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Abstract

Objective

Computed tomography is the modality of choice for measuring osteolysis but
suffers from metal-induced artefacts obscuring periprosthetic tissues. Pre-
vious papers on metal artefact reduction (MAR) show qualitative improve-
ments, but their algorithms have not found acceptance for clinical applica-
tions. We investigated to what extent metal artefacts interfere with the seg-
mentation of lesions adjacent to a metal femoral implant and whether metal
artefact reduction improves the manual segmentation of such lesions.

Materials and methods

We manually created 27 periprosthetic lesions in 10 human cadaver femora.
We filled the lesions with a fibrotic interface tissue substitute. Each femur was
fitted with a polished tapered cobalt-chrome prosthesis and imaged twice –
once with the metal, and once with a substitute resin prosthesis inserted.
Metal-affected CTs were processed using standard back-projection as well as
projection interpolation (PI) MAR. Two experienced users segmented all le-
sions and compared segmentation accuracy.

Results

We achieved accurate delineation of periprosthetic lesions in the metal-free
images. The presence of a metal implant led us to underestimate lesion
volume and introduced geometrical errors in segmentation boundaries. Al-
though PI MAR reduced streak artefacts, it led to greater underestimation of
lesion volume and greater geometrical errors than without its application.

Conclusion

CT metal artefacts impair image segmentation. PI MAR can improve sub-
jective image appearance but causes loss of detail and lower image contrast
adjacent to prostheses. Our experiments showed that PI MAR is counterpro-
ductive for manual segmentation of periprosthetic lesions and should be used
with care.
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2.1 Introduction

Aseptic loosening caused by osteolysis is one of the foremost problems lim-
iting the survival of hip prostheses [Agarwal, 2004]. Plain radiographs (Fig.
2.1) are the default modality for evaluating osteolysis [Garcia-Cimbrelo et al.,
2007] but tend to underestimate lesion volume [Agarwal, 2004]. [Claus
et al., 2003] even refers to “the lack of any relationship between the two-
dimensional lesion size and the actual three-dimensional lesion volume.”

In recent years CT has gained popularity for quantifying periprosthetic os-
teolysis. There seems to be consensus that CT has superior sensitivity and
measurement accuracy for the detection and measurement of osteolysis com-
pared to traditional radiographs [Cahir et al., 2007, Looney et al., 2002, Puri
et al., 2002, Schwarz et al., 2003, Walde et al., 2005]. Unfortunately CT im-
ages suffer from metal-induced artefacts in the vicinity of metal prostheses
[Liu et al., 2009, Watzke and Kalender, 2004]. These most notably arise due
to beam hardening and photon starvation [Kalender, 2005, Lee et al., 2007].

Although there still exists no general solution for removing metal-induced
artefacts [Hsieh, 2003], several approaches have been offered. [Glover and
Pelc, 1981] and [Kalender et al., 1987] first proposed replacing metal sino-
gram projections with interpolations of adjacent data – referred to here as
projection interpolation (PI) metal artefact reduction (MAR). To our knowl-
edge all MAR techniques that have found clinical application are based on
PI. A notable example is the algorithm [Watzke and Kalender, 2004] imple-
mented on the Siemens SOMATOM from 1987 to 1990, and which is still un-
dergoing further development [Liu et al., 2009]. Commercial software such
as ScanIP (Simpleware, Exeter, U.K.) offers PI as an image preprocessing tool.
These MAR techniques can lead to lowering of detail and cause unpredictable
secondary artefacts, such as that described by [Mahnken et al., 2003] as a
“ground glass like fan-shaped artifact”.

In comparison, non-PI algorithms are computationally expensive and remain
confined to academic papers [Watzke and Kalender, 2004, Bal and Spies,
2006, Man et al., 2001, Lemmens et al., 2009, Wang et al., 2000]. “Extended
CT scale” techniques [Link et al., 2000] have been made redundant by the 16-
bit quantization used in modern scanners such as the Toshiba scanner used
in this study.

