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Abstract

We present an automated algorithm which classifies periprosthetic tissues in
CT scans of patients with loosened hip prostheses. To our knowledge this
is the first application of CT voxel classification to periprosthetic tissues of
the hip. We use several image features including multi-scale image inten-
sity, multi-scale image gradient and distance metrics. Seven classifier types
were trained using five manually segmented clinical CT datasets, and their
classification performance compared to manual segmentations using a leave-
one-out scheme. Using this technique we are able to correctly segment the
majority of each of the six tissue categories, in spite of low bone densities,
metal-induced CT imaging artefacts and inter-patient and inter-scan varia-
tion. Our automated classifier forms a pragmatic first step towards eventual
automatic tissue segmentation.

Keywords automatic, classification, segmentation, computed tomogra-
phy, periprosthetic, osteolysis

5.1 Introduction

The most significant complication that threatens the long-term survival of a
total hip arthroplasty (THA) is periprosthetic osteolysis [Bauer and Schils,
1999, Walde et al., 2005] which involves resorption of bone and replacement
by soft fibrotic tissue. Once osteolysis develops it usually progresses, eventu-
ally leading to mechanical instability and prosthesis loosening.

Minimally invasive refixation of loosened prostheses is possible [de Poorter
et al., 2008a] but requires the location and extent of fibrotic lesions to be
known pre-operatively. Recent studies have shown that CT is more sensi-
tive and accurate than traditional radiographs in detecting and measuring
such lesions [Walde et al., 2005, Garcia-Cimbrelo et al., 2007]. However, the
steady increase in resolution offered by modern CT scanners make traditional
manual segmentation extremely time-consuming, thereby limiting users’ uti-
lization of the available data.

CT of suffers from metal-induced artefacts [ Lemmens et al., 2009 ] which dras-
tically complicate automatic segmentation near prostheses. To make things
worse patients suffering from prosthetic loosening often have very poor bone
quality yielding low CT image contrast with intensity values overlapping those
of other tissues. Statistical Shape Models are useful for segmenting objects
from low quality image data, but fare badly when modelling pathological tis-
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sues (such as fibrotic lesions) with no generalizable geometry [ Heimann and
Meinzer, 2009] and/or consisting of several small isolated regions.

Several papers have been published describing automatic statistical pixel- or
voxel segmentation of clinical data. By combining several complementary im-
age features, voxel classifiers deliver reasonable classification performance in
spite of metal-induced CT imaging artefacts, and without resorting to explicit
geometrical modelling or human intervention. Radiographs [Loog and van
Ginneken, 2006], MRI [Folkesson et al., 2007] and CT [van Rikxoort et al.,
2009] have been subjected to pixel/voxel classification. Standard approaches
generally make use of multi-scale image intensity as well as higher order spa-
tial derivatives to describe local image variations and “texture”. Image inten-
sity variation between scans can complicate X-ray and MRI feature selection,
but CT scanners are largely immune to this due to their well defined and cal-
ibrated output measured in Hounsfield Units (HU). The geometric position
of the image pixels or voxels can be omitted [Loog and van Ginneken, 2006]
or incorporated [van Rikxoort et al., 2009] into the classifier’s feature space,
although care must be taken so that the chosen features remain invariant to
inter-scan orientation and scaling offsets.

The aim of this study was to develop an automated voxel classifier that can
serve as the first step in a segmentation pipeline, eventually leading to patient-
specific mechanical modelling. We are interested in the 3D distribution of
bone, cement and fibrotic tissue around the prosthesis, which defines the hip’s
mechanical stability. In this paper we present statistical voxel classifiers that
classify periprosthetic tissues into six possible tissue categories, namely ce-
ment, fibrotic lesion, trabecular bone, cortical bone, intramedullary canal and
exterior. To our knowledge this is the first time that such a 3D statistical voxel
classifier has been applied to periprosthetic CT image data. The classifiers are
trained on manually segmented CT scans of five patients with clinically loose
prostheses, and evaluated in a (per patient) leave-one-out scheme. Image
features are chosen so that they can be computed fully automatically. Once
trained, tissue classification can be performed automatically, delivering an ap-
proximate tissue distribution as output. This initial classification forms a good
foundation for further post-processing and eventual automatic segmentation.
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5.2 Method

5.2.1 Image parameters

We obtained data from five different patients diagnosed with loose femoral
prostheses causing pain and immobility. Each patient was scanned in a Toshiba
Aquilion CT scanner using its FC30 “bone kernel", yielding the highest possi-
ble resolution, at the cost of increased noise. All scans were performed with
a peak tube voltage of 135kV. Since we obtained the clinical data retrospec-
tively there was some inter-scan variation, most notably tube current (150mA
to 400mA) and in-slice voxel spacing (0.44mm to 0.59mm). All scans had a
slice thickness of Imm. The scanner was set to include a single hip in its
reconstruction field of view.

