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Abstract

Purpose:

Automated patient-specific image-based segmentation of tissues surrounding
aseptically loose hip prostheses is desired. For this we present an automated
segmentation pipeline that labels periprosthetic tissues in computed tomog-
raphy (CT). The intended application of this pipeline is in pre-operative plan-
ning.

Methods:

Individual voxels were classified based on a set of automatically extracted im-
age features. Minimum cost graph cuts were computed on the classification
results. The graph cut step enabled us to enforce geometrical containment
constraints, such as cortical bone sheathing the femur’s interior. The solu-
tion’s novelty lies in the combination of voxel classification with multi-label
graph cuts and in the way label costs were defined to enforce containment
constraints.

Results:

The segmentation pipeline was tested on a set of twelve manually segmented
clinical CT volumes. The distribution of healthy tissue and bone cement was
automatically determined with sensitivities greater than 82% and patholog-
ical fibrous interface tissue with a sensitivity exceeding 73%. Specificity ex-
ceeded 96% for all tissues.

Conclusions:

The addition of a graph cut step improved segmentation compared to voxel
classification alone. The pipeline described in this paper represents a practical
approach to segmenting multi-tissue regions from CT.

6.1 Introduction

Periprosthetic osteolysis leading to aseptic loosening is one of the foremost
problems limiting the survival of hip prostheses [Agarwal, 2004]. Loosening
caused by osteolysis is characterized by extensive resorption of bone and its
replacement by soft fibrous interface tissue that offers little mechanical stabil-
ity. Surgical treatment becomes necessary when prosthesis loosening ensues.
During open revision surgery, the old prosthesis and its cement mantle, along
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with surrounding fibrous interface tissue, are removed, after which a new
prosthesis is placed.

Revision surgery is very demanding on the patient, therefore experimental
techniques substitute open surgery with minimally invasive cement injection
to fixate the loosened prosthesis [de Poorter et al., 2008a, Raaijmaakers and
Mulier, 2010]. At the time of writing these procedures are annually only per-
formed on a handful of patients, with a much larger potential target group
if proven successful. During minimally invasive refixation the surgeon is lim-
ited to working under fluoroscopic guidance and can only apply cement to
two or three injection sites. Proper pre-operative planning is therefore es-
sential. Femoral strength and stability may be simulated using finite element
(FEM) modelling [Cody et al., 1999, Schileo et al., 2007] but requires three-
dimensional (3D) tissue segmentation for creation of patient-specific models.

Figure 6.1 – a) Coronal X-ray radiograph of femur with osteolysis (arrows), b)
coronal CT slice of the same hip, c) manual segmentation showing periprosthetic
tissues. The boundary of the region of interest (ROI) is indicated by the dotted
line.

Plain radiographs such as in Fig. 6.1(a) are the default imaging modality
for diagnosing osteolysis [Garcia-Cimbrelo et al., 2007]. While sufficient for
diagnosis, radiographs do not capture the 3D distribution of periprosthetic
tissues, where computed tomography (CT) remains the imaging modality of
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choice [Walde et al., 2005, Cahir et al., 2007]. Unfortunately, CT suffers from
image degradation in the vicinity of metal prostheses [Watzke and Kalender,
2004, Liu et al., 2009]. Image degradation makes the 3D classification of
periprosthetic tissues a difficult task— especially for low-contrast tissues other
than cortical bone. Patients suffering from osteolysis generally have very low
bone quality, which exacerbates segmentation problems. In some cases corti-
cal bone, normally thick and easy to discern, is reduced to a thin shell of its
former extent and may show regions of very low image intensity.

Manual segmentation of this kind of volume is difficult and too labour inten-
sive for routine use. As an alternative, automatic or semiautomatic techniques
have been developed. To segment skeletal structures, [Zoroofi et al., 2003]
use histogram-based thresholding and binary morphological steps. [Kang
et al., 2003] use an automatic region-growing technique augmented by man-
ual correction. [Yokota et al., 2009] segment the boundary of diseased hip
bones with a hybrid statistical shape model. Statistical models based on prin-
cipal component analysis require well-defined natural shape and tissue dis-
tributions [Shlens, 2009] and are therefore, similar to atlas-based methods
[Sharma and Aggarwal, 2010], ill-suited to sporadic lesions and surgically
modified joints fitted with prostheses.

