the pair potential. A mechanism
for the formation of non-nodal zero-energy states in d-wave supercon-
ductors has been studied in Refs. [2, 3].

Appendix 5.A Tunnel barrier at the NS interface

We consider a tunnel barrier between the normal metal contact N1 and
the superconductor. To be specific, we describe the left end of our setup,
the derivations for the right contact follow analogously. We introduce an
additional normal metal of zero length between the tunnel barrier and
the superconductor, as illustrated in Fig. 5.3. For simplicity we assume
translation invariance along the NS interface holds: then the energy and
the wave number along the NS interface are good quantum numbers.
The tunnel barrier mixes the 4 modes with these constants in the normal
lead N1: Φ+,�

e for right-/left-propagating electrons, and Φ+�
h for right-

/left-propagating holes, with the 4 modes with these constants in N0
1:
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φ+,�
e and φ+,�

h . We have0
BB@

Φ�
e

φ+e
Φ�

h
φ+h

1
CCA =

0
BB@

r t
0 0 0

t r
0 0 0

0 0 r
�

t
0�

0 0 t
�

r
0�

1
CCA
0
BB@

Φ+
e

φ�e
Φ+

h
φ�h

1
CCA . (5.28)

Here t =
p

Γ1eiχ and t
0 =

p
Γ1eiχ0

are the electron transmission ampli-
tudes, χ, χ0 2 R, and r and r

0 are the electron reflection amplitudes.
Since the angle α between the normal to the NS interface and the

nodal line is taken to be generic, 0 � α � �π/4, the modes φ+h and
φ�e cannot propagate in the superconductor. They are localized near the
NS interface, and follow Andreev reflection: φ�e = �iφ+h . Using this, we
can write the scattering matrix S representing the combined effect of the
tunnel barrier and the Andreev reflections on the propagating modes as0

@Φ�
e

Φ�
h

φ+e

1
A = S

0
@Φ+

e
Φ+

h
φ�h

1
A ; S =

0
@r �t

0it0 �t
0ir0�

0 r
0

t
0�

t �r
0it0 �r

0ir0�

1
A (5.29)

Now there are two incoming propagating modes from the left, but
only one outgoing propagating mode to the right. This implies that
there is a superposition of Φ+

e and Φ+
h that is reflected with unit prob-

ability into a superposition of Φ�
e and Φ�

h . Orthogonal to these un-
coupled superpositions are the relevant modes Φ+

1 = ueΦ+
e + uhΦ+

h and
Φ�

1 = veΦ�
e + vhΦ�

h , which are coupled to the propagating modes in
the superconductor. We can find them from Eq. (5.29) by just observing
what S† and S take (0, 0, 1)† to:�

ue

uh

�
=

1
N
�

e�iχ

ir0�eiχ

�
;

�
ve

vh

�
=

1
N
�

ir0�eiχ0

e�iχ0

�
, (5.30)

where N =
p

2� Γ1 is a normalizing factor. For our setup, all phase fac-
tors here can be absorbed into the definitions of the plane wave modes
in contact N1, and we obtain Eqs. (5.12).

Acting with S on (u�e , u�h, 0)† allows us to infer the transmission and
reflection amplitudes of the relevant modes, from which we can obtain
the transfer matrix,�

φ+e
φ�h

�
=M1

�
Φ+

1
Φ�

1

�
; M1 =

1 + (1� Γ1)σyp
Γ1(2� Γ1)

. (5.31)
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This transfer matrix can be written in a succint form with a real param-
eter γ1 characterizing the tunnel barrier:

M1 = exp[γ1σy]; γ1 =
1
2

ln
2� Γ1

Γ1
. (5.32)

This and the analagous calculation for the right edge of the system lead
directly to Eq. (5.13).
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Chapter 6

Piezoconductivity of gated
suspended graphene

6.1 Introduction

Graphene is a novel material with highly unusual electron properties,
related to the Dirac form of its energy spectrum at low energies, and
demonstrated in many seminal experiments (for review see [13, 22]).
Experiments on single-layer graphene have been performed on the flakes
obtained by exfoliation as well as grown on a substrate.

Graphene also has excellent mechanical properties. Indeed, the elas-
tic properties have been measured on suspended graphene flakes me-
chanically deposited over a hole by indentation in an atomic force mi-
croscope [67, 94, 39]; the results showed that graphene is incredibly stiff,
with the breaking strength of the order of 40N/m, the Young modulus
of 1 TPa, and possibility to be stretched elastically up to 20%. Bend-
ing properties have been determined experimentally for several-layer
graphene flakes [94] and are not yet available for a monolayer. Theoret-
ically, these properties have been predicted from the calculations using
the analytical form of the interatomic potential, and from molecular dy-
namic studies [52, 51]. Graphene is currently one of the most prospective
candidates for high-frequency nanomechanical resonators [21, 25], with
the quality factor and eigenfrequency extracted from measurements to
be Q � 75, f0 = 70.5 MHz for a monolayer, and Q � 120, f0 = 42 MHz
for 15nm thick graphite. Quality factor further increases with decreas-
ing temperature. An alternative method to investigate elastic properties
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of graphene is to put the film on a flexible substrate and deform the
substrate [60, 82]. The strain influences optical phonon spectrum [82],
which has been measured by Raman spectroscopy.

Recent experiments combine mechanical and electrical properties
of graphene by measuring conductivity [18, 19, 120, 33] of suspended
graphene flakes. This is a very promising direction since suspended
graphene flakes exhibit much higher mobility than graphene on sub-
strate due to much weaker disorder [18, 19]. Potentially electrons can
produce back-action on the resonator. Graphene resonators are expected
to have high sensitivity to mass and prebuilt strain [25], so that they can
be used to ultra-sensitive mass detection.

Suspension of graphene flakes always leads to their deformation,
which in turn affects the conduction properties of graphene. Deforma-
tion creates inhomogeneous elongation of the lattice constant [92, 38]
which locally affects the electron spectrum of graphene. One way to
look at the variations of the band structure of the strained graphene is to
perform density functional calculations [99]. Alternatively, the variation
of the lattice constant can be represented at the level of Dirac equation
in the form of pseudomagnetic fields [115]. Ref. [38] pointed out that
local shifts of the Fermi surface in suspended graphene in the vicinity
of the Dirac point can block the conductivity — if the Fermi-surfaces
at different parts of the flake do not overlap, the conduction is tunnel
rather than metallic. Effects of disorder due to charged impurities and
midgap states, optical and acoustic phonons were taking into account for
calculating conductivity of gated graphene in [112]. For strong enough
deformation, graphene quasiparticles can become localized [61].

In experiments, graphene flakes are typically suspended over a back-
gate. This gate redistributes the electron density in the flake due to the
spatial variation of the capacitance. The regions in the center of the
suspended part of the flake have higher electron density then the regions
near the clamping edges, as the central part is closer to the gate. This
density redistribution affects the transmission coefficients through the
entire flake. The corresponding effect on the piezoresistivity in ballistic
regime is of the first order in the maximum deformation of the flake in
the transverse direction, and it increases the conductivity. This has to be
contrasted with the effect of the pseudomagnetic fields which suppress
the conductivity. The contribution from pseudovector potential depends
on the strain [38] over the flake and is of the second order in the maxi-
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mum deformation. Thus, this contribution is expected to be weaker than
effect from the charge redistribution. We will show however that this
effect can be important for graphene under high enough residual stress.
Inhomogeneous deformation of graphene yields the corrections to the
conductivity which are of the fourth order in the maximum deformation,
which is even smaller.

In this Chapter, we calculate the effect of the gate-induced density
redistribution on the conductivity of the graphene flake. We find that,
indeed, for high residual stress the correction resulting from the pseu-
dovector potential is important, and the correction to the conductivity is
negative. We mostly focus on the regime of low residual stress and show
that the correction from the charge redistribution becomes the most im-
portant.

Experimentally, influence of deformation on the conductivity would
be difficult to observe on a suspended graphene flake with one gate
since the main effect of the gate is the global shift of the density rather
than its redistribution. To separate density redistribution and elastic de-
formation, one needs to employ two gates. For instance, one can use
the configuration with a large bottom gate and a narrow top gate. The
bottom gate deforms the graphene flake and determines the maximum
transverse deformation ξmax. When voltage is switched on the narrow
top gate it does not influence much of deformation of the flake depleting
the charge density below the top gate. Since the region under the top
gate has the lowest density it determines the conductivity of the whole
flake. If this region is brought to the Dirac point, the correction to con-
ductivity is determined only by the deformation of graphene [38] and
is proportional to

�
ξmax(Vg)/L

�2, with Vg and L being the voltage ap-
plied to the bottom gate and the length of the strip under the top gate.
However, for higher voltages the charge redistribution is more impor-
tant, and the correction to conductivity is proportional to ξmax(Vg)/d, d
being the distance to the bottom gate. Instead of the top gate, one can
use an AFM tip.