The aim of this study was to examine the extent to which the presence of a
metal hip prosthesis, and the subsequent application of PI MAR, affect the
segmentation of periprosthetic fibrous lesions. Does the presence of metal
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Figure 2.1 – In a clinical radiograph, osteolysis is indicated by radiolucent re-
gions adjacent to the prosthesis (arrows) .

decrease the manual segmentation performance of such lesions? Does MAR
improve the manual segmentation compared to the metal-degraded CT im-
ages? To answer these questions we first compare the segmented lesion vol-
umes to ground truthed volumes obtained by filling each lesion with water.
Second, we compare the segmentation boundaries between scans acquired
under optimal metal-free scanning to those found in metal-degraded images,
both before and after the application of MAR. Contrast and image intensity
gradients are measured across segmentation boundaries to help explain the
results. This enables us to either recommend or warn against MAR as a pre-
processing step in assessing periprosthetic lesions.
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2.2 Materials and Methods

Fig. 2.2 shows a flow chart of the complete experimental work flow. Ten hu-
man femora were retrieved post-mortem from seven donors. These comprised
three female and seven male femora with a mean age of 80.7 years (range
67-98). Dual energy X-ray absorptiometry (DXA) measurements performed
prior to preparation yielded a median T-score of −0.7 (average −1.4) within
a range of −4.9 to +1.1. A T-score of −1 or higher is considered normal,
whereas clinical osteoporosis is defined by a T-score of −2.5 or lower [Beers,
2006]. All femora were preserved in formalin and surrounding soft-tissue re-
moved. We fitted each femur with a polished tapered cobalt-chrome Exeter
size 42-2 stem (Stryker, Limerick, Ireland). For fixation we used radiopaque
contrast-enhanced bone cement (Palacos, Biomet, Warsaw, IN, USA). The
prostheses were implanted under supervision of an experienced orthopedic
surgeon (H.J.L.vdH.) while using standard cemented implantation protocol.
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Figure 2.2 – Flow chart of the experiments performed in this study.
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To enable scanning each femur with and without the metal prosthesis, we
required removable prostheses. After each prosthesis was cemented it was
mechanically removed from the femur, leaving the remaining cement mantle
and femur intact (Figs. 2.3, 2.4). This was possible due to the Exeter pros-
thesis’s smooth polished surface and tapered shape.

Figure 2.3 – The removable Exeter prosthesis is shown partly dislodged from
one of the test femora.

Each femur was axially bisected so as to intersect the cement mantle. We sub-
sequently created lesions both proximally and distally from the sawn-through
interface and at varying locations along the circumference (Fig. 2.4) using a
rotary burr (Dremel). In total, 27 cavities were created having a mean vol-
ume of 2.4 ml (range 1.1-5.0)ml. We measured lesion volumes by using a
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Figure 2.4 – Femoral lesions mechanically created anterior and posterior of the
cement mantle are shown with the prosthesis removed.

0.2ml graduated syringe to fill each cavity with water. The lesions were then
drained and filled with a fibrous tissue substitute.

Previous studies used water [Stamenkov et al., 2003], lean beef mince [Walde
et al., 2005, Weiland et al., 2005], or an unspecified “soft-tissue equivalent”
material to fill artificially created lesions [Claus et al., 2003]. In this study
we specifically chose radiologically compatible tissue to represent the fibrotic
zones. On four occasions, real periprosthetic fibrotic tissue was retrieved dur-
ing hip implant revision surgery and its CT opacity measured ex vivo. These
tissues had a mean opacity of 72 Hounsfield Units (HU) with standard devi-
ation of 10 HU. This differs substantially from water (mean 0 HU) and our
measurements for lean beef mince (mean 50 HU). After evaluating several
commercially available alternatives we chose chicken liver, which was consid-
ered sufficiently similar with a mean opacity of 77 HU and standard deviation
of 6 HU.

During scanning each femur required an inserted prosthesis to hold the two
bisected halves in place. When the metal prosthesis was removed we used a
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mould-cast resin substitute. The resin had a measured CT opacity of 150 HU,
placing it above the opacity of soft tissues and blood ('50 HU), but less than
bone (>300 HU) and much less than metal (>3,000 HU) [Mukherjee and Ra-
jagopalan, 2007]. The resin prosthesis’s low radiopacity did not significantly
contribute to beam hardening, the main source of metal-induced artefacts,
and therefore enabled us to acquire optimal images for CT ground truthing.

Scans were performed on a helical CT scanner (Aquilion 16, Toshiba Medical
Systems, Japan) at 135 kVp using a 200 mA tube current. The in-slice voxel
spacing was 0.44× 0.44mm with a slice thickness of 0.5mm. Following the
advice of [Lee et al., 2007] and [Douglas-Akinwande et al., 2006], we chose
a standard smooth reconstruction filter (FC 12) to minimize metal artefacts.