We set out to develop an automatic 3D CT segmentation pipeline that can seg-
ment all mechanically distinct tissues in hip CT volumes, including peripros-
thetic osteolytic lesions. The envisioned application was to assist with pre-
operative planning and the creation of patient-specific finite element models
to analyse prosthesis stability.

The main contributions of this work are the following:

• We extend the prototype voxel classification scheme of [Malan et al.,
2010] while simultaneously reducing the feature set to an optimized
subset. Using this reduced feature set, we implement a k-centres + k-
nearest neighbours voxel classifier.

• We use s/t graph cuts [Boykov et al., 2001] to obtain a “hard” multil-
abel tissue segmentation from the probabilistic tissue map computed by
the aforementioned voxel classifier. To our knowledge this is the first
medical image segmentation application of multilabel graph cuts to the
output of a probabilistic voxel classifier.

• Following the example of [Delong and Boykov, 2009], we incorporate
geometric containment constraints as part of the graph-cut segmenta-
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tion. The novelty of our approach lies in our definition of the data
cost term which enables us to define per-node costs. This enables us to
use a publically available multilabel graph-cut software library [Veksler,
2010] for solving either the unconstrained or constrained case.

6.2 Materials and Methods

6.2.1 Imaging

We retrieved twelve anonymized clinical CT data sets from twelve patients
suffering aseptically loose femoral prostheses. All scans were made with
Toshiba Aquilion (Toshiba Medical Systems, Japan) scanners using the FC30
“bone kernel”. We retroactively obtained clinical data and therefore had to
accept inter-scan variation, most notably the tube current (150 mA to 400
mA), peak voltage (120 kV or 135 kV) and in-plane voxel spacing (0.44 mm
to 0.59 mm).

6.2.2 Manual segmentation

An experienced operator (DM) manually segmented each CT volume using
the Medical Imaging Interaction Toolkit (MITK) version 0.12.2 [Maleike et al.,
2009]. Segmentation was performed using free-hand drawing on intermittent
slices with intermediate contours completed by interpolation.

First, a region of interest (ROI) was delimited. The metal prosthesis was
removed by thresholding at 5000 Hounsfield Units (HU). The ROI was then
segmented into separate regions of cement, cortical bone, trabecular bone,
fibrous interface tissue, intramedullary canal, and exterior muscle tissue. Fig.
6.1(c) and Fig. 6.2(b) show examples of segmentations thus obtained. It
proved difficult to manually distinguish some regions in the low image quality
CT volumes. We left these regions unclassified to prevent false positives in the
classifier training sets. An example of a difficult to segment region is shown
in the upper part of Fig. 6.2(a). The manual segmentations’ correctness was
verified by an experienced orthopaedic surgeon (RN). Inter-observer tissue
segmentation was evaluated by having a second independent human operator
re-segment four randomly selected femurs.

6.2.3 Performance metrics

We used the manually segmented CT image volumes to train voxel classi-
fiers and secondly to serve as ground truth for evaluating the performance
of our automatic tissue segmentation. A rotating per-patient leave-one-out
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Figure 6.2 – Cross-section through the proximal femur. a) Original CT, b) man-
ually designated tissue regions. Black areas were left unassigned, c) classifier
probability map for trabecular bone. Each tissue class has such a map. d) Max-
imum posterior probability, e) segmentation by multi-label graph cut without
containment, f) segmentation by multilabel graph cut with containment.

scheme was used. Voxel classifier performance was evaluated by counting
the percentage of correctly classified voxels per tissue class, shown as a con-
fusion matrix in Table 6.6. Similar to [van der Lijn et al., 2008] we evaluated
the final segmented volumes by their Dice similarity coefficients compared
to ground truth. The Dice coefficient is a value between 0 and 1, where 1.0
represents perfect agreement and 0.0 represents completely disjoint segmen-
tations. The coefficient is defined as 2 (|A∩ B|)/ (|A|+ |B|), where |A| denotes
the volume of region A and A∩ B is the intersection of regions A and B [Zou
et al., 2004].

6.2.4 Computation of image features

To serve as input for voxel classification, thirteen candidate image feature
volumes, listed in Table 6.1, were computed from every original CT volume.
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1 CT volume at original resolution (0.5 mm x 0.5 mm x 0.5 mm)
2 Metal artifact reduced (MAR) CT volume.
3 CT smoothed with σ = 0.5 mm isotropic Gaussian filter
4 CT smoothed with σ = 1.0 mm isotropic Gaussian filter
5 CT smoothed with σ = 2.0 mm isotropic Gaussian filter
6 Image Gradient magnitude of feature nr. 3
7 Image Gradient magnitude of feature nr. 4
8 Image Gradient magnitude of feature nr. 5
9 Distance (in mm) to the threshold-segmented prosthesis surface
10 Signed distance from prosthesis head, along prosthesis long axis
11 Signed distance from convex hull of the femur’s cortical bone
12 Angle cosine to prosthesis neck in plane perpendicular to long axis
13 Signed radial gradient of MAR smoothed by σ = 0.5 mm

Table 6.1 – The thirteen candidate image features.