The chapter is organized as follows. In Section 6.2 we derive equa-
tions for the deformation of suspended graphene from general theory
of elasticity. We consider two situations — graphene deformed homo-
geneously by a gate and graphene deformed locally by an AFM tip.
The capacitance between the gate and suspended graphene varies due
to deformation of the flake. We calculate the density redistribution over
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Figure 6.1. Side view of a deformed graphene flake suspended over a gate. The
deformation is caused only by the interaction with a gate (left) or by the gate
and an AFM-tip (right).

the flake taking into account the shape of the flake. In Section 6.3, we
use these results to evaluate correction to the conductivity. We use the
perturbation theory to calculate the transmission eigenvalues, and the
correction to the conductivity is obtained using the Landauer formula.
This correction can be big for sufficiently strong deformations of the
flake which can be produced by an AFM tip. In Section 6.4 we discuss
the results and the not considered in this Chapter.

6.2 Deformation of the graphene sheet

In this Section, we calculate the profile of the graphene sheet formed
by electrostatic forces induced by the gates. For this purpose, we de-
compose the total energy of the flake as the sum of electrostatic and
elastic energies. We consider a graphene flake of the length L (direction
x) and the width W (direction y). For simplicity, we assume W � L.
An undeformed sheet occupies a part of the plain z = 0; the electro-
statically induced deflection is ξ(x, y). Below we only consider small
deformations so that we can stay within the limits of linear theory of
elasticity (Hooke’s law). At stronger deformations, as expected from the
general theory [66] and also confirmed by theoretical modeling [10] and
by experiments [21] on graphene, non-linear terms become important.
However, there is a considerable parameter range, with the displace-
ments up to 50 nm for length of the flake about 1 µm, where the linear
regime is still valid. We discuss the terms which go beyond Hooke’s
law [10] in Section 6.4.
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For electrostatic energy, similarly to Ref. [104], we model the sys-
tem as a capacitor between the flake and the gate, with the distributed
capacitance Cg dependent on the profile of the flake,

Cg =
Z

c[ξ(x, y)]dxdy. (6.1)

Electrostatic coupling to the leads is modeled via contact capacitances
CL, CR and resistances RL, RR, see. Fig (6.1). The total electrostatic
energy of the system carrying the charge Q is

Felectr = � Q2

2C0
+

Q
C0

(CLVL + CgVg)� CLCgVLVg

2C0
+

+
CLV2

L (C0 � CL)

2C0
++

CgV2
g (C0 � Cg)

2C0
,

with C0 = CL + CR + Cg.
From now on, we assume that the contacts are ideal, CL = CR = 0,

and thus the electrostatic energy is

Felectr = � Q2

2Cg
+ QVg. (6.2)

The effect of non-ideal contacts is discussed in Section 6.4.

6.2.1 Elastic energy

We evaluate the elastic energy in the thin-plate approximation. The
elastic energy consists of the bending contribution F1(ξ(x, y)) and the
stretching contribution F2(uαβ(x, y)), where uαβ(x, y) is the deformation
tensor, and α and β denote the coordinates in the plane of the sheet (x
and y). In the linear regime, the bending contribution is less impor-
tant than the stretching one, however, we consider both contributions
for completeness. Explicitly, we have [66]

F1(ξ) =
D
2

Z Z
dxdy

�
∂2ξ

∂x2 +
∂2ξ

∂y2

�2

+

+
Z Z

dxdy(1� ν2)

"�
∂2ξ

∂x∂y

�2

� ∂2ξ

∂x2
∂2ξ

∂y2

#
(6.3)
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and
F2(uαβ) = h0

uαβσαβ

2
. (6.4)

Here D = Eh3
0/(12(1� ν2)) is the bending rigidity, E is the Young mod-

ulus, ν is the Poisson ratio, h0 is the thickness of the plate (graphene
flake) , and σαβ is the stress tensor.

In addition, if a local force (for instance, an AFM tip) acts on the
graphene flake, it is best represented by external pressure Pext(x, y). The
work of this external pressure to deform the flake by δξ(x, y) is F3 =R

Pextδξ(x, y)d f , where d f is the surface element.
The profile of the sheet is determined by minimizing its total energy.

Performing the variation, we find the equation describing the shape of
the flake,

D∆2ξ � ∂

∂xβ
(h0σαβ

∂ξ

∂xα
) = Pel(x, y) + Pext(x, y), (6.5)

∂σαβ

∂xβ
= 0, (6.6)

with Pel(x, y) being the electrostatic pressure on the plate, induced by
the variation of electrostatic energy (6.2). For ideal contacts, Pel(x, y) =
n2(x, y)/2ε0. Here n(x, y) is the electron density. Eq. (6.5) is the most
general equation for ξ(x, y) in the linear approximation of elasticity the-
ory. For an infinitely wide graphene flake, W � L, the deformation in
the y direction is homogeneous.

At sufficiently small deformations, the tension along the sheet is con-
stant over the sheet (6.6), h0σ0

αβ = Tδαβ. The tension T is the sum of two
contributions:

T = T0 + TH, TH =
Eh0

1� ν2 ∆L/L (6.7)

The first one, T0, is the residual stress which results from the fabrication
process or is induced by the ripple formation [94, 67]. The second con-
tribution, TH, is an internal force due to the relative elongation ∆L/L
(Hooke’s law). If we take this term into account, we can go beyond
the thin-plate approximation and consider deformations bigger then the
thickness of the graphene layer.

In the two following Subsections, we solve the above equations for
two specific situations: homogeneous external force (which can be pro-
duced by a bulk bottom gate), and local force (produced for example by
an AFM tip).
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6.2.2 Homogeneous force: Deformation by a bottom gate

Applying a voltage on a bottom gate is a standard way to vary electron
density in graphene. If the suspended graphene flake is charged, it is
subject to a mechanical force proportional to the charge density. If the
area of the gate is much larger than the area of the flake, the electron
density induced by the gate is constant almost everywhere, n = Q/WL,
except for the clamping points of the flake, where it is determined not
only by the solution of the Poisson equation (providing singularities at
the capacitor edges), but also by the metallic leads to which the flake is
clamped. Indeed, experimental evidence for this charge inhomogeneity
exist and can be accessed by asymmetry of the Dirac peak in conductiv-
ity [102]. However, these density inhomogenities at the clamping areas
very little affect the deformation, since the displacement vanishes at the
edges of the flake. Therefore we can approximate the effect of the gate
by homogeneous electrostatic pressure over the flake, P = ε0V2

g /2d2, Vg

and d being the gate voltage and the distance to the gate. The profile of
the graphene sheet is found from the equation

D
∂4ξ

∂x4 � T
∂2ξ

∂x2 = P, (6.8)

where the stress T is constant over the sheet (6.7) and the deformation-
dependent contribution to it depending has to be found self-consistently,

TH =
Eh0

2(1� ν2)

Z L

0
ξ 02(x)dx (6.9)

(the case for inhomogeneous TH derived in Ref. [10] is discussed in Sec-
tion 6.4 and does not induce significant difference in results). For the
boundary condition corresponding to the clamping the sheet, ξ(0) =
ξ(L) = ξ 0(0) = ξ 0(L) = 0, the profile is

ξ(x) =
PL

2Tµ

�
sinh µL

cosh µL� 1
(cosh µx� 1)� sinh µx + µx

� µx2

L

�
, µ =

r
T
D

. (6.10)

The profile (6.10) is parabolic in the middle of the strip (as noted in Ref.
[38]). As we show below, in graphene the dimensionless parameter µL
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assumes large values. In this case, the profile can be simplified, and near
the middle of the strip has the form

ξ(x) =
PL
2T

�
x� x2

L

�
. (6.11)

Close to the edges, the profile becomes ξ(x) = PµLx2/4T. Substituting
this shape into Eqs. (6.3) and (6.4), we find the values of the parameters
F1 and F2,

F1 =
P2LW

16Tµ2(�8 + µL)
, (6.12)

and

F2 =
T2WL(1� ν2)

Eh0
. (6.13)

The maximum vertical displacement obeys the equation

ξmax =
PL2

8(T0 + 8Eh0ξ2
max/(3(1� ν2)L2))

. (6.14)

The deformation of the sheet leads to the redistribution of the elec-
tron density, which in the Thomas-Fermi approximation is

n(x) = Vgε0/(d� ξ(x)).

