
Pinning down loosened prostheses : imaging and planning of
percutaneous hip refixation
Malan, D.F.

Citation
Malan, D. F. (2015, October 29). Pinning down loosened prostheses : imaging and planning of
percutaneous hip refixation. Retrieved from https://hdl.handle.net/1887/36019

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/36019

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/36019

Cover Page

The handle http://hdl.handle.net/1887/36019 holds various files of this Leiden University
dissertation.

Author: Malan, Daniel Francois
Title: Pinning down loosened prostheses : imaging and planning of percutaneous hip
refixation
Issue Date: 2015-10-29

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/36019
https://openaccess.leidenuniv.nl/handle/1887/1�

C
H

A
P

T
E

R
7

S
PA

R
S

E
M

E
S

H
IN

G

7
Sparse particle-based

multi-material volume meshing
for conformal 3D meshes

Daniel F. Malan, Christian Kehl,
Elmar Eisemann, Edward R. Valstar

89

Abstract

We present a conformal volume mesher that creates tetrahedral meshes from
a multi-material image volume. The raison d’être for our mesher is the im-
portance yet difficulty of creating suitable volume meshes in applications such
as three dimensional biomechanical finite-element analysis. The input to our
method is a segmented multi-material image volume defined on a regular
grid such as those generated by Computed Tomography or Magnetic Reso-
nance Imaging. The first step converts the volume to a set of dense topology-
preserving surface meshes. During intermediate steps seed particles are de-
fined and optimized so that they will ultimately serve as vertices of the output
mesh. The final density of these optimized seed particles can be controlled
by the user. The optimized seed particles are inserted as vertices into the
dense surface meshes and all other mesh vertices are iteratively removed,
until only the seed particles’ vertices remain. Our output mesh uses fewer
elements and/or obtains lower geometric approximation errors than compa-
rable Delaunay-triangulation-based methods, as those methods need to rely
on additional and restrictive sampling criteria

7.1 Introduction

Finite element simulation is useful in many medical contexts, including or-
thopaedics [Bessho et al., 2009, Reggiani et al., 2007, Schileo et al., 2007,
Taddei et al., 2006], oncology [Samani et al., 2001], cardiology [Sankaran
et al., 2012] and neurology [Joldes et al., 2010]. Often, the meshes underly-
ing these simulations are derived from segmented image volumes. In many
cases, multi-material data is involved, which can describe distinct material
regions, e.g., a metal hip prosthesis surrounded by cement embedded in the
femur, the latter of which consists of both dense cortical and porous trabecu-
lar bone [Andreykiv et al., 2012]. For such cases, multiple sub-meshes need
to be derived. These sub-meshes are often connected and interact with each
other via shared boundaries. For a faithful simulation of interaction across
boundaries, the derived sub-meshes should be conformal to each other, i.e.,
mesh vertices and edges on shared interface boundaries must coincide.

In addition to mesh conformity, geometric mesh quality plays an important
role in finite element simulations. The number of mesh elements, the geo-
metric accuracy of the mesh, as well as the aspect ratios of individual mesh
elements influence performance and accuracy of simulations that build upon
them [Babuska and Aziz, 1976, Burkhart et al., 2013].

90

C
H

A
P

T
E

R
7

S
PA

R
S

E
M

E
S

H
IN

G

Figure 7.1 – Mesh conformity means that all vertices and all edges on the shared
boundary are identically defined: three of the conforming pairs of triangles are
highlighted.

In this paper, we propose the Conformal Volume Mesher (CVMesh) a novel
meshing algorithm that constructs tetrahedral meshes from multi-material
image volumes. It starts by transforming a multi-material segmented image
volume into a set of dense initial meshes. Seed particles are then distributed
and their positions optimized on the isosurfaces corresponding to these dense
meshes using the method of [Meyer et al., 2007, Meyer et al., 2008]. Once
optimized, the particles are integrated as vertices into the dense mesh. Af-
terwards, all original mesh vertices are iteratively removed, keeping only the
newly-added vertices. Using this method, a set of water-tight closed surface
meshes is maintained for each material in every intermediate step.

Fig. 7.1 shows the meaning of mesh conformity using two partial spheres that
touch in a shared plane. This figure emulates Fig.7 in [Meyer et al., 2008],
with the notable difference that it shows output of CVMesh after using a seg-
mented voxel grid with two distinct foreground labels, while Fig.7 in [Meyer
et al., 2008] used synthetically constructed regular isosurfaces as input.