We used the method of [Kalender et al., 1987], implemented in MATLAB
R2009b (Mathworks Inc., MA, USA), to compute the metal artefact reduced
(MAR) volume. All other image features were computed using proprietary
software developed in the DeVIDE Runtime Environment [Botha and Post,
2008].
Similar to previous studies [Loog and van Ginneken, 2006, Folkesson et al.,
2007, van Rikxoort et al., 2009] we used multiscale image and image gradi-
ent values as features. Isotropic Gaussian low-pass (blurring) with standard
deviations of 0.5 mm, 1 mm and 2 mm, along with their image gradient mag-
nitudes, were computed from the original CT volume.

The next feature consisted of the shortest Euclidian distance to the prosthe-
sis surface. The prosthesis was automatically detected as the largest object
exceeding a threshold of 5000 HU. This value was appropriate for all cobalt-
chromium and steel prostheses.

The tenth feature consisted of the signed distance from the prosthesis head’s
centroid, measured parallel to the femur’s long axis. The prosthesis’s long
axis was automatically computed as the first principal spatial component of
the prosthesis’ distal half. This direction closely corresponds to the alignment
of the femur’s long axis.

The next feature was the signed distance from the femur’s outer surface. The
geometry of the femur is initially unknown to us. By thresholding the ROI
between 800 HU and 3000 HU and excluding all voxels within 3.5 mm of
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metal components, we capture the majority of voxels representing cortical
bone. Recall that CT image slices are always approximately perpendicular to
the femur’s long axis. While a human femur is not convex in three dimensions,
it is approximately convex in any cross-section perpendicular to its long axis.
For every image slice we therefore approximated the femur’s outline by the
two-dimensional convex hull of the thresholded voxels.

The twelfth candidate feature was the cosine of the angle of each voxel rela-
tive to that of the femur head. This planar angle cosine was measured around
the central axis of the prosthesis stem.

The last candidate feature was the image gradient of the smoothed MAR im-
age, using a 0.5 mm Gaussian kernel, computed in the radial direction per-
pendicular to the prosthesis’ long axis.

6.2.5 Classifier construction and feature selection

We constructed statistical classifiers using PRSD Studio (PR Sys Design, Delft,
The Netherlands) [PRS, 2012], a toolbox that offers implementations of vari-
ous classification algorithms. Our training data consisted of all twelve manu-
ally segmented CT volumes, where individual image voxels were regarded as
separate objects. All classifiers were trained and evaluated using a rotating
per-patient leave-one-out scheme.

We defined six tissue classes: cortical bone, trabecular bone, bone cement,
fibrotic tissue, intramedullary canal, and tissue exterior to the femur. Equal
per-class priors were used to prevent infrequent but important tissues like
fibrotic zones being suppressed during optimization. Features were scaled to
have unit variance. Both forward and backward selection processes were then
used to determine an optimal subset of the thirteen candidate image features.

Each classifier computed a “soft” probabilistic classification, i.e. probabilities
of belonging to the six tissue classes instead of “hard” unambiguous labels.
Parametric classifiers that construct internal probability density functions di-
rectly output soft classifications. Others like the kNN classifier output feature-
space distances that were subsequently converted to unit-sum probabilities by
using the normalized inverse of their class separation distances.

Classification performance was compared between the following classifica-
tion algorithms available in PRSD Studio: linear, quadratic, Gaussian mix-
ture model, kNN with k equal to 1, 3 and 10, a Parzen classifier, neural net,
naive Bayes and a decision tree. A k-centres algorithm was used as kNN pre-
processing step. Each classifier was trained and tested identically.
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6.2.6 Segmentation by maximum posterior probability

The most straightforward approach for converting the “soft” classifier output
to a “hard” segmentation was by independently assigning, for every voxel,
the class with highest posterior probability. An example of the classification
results obtained with this scheme is shown in Fig. 6.2(d).