In its turn, the density redistribution affects the profile of the sheet, and
needs, in principle, to be calculated self-consistently. However, as soon
as the displacement ξmax is much smaller than the distance to the gate,
the later effect is insignificant (of the order of ξmax/d), and we will use
the shape (6.10) not modified by the density redistribution.

The charge over the graphene flake is determined from minimization
of the total energy of the system with respect to electron density n,

�Vg +
nd
ε0

�
1� 8

3
ξmax

d
+

�
1 +

1
2

�
ξmax

dµL
+

1
3

ξmax

d

�
= 0, (6.15)

where the maximum deformation of the sheet in the middle, ξmax (6.14),
depends on charge density. The second term in the brackets and 1 from
the third term come from electrostatic energy and originate from the
redistribution of the charge density due to variation of the distance be-
tween parts of deformed graphene and the gate. The rest (1/2) of the



6.2 Deformation of the graphene sheet 89

 1

 2

 3

 4

 5

 6

 0  1  2  3  4  5

 [n
m

]

Vg  [V]

T0=0.001 N/m
0.01   N/m
0.1     N/m

 1
2
3

3

2

1

m
ax

 0

 2

 4

 6

 8

 10

 12

 0  0.5  1  1.5  2  2.5  3  3.5

T0=0.001 N/m
0.01   N/m
0.1     N/m

 1
2
3

 [n
m

]
m

ax

Vg  [V]

Figure 6.2. Dependence of the maximum deviation on the gate voltage,
ξmax(Vg). The solid curves represent the self-consistent solution of nonlinear
coupled equations for the deformation of the flake and the charge induced by
the gate, Eqs. (6.14) and (6.16). The distance to the gate is d = 300 nm (top
panel) and d = 100 nm (bottom panel). Other parameters of the graphene
flake, length L = 1 µm, Young’s modulus E = 1 TPa, Poisson ratio ν = 0.15,
and the thickness of the flake h0 = 0.34 nm, are chosen in order to model real
experimental data. The results are given for the different values of the residual
stress: the curve 1 is for T0 = 0.001 N/m, 2 is for T0 = 0.01 N/m, 3 is for
T0 = 0.1 N/m. For each value of the residual stress, the asymptotic curves at
low gate voltages (6.17) are shown as dashed lines, the curve 3 for high resid-
ual stress coincide perfectly with its asymptote. The asymptotic curves for low
residual stress, Eq. (6.19), are shown by dashed-dotted lines. The correspon-
dence between the solution of equations and asymptotes for low residual stress
is not perfect. The reason is that the asymptotes are calculated for the linear
charge-voltage dependence, and n(Vg) is non-linear according to Eq. (6.16) for
sufficiently high gate voltages on the flake.
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third term comes from bending energy. The fourth term takes into ac-
count dependence of the stretching force T over the flake on the charge
density via the deflection (Eq. (6.9)). Calculations are made under the
assumption µL � 1, which is realistic for available experiments. Simpli-
fying Eq. (6.15), we obtain

�Vg +
nd
ε0

�
1� 7

3
ξmax

d
+

3
2

ξmax

dµL

�
= 0 (6.16)

At low gate voltages, Eq. (6.16) yields the linear gate voltage dependence
of the electron density, n0 � Vgε0/d. There is non-linear deviation from
this dependence at higher gate voltages and at rather low initial strain
T0.

The maximum deformation can be expressed analytically in two lim-
iting cases. First, if the residual stress T0 is stronger than the induced
stress TH, it mostly accounts for the deformation of the sheet,

TH =
Eh0P2L2

24(1� ν2)T2
0
� T0,

�
Eh0P2L2

24(1� ν2)

�1/3

� T0,

ξmax =
ε0V2

g L2

16d2T0
, (6.17)

n� n0

n0
=

7
3

ξmax

d

�
1� 72

7
p

T0/DL

�
. (6.18)

In the case of low residual stress, one obtains

T0 � TH =
1
2

�
Eh0P2L2

3(1� ν2)

�1/3

,

ξmax =
1
4

 
3V2

g ε0(1� ν2)L4

2d2Eh0

!1/3

, (6.19)

n� n0

n0
=

7
3

ξmax

d
� 12

s
3D(1� ν2)

2Eh0
. (6.20)

The maximum deviation ξmax, obtained from the numerical solution
of coupled nonlinear equations Eqs. (6.14), (6.16), as well as asymptotic
expressions (6.17) and (6.19), are shown in Fig. 6.2 for different values
of initial stress T0. According to Eqs. (6.18) and (6.20), the nonlinear
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Figure 6.3. Regimes of the deformation of suspended graphene. For large
residual stress T0 the asymptotics Eq. (6.17) are valid, and the charge on the
flake follows the gate voltage linearly. For small T0 the asymptotes Eq. (6.19)
are valid, the charge is linear with the gate voltage at low gate voltages and
starts to follow non-linear dependence with increasing voltage. At high gate
voltages, when the deformation of the flake is bigger than ξmax/d � 0.1, one
needs to solve self-consistently the electrostatic problem and the problem of
elasticity, analytical results for this region are not available.

part of the charge induced on the graphene flake follows the depen-
dence ξmax(V)/d. Consequently, we encounter several regimes for the
deformation,

� at large T0 the charge–voltage dependence is linear for realistic
parameters because the maximum deformation is not too large for
realistic characteristics of graphene flake. It is shown in Fig. 6.2
for T0 = 0.1 N/m that the maximum deformation is in a good
agreement with Eq. (6.17);

� at small T0 and low gate voltages Vg the charge–voltage depen-
dence can be in linear regime, and the maximum deformation fol-
lows Eq. (6.19). We illustrate this for the flake with the parameters
T0 = 0.001 N/m and distance to the gate d = 300 nm (See. Fig. 6.2,
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Figure 6.4. Dependence of the maximum deformation ξmax on the applied force
P2l for the case of the point force in the middle of the graphene sheet. Only the
curve for T0 = 0 is shown, since the residual stress is not important for this case:
The strain created by deformation becomes large (more than 0.1 N/m) already
at moderate deformations in the middle, ξmax � 10 nm. Other parameters of
the flake are L = 1µm, d = 300 nm, E = 1 TPa, ν = 0.15, h0 = 0.34nm.

top), where the solutions of coupled electrostatic and elastic equa-
tions, Eq. (6.14), (6.16), follow asymptotic expression Eq. (6.19).
The charge redistribution does not need to be taken into account;

� at small T0 and large Vg the system is in the non-linear charge
regime. This situation can be realized for small distances to the
gate when the coupling of the graphene sheet to the gate is large,
so that it is possible to create large deformations using low gate
voltages. For example, at d = 100 nm the non-linear charge regime
influences the deformation already at voltage Vg = 2 V, at the
bottom plot Fig. 6.2 we can see the intersection of the asymptotical
curve (6.19) and the actual solution of Eqs. (6.14), (6.16).

The schematic representation of these regimes is shown in Fig. 6.3.
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6.2.3 Local force: Deformation by an AFM tip

Next, we consider a concentrated force acting on graphene. This force
can be provided, for example, by an AFM tip. The effect of the tip
is modeled by strong pressure exerted on a narrow area of the width
l � L. We assume that the problem is still homogeneous in the y-
direction, which simplifies the calculations enormously. Inclusion of a
pressure action in a narrow circle, which is experimentally relevant for
an AFM tip, is not expected to bring qualitatively new features. We
consider pressure P(x) = P1, 0 < x < L/2� l/2, L/2 + l/2 < x < L and
P(x) = P2, L/2� l/2 < x < L/2+ l/2. Here P2 is the local pressure, and
P1 can describe homogeneous pressure due to electrostatics, for realistic
setups local pressure is much larger than pressure due to interaction
with the gate P1 � P2.