Our solution endeavours to provide a volumetric mesh with low geometric ap-
proximation error while offering direct user control over the number of mesh
elements. Further, the definition of the resulting meshes’ surface vertices by
a unique set of optimized “particles” ensures that shared boundaries are kept
conformal.

91

7.2 Related Work

The problem of generating a volumetric tetrahedral mesh can be reduced to
the problem of generating a closed triangle surface mesh, since the latter may
be reliably converted into the former by adding interior nodes only. This step
does not modify the surface triangles in any way [George et al., 1991].
Several established approaches exist to generate triangular surface meshes
from a single material (i.e. binary) image volume. Marching Cubes (MC)
[Lorensen and Cline, 1987] is one of the most well-known and widely-used
algorithms, as it can quickly generate topologically correct, closed surfaces.
Care must however be taken in choosing a reliable MC implementation to
avoid the possibility of topological artefacts [Etiene et al., 2012]. The main
limitation of MC is its uniformly high triangle density that directly corre-
sponds to the input image voxel resolution. When applied to a high reso-
lution voxel grid such as those generated by Computed Tomography (CT) or
Magnetic Resonance Imaging (MRI), the resulting surface meshes must typ-
ically be decimated to obtain a tractable number of elements [Garland and
Heckbert, 1997, Knapp, 2002].
A multi-material extension of MC exists [Wu and Sullivan, 2003], but as
holds for the original MC algorithm, it produces high triangle counts. These
dense multi-material meshes are conformal, but standard decimation tech-
niques cannot be directly applied as these operate on each sub-mesh indi-
vidually and do not guarantee conformity across multi-material interfaces.
Native multi-material meshing algorithms based on adaptive decimation ex-
ist [Wang, 2007, Kahnt et al., 2011, Young et al., 2008] and form the basis
of commercial meshing software such as Simpleware +FE, Visage Amira and
Materialise Mimics [Sim, 2013, Ami, 2013, Mat, 2013].
As an alternative to decimating dense precursor meshes, other meshing algo-
rithms rely on direct Delaunay triangulation for multi-material mesh genera-
tion [Boltcheva et al., 2009, Kahnt et al., 2011]. These algorithms first com-
pute the desired vertex distribution and then reconstruct the triangulated sur-
face from the vertices. For non-degenerate vertex distributions the Delaunay
triangulation is unique, ensuring conformity of vertices and edges on multi-
material interfaces. To ensure topologically-correct surfaces, an ε-sampling
requirement needs to be satisfied. This requirement states that the maximum
Euclidean distance between mesh vertices, expressed as a fraction ε of the
local feature size (LFS), should not exceed a certain value [Boissonnat and
Oudot, 2005]. The value of ε = 0.06 has theoretically been proven to be
sufficient for 3D applications [Amenta and Bern, 1998], while experiments

92

C
H

A
P

T
E

R
7

S
PA

R
S

E
M

E
S

H
IN

G

suggest that ε = 0.5 may be a more realistic loose upper bound for practical
applications [Meyer et al., 2007].
[Meyer et al., 2007] used a particle optimization algorithm to distribute mesh
vertices and have developed their algorithm to enable meshing of multiple
materials [Meyer et al., 2008]. The advantage that particle based methods
have over direct mesh refinement is that it abstracts the shape that need to
be meshed as an implicit surface, which allows for scale invariance. Particles
are optimized independent of the underlying image grid in accordance to an
energy function. The final particle distribution corresponds to the vertices of
the output mesh, which are Delaunay-triangulated to generate the algorithm’s
output. One advantage of their approach is the slowly varying vertex spacing
that is obtained, which results in good triangle aspect ratios. Their particle
distribution depends on the meshed object’s level-set representation and is
largely independent of the underlying image resolution.