In addition to normal between-patient anatomical differences we also note
that different prosthesis designs and sizes were used. All prostheses were
of cobalt-chrome, thereby presenting a worst case scenario, since titanium
implants yield fewer artefacts.

5.2.2 Choosing image features

As pre-processing step we selected the upper part of each femur as a region of
interest (ROI). Thanks to the artificial joint we have good separation between
bony structures of the femur and pelvis. ROI extraction can therefore be
performed automatically, although this falls outside the scope of this article.

We decided on using eleven image features at every voxel location. Fol-
lowing an approach similar to previous authors [Loog and van Ginneken,
2006, Folkesson et al., 2007, van Rikxoort et al., 2009] we used CT grayscale
values at multiple scales as our first four features. These features describe
the native in-slice voxel resolution (0.5mm x 0.5mm x 1mm) along with
Gaussian-smoothed versions having spherical standard deviations of 1mm,
2mm and 5mm. Features five to eight consist of the image gradient magni-
tude computed from at the same scales as the grayscale features.

The rationale behind using a Gaussian multi-scale approach is twofold. Firstly,
by combining neighbouring pixel values, we tend to average out individ-
ual voxel noise (at the cost of resolution). Secondly, by adding informa-
tion of neighbouring voxels we include neighbourhood information to every
voxel (for example we can discern between an isolated bright voxel and a
bright voxel in a bright neighbourhood, without doing explicit neighbour-
hood searches). Similarly to [van Ginneken et al., 2006] and in constrast to
[Folkesson et al., 2007] we decided against using second-order and higher
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derivatives as feature descriptors, arguing that these are excessively sensitive
to image noise and contribute little additional information to our model.

The last three features (numbers nine to eleven) are distance metrics, chosen
to be automatically computable and insensitive to rotational and translational
offsets. In each of these three cases we compute the signed distance in mil-
limeters, so as to be independent of the scan resolution and anisotropies.

Firstly, we compute the distance from the metal prosthesis. Metal has such a
high contrast in CT that it can easily be found by performing a simple thresh-
old at e.g. 5000 HU. This feature gives us useful information as to the “cen-
tredness” of any given voxel, which is useful since periprosthetic tissues are
approximately radially distributed.

The second distance metric is computed along the scan (Z) axis from the cen-
tre of the prosthesis head. This can automatically be computed by the mean
voxel location of the prosthesis head, which is easily recognizable from the
previously mentioned threshold due to its increased diameter at one extrem-
ity. Due to the geometrical constraint of a patient lying on the CT gantry the
prosthesis’s long axis is always aligned with the scan direction, giving this
distance a consistent interpretation.

Lastly we compute the the signed distance from the convex hull formed by the
femur. We note that this adds information because femoral tissues have said
radial distribution, with cortical bone being closest to the outer hull of the fe-
mur. We compute this feature by first thresholding the volume of interest (at
600 HU). The threshold of 600 HU was chosen so that only cortical bone, ce-
ment and the metal prosthesis fall above the threshold. We then subtract a per
slice 7x7x1 voxel dilated mask of the metal prosthesis, thereby retaining only
cortical bone and cement, along with possibly isolated metal-induced imaging
artefacts. Next, we perform a cascaded 3x1x1 + 1x3x1 morphological open-
ing to remove remaining metal-induced noise voxels. The result is a thresh-
olded mask containing many islands and holes, caused by the CT shadow
of the prosthesis, trabecular bone, fibrous tissue, intramedullary canal and
zones of low bone density. Computing the slice-by-slice convex hull of this
mask gives us a reasonable approximation to the convex hull of the femur’s
cortical shell.