The maximum displacement of the flake (realized at the central point)
is easy to write down for µL � 1 and l � L:

ξmax =
P1
�
(µL/2)2eµl/2 � 2e�µl

�
2µ2T

+

+
P2
�
e�µl + eµlµ2lL/4

�
µ2T

. (6.21)

For P1 � P2 and 1 � eµl/2Lµlµ/4 we obtain

ξmax =
P2lL
4T

. (6.22)

The profile of the graphene sheet in this approximation becomes

ξ(x) =
2ξmax

L
jx� L/2j. (6.23)

In the limits of weak and strong residual stress the deformation is
determined by

TH =
Eh0

8(1� ν2)

�
P2l
T0

�2

� T0,
�

Eh0

8(1� ν2)
P2

2 l2
�1/3

� T0,

ξmax =
P2lL
4T0

; (6.24)
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and

T0 � TH =
1
2

�
Eh0P2

2 l2

1� ν2

�1/3

,

ξmax = L
�

P2l(1� ν2)

8Eh0

�1/3

. (6.25)

The dependence of the maximum deformation on the applied exter-
nal local force is shown in Fig. 6.4. The deformation produced by this
force is much bigger than the deformation caused by electrostatic pres-
sure of the gate. The electrostatic problem for this case can be solved
separately from the problem of elasticity.

6.3 Piezoconductivity of graphene flake

It was shown experimentally [19] that suspended graphene flakes are
described with good precision as purely ballistic. Theoretically, conduc-
tance is determined by Landauer formula [118]

G = 4e2/h
N�1

∑
n=0

Tn, (6.26)

where Tn is the transmission eigenvalue in the transport channel n, and
the factor 4e2/h is conductance of a single transport channel which takes
into account valley and spin degeneracy. The number of open transport
channels N = WkF/π is proportional to the Fermi momentum kF =
(πn/e)1/2, and thus the conductivity, σ = GL/W, is proportional to the
square root of the electron density n, σ ∝

p
n.

The conductivity of graphene flake suspended over a gate can devi-
ate from this dependence. To start with, due to electrostatic interaction
with the gate, the density becomes inhomogeneous [111]. In particular,
Poisson equation leads to the square root divergence of the electron den-
sity at the clamping points, as in any capacitor (see e.g. Ref. [83], 1). To
treat this divergence properly, one has to take into account electrostatic
interaction with the contacts near the edge of the graphene strip, which
modifies significantly the electron density near the edge, removing the

1For the case of edges of half-infinite capacitor [83] and the distance between the
plates of capacitor d = 300 nm the region near the edge where the electrostatic diver-
gence plays role is about 200 nm.
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divergence. However, the effect of this inhomogeneous density close to
the contacts does not affect the piezoconductivity of the flake, since the
deformation close to the clamping points is very weak, and thus it can
be included into the contact resistance at the clamping points.

We now turn to the effects of the deformation on the conductiv-
ity. Deformation of graphene can change the conductivity by inducing
changes in the band structure (which results in pseudo-magnetic fields)
as well as by changing the electron density over the flake. We consider
both these mechanisms and will show that typically the effect of the
density redistribution dominates.

Electrons in graphene obey Dirac equation. Deformation of the flake
influences on the Dirac equation in three ways — it shifts the K-points by
a certain amount δk/kF (pseudomagnetic field), renormalizes the Fermi
velocity by δvF/vF, and induces the variation of the electron density on
the flake δn/n. The deformation correction to the conductivity is thus a
function of these three dimensionless parameters.

The pseudomagnetic field, produced by the shift of the K-point, is
caused by stretching and bending. The shift of the K-point due to
stretching generates the vector potential [115, 38]

Astr
y =

Cβ̃

a
(uxx � uyy), Astr

x = �2
Cβ̃

a
uxy, (6.27)

where C is the order of 1, and β̃ = �∂ log(t)/∂ log(a), t and a being
the overlap integral in the tight-binding model and the lattice param-
eter, respectively. For L � W one has uxy = 0, and hence Astr

x = 0.
The deformation is homogeneous within the limits of applicability of
Hooke’s law, and thus uxx = const and Astr

y = const. This means that
there is no pseudomagnetic field over the graphene flake. The pseudo-
magnetic field only appears in the region where the flake goes from the
substrate to the suspended state [38] and, as noted above, its effect to
the piezoconductivity is small, of the second order in ξmax/L,

δσK

σ
=

Astr
y

kF
, (6.28)

where the deformation on the edges has been estimated as

uxx = ξ2
max/L2 + T0(1� ν2)/Eh0,
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and kF =
p

πε0Vg/de. Taking into account the value of Cβ̃/a 2, we
obtain

δσK

σ
= 205

s
d[µm]

Vg[V]

�
ξ2

max

L2 +
T0(1� ν2)

Eh0

�
. (6.29)

Note the contribution from two terms induced by deformation stress
and residual stress, as well as multiplication with the big prefactor 205.

The underlying physical picture for the model of Ref. [38] is that the
graphene flake is "glued" to the walls at the suspension point. Whereas
this has been realized in some experiments [67], it describes the situa-
tion when the residual strain T0 is of the same order or higher than the
strain induced by the gate voltage. The residual strain results from the
fabrication process and is most likely to be created by impurities in the
substrate. It can be made low on purpose since the strain is reduced after
annealing [25]. In the opposite situation, when the residual stress is not
significant, the pseudomagnetic field is inhomogeneous and distributed
over the whole suspension area.

The pseudomagnetic field is also inhomogeneous if one considers
the bending contribution. Bending leads to the inhomogeneous mod-
ification of the overlap of the orbitals, and the resulting pseudovector
potential has the form [50]

Abend
y =

tbend

a

 
θ2(a, x)

2
� θ2( a

2 , x)
2

!
, (6.30)

θ(a, x) being the angle between normal vectors to the graphene surface
at the points x and x + a, and the constant [59] tbend = 3.21 3. The shape
dependence of θ(a, x) has the form

θ2(a, x) = a2
�

∂2ξ

∂x2

�2
 

1 +

�
∂ξ

∂x

�2
!�1

.

2Parameter Cβ̃/a can be taken in the form 3tstrβ/ka, where according to calcula-
tions [128] k = 8.98N/m2, β/a = 0.4 N/m2, and the parameter β/(ka) = 0.0445, tstr can

be determined by different methods, it is approximately tstr = 2Å
�1

(from femtosec-

ond time-resolved photoemission experiement [48], tstr � 1Å
�1

, from analitycal esti-

mations [93] and optical spectrum of polyacetylene, tstr � 2.0Å
�1

, from tight-binding

approximation tstr � 2.5Å
�1

). Finally, the estimation of the Cβ̃/a is 0.27Å
�1

.
3follows from consideration of orbital overlapping.
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Figure 6.5. Schematic behavior of piezoconductivity. For low residual stress T0
the correction is mainly due to the charge redistribution and has positive sign.
For high residual stress the correction is negative.

This yields Abend
y � (3tbend/8a)(ξmaxa/L2)2. Hence the contribution from

bending is approximately (a/L)2 times smaller than from stretching
without residual stress, and is thus negligibly small, even though the
resulting magnetic field is not homogeneous.

The easiest way to estimate inhomogeneous stretching of graphene
is to take Hooke’s law in the local form, TH(x) = Eh0uxx(x). Since
the maximum relative deformation can be estimated as uxx = ξ2

max/L2,
naively, the correction from non-homogeneous stretching is of the same
order as the one from delta-functional pseudomagnetic field at the clamp-
ing edges. We show below, however, that the correction from non-
uniform stretching is of the order of ξ4

max/L4, but still due to large pref-
actor it can reduce the conductivity at low gate voltages.
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Another effect induced by the deformation is the renormalization of
the Fermi velocity. The renormalized value of the velocity can be derived
from the tight-binding model. Assuming that the graphene sheet is only
deformed in the x-direction, we find that the x-component of the Fermi
velocity is unchanged wheres the y-component is renormalized,

vFy = vF(1� Cβ̃uxx), (6.31)

so that approximately vFy � vF(1� ξ2
max/L2). The effect of the renor-

malization on the conductivity is not significant and has the order of
magnitude ξ2

max/L2. Note that this is the same dependence on ξmax/L
as for pseudomagnetic fields, however, it is not enhanced by a big pref-
actor.

The influence on conductivity of such change in Fermi velocity is not
significant. This influence can be in principle measured experimentally
as the conductivity variation at the Dirac point, similarly to how we
explain below in Subsection 6.3.2.

6.3.1 Correction to conductivity due to the charge redistribu-
tion

Redistribution of electric charge due to interactions with the gate is
found from the assumption that the potential along the graphene sheet is
constant, U(x) = δQ(x)/δC(x) = const, where δC(x) is the capacitance
of the element of the length δx of graphene, δC(x) = ε0Wδx/(d� ξ(x)),
and δQ(x) = n(x)Wδx is the charge of this element. In the first order
approximation, this gives δn(x)/n0 = ξ(x)/d.