Meyer et al.’s algorithm has been integrated into the BioMesh3D [Callahan
et al., 2007] package, which is distributed as part of the open-source SciRun
software package [Bitter et al., 2007]. While it offers user control over ge-
ometric smoothing and triangle count, the ε-sampling requirement remains
mandatory just as for all Delaunay triangulation schemes. This requirement
leads to a trade-off between the minimum triangle density and the minimum
allowable amount of geometric smoothing. We found that surface details are
quickly smoothed away and simultaneously the triangle count can remain
high, even when using the maximum allowable value of ε = 0.5. Our findings
in this regard are supported by the literature [Fayolle and Pasko, 2012]. The
approach we propose is not restricted by the strict ε-sampling requirement
inherent to Delaunay triangulation schemes, which enables our algorithm to
better conserve sharp features. This is possible as violating the ε-sampling
requirement allows a more liberal redistribution of vertices with the goal of
reducing surface approximation errors.

7.3 Algorithm

Our algorithm follows the general approach of [Meyer et al., 2008], but in-
troduces a modification in the way that the triangle mesh is generated from
the optimized particle cloud. This modification allows us to obtain sparser
meshes for a given minimum feature size. Not being forced to increase the
minimum feature size as a strict function of particle spacing allows lower ge-
ometrical errors, lower mesh element counts, or sometimes both.

Our algorithm starts with a multi-material segmented image volume defined

93

Figure 7.2 – Transformation of a dense input mesh to a topologically identical
sparse output mesh by the sequence of a) augmentation, b) decimation and c)
edge flipping.

in a regular voxel grid, i.e. each and every voxel has been assigned one and
only one categorical label. The number of possible labels has to be at least
two – a binary segmentation consisting of foreground and background – but
otherwise may be any integer.
Using the same approach of [Meyer et al., 2008], each material label is con-
verted to a grayscale volume whose zero level-set isosurface corresponds to
the material’s boundary. Each material’s level-set surface is then smoothed to
remove unwanted noise or spurious details.
The smoothed level-set isosurfaces are used to compute each material’s me-
dial axis [Hesselink and Roerdink, 2008]. These medial axes, together with
user-definable parameters ε and δ are used to construct a sizing field for each
material label – we refer the reader to [Meyer et al., 2007] for details on its
definition. In our algorithm the value of ε does not need to satisfy the Delau-
nay ε-sampling requirement [Amenta and Bern, 1998] that would otherwise
have been applicable, and may therefore be chosen to exceed a value of 0.5.
The smoothed level-set isosurfaces serve additional purposes - firstly they are
each converted to a dense watertight surface mesh via MC. These meshes
have topological and geometrical precision, but also a very high number of
triangles that make them unsuitable for direct finite element simulation. The
final surface meshes that our algorithm will construct will be a refinement
of these meshes, but with a different, sparser, distribution of vertices. The
distribution of this final set of vertices is determined by the output of an iter-
ative “particle optimization” process, where each “particle” represents a mesh
vertex. These particles originate from a collection of “seed particles” that are
initially uniformly and densely distributed on the smoothed level-set isosur-
faces. Where material labels share a boundary, these seed particles are shared

94

C
H

A
P

T
E

R
7

S
PA

R
S

E
M

E
S

H
IN

G

by assigning them to both surfaces simultaneously. Hereby, no vertex dupli-
cation or discrepancies occur, which is important to achieve conformity. The
particle positions are optimized in an iterative process where they are treated
as particles in a mechanical system that have repulsive and attractive forces
relative to each other. Particles do not occupy discrete grid positions; each is
free to move on the level-set isosurface boundary to which is was assigned.
As optimization progresses particles are removed where their density exceeds
the requirements set by the sizing field, resulting in a particle count that is
typically much lower than the initial number of seed particles.

Once the particle distribution has been optimized, we use these to define the
output mesh in a three-step approach to derive watertight meshes that are
then converted to tetrahedral meshes.

First, all particle-vertices are iteratively inserted as vertices into the dense
MC-generated isosurface meshes, i.e. every particle is inserted as a vertex into
every material boundary mesh on which it is located. In the second phase only
the newly-added vertices are kept, while all others are iteratively removed.
This process is illustrated in Fig. 7.2. For conformity, not only vertices, but
also edges need to coincide. Edge conformity is enforced by a final series of
edge flips in the constructed meshes.

The topology of the output mesh is not deduced from the vertex distribution
but is determined by the dense MC-generated mesh. An important feature of
our algorithm is that each vertex insertion or deletion step maintains water-
tightness and topological correctness of all the meshes that are involved. This
fact is crucial, as it allows us to define the final mesh’s vertices by a vertex-set
that does not respect the ε-sampling requirement. No explicit constraint is
placed on the edges that are created each time a vertex is inserted or when a
vertex is removed. This freedom allows our algorithm to choose local trian-
gulations that maintain healthy aspect ratios for the newly created triangles,
while minimizing the geometric Hausdorff distance to the original dense MC
surface mesh.