For MAR we used the recent sinogram-interpolation method of [Veldkamp
et al., 2010]. This algorithm has a lot in common with the original method
of [Kalender et al., 1987] but uses raw sinogram data to interpolate metal
traces. Adding a fraction of the original metal signal to the interpolation has
a similar role as the nonzero “confidence parameter” of [Oehler et al., 2008]
and makes the implant visible in the final reconstruction.

Each of the 27 fibrotic lesions was independently and manually segmented
by each of two experienced users (F. M. and G.K.) using MITK, an interactive
segmentation software tool [Maleike et al., 2009]. F.M. and G.K. indepen-
dently segmented the resin prosthesis volumes as well as the metal prosthesis
volumes with and without application of MAR. F.M. and G. K. segmented the
volumes sequentially and in randomized order, with 2 weeks separating their
segmentation work.

The volumes of the segmented lesions were compared to the physically mea-
sured ground-truthed fluid volumes. The metal-affected and MAR image seg-
mentations were registered to their metal-free counterparts using a 3D iter-
ative closest point (ICP) algorithm, correcting for translational and/or rota-
tional offsets between scans. Geometric deviation in each segmented metal
or MAR volume was compared to the corresponding metal-free resin pros-
thesis volume. To avoid interobserver bias when comparing segmentations
performed with metal, MAR, or resin volumes, we always compared pairwise
segmentations of the same lesion on a per-user basis. Measurements by F.M.
and G.K. were treated as separate and not averaged.

The residual shape difference between each segmentation pair was computed
by their Hausdorff distance, mean Hausdorff distance, and Dice coefficient.
The Hausdorff distance is defined as the global maximum of all the minimum
distances between two surfaces. The mean Hausdorff distance is the mean

24



C
H

A
P

T
E

R
2

M
E

A
S

U
R

IN
G

D
E

S
P

IT
E

C
T

A
R

T
E

FA
C

T
S

minimum distance between the two surfaces. The Dice coefficient is a ratio
between the volumes enclosed by the two surfaces, defined by c = 2|A∩B|

|A|+|B| and
has a value in the range [0, 1] where 1 represents complete overlap between
volumes and 0 represents completely disjoint volumes. A perfectly matched
segmentation pair would have a zero Hausdorff distance and a Dice coefficient
of one, whereas a bad match will have a high Hausdorff distance and Dice
coefficient approaching zero. The Dice coefficient and Hausdorff distance are
well suited to evaluating differences in 3D segmentation such as in [van der
Lijn et al., 2008].

For each segmentation boundary we computed the median image gradient
magnitude, as well as the Michelson contrast between the inner and outer
region defined by this boundary. The Michelson contrast for each lesion is
defined as Iout−Iin

Iout+Iin
where Iin and Iout represent the median image intensities

in a 1 mm wide region symmetrically located inward and outward of the
segmentation border.

Image registration, distance metrics, and contrast metrics were computed
using the Insight Segmentation and Registration Toolkit (ITK), Visualization
Toolkit (VTK) and the Python programming language. All computations were
performed on the DeVIDE image processing and visualization platform [Botha
and Post, 2008].

We did not assume normal distributions of the measured differences in vol-
ume, edge gradient magnitude, Michelson contrast, pairwise Hausdorff dis-
tances, or Dice coefficients. This decision was supported by the Shapiro-Wilk
test for normality, indicating that the hypothesis of normality should be re-
jected for several of the measurement pairs, as is also visually evidenced
in asymmetry in several of the measurement distributions (e.g. Figs. 2.6
and 2.8). Distributions of measurements and differences between measure-
ment pairs are described by nonparametric measures such as median and
interquartile range. Rather than the Student’s t-test we therefore chose the
Wilcoxon signed rank test to compare measurements of the same quantities
under metal-free, metal-containing, and MAR acquisition. We furthermore
chose not to assume linear relationships between variables when testing for
correlation, choosing instead to use Spearman’s rank correlation coefficient,
which serves as a nonparametric analogue to Pearson’s correlation.
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2.3 Results