The conductivity of graphene is proportional to charge density n,
and thus the contribution to conductivity due to charge redistribution
is expected to be linear in the maximum deviation from the homoge-
neous density, δnmax. Thus, the correction to conductivity is expected to
be δσ/σ � ξmax/d. Before starting the calculation of the correction to
conductivity, we estimate the range where this correction of the order
of ξmax/d is more important than the correction due to pseudovector
potential which we considered above, Fig. 6.5,

T0[N/m] < 10�3 L
d

s
V5/2

g [V]

d3/2[µm]
. (6.32)
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Figure 6.6. The correction to conductivity. Parameters of the flake are the same
as for Fig. 6.2 (top). Asymptotic expressions for the high gate voltage are shown
by the dashed-dotted lines. Additionally, the correction (with the opposite sign)
due to the delta-functional pseudomagnetic field at the suspension regions [38],
Eq. (6.29), is shown by dotted lines (1’, 3’).

As noticed in Ref. [38] the pseudovector potential at low gate voltages
blocks conductivity, this is seen from Eq. (6.29). For large deforma-
tion the expressions (6.19) are valid, residual stress is not important any
more, and thus the gate voltage should be large enough to see the de-
crease of conductivity,

Vg[V] > 2.8
L4

d4
1

d[µm]
. (6.33)

This deformation is so strong that in can not be reached in practice.
For the deformation with AFM the residual stress is not important

and at deviations

ξmax[nm] > 2.5
L2[µm]

d[µm]

s
Vg[V]

d[µm]
(6.34)

correction to pseudovector potential starts to suppress the conductivity.



100 Chapter 6. Piezoconductivity of gated suspended graphene

-0.04

-0.02

 0

 0.02

 0  0.1  0.2  0.3  0.4  0.5
Vg

 A,U

 U 1

1

2

2

[V]

Figure 6.7. Dependence of the piezocorrection to conductivity on the gate volt-
age for fixed deformation, obtained by solving the Dirac equation by exact
transfer matrix method. Here, δσU , the curve marked 1, is the correction with
only charge redistribution taken into account, and δσA,U , the curve 2, encom-
passes both contributions, the one due to non-uniform tension and the one due
to charge redistribution. At low gate voltages the correction δσA,U is mostly
caused by pseudomagnetic field and is negative, for higher gate voltages it
changes sign and approaches δσU . The correction only due to pseudomag-
netic field according to Eq. (6.40) is proportional to 1/

p
Vg, so that it vanishes

at large gate voltages. The parameters of the graphene flake are L = 1µm,
d = 300 nm, E = 1 TPa, ν = 0.15, h0 = 0.34nm.

To calculate the correction due to the charge redistribution, we notice
that the density variation is translated into the correction for conductiv-
ity via the variation of the transmission probabilities Tn, which are the
eigenvalues of the matrix t̂† t̂, t̂ being the transmission matrix of the
graphene sheet. The transmission eigenvalues tq are determined in Ap-
pendix by the transfer matrix method. The correction to the conductivity
is linear in the density shift δn, and consequently in the maximum defor-
mation ξmax (as is shown above from simple qualitative considerations).
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It has the form (see Appendix)

δσU = L
W ∑

q
4
��tq
��2 q2k2

F
k3 sin kL

�
Z L

0
dx

ξ(x)
d

sin k(L� x) sin kx, (6.35)

where jtqj2 = (cos2 kL + k2
F sin2 kL/k2)�1 is the transmission probability

for the mode labeled by the transverse momentum q = 2πn/W, n being
an integer number, and k is a wave number in the direction along the
strip, so that k2

F = k2 + q2.
To carry out more detailed analysis, we consider specific deformation

setups discussed in Section 6.2 — homogeneous and local deformation.
Eq. (6.35) can be analyzed analytically for small and large values

of the parameter kFL, which characterizes the charge density over the
flake. The correction to conductivity for the homogeneous deformation
(bottom gate) has the following asymptotic behavior for small and large
values of kFL (for more details, see Appendix),

δσU

σ
=

(
ξmax/2d, 1 � kFL;
0.021ξmax(kFL)2/d, kFL � 1.

(6.36)

Taking into account the functional dependence of the maximum de-
viation for small and large initial stress T0, Eqs. (6.19) and (6.17), we get
the asymptotic dependence of the correction to conductivity on the gate
voltage, for TH � T0:

δσU(Vg)

σ(Vg)
∝

(
L2V2

g /T0d3, 1 � kFL;
L4V3

g /T0d4, kFL � 1,
(6.37)

and for T0 � TH:

δσU(Vg)

σ(Vg)
∝

(
L4/3V2/3

g /d5/3, 1 � kFL;�
VgL2/d2

�5/3 , kFL � 1.
(6.38)

Fig. 6.6 shows the exact result of summation over modes Eq. (6.35).
At both high (kFL � 1) and low (kFL � 1) gate voltages, the correc-
tion follows the asymptotic behavior both for weak and strong residual
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Figure 6.8. Dependence of the piezocorrection to conductivity on the maximum
deviation, δσ(ξmax)/σ, at the fixed gate voltage Vg = 0.03 V (top), 3 V (bottom).
We show both the correction related to the term due to non-uniform pseudovec-
tor potential, and the contribution without this term. For Vg = 0.03 V, we also
include the best fit V = αξmax + βξ4

max which represent the sum of linear in
ξmax correction due to charge redistribution and the correction due to nonuni-
form pseudovector potential βξ4

max. The parameters of the graphene flake are
L = 1µm, d = 300 nm, E = 1 TPa, ν = 0.15, h0 = 0.34nm.
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stress T0, Eqs. (6.38) and (6.37). On the same plot we compare the correc-
tion we found with the correction due to pseudomagnetic fields at the
edges [38]. The latter one has a different sign (conductivity decreases
with an increasing the stress). For high residual stress this correction is
more important than due to charge redistribution, according to Ref. [38]
it can block conductivity. For low residual stress it is about 10 times
lower than the increasing conductivity correction. The oscillations of
δσ/σ have the period of kFL and are associated with the shift of Fabry-
Perot resonances in conductivity for deformed graphene flake as com-
pared with an undeformed flake. This shift occurs since the effective
longitudinal wave vector of an electron in graphene depends on the de-
formation since it feels different charge density over the graphene flake.
Note also that the contribution from pseudomagnetic fields does not os-
cillate since the value of kF is the same for the whole flake. The first
order perturbation theory in ξmax/d is valid until this parameter reaches
a rather large value, ξmax/d � 0.1 (see Appendix for more details).

For the case of local deformation, using the graphene profile (6.23)
and using the same technique as in Appendix, we find the correction for
conductivity due to the charge redistribution,

δσU

σ
=

(
ξmax/2d, 1 � kFL;
0.088ξmax(kFL)2/d, kFL � 1.

(6.39)

Note that the asymptotic behavior for large kFL has the same form
as for homogeneous deformation.

We can also estimate the influence of inhomogeneous pseudomag-
netic field assuming the local form of Hooke’s law as in [10] and using
the perturbation theory for the transfer matrix, as detailed in Appendix.
We find that the first order perturbation theory correction in pseudovec-
tor potential vanishes, whereas the second order correction can be esti-
mated as

δσA

σ
� 5.5 � 105 ξ4

max

L4

s
d[µm]

Vg[V]
. (6.40)

At low gate voltages and large deformations (for instance, induced by
local deformation), this correction can be more important that the one
from the charge redistribution, and thus the conductivity will be sup-
pressed. From comparison of Eqs. (6.40) and (6.39) this supression hap-
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pens for deformations:

ξmax

L
> 10�2 6

s
d[µm]

Vg[V]

�
L
d

�1/2

. (6.41)

We demonstrate this by solving numerically by transfer matrix method
the Dirac equation with additional potential due to charge redistribution
and pseudovector potential, Fig. 6.7. At fixed large ξmax = 12 nm (es-
timated using Eq. (6.41)) and at low voltages the conductivity starts to
decrease due to inhomogeneous tension distribution in the flake, and at
higher voltages increases again due to the effect of charge redistribution.
Fig. 6.8 shows that for small gate voltages lower maximum deformation
ξmax is required to reach the point where the conductivity starts to de-
crease, in agreement with Eq. (6.40). For high gate voltages Vg � 3 V
pseudomagnetic fields lead to saturation of the conductivity rather than
to its decrease.