95

Algorithm 7.3.1: CVMESH(LabelVolume I , r,ε,δ)

for each material i ∈ I

do

φi ← level-set isosurface of i
φ̃i ← smoothed φi

Ti ← dense triangle surface mesh of φ̃i

mi ←medial axis of φ̃i

si ← sizing field as a function of mi, ε and δ

for all φ̃, s

�

Pseed ← Uniformly distribute seed particles on φ̃
Popt ← Optimize distribution of Pseed using φ̃, s

for each material i ∈ I

do T ′i ←

for each par t icle p ∈ Popt

do
§

if p belongs to i
then insert p into mesh Ti as vertex

for each augmented boundary mesh T ′i

do T ′′i ←

for each ver tex v ∈ T ′i

do
§

if v /∈ P
then remove vertex from T ′i

Flip edges to ensure edge conformity between meshes

7.4 Implementation

CVMesh is implemented as a collection of modules that run in the open-source
DeVIDE Runtime Environment [Botha and Post, 2008]. Individual compo-
nents use a combination of Python and C++, with extensive use of the Visual-
ization Toolkit (VTK) [Schroeder et al., 1996], Teem [Tee, 2013] and Vispack
[Ross T. Whitaker, 2013] libraries. The final conversion step from a mesh to
a tetrahedral volume is performed using Tetgen [Si, 2006].
The initial input surfaces for each material label are smoothed using the Tight-
ening algorithm of [Williams and Rossignac, 2007]. Dense isosurface meshes
are computed using VTK’s Marching Cubes algorithm. Computation of the
3D medial axis is a computationally hard problem [Coeurjolly et al., 2008]
and can take up an inordinate amount of time to compute. For this we used
the Integer Medial Axis (IMA) algorithm of [Hesselink and Roerdink, 2008]
that computes a discrete approximation of the medial axis in linear runtime,
greatly speeding up the algorithm compared to the brute force sampling ap-
proach used by BioMesh3D. To prevent possible artefacts in the output IMA,
arising from its discrete nature, we explicitly bound the feature size from be-

96

C
H

A
P

T
E

R
7

S
PA

R
S

E
M

E
S

H
IN

G

low by a specified minimum radius of curvature (in practice 0.8 times the
voxel size).

The particle positions are optimized using an adapted version of the particle-
system-mm module [Par, 2014] also used in BioMesh3D. They are then iter-
atively inserted as vertices into the dense mesh after which all other vertices
are iteratively removed. Every vertex that is removed creates a hole, which is
immediately closed using a local triangulation scheme, analogous to that of
Knapp [Knapp, 2002].
We attempt to avoid the creation of an advancing border separating dense
and sparse mesh regions, as such a transition zone that combines short and
long edge lengths easily leads to triangles with unfavourable aspect ratios.
To that end, vertices are added and removed by placing them in a processing
queue with random ordering. At each insertion or deletion we first check
for the creation of an undesirable crease or self-intersection, and where this
occurs we move the problematic vertex to the back of the processing queue.
This process continues until all vertices have been processed.

Conformal edge connectivity across material transitions is enforced by a se-
ries of edge flip passes. Each pass ensures that a given pair of meshes have
conforming edges on their shared boundary. For each of these passes, one of
the material labels is chosen as master, and the other as slave. All co-located
vertices on the slave mesh are forced to have an identical edge connectivity as
the master mesh. Going through all mesh interactions systematically, at most
(m2−m)/2 edge flip passes are needed, where m is the number of materials.

7.5 Results

7.5.1 Bunny (binary image volume)

The first example we present is a 173 x 173 x 181 isotropic voxel volume
image obtained by manual segmentation of the Stanford bunny CT dataset
[Levoy, 2008]. It is a genus 0 object with two materials (foreground and
background). This binary example illustrates differences between our algo-
rithm and that of [Meyer et al., 2007], as implemented in BioMesh3D. In
Table 7.1, we show numerical results for Figs. 7.4 and 7.6 that illustrate the
advantage of being able to raise ε above 0.5. For ε = 1.0 we achieve a lower
element count as well as a lower geometrical error. The former is due to the
sparser vertex sampling, while the latter is achieved by not having to use the
unique Delaunay triangulation – instead having been chosen more freely to
minimize geometrical error.