6.2.7 Segmentation by graph cuts

Maximum posterior probability classification is prone to noise and irregular
segmentation geometry as seen in Fig. 6.2(d). To counter this we instead used
multilabel graph cuts to transform the soft classifier output into a multilabel
segmentation. For this we used and adapted the publically available gco-v3.0
multilabel graph-cut library [Veksler, 2010].

An image may be expressed as a graph by representing individual image pixels
or voxels as graph nodes and representing their neighbourhood relationships
with edges. Graph-cut algorithms, also known as “minimum cut/maximum
flow” algorithms, offer a computationally efficient way of minimizing certain
energy functions defined on a graph [Greig et al., 1989, Ahuja et al., 1993].
Fig. 6.3 shows how a 2D image may be segmented by a graph cut.

11 8
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6

6

1 1

6

6 5

1 262

5

6 4

9

8 6

a b c
Figure 6.3 – a) An example 2D graph cut. a 3 × 4 bitmap image. b) Graph with
two highlighted nodes to show data costs for being assigned either “white” or
“black”. Edge weights were chosen inversely proportional to image gradient. c)
A cut of the graph with resultant data cost for every node and the smoothness
cost for every severed edge.

A cut is minimal if its associated energy is smaller or equal to the energy of any
other cut of the same graph. This energy typically consists of two parts: a data
cost and a smoothness cost [Boykov and Kolmogorov, 2004]. The data cost
of each node is computed from the mismatch between its observed properties
and those of its assigned label. Following the example of [Boykov et al., 2001]
we defined each voxel’s data costs as the negative logarithm of its per-class
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membership probability. The smoothness cost of each severed edge may be
defined inversely proportional to local image gradient.

C

A

B

0

1

C

Figure 6.4 – Left: a 2D image with three regions. Right: each pixel p is repre-
sented by a node pair xA

p and xB
p . Right: Edges are shown for a single node’s

edge pair. Smoothness costs are represented by undirected in-plane edges. The
“A contains B” relationship is enforced by an infinity-weight directed edge from
plane B to A. “B sheathed in at least 1 pixel width of A” is enforced by directed
edges to its 4-connected neighbourhood.

[Delong and Boykov, 2009] show how a directed binary graph with two nodes
for every image pixel may be constructed to enforce geometric containment,
attraction or exclusion. A 2D example of a containment enforcing graph is
shown in Fig. 6.4. Every image pixel is represented by two graph nodes—these
node pairs define two separate planes. Within each plane, every node is
connected to its neighbours using 4-connected undirected (or bidirectional)
edges. Directed edges link node pairs between the planes to enforce contain-
ment and attraction relationships.

xA
p value xB

p value Label of p defined by (xA
p,xB

p ) Data cost Dp

0 0 C − log(Pr(C))
0 1 n/a K
1 0 A − log(Pr(A))
1 1 B − log(Pr(B))

Table 6.2 – The pairwise data costs of the nodes in 6.4 as defined by [Delong
and Boykov, 2009].

The graph for a 3D voxel grid is analogous to the 2D model, the difference
being the replacement of the 4-connected pixel-node planes A and B with two
8-connected voxel-node grids. A binary cut on this graph assigns every node
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Variable Value Data cost Dp

xA
p 0 − log(Pr(C)) +max A

xA
p 1 − log(Pr(A)) +max A

xB
p 0 max A

xB
p 1 log(Pr(A))− log(Pr(B)) +max A

Table 6.3 – Our data costs depend only on each node’s own binary label.

a value of one or zero. The label of every pixel is defined by the assignment
of binary values to its corresponding node pair, as in Table 6.2.

The difference of our approach compared to that of Delong and Boykov is that
we assigned data costs to individual nodes in the graph—dependent only on
the binary values which the nodes may individually assume, not on pairwise
labelling. The advantage of this is that it allows computation of the minimum
graph cut using standard graph-cut libraries such as gco-v3.0 [Veksler, 2010].

Starting with Table 6.2 we replaced the costs of pairwise node assignments
by the summed costs of each pair’s two separate components, leading to Ta-
ble 6.3. This new definition yields the same pairwise costs, up to a con-
stant. For example: the data cost of assigning (0,0) to xA

p and xB
p becomes

[− log (Pr(C)) +max A] + [max A] = − log (Pr(C)) + 2 ·max A.