6.3.2 Two-gate geometry

Conductivity can also be used to measure relative stretching of de-
formed suspended graphene. Note that the influence of stretching on
the conductivity of graphene deposited on a substrate has been demon-
strated experimentally [60]. For suspended graphene it is more difficult
to extract the value of stretching than from the graphene on the sub-
strate, since the gate voltage simultaneously varies the concentration
and deforms graphene, as shown above.

To measure relative stretching of suspended graphene, we propose
the two-gate geometry (Fig. 6.9). The deformation of the graphene flake
is created by the large bottom gate, the influence of the top gate on the
deformation is small as the top gate is narrow. The top gate is used to
vary the charge density in the region underneath it. In this geometry
at the fixed voltage at the bottom gate one can move through the Dirac
point by varying the voltage at the top gate (the experiment for bilayer
with two gates on the substrate [91]). The value of conductivity at this
point depends on the deformation.

The stretching of the graphene flake, as discussed above, induces
variations of the conductivity for two reasons. First, it induces pseudo-
magnetic fields. These, however, can be gauged away of Dirac equation
[75] at the Dirac point and do not influence the conductivity. Second,
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Figure 6.9. Schematic dependence of conductivity of suspended graphene on
the top gate voltage for several fixed bottom gate voltages. The conductivity at
the Dirac point is slightly shifted due to change in Fermi velocity caused by de-
formation. The difference between the values of conductivity of the Dirac peaks
for different bottom gate voltages, Vb1 and Vb2, is proportional to the difference
in relative deformations, (σD(Vb1)� σD(Vb2))/σD � uxx(Vb1)� uxx(Vb2).

it shifts the Fermi velocity. The relative shift is proportional to the de-
formation, δvF/vF � ξ2

max/L2, and leads to the positive correction of
the conductivity at the Dirac point, δσ/σ � δvF/vF � ξ2

max/L2. Thus,
for different bottom gate voltages, which is equivalent to different max-
imum deformations ξmax, the conductivity at the Dirac point is slightly
different, and the relative graphene stretching can be restored from this
dependence. For example, consider the dependence of conductivity on
the top gate voltage for different bottom gate voltages (Fig. 6.9). At
a fixed value of the bottom gate voltage, the conductivity as a func-
tion of the top gate voltage exhibits a peak dependence, with the min-
imum corresponding to the Dirac point. The difference between the
values of conductivity at Dirac peaks, σD, for different bottom gate volt-
ages, Vb1 and Vb2, is proportional to the difference in relative deforma-
tion, (σD(Vb1)� σD(Vb2))/σD � uxx(Vb1)� uxx(Vb2) (we remember that
uxx � ξ2

max/L2).
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6.4 Discussion

In this Chapter, we investigated two mechanisms which affect the con-
ductivity of suspended graphene — charge redistribution induced by
the gate(s), and pseudomagnetic fields induced by the deformation of
graphene. We find that for the small residual stress T0, the charge re-
distribution mechanism dominates. For low gate voltages and strong
deformation, which experimentally is best realized by using AFM, the
correction due to nonuniform pseudomagnetic fields is more significant.
The correction due to pseudovector potential at the region of suspension
can decrease conductivity at the large residual stress [38]. It is important
that the two mechanisms provide corrections to conductivity which are
of different signs. Indeed, the correction from pseudomagnetic fields
suppresses the conductivity [38] by shifting K-points due to the vector
potential. The shift is different at different points of the suspended sam-
ple, and if the deformation is big enough, the Fermi circles at the clamp-
ing points and at the centre of the flake do not overlap: The system
becomes insulating. If now we take into account the effects of the gate,
not only the Fermi circles are shifted, but their radii are greater at the
center of the flake since the charge density is greater in the areas closer
to the gate. The increase of the radii and the shift of the center compete,
and we find that typically the radius increase is more important.

It is difficult to measure piezoconductivity only by using a bottom
gate since the gate voltage not only bends graphene and produces the
correction to the conductivity, but also shifts the overall charge density.
The density dependence of the conductivity is different from the density
dependence of the correction. Thus, to extract the value of piezoconduc-
tivity, one has to compare the conductance of deformed and undeformed
graphene sheet at the same density, which can only be done in the one-
gate geometry by comparing the results with the theoretical prediction.
In contrast, the two-gate setup, with a bottom gate fixing the overall
density and the top gate (which can be an AFM tip) creating the defor-
mation is more convenient to extract piezoconductivity. One can fix the
voltage on the bottom gate and start to deform the flake with the AFM
tip. At low gate voltages the conductivity decreases due to the pseudo-
magnetic fields, whereas at higher voltages it starts to grow due to the
charge redistribution.

In the real experimental situation, the AFM tip has a point shape,
whereas in this Chapter we considered for illustration the deformation
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homogeneous in one direction, i.e. replaced the tip by a rod. Non-
homogeneous deformation in all directions creates pseudomagnetic fields,
with the conductivity depending not only on the transverse displace-
ment, but also locally on the position over the graphene sheet. The
conductivity is the largest if the tip is placed in the middle of the sheet,
and decreases if the tip moves to the side. We can understand this be-
havior from a simple reasoning. Indeed, the electrons which from the
two sides of the tip feel the pseudomagnetic fields and interfere simi-
larly to an Aharonov-Bohm ring. The interference is more destructive if
the tip is further from the center, and thus the conductivity decreases.

Another parameter which affects the conductivity is the residual
stress T0. It can be varied experimentally for instance if one uses graphene
suspended over piezosubstrate. Putting voltage on the substrate would
induce extra stress on graphene, and one can move from the situation
where pseudovector potential blocks the conductivity at low gate volt-
ages to the case where residual stress does not play a role and the cor-
rection due to charge redistribution increases the conducitivity.

In this Chapter, we considered ideal ballistic graphene. In particular,
we disregarded the contact resistance, assuming the clamping points to
be ideal contacts. Finite transparency of the contacts would suppress
both the conductivity itself and the piezocorrection to the conductivity;
in addition, it would raise the amplitude of Fabry-Perot resonances.

For strong deformations of the graphene sheet, the problem becomes
much more complicated, since one has now to solve elasticity equations
self-consistently, taking into account that the displacement depends on
the charge redistribution. This leads to additional terms in the equations
of the elasticity theory. Taking into account influence of the density
redistribution on the term with electrostatic pressure in the equation of
deformation, one can show that the self-consistency condition increases
the deformation in the middle of the graphene sheet. This effect only
becomes important at sufficiently strong deformations.

In real experiments the charge inhomogeneity of the graphene flake
is not only due to surrounding electrodes but also e.g. charge redistri-
bution due to charge impurities in the substrate, puddles in the non-
suspended part of graphene, or left-over dopants from the process of
fabrication.

First we consider the effect of the leads and inhomogeneities in the
substrate or over the substrate. These density inhomogeneities are cre-
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ated by external electrostatic potential (see Sec. 6.2.2). This potential is
not expected to change by gate voltage and merely shifts the position of
the Dirac point. In this case all results involving gate voltage Vg should
be corrected by the finite gate voltage offset of the Dirac point VgD as
Vg �! (Vg � VgD). Moreover, due to the screening effects in graphene
the influence of the substrate impurities is weakened.

Second, we consider intrinsic charge puddles in graphene, though
according to the experiments where fractional quantum Hall effect was
observed [33] in suspended graphene, even in the presence of charge
puddles the overall electron density remains almost homogeneous. For
instance, it is reasonable to assume that every puddle contains an ex-
tra electron[78]. The gate voltage variation leads to the variation of the
total potential (intrinsic plus electrostatic) over the graphene flake, and
eventually one more electron enters the system. This additional electron
is delocalized over the flake and shifts the conductance as discussed
above. estimation by the means discussed in the Chapter. The gate volt-
age at which this extra electron enters the system is approximately e/C
(δV � 1meV for d = 300nm, L = W = 1µm). Thus, at noticeable gate
voltages (V > 0.1V for these parameters), when the number of delocal-
ized electrons is large, the influence of intrinsic puddles is insignificant
with respect to the contribution of delocalized electrons, and the conclu-
sions of the Chapter remain unchanged. At low gate voltages, however,
the puddle contribution may become significant.

Finally, we assumed that undeformed graphene is flat. In reality,
it is always rippled, and, in principle, one needs to use the elasticity
theory for membranes. However, we do not expect that taking ripples
into account would significantly affect the results of this chapter. First,
the ripples are small and have a large radius of curvature, which means
they are very little affected by the overall deformation of the graphene
sheet. Second, the main effect of the ripples is to renormalize the energy
over the graphene sheet [108]. We thus expect that our results are valid,
but for renormalized energy over the flake (energy is determined by gate
voltage in clean case, and is renormalized in the rippled case).
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Appendix 6.A Perturbative corrections to conductiv-
ity

In this Appendix, we calculate the corrections to the conductivity due to
both charge redistribution and pseudomagnetic fields, using the pertur-
bation theory.