97

(a)

(b)

Figure 7.3 – The Marching Cubes surface of a) the original segmented volume
and b) the smoothed level-set isosurface.

98

C
H

A
P

T
E

R
7

S
PA

R
S

E
M

E
S

H
IN

G

In Fig. 7.3a we see the Marching-Cubes isosurface of the Stanford Bunny ob-
tained directly from the CT image volume. Stair-stepping artefacts, a result
of the binary segmentation on the isotropic voxel grid, are clearly visible. In
Fig. 7.3b, the isosurface is shown after smoothing by limiting the isosurface’s
radius of curvature to r = 0.8 using the “tightening” algorithm [Williams and
Rossignac, 2007].
In Fig. 7.4a, we see the dense Delaunay-meshed surface that results from
the particle distribution using ε = 0.5 applied to the curvature-limited iso-
surface of Fig. 7.3b. Areas of high curvature require a very high number of
particles, yielding a mesh with a very high element count. Starting with the
original isosurface of Fig. 7.3b and, instead using CVMesh’s iterative vertex
insertion technique, we are able to safely increase ε without smoothing the
model. In Fig. 7.4b we show the result using ε = 1.0, leading to fewer un-
necessary vertices on fine features. The overall distribution becomes sparser
and more uniform, while simultaneously even lowering the geometric error
as measured by the Hausdorff distance.

In BioMesh3D, adhering to the ε-sampling of 0.5, we have to increase the
radius of curvature in order to reduce the element count, but this leads to a
severe detail loss. At the same time, the “tightening” operation cannot lower
the curvature in thin regions such as the bunny’s ears, maintaining a locally
dense vertex distribution. In Fig. 7.5a the radius was increased to r = 15
while ε remained unchanged at 0.5. Increasing ε leads to fewer elements, but
also disrespects the ε-sampling requirement, potentially leading to incorrect
topology. Fig. 7.5b shows such topological errors at the bunny’s ears.

CVMesh can dramatically reduce the number of mesh elements without caus-
ing invalid mesh topology. In Fig. 7.6a, the identical vertex distribution
that leads to an inconsistent mesh using BioMesh3D is used to achieve a
topologically-correct output.

7.5.2 “Tooth” dataset (multiple materials)

The multi-material 103 x 94 x 161 isotropic human CT “Tooth” dataset was
cropped from the dataset used in the IEEE Transfer Function Bake-Off [Pfister
et al., 2001] and is also freely distributed with BioMesh3D [Bio, 2015]. The
dataset consists of four materials: air, dentine, enamel, and root. The results
for this dataset are summarized in Table 7.2.

In Fig. 7.7a, we see a sparse vertex distribution (2002, 2686 and 384 parti-
cles for the enamel, dentine and root respectively) superimposed on the high-
resolution isosurfaces meshes of the three material labels. For this example,

99

(a)

(b)

Figure 7.4 – a) Particle distribution for ε = 0.5. This value of ε is considered
a loose upper bound for safe Delaunay meshing [Meyer et al., 2007]. b) Using
CVMesh we can safely use a particle distribution of ε = 1.0.

100

C
H

A
P

T
E

R
7

S
PA

R
S

E
M

E
S

H
IN

G

(a)

(b)

Figure 7.5 – Reducing vertex count by a) increasing the radius of curvature leads
to severe detail loss, while b) only increasing ε preserves more detail, but when
Delaunay triangulation is used leads to degenerate mesh reconstruction in thin
regions.

101

(a)

(b)

Figure 7.6 – a) Topologically correct surface mesh generated using CVMesh’s
iterative refinement, using the same vertex distribution of Fig. 7.5b. b) Cut view
of the tetrahedra-filled mesh.

102

C
H

A
P

T
E

R
7

S
PA

R
S

E
M

E
S

H
IN

G

(a) (b)

Figure 7.7 – For the “Tooth” dataset we see a) If the ε-sampling requirement
is not met, Delaunay triangulation creates an invalid triangulation, especially
visible in the interior. b) CVMesh creates a topologically correct multi-material
mesh with identical vertices as in a.