We defined max A=max (− log(A)), computed across all voxels. This constant
term prevents any individual data costs from being negative—a requirement
of the gco-v3.0 library. The additional global data cost is therefore maxA times
the number of nodes, a known constant. Since the same labelling minimizes
all equivalent energy functions that differ by a constant, the solution is an
equivalent labelling.

6.2.8 Segmentation by single multilabel graph cut on classifier output

We started with smoothness costs similar to the Potts model of [Boykov et al.,
2001, Boykov and Kolmogorov, 2004], but with larger values assigned to tis-
sues that are expected to be non-adjacent, such as between exterior muscle
tissue and either the intramedullary canal or fibrous interface tissue. These
costs, shown in Table 6.4, satisfy the definition of a metric as required for
convergence of the α-expansion algorithm [Kolmogorov and Zabih, 2004],
that is, V (β ,α)≤ V (α,γ)+V (γ,β) and V (α,α) = 0 for all labels α,β ,γ. The
costs of Table 6.4 were additionally scaled with a spatially varying term that
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depended on the image intensity gradient at each voxel’s location. This factor
was defined as Sd = exp(−c ·Gd), having a value of 1.0 in areas with zero gra-
dient and exponentially decaying with increasing gradient. The subscript “d”
refers to the orthogonal direction, that is, “x”, “y” or “z”. Gd is the CT image
gradient magnitude in the given direction, expressed in HU/mm, and “exp”
refers to the exponential function. The parameter c is a scaling parameter
that we set to 0.008 to provide the desired falloff rate.

Outside Canal Fibrous Trabecular Cortical Cement
Outside 0 2 2 2 1 2
Canal - 0 1 2 1 1

Fibrous - - 0 1 1 1
Trabecular - - - 0 1 1

Cortical - - - - 0 1
Cement - - - - - 0

Table 6.4 – Symmetric smoothness cost matrix used for the standard multi-label
α-expansion graph cut algorithm.

6.2.9 Segmentation by stepwise multilabel graph cut with geometrical
containment

The gco-v3.0 library used for solving the unconstrained multilabel problem
does not support directed graphs or labels defined on pairs of nodes. Since
graph directionality is essential to the containment relationships in Fig. 6.4
and 5, we modified the code to enable edge directionality. The first modi-
fication consisted of allowing asymmetric neighbourhood relationships; that
is, node p being a neighbour of node q does not imply that node q must be
a neighbour of p. The second modification was for allowing the asymmet-
ric smoothness costs of Table 6.5 that were subsequently scaled to also be
inversely proportional to image gradient as described in the previous section.

Value 0 Value 1
Value 0 0 1
Value 1 0 0

Table 6.5 – Smoothness cost matrix used for the containment-enforcing two-
layer binary-valued graph of 6.4.

Looking at Fig. 6.4 and Table 6.2 we see that the asymmetry of Table 6.5
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ensures that the “infinity” cost of a containment-rule violation is correctly
enforced. Assigning (0,1) to the (xA

p, xB
p ) node pair is illegal and does not

correspond to any tissue label.

This transgression is prohibited by the smoothness cost of 1 multiplied by
the graph’s “infinity”-weight edge, resulting in “infinite” cost. Conversely, the
(1,0) assignment corresponding to the label “A” is allowed. Multiplying the
zero smoothness cost and “infinite” edge weight yields zero cost. Spatially
neighbouring voxels are connected by bidirectional edges equivalent to the
undirected edges of Fig. 6.4. Here, label discontinuities are penalized as be-
fore, since exactly one of the bidirectional edges will cross a (0,1) transition.

We used containment relationships to force the region defined by the union
of intramedullary canal, cement, fibrous interface tissue and trabecular bone
to be enclosed in a layer of cortical bone with a thickness of at least one voxel.
This was motivated by the fact that the whole femur is enclosed in cortical
bone, even though this layer can be very thin and difficult to discern in the
proximal femur. Likewise, we created a penalty term to discourage trabec-
ular bone from not being enclosed in a layer of cortical bone of at least a
single-voxel thickness. An example of this is shown in Fig. 6.2(e) where an
unconstrained graph-cut solution allows holes in the encompassing cortical
bone. In Fig. 6.2(f) we see that the containment constraint enforces a con-
tinuous cortical sheath.

Including multiple containment relationships in a single graph cut compli-
cates graph construction and data cost terms. We instead opted for the data
cost structure of Table 6.3 that only allows three tissue zones at a time. We
desired two containment constraints—the femur having an uninterrupted cor-
tical shell and trabecular bone being enclosed in cortical bone. Each of these
constraints required a separate graph-cut step. The remaining tissues were
separated using a standard α-expansion multilabel graph cut as described by
[Boykov et al., 2001].
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Figure 6.5 – A coronal slice showing the three-step segmentation process. Steps
1 and 2 enforce geometrical containment relationships.