The Dirac equation for one valley in graphene has the form

vF~σ~p + δU(x, y) = E , (6.42)

with~σ = (σx, σy), ~p = (px, py),

px = �ih̄∂x + Ax, py = �ih̄∂y + Ay,

Ax(x, y) and Ay(x, y) being the components of the pseudomagnetic vector-
potential, given by Eq. (6.27), and δU(x, y) is the additional electrostatic
potential due to the charge redistribution over the graphene flake. It
is determined by local variations of the Fermi energy over the flake.
Since the Fermi energy depends on the charge density over the flake,
EF(x) = h̄vFkF(x), kF(x) =

p
πn(x)/e, one has

δU(x)/E = δkF(x)/kF = δn(x)/2n = ξ(x)/2d.

We only consider the deformation homogeneous in y-direction.Then
both Ay and δU only depend on the coordinate x, and Ax = 0 (see
Section 6.3). The problem becomes effectively one-dimensional since the
momentum q in y-direction is conserved. It is convenient to use the
transfer matrix representation of Dirac equation [108] to calculate the
correction to the conductivity caused by the deformation Ay(x), δU(x),

TH (x2, x1) = T0H(x2, x1)� (6.43)

�
Z x2

x1

dxT0H(x2, x)
�
σzδU(x) + iσx Ay(x)

� TH(x, x1) ,

where TH is the Hadamard transformed transfer matrix, and T0H is the
Hadamard transformed transfer matrix of the unperturbed system,

T0H = exp (iσzkFL + σxqL) . (6.44)

We perform the perturbation expansion of the integral form for Eq. (6.44),
and in the first order in δU(x) and Ay(x) we obtain

T1(x2, x1) = T0(x2, x1)� (6.45)

�i
Z x2

x1

dxT0(x2, x)
�
σzδU(x) + iσx Ay(x)

� T0(x, x1).
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Figure 6.10. Dependence of the relative correction to conductivity on kFL,
δσ/σ(kFL) for constant ξmax/d = 1/3000, for the correction of the first order
in ξmax/d, Eq. (6.47), the curve 1, and exact transfer matrix solution of integral
equation, the curve 2. The correction from the exact solution has the same de-
pendence on kFL as the first order correction, the oscillations are in the same
phase. Asymptotes for small and large kFL, Eq. (6.35), are shown as dashed
lines. The parameters of the graphene flake are L = 1µm, d = 300 nm, E = 1
TPa, ν = 0.15, h0 = 0.34nm.

The conductance of the graphene sheet is determined by Landauer
formula (6.26). According to general scattering theory [108], the trans-
mission matrix element t̂ is an inverse element of TH,

t̂ =
�T ��

H

��1 . (6.46)

Taking into account Eq. (6.45), Landauer formula (6.26), and the defini-
tion (6.46), the first order corrections to conductivity due to electrostatics
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and pseudo-magnetic field are

δσU =
L
W ∑

q
4
��tq
��4 IUkFL

q2kF

k3 sin kL, (6.47)

IU =
Z L

0

dx
L

ξ(x)
2d

sin k(L� x) sin kx,

δσA =
L
W ∑

q
2
��tq
��4 kFq

k2 IA, (6.48)

IA =
Z L

0
dxδA(x)�

� (sin2 kL� 2 cos kL sin kx sin k(L� x)), (6.49)

where q = 2πn/W is a wave vector in the y-direction, n is an integer
number, and k is a wave vector along the strip,

k2 + q2 = k2
F.

Furthermore, tq is the transmission probability for clean system for the
mode q, and ��tq

��2 = (cos2 kL + k2
F sin2 kL/k2)�1.

Note that the first-order correction due to the pseudo-vector potential
(6.48) only contains odd powers of q, so that the sum over q vanishes.
Thus, the first-order correction to the conductivity is determined solely
by the density redistribution. It is linear in the maximum deviation
ξmax/d for small deviations.

First, we remark on the validity of Eq. (6.47). The expansion of the
expression

1� 4(tqt†
q)

2 IUkFL
q2kF

k3 sin kL

has been made under assumption that the second term is small in com-
parison with unity due to the small prefactor ξmaxkFL/d. Following this
argument, the expression for the first order correction to the conduc-
tivity in ξmax/d is formally only valid for ξmax/dkFL � 1. However,
solving the integral equation numerically, we find that this expression
is valid for a broader parameter range. We compare results of calcula-
tions for the first order correction Eq. (6.47) and numerical solution of
Eq. (6.44) for the two cases: for the fixed ratio ξmax/d and for the fixed
value of kFL. For the first case, the dependence of δσ/σ on kFL shows
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the same oscillation period and the same asymptotic behavior at large
kFL, Fig. 6.10. For the second case, at large kFL � 40 (for the distance
to the gate d = 300 nm this corresponds to the gate voltage Vg = 3
V) the expansion clearly ceases to be valid, see Fig. 6.11. We thus con-
clude from the results of our numerical solution that the expression for
the correction linear in ξmax/d is applicable until ξmax/d � 1, which is
weaker than the perturbation theory suggestion ξmaxkFL/d � 1.

The second order correction to conductivity contains also a term with
the pseudo-vector potential, the magnitude of the term being (ξmax/L)4.

We consider both corrections separately. Now we perform the anal-
ysis of Eq. (6.47) for deformation with constant pressure. For this case,
the shape of the strip is nearly parabolic (Section 6.2) and can be ap-
proximated as

ξ(x) =
4ξmax

L2 (x� L/2)2.

The integral with the induced potential δU(x) from Eq. (6.47), IU , is

IU =
ξmax

12d
kL(6� (kL)2) cos kL� 3(2� (kL)2) sin kL

(kL)3 . (6.50)

Now we can perform the summation over modes for δσ, Eq. (6.47), ana-
lytically in two asymptotic cases: kFL � 1 and kFL � 1.

For kFL � 1, the evanescent modes give the most important contri-
bution to the conductivity [13],

σ(kFL � 1) =
L
W

W
2πL

Z ∞

�∞

dx

cosh2 x
=

1
π

, (6.51)

and to the correction to the conductivity,

δσU(kFL � 1) =
L
W

ξmax

3d
W

2πL
(kFL)2 I , (6.52)

with

I = 2
Z ∞

0

dx sinh x(x(6 + x2) cosh x� 3(2 + x2) sinh x)

x4 cosh4 x
,

and its numerical value is I � 0.124. The relative correction to conduc-
tivity reads

δσU

σ
=

ξmax I
6d

(kFL)2 � 0.021
ξmax

d
(kFL)2. (6.53)
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Figure 6.11. Dependence of the relative correction to conductivity on the max-
imum deformation, δσ(ξmax)/σ for constant kFL = 40, in the first order in
ξmax/d, Eq. (6.47), the curve 2, and the exact transfer matrix solution of integral
equation, the curve 2. Both the expansion and summation of the (T ��)�1 are
not valid for ξmaxkFL/d > 1 for small parameter as mentioned in the text. The
dashed line, the curve 3, is the summation result. The exact solution shows
linear dependence on deviation even for rather large deviation, and this linear
dependence is close both to the correction Eq. (6.47) and to the correction aver-
aged over fast oscillations, ξmax/2d. The parameters of the graphene flake are
L = 1µm, d = 300 nm, E = 1 TPa, ν = 0.15, h0 = 0.34nm.

For kFL � 1 we average over fast oscillations. In this case, only the
propagating modes contribute significantly to the conductivity.

To perform the averaging, we replace the summation over q by the
integration,

∑
q
�! W

2π

Z
dq.

To simplify subsequent calculations, we make the change of variables
q = kF sin φ, k = kF cos φ, and then go from the integral over dq to the
integral over dφ. The correction to the conductivity Eq. (6.47) has the
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form

δσU =
L
W

kFW
π

ξmax

d
�

�
Z π/2

0
dφ

cos φ sin2 φ sin2(kFL cos φ)

(cos2 φ cos2(kFL cos φ) + sin2(kFL cos φ))2
.

In this expression only the term with 3 sin kL/kL from Eq.(6.50) sur-
vived: All terms with cos kL vanish after averaging, and the term with
�6 sin kL/(kL)3 is smaller than one which is taken into account). For
large kFL the terms cos(kFL cos φ) and sin(kFL sin φ) in Eq. (6.47) oscil-
late very rapidly. We can represent

R π/2
0 dφ as a sum of fast oscillating

terms, with each term being an average over the period,

R π/2
0 dφ �!