103

r = 0.8 r = 0.8 r = 0.8
ε = 0.5 ε = 1.0 ε = 5.0

(Delaunay) (CVMesh) (CVMesh)
Surface mesh vertices 25,109 15,361 558

Surface triangles 50,258 30,718 1,170
Tetrahedra 202,219 177,552 43,596

Hausdorff distance 0.896 0.874 3.75
Mean Hausdorff dist. 0.104 0.0938 0.496

Triangle quality: mean 0.79 0.7 0.78
Triangle quality: stddev. 0.21 0.26 0.22

Tetrahedron quality: mean 0.64 0.66 0.73
Tetrahedron quality: stddev. 0.19 0.22 0.18

Table 7.1 – Mesh metrics for the “Bunny” dataset.

traditional decimation techniques cannot be used, as per-material decima-
tion breaks conformity on multi-material interfaces. Fig. 7.7b illustrates the
topologically-incorrect surface mesh obtained via BioMesh3D in combination
with the sparse vertex distribution. Especially, the tooth’s inner root structure
is affected and incorrectly split into two sub-volumes. This is not unexpected,
as the used sampling of ε = 3.0 is almost guaranteed to be unsuitable for a
Delaunay surface reconstruction. In Fig. 7.7c, we see that CVMesh preserves
the correct topology and better approximates the model’s thin extremities.

7.5.3 “Femur” dataset (multiple materials, anisotropic scan)

The “Femur” dataset was obtained for manually segmenting a clinical CT vol-
ume comprising 250 x 250 x 500 anisotropic image voxels. The dataset The
voxel spacing was 0.4mm× 0.5mm× 0.8mm. As such it was the highest res-
olution dataset we examined and also had the highest number of materials
– six. In addition to the background these six materials (prosthesis, cement,
intramedullary canal, trabecular bone, cortical bone and fibrous tissue) were
segmented and featured extensive contact areas. Results for this mesh are
shown in Fig. 7.8 and Table 7.2.

7.6 Discussion

In summary, CVMesh uses the original mesh to track topology, which enables
more aggressive particle-based sampling strategies than in reconstruction by

104

C
H

A
P

T
E

R
7

S
PA

R
S

E
M

E
S

H
IN

G

Figure 7.8 – The output obtained for the femur data-set, cut along a plane to
show the interior tetrahedra and six distinct material regions.

“Tooth” dataset “Femur” dataset
r = 0.8 r = 0.8
ε = 3.0 ε = 4.0

(CVMesh) (CVMesh)
Materials 4 7

Segmented image voxels 410,826 5,965,683
Voxel spacing 1 ×1× 1 0.5× 0.4× 0.8mm

Surface mesh vertices 3,981 21,393
Surface triangles 10,124 45,694

Tetrahedra 65,442 182,493
Hausdorff distance 1.83 3.81

Mean Hausdorff dist. 0.117 0.085
Triangle quality: mean 0.83 0.71

Tetrahedron quality: mean 0.72 0.65

Table 7.2 – Mesh metrics for the “Tooth” and “Femur” datasets.

105

“Bunny” “Tooth” “Femur”

Segmented voxels 758,706 410,826 5,965,683
Smoothing (“tightening”) 41 sec 77 sec 7 min

Medial Axis 18 sec 13 sec 72 min
Sizing Field 105 sec 35 sec 21 min

Particle optimization 840 sec 2220 sec 483 min
Vertex insertion 4.8 sec 31 sec 16 min

Vertex decimation 87.7 sec 184 sec 38 min
Edge flipping 2.2 sec 9.7 sec 3 min

Total time (CVMesh) 18 min 43 min 640 min

Table 7.3 – Unoptimized execution times for the “Bunny”, “Tooth” and “Femur”
datasets.

Delaunay triangulation. The upshot of the additional freedom in vertex place-
ment is the ability to achieve better geometric approximations with fewer
mesh elements.

Specifically, we demonstrate that CVMesh can be used successfully with high
values of ε that violate the ε-sampling requirement described by [Amenta
and Bern, 1998] and [Meyer et al., 2007]. The upshot of this freedom is that
coarser meshes can be used to achieve a given level of geometric accuracy.