The resulting three-step segmentation process is shown in Fig. 6.5.

1. The ROI is segmented into three classes: exterior, cortical, and “interior”
using a containment relationship that forces the interior to be enclosed
in a cortical shell of at least single-voxel thickness.

2. The “interior” and “cortical” regions are re-segmented into trabecular,
cortical and “rest”. A containment relationship similar to step 1 specifies
trabecular bone to be enclosed in cortical bone. The final cortical region
consists of the union of the cortical regions from steps 2 and 3.

3. Finally, the “rest” tissue from step 2 is segmented into cement, fibrous
and canal using a three-label α-expansion graph cut without contain-
ment restriction.

6.3 Results

6.3.1 Feature and classifier selection

Using both forward and backward feature selection on disjoint training and
test sets, we identified an optimal subset of nine features. Removing any
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of these or adding any of the remaining features increased the classification
error. Referring to Table 6.1, these nine features, ranked from most to least
important, were numbers 10, 11, 2, 4, 9, 13, 7, 1, 5. It is important to note
that these features were not necessarily the best individual discriminators,
but instead provided the best combined classification power when used as a
set.
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Figure 6.6 – Voxel classifier sensitivities for the two most difficult-to-classify
tissues versus number of CT training volumes.

Using these nine features, we evaluated different classifier algorithms. We
found the best overall classification performance using a kNN classifier with
k = 3, after pre-processing the input data with a k-centres algorithm with
k = 2000. We evaluated the classifier’s learning curve as it was trained on
successively larger patient sets. Testing was performed in a per-patient leave-
one-out manner. The results for the difficult-to-classify fibrous and trabecular
tissues are plotted in Fig. 6.6.
We see that classification performance tended to stabilize once a training set
size of at least five CT volumes was reached. Further increasing the number of
training sets did not significantly improve median classification performance
but did reduce the occurrence of negative outliers.

6.3.2 Tissue segmentation

In Table 6.6 we see that the classifier using the maximum probability criterion
managed to correctly classify the large majority of labelled voxels. The most
difficult tissues were fibrous interface tissue (66.7%) and trabecular bone
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(81.1%)—both being low in CT image contrast and located close to the pros-
thesis in the zone most affected by metal artefacts. Graph-cut post-processing
improved classification performance relative to maximum posterior classifica-
tion—most notably for the fibrotic and trabecular tissue classes. Sensitivity
and specificity of the final constrained graph-cut segmentation are shown in
6.7.

Label
Automatically segmented

Method Exterior Canal Fibr. Trab. Cort. Cem.

Manual seg.

Exterior
MPP 85.71 0.00 2.18 8.65 2.18 0.47
CGC 89.47 0.00 1.53 4.76 2.09 0.70

Canal
MPP 0.00 97.46 0.31 0.00 0.52 0.96
CGC 0.00 98.50 0.00 0.00 0.59 0.55

Fibrotic
MPP 2.04 0.51 66.67 11.70 4.45 3.83
CGC 0.11 0.22 73.04 3.49 5.14 3.43

Trabecular
MPP 5.72 0.00 8.18 81.08 2.71 1.20
CGC 2.76 0.00 8.28 82.90 3.86 0.22

Cortical
MPP 0.96 0.96 3.90 2.92 86.79 5.79
CGC 4.08 0.71 3.43 3.90 86.40 3.27

Cement
MPP 0.42 1.24 5.80 1.17 5.19 84.74
CGC 0.03 1.29 5.33 0.42 4.41 86.64

Table 6.6 – Confusion matrix showing median classification performance of our
kNN2k classifier when labelling each voxel with its maximum posterior proba-
bility (MPP, upper rows) and constrained graph cuts (CGC, lower rows). Bold
values on the main diagonal represent the sensitivities, i.e. the percentages of
each tissue type that was classified correctly.

In the example slice of Fig. 6.2 we see that the geometrically unconstrained
graph-cut procedure considerably smoothed the segmentation result, with
many of the isolated noisy misclassifications removed. The same general tis-
sue distribution was maintained, including a gap in the outer shell of cortical
bone. With the constrained graph-cut approach we note that the gap in the
outer cortical shell has been closed, and the region of trabecular bone is fully
enclosed and shielded from fibrous tissue by a layer of cortical bone as was
required by our containment rule. We note from Fig. 6.7 that there is still
an obvious difference between our automated segmentation methods and a
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second human segmenter but are encouraged by the overlapping Dice coeffi-
cients ranges.