∑Nmax
n=0

R φn+1
φn

dφ f (φn+1/2, cos(kFL cos φ), sin(kFL cos φ)),

with kFL sin φn = 2πn. The integrand f is determined by structure of
Eq. (6.47) and Eq. (6.50),

Z 2π

0
f (φ) =

Z 2π

0

sin2 xdx
(a2 cos2 x + sin2 x)2

=
2π

a
.

The sum over n remains, and this yields to What is left is the sum over
n,

δσU =
L
W

ξmax

d
kFW

π
2π ∑

n

q
1� (xn/kFL)2, (6.54)

xn = π(2n + 1). Finally,

δσU =
L
W

ξmax

8d
kFW. (6.55)

The conductivity after averaging over fast oscillations becomes σ =
kFW/4L/W, and the relative correction to the conductivity is

δσU

σ
=

ξmax

2d
.

From general physical considerations about the correction (see main
text), one also expects the dependence δσ/σ � ξmax/d for δσ/σ.
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Concerning the correction due to the pseudomagnetic fields, it is of
the second order in δA, and the analytical expressions are too cumber-
some. Instead, we illustrate our conclusions using the numerical solu-
tion of the integral equation (6.44). It is done by multiplying transfer
matrices for small intervals of the length δx. Convergence with the size
of δx is reached.
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Samenvatting

Dit proefschrift is gewijd aan het effect van wanorde in twee-dimensionale
systemen van Dirac fermionen. Deze quasi-deeltjes komen voor in graf-
een (monolagen van koolstofatomen), in supergeleiders waarbij de orde
parameter een p-golf of d-golf symmetrie heeft en in topologische isola-
toren.

We richten onze aandacht op een specifiek gevolg van deze wanorde,
namelijk het verschijnsel van lokalisatie. Het is bekend dat gewone elek-
tronen (wier gedrag beschreven wordt door de Schrödinger vergelijking,
en niet door de Dirac vergelijking), gelokaliseerd worden onder invloed
van wanorde. Concreet betekent dit dat de golffunctie van een excita-
tie exponentieel vervalt, en geen uitgebreide vlakke golf is. Lokalisatie
maakt zodoende van een metaal een isolator.

De reactie van Dirac fermionen op wanorde is kwalitatief anders dan
die van gewone elektronen. Al vroeg is ontdekt dat Dirac fermionen niet
gelokaliseerd kunnen worden met behulp van elektrostatische wanorde,
als deze wanorde glad is op de schaal van de roosterconstante. In dit
proefschrift concentreren we ons op een ander type wanorde, die in de
Dirac vergelijking optreedt als een plaatsafhankelijke massa. In grafeen
ontstaat dit door wanorde in het substraat. Tegen de verwachtingen
van eerder onderzoek in, hebben we ontdekt dat door een wanordelijke
massa in grafeen er geen overgang plaatsvindt naar een metallische toe-
stand. Alle golffuncties blijven dus gelokaliseerd en grafeen is isolerend.

De situatie is volledig anders voor Dirac fermionen in een p-golf
supergeleider. In dit type supergeleiders verschijnt de plaatsafhankelijke
massa in de Dirac vergelijking ten gevolge van elektrostatische wanorde.
Voor zwakke wanorde is er lokalisatie, maar in tegenstelling tot onze
bevindingen bij grafeen, vindt bij sterke wanorde een overgang naar een
metallische toestand plaats.



126 Samenvatting

Met behulp van een roostermodel van zogenaamde “staggered” fer-
mionen, dat voortkomt uit de kwantumchromodynamica, onderzoeken
we de metaal-isolator overgang in p-golf supergeleiders. We berekenen
de kritische exponent en identificeren een afstotend trikritisch punt in
het fasediagram.

Het kwalitatieve verschil tussen het gevolg van wanorde in het ge-
drag van Dirac fermionen in grafeen en in p-golf supergeleiders vraagt
om een verklaring. Deze vinden we in de aanwezigheid van gebonden
Majorana toestanden in de p-golf supergeleider. Deze “mid-gap” excita-
ties in p-golf supergeleiders maken resonant tunnelen en een metallische
toestand mogelijk. Grafeen heeft geen gebonden Majorana toestanden
en dus geen metallische toestand in de aanwezigheid van een wanorde-
lijke massa.

Elektrostatische wanorde in een d-golf supergeleider manifesteert
zichzelf op een volledig andere wijze, namelijk als een wanordelijke vec-
tor potentiaal in de Dirac vergelijking. Met behulp van een ijktransfor-
matie kan dit type wanorde worden verwijderd op het Fermi niveau,
mits de wanorde glad is op de schaal van de roosterconstante. Hieruit
volgt dat de transmissie van Dirac fermionen door een d-golf superge-
leider slechts beperkt beïnvloed wordt door lange-dracht fluctuaties in
de elektrostatische potentiaal. Fluctuaties van korte dracht hebben wel
een sterk effect. Zij onderdrukken exponentieel de elektrische stroom
die gedragen wordt door de excitaties, terwijl ze de thermische stroom
niet beïnvloeden.

In het laatste hoofdstuk van dit proefschrift keren we terug naar
grafeen, en bestuderen we twee van zijn prominente eigenschappen, na-
melijk het vormen van een sterk geleidend twee-dimensionaal elektro-
nengas en tegelijkertijd het vormen van een mechanisch stabiel mem-
braan. Het samenspel tussen de elektrische en mechanische eigenschap-
pen wordt bestudeerd door het berekenen van de verandering van de
geleidbaarheid van opgehangen grafeen als gevolg van de vervorming
door een “gate” elektrode.



Summary

This thesis is devoted to the effects of disorder on two-dimensional sys-
tems of Dirac fermions. These quasiparticles appear in condensed mat-
ter in graphene (carbon monolayers), and also in superconductors with
p-wave or d-wave symmetry of the order parameter, as well as in topo-
logical insulators.

The effect of disorder on which we focus our attention is the phe-
nomenon of localization. It is known that ordinary electrons (described
by the Schrödinger equation, rather than the Dirac equation) are local-
ized by disorder, meaning that the wave function of an excitation decays
exponentially, rather than being an extended plane wave. Localization
thus transforms a metal into an insulator.

Dirac fermions respond qualitatively different to disorder. An early
discovery was that electrostatic disorder cannot localize Dirac fermions
in graphene, if it is smooth on the scale of the lattice constant. We
concentrate on a different type of disorder, namely on a random mass
term in the Dirac equation. It is realized in graphene by randomness
in the substrate. We have discovered, somewhat unexpectedly in view
of earlier work on this problem, that Dirac fermions in graphene are
localized by a random mass, without any transition into a metallic state.

The situation is entirely different for Dirac fermions in a p-wave su-
perconductor. There electrostatic disorder appears in the Dirac equation
as a random mass, which localizes the excitation, but only if the dis-
order is relatively weak. For large mass fluctuations a transition into a
metallic state appears, in contrast to what we found in graphene. We in-
vestigate the metal-insulator transition in p-wave superconductors using
a lattice model of staggered fermions (originally proposed in the context
of QCD). We calculate the critical exponents and identify a repulsive tri-
critical point at the phase diagram.
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The qualitatively different response to disorder of Dirac fermions in
graphene and in p-wave superconductors calls for an explanation, which
we find in the appearance of Majorana bound states.

These midgap excitations in a p-wave superconductor allow for res-
onant tunneling and a metallic state. Graphene has no Majorana bound
states, hence no metallic state in the presence of a random mass.

Electrostatic disorder in a d-wave superconductor manifests itself in
an alltogether different form, as a random vector potential in the Dirac
equation. A gauge transformation can eliminate this type of disorder at
zero energy, if it is smooth on the scale of the lattice constant. The trans-
mission of Dirac fermions through a d-wave superconductor is therefore
only slightly affected by long-range electrostatic potential fluctuations.
Short-range fluctuations do have a strong effect, exponentially suppress-
ing the electrical current carried by the excitations, while leaving the
thermal current unaffected.

We return to graphene in the final chapter of the thesis, to study
two of its prominent properties: it forms a highly conducting two-
dimensional electron gas and at the same time is a mechanically sta-
ble membrane. The interplay of electrical and mechanical properties is
studied by calculating the correction to the conductivity of suspended
graphene due to its deformation by a gate electrode.
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