5.2.3 Training the voxel classifiers

To provide training and validation labels to the image voxels, an experienced
user manually segmented each femur using the interactive MITK software
tool [Maleike et al., 2009]. The segmented masks were then used to select
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Figure 5.1 — Projection of the six tissue categories represented in feature space

the relevant voxels for the eleven image feaures. The statistical classifiers
were constructed and trained on these features using PRTOOLS [Duin et al.,
2007], a pattern recognition toolbox for MATLAB.

Our classification task involves separating six distinct tissue types as collec-
tions of points in an eleven-dimensional space. Figure 5.1 shows a 2D pro-
jection along the computed axes of greatest separation of the 11 dimensional
training voxel feature space. We see poor separation between classes indi-
cating a very challenging classification problem. Selecting an appropriate
classifier for this task is not a straightforward choice. Authors of recently
published medical voxel classifiers have opted for a colourful mix of k-nearest-
neighbour (kNN) [van Ginneken et al., 2006, Folkesson et al., 2007], linear-
and quadratic discriminant (LDC & QDC) [van Rikxoort et al., 2009], deci-
sion trees [ Akselrod-Ballin et al., 2009] and neural networks, to name a few.
In this paper we chose to compare several available classifiers namely LDC,
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QDC, Parzen, kNN, back-propagation neural network as well as a combined
”voting" classifier composed of simple LDC and kNN classifiers.

The five different patient CTs were use to test the classifiers in a rotating leave-
one-out scheme, where each time the classifiers were trained on four of the
CT datasets and tested on the remaining set. At each step in the leave-one-out
scheme we transform all features such that the training features have a zero
mean and unit variance. Depending on the classifier we use a suitable sized
random subset of training voxels. We use a subset of all available training
voxels to keep the training time in check — a kNN classifier, for example, needs
to store all training data internally. For each classifier we use an equal number
of training samples per tissue class, along with equal priors.

5.3 Results & Discussion

The different classifiers’ performance is shown in Fig. 5.2. We see that the
very fast LDC and QDC classifiers are generally less capable than the more
complex alternatives. We were surprised at the relatively poor results ob-
tained with the 3-layer back propagation neural network. The combined
classifier delivered good classification results, although we found the Parzen
classifier to have the most stable response across all tissue classes and test
cases.

Our small dataset of five patients is a limitation in assessing the true poten-
tial of these methods. The limitation lies not in the number of data points
available during training, but rather in their ability to represent the varia-
tion in human femora and scan parameters. However, it can be expected that
segmentation performance will increase as larger and therefore more general
training sets become available.

Figure 5.3 illustrates that automatic voxel segmentation correctly identifies
the general distribution of the separate tissues, even before any additional
post-processing. Looking at Table 5.1, we see that the most problems occur
when classifying cement and fibrotic tissue. Both of these exist close to the
metal prosthesis where they are strongly affected by metal artefacts. Voting
between each voxel and its neighbours’ soft (continuous) classification can
improve filtering of misclassifications by incorporating more geometrical co-
herence.
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Figure 5.2 — Median classification error for different tissues and classifiers

Manual Automatic classification
seg. Canal | Cem | Cort | Ext | Fibr | Trab

Canal 98.5 | 04 | 0.3 0.0 | 0.8 | 0.0
Cement 1.8 | 67.3 | 6.3 0.4 | 215 | 2.7
Cortical 1.5 6.0 | 782 | 1.1 6.1 7.0
Exterior 0.2 2.0 1.7 | 78.4 | 4.9 | 12.8
Fibrous 1.6 159 | 64 2.0 [ 614 | 12.7

Trabecular 0.0 1.6 3.8 | 128 | 9.7 | 72.0

Table 5.1 — Confusion matrix for the Parzen classifier over all test femora (see
also Fig. 5.2)
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(b) ©

Figure 5.3 — a) Sagittal CT slice next to b) its tissue classification using manual
segmentation and ¢) our automatic Parzen classifier

65



5.4 Conclusion & Future work

The voxel classifier presented in this paper offers an automatic tool for per-
forming an initial segmentation of 3D CT scans of loosened hip prostheses.
We achieve a correct classification rate ranging between 66% and 70% for
fibrotic lesions, bone and cement, the tissues we are most interested in. The
result obtained represents a useful first step towards automated segmenta-
tion, and a significant improvement above simple threshold-based segmenta-
tion. Future work will include post-processing the initial classification result
by incorporating neighbourhood voting and the the classification certainty
associated with each voxel. We see this solution as the first step in a fully
automatic tissue segmentation pipeline.
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