Label Sensitivity (%) Specificity (%)
Exterior 89.47 98.60
Canal 95.50 99.56

Fibrotic 73.04 96.29
Trabecular 82.90 97.49

Cortical 86.40 96.78
Cement 86.64 98.37

Table 6.7 – Sensitivity and specificity of the constrained graph-cut solution, com-
puted from 6.6.
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Figure 6.7 – Comparison of manually segmented ground truth with maximum
posterior probability, graph cut and constrained graph cut. Inter-observer vari-
ability, computed with a second human segmenter, is also shown.

Across all tissues we find that the graph-cut segmentations, both with and
without geometric constraints, have significantly higher Dice coefficients than
using maximum probability classification. This was confirmed using a Wilcoxon
signed rank test (p < 0.001 in both cases). Compared to the graph-cut
method without containment, however, geometric containment shows no sta-
tistically significant improvement in Dice coefficient (p = 0.466). Geomet-
ric containment had its greatest value in qualitative segmentation improve-
ment—for example, the closing of holes in the cortical shell, as seen in Fig..
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6.2. The lack of statistically significant improvement in Dice coefficient there-
fore tells only part of the tale.

6.3.3 Computational cost

For a typical CT volume of interest consisting of 200×200×300 voxels, the
total running time of our segmentation pipeline was approximately 15 min.
This time was recorded on a 3.0 GHz Intel Core-i7 desktop computer running
Microsoft Windows7 64-bit with 12 GB of working memory. Computation of
the nine image features took approximately 10 min. Subsequent soft clas-
sification by the trained voxel classifier took 3 min. The post-processing of
the classification output by the graph-cut algorithm took approximately 40 s
regardless of whether containment relationships were specified or not. Since
our algorithms currently rely on single-threaded operation, we envisage a
substantial possible speed increase should we modify our code to harness
processor cores simultaneously.
The most memory intensive operation was the graph-cut step where, in addi-
tion to MATLAB’s base footprint of 200 MB, a peak amount of 600 MB without
containment or 1,100 MB with containment was required.
We note that the execution time and memory requirements of feature gen-
eration, voxel classification and the graph-cut algorithm all show linear de-
pendence on the number of classified voxels. This is in accordance with the
findings of [Delong and Boykov, 2009], and we experimentally affirmed it.

Discussion

We constructed and optimized a voxel classifier that uses a diverse set of au-
tomatically computable image features. The retention of several derived dis-
tance metrics in the optimal feature subset showed that image features other
than intensities and gradients are beneficial. This was emphasized by observ-
ing that the original CT volume ranked as only the eighth most important
feature.
The most straightforward way to convert statistical classifier output to a final
labelling is by assigning, for each voxel, the label with maximum posterior
probability. This classification method leads to noisy results with an excessive
number of label transitions. We know that biological tissues tend to form
contiguous regions. The maximum posterior probability classification does
not incorporate this prior knowledge.
We showed that the α-expansion graph-cut algorithm of [Boykov et al., 2001]
can be applied to obtain an improved segmentation result. The required data
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cost terms are easily computed from the voxel classifier’s output probabil-
ities, and the obtained results exhibit the contiguousness we expect. The
resulting segmentations are a qualitative and quantitative improvement over
standalone voxel classification.

Additional containment relationships, implemented as modifications to the
method of [Delong and Boykov, 2009], have their biggest effect on the seg-
mentation of fibrotic tissue and trabecular bone. This desired result is as
expected, since we specifically enforce the containment of these two tissues
in a shell of cortical bone. The containment relationships simultaneously en-
able us to close unwanted holes in the segmentation of thin shell regions of
cortical bone.

In Fig. 6.7, just as in Tables 6.6 and 6.7, we note that we had the least success
with the softer, irregularly shaped, low-contrast fibrous tissue and trabecular
bone. There is a notable outlier in each of the “Canal”, Trabecular and “Cor-
tical” tissue classes, but given the small sample size and large inter-scan vari-
ation this not completely unexpected. Indeed the “canal” outlier occurred for
a data set where almost no intra-medullary canal was included in the defined
ROI, thereby leading to a negligibly small volume and low Dice coefficient be-
tween successive segmentations. The outliers for trabecular and cortical bone
both occurred for the same data set, which had an unusually small femur di-
ameter. This highlights the importance of having a sufficiently large training
set to cover the expected inter-patient variation—an assumption which failed
for this single data set.