CVMesh maintains mesh topology at the end of each vertex addition or ver-
tex removal. Removing a vertex temporarily causes a hole which needs to be
closed so that topology is maintained. The mesh patch that is removed along
with a vertex – consisting of all triangles connected to the vertex – must be
manifold and the resulting hole must also be closeable using another man-
ifold patch, without intersection of any mesh triangles. These assumptions
automatically holds when the ε-sampling requirement is respected and gen-
erally also holds beyond this limit as shown in the examples of this paper, e.g.
at least up to ε = 5.0. As we cannot rely on a theoretical proof of this obser-
vation, our re-meshing steps are algorithmically checked for intersections at
every mesh modification step.

In its current form, the transformation of a mesh from a the dense MC isosur-
face to the final particle-defined mesh, as described in Algorithm 7.3.1, is an
iterative process that is performed for each material sequentially. This pro-
cess allows for reordering of vertex operations and closes the holes created by
vertex removal so as to minimize geometrical error. The lack of synchroniza-

106

C
H

A
P

T
E

R
7

S
PA

R
S

E
M

E
S

H
IN

G

tion between the processing of the meshes belonging to different materials
mean that adjacent edges are initially not identically defined even though the
vertices are. These edge mismatches are solved in the algorithm’s final edge
flipping step but the algorithm may in future be improved by processing all
material meshes in parallel instead of sequentially.
Our algorithm has an inherent limitation in that extremely sparse sampling
of a thin curved volume can lead to unavoidable self-intersections as shown
in Fig. 7.9. To avoid, or at least detect this we heuristically check for self-
intersections during iterative mesh decimation. For the meshing examples in
this paper we did not encounter this issue.
In its current implementation CVMesh is still slow for large datasets, as shown
in Table 7.3 that shows the runtimes of our experiments on an Intel i7 950
desktop PC running at 3.07 GHz. The algorithm has not been particularly op-
timized, and especially the vertex insertion, vertex removal and edge flipping
steps have been implemented as unoptimized single-threaded Python code.
In CVMesh the theoretically challenging task of medial axis computation rep-
resents a small fraction of the total algorithm time due to our selection of the
efficient IMA algorithm. The majority of CVMesh’s run-time is spent on opti-
mizing particle positions, which is an obvious target for future optimization
such as massive parallelization on a GPU [Kim et al., 2012].
The minimum number of vertices that is needed to represent any single, con-
nected, genus-0 object is four, in which case the resultant mesh region will
be a single tetrahedron. This limitation is relevant whenever a material’s seg-
mented label field contains one or more tiny, disconnected, islands that may
be insufficiently sampled. To solve this we pre-filter the segmented image to
remove small islands, or disallowing particles that insufficiently sample small
isolated isosurface islands can prevent this situation from occurring.

Figure 7.9 – Cross-section illustration of self-intersection that may be caused by
an extremely sparse, degenerate, vertex distribution.

The degenerate vertex distribution show in Fig. 7.9 invariably leads to an
unacceptable result. As opposed to this inherently degenerate case, tran-

107

sient self-intersections at intermediate mesh refinement steps may be allowed.
However we did not allow this in our implementation, as it is difficult to fore-
see whether self-intersection during an intermediate step will eventually be
resolved by additional decimation. Our algorithm therefore permutes the
order of vertex processing whenever an operation would have led to self-
intersection. If this process fails, the meshing algorithm terminates with the
warning that a degenerate vertex distribution was detected – a solution to
which would be to specify a smaller value to ε or a larger radius of curvature.
This situation was not observed in our experiments.

7.7 Conclusion

We presented a viable approach to multi-material conformal tetrahedral mesh-
ing that does not use Delaunay triangulation.

The final density of these optimized seed particles can be controlled by the
user, and need not adhere to the Delaunay ε-sampling constraint for the al-
gorithm to succeed. This freedom enables the output mesh to have fewer ele-
ments and/or lower geometric approximation errors than comparable Delaunay-
triangulation-based methods.

The output of our algorithm is intended to be suitable for finite-element anal-
ysis, which is important for applications such as biomechanical simulations.
In the examples shown in this paper we were able to generate tetrahedral
meshes with a tractable number of mesh elements, while these elements were
also well behaved in terms of their aspect ratios and geometric error as mea-
sured by their Hausdorff distances relative to the input label field.

Acknowledgements

We would like to thank Charp P. Botha for his contributions to the supervision
of this project, as well as Peter Schaafsma who contributed a vital idea to our
solution.

108