In Fig. 6.7 we saw that human inter-observer variability has a similar or-
der of magnitude, albeit smaller, than differences between automated and
human segmentation. Since we can only evaluate classifier performance rel-
ative to the manually segmented ground truth which is itself subject to error
and simplification, subtle improvements due to geometrical containment may
be obscured in our measurements.

Limitations to this study include the small number of CT volumes used for
training and evaluation. Fig. 6.6 suggests, however, that the twelve CT data
sets used in this study were sufficiently representative for the goals of this
paper.

Since all automatic segmentation algorithms can occasionally fail, it will be
good to allow manual segmentation corrections in future work. This could
be approached similar to the method of [Egger et al., 2011]. As in previous
literature we used the Dice similarity coefficient to evaluate segmentation
accuracy. In future work it will be important to examine the relationship
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between volumetric segmentation accuracy and derived modelling accuracy,
such as when using finite elements.
A further limitation of this study is that all CT image volumes were obtained
from the same make of scanner and from the same hospital. By pooling the
available data sets we obtained a collection of image volumes containing real
clinical data with heterogeneous scan parameters. We foresee the presented
algorithm to work similarly well on data from other centres but did not have
the opportunity to verify this claim.
Despite CT’s proven diagnostic superiority over standard radiographs [Cahir
et al., 2007, Schwarz et al., 2003], it is still not routinely performed on pa-
tients suffering osteolysis and therefore limited our access to clinical data.
Traditional open revision surgery is performed under visual guidance and
therefore does not require accurate 3D-image-based tissue segmentation. How-
ever, we foresee this situation changing. Minimally invasive refixation is al-
ready performed as an alternative to refixation in frail patients [de Poorter
et al., 2008a, Raaijmaakers and Mulier, 2010], and here, the surgeon is much
more dependent on image-based pre-operative planning.
Finite element modelling is a powerful tool for computing mechanical sta-
bility of the femur [Cody et al., 1999, Schileo et al., 2007] but requires 3D
tissue distribution models. These advances may lead to validation and wider
application of minimally invasive cement injection. This will, in turn, fuel the
demand for automated segmentation techniques such as the one described in
this paper.

6.4 Conclusion

We presented a complete pipeline for segmenting periprosthetic tissues in
clinical CT volumes of patients with hip prostheses. Due to low tissue con-
trast and the presence of beam hardening artefacts, these image volumes are
extremely difficult to segment—even manually by a trained human operator.
We applied our algorithm to tissues that pertain to aseptically loose hip pros-
theses, namely cortical bone, trabecular bone, fibrous interface tissue, bone
cement, intramedullary canal, and tissue exterior to the femur. Voxel clas-
sification offers a way of combining the strengths of several complementary
image features, including metal artefact reduced image data that involve data
loss if used on its own [Malan et al., 2012b]. We showed how tissue classifiers’
results may be improved by coupling them with a graph-cut post-processing
step. We further showed how an adaptation to the algorithm of [Delong and
Boykov, 2009] can be used to incorporate geometrical assumptions into the
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graph-cut segmentation process. Using this, we enforced the requirement
that the femur be enclosed in a layer of cortical bone and trabecular bone to
be sheathed in cortical bone. Compared to before, these restrictions helped
to close segmentation holes caused by low contrast and partial volume effects
in the input CT data.

To our knowledge, in the field of medical image segmentation, this is the
first use of graph cuts on voxel classifier output since the pioneering work of
[van der Lijn et al., 2008]. In contrast to their study we extend our solution to
a multilabel, as opposed to binary, problem. Not only are the graph-cut solu-
tions qualitatively better than voxel classification on its own, but we show that
they quantitatively better represent the manually segmented ground truth in
terms of their Dice coefficients, our measure for geometric similarity.

The pipeline described in this paper represents a practical approach to seg-
menting multitissue regions from CT. The demonstrated approach to contain-
ment relationships improves the solution wherever such a priori knowledge
is available. We demonstrated our solution using clinical CT images of tis-
sues surrounding metal hip prostheses suffering from low contrast and beam
hardening artefacts.

Our proposed solution succeeds for this specific application and may in future
also be applied to other anatomical regions and imaging environments that
are subject to similar constraints.
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