To answer whether the presence of metal degrades segmentation performance,
we compared segmentations performed on the metal-free ground-truthed im-
ages to those of metal-affected images. In metal-free image segmentations we
measured volumes that were not significantly different (P = 0.65) compared
to the physically measured fluid volumes (Fig. 2.5), while metal-containing
CT scans tended to significantly (P = 0.002) underestimate the physically
measured volumes. The Hausdorff distances, mean Hausdorff distances, and
Dice coefficients of metal-affected versus metal-free images show low dissim-
ilarity albeit with several outliers (Figs. 2.6, 2.7, 2.8). Michelson contrast
across segmentation boundaries is significantly lower (P = 0.002) than for
metal-free scans (Fig. 2.9). Image gradient magnitudes on segmentation
boundaries also have a lower median value compared to metal-free images
(Fig. 2.10), although this difference is not significant (P = 0.811).

Parameter Median difference Significance

Volume -0.1 mm 0.007
Hausdorff distance -0.62 mm 0.400

Mean Hausdorff distance -0.009 mm 0.474
Dice coefficient 0.0028 0.453

Median edge contrast 0.0046 0.885
Median edge gradient -9 HU/mm 0.228

Table 2.1 – Interobserver differences calculated pair wise over all lesions accord-
ing to the Wilcoxon signed rank test. The only statistically significant difference
is a 0.1 ml bias in measured volume. (HU ≡Hounsfield Units).

The second question is whether PI MAR improves segmentation performance
relative to unprocessed metal-degraded CT. Unexpectedly, we found that vol-
umes measured after application of PI MAR were even smaller than those
measured in the metal-affected scans (Fig. 2.5), and significantly smaller
than the ground-truthed volumes (P < 0.001). We see that the MAR segmen-
tations exhibit significantly larger geometrical deviations (P < 0.001 in all
three cases) from the ground-truthed results than unprocessed metal scans
(Figs. 2.6, 2.7, 2.8). Michelson contrast across segmentation boundaries
(Fig. 2.9) is significantly lower than for either resin scans (P < 0.001) or
unprocessed metal (P = 0.003).
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Figure 2.5 – Metal-free CT accurately estimates volume, whereas metal degra-
dation causes volume underestimation. MAR causes even further volume under-
estimation.

Image gradient magnitudes on segmentation boundaries (Fig. 2.10) are sig-
nificantly reduced compared to either metal-free ground-truthed or unpro-
cessed metal scans (P < 0.001 in both cases).

We found no significant correlation between the lesion size or DXA T-score
and any of the measured parameters using Spearman’s rank correlation coef-
ficient. Barring a statistically significant but small difference in segmentation
volume we found observations between the two independent observers to
agree well (Table 2.1).
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Figure 2.6 – Hausdorff distances compared to “resin” ground-truthed results
show maximum local segmentation boundary errors.
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Figure 2.7 – Mean Hausdorff distances compared to “resin” ground-truthed re-
sults show average segmentation boundary errors.
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Figure 2.8 – Dice coefficients compared to “resin” ground-truthed results show
volumetric agreement between segmentations.
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Figure 2.9 – The median Michelson contrast across each segmented lesion’s
boundary.
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Figure 2.10 – The median edge gradient magnitude across each segmented le-
sion’s boundary.

Figure 2.11 – A CT slice showing fibrous-tissue lesions (arrows). A: with resin
prosthesis and B: metal prosthesis. C: after sinogram in-painting, metal artefacts
are reduced at the cost of a loss in periprosthetic detail.
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2.4 Discussion

We set out to determine whether the presence of a metal prosthesis and sub-
sequent projection interpolation metal artefact reduction (PI MAR) affect the
segmentation of periprosthetic lesions resembling osteolysis. We compared
segmentation volume as well as geometrical deviation between segmenta-
tions performed with and without the presence of metal and after application
of PI MAR.
We believe that the observed trend of lowered segmentation performance due
to MAR is widely relevant to the diagnosis and quantification of periprosthetic
tissues from CT. Our experimental data were obtained under optimal scanning
conditions, with all soft-tissue removed from around the femora. In the clin-
ical setting the image degrading effects of metal-induced beam hardening,
as well as secondary artefacts created by MAR, are likely to present a greater
obstacle to lesion detection and quantification than in the carefully controlled
environment described in this paper. Through inspection we believe that the
threshold we used for identifying metal prosthesis yielded a good segmen-
tation of the metal boundary while still excluding all surrounding biological
tissue. Using a different threshold affects the delineation of the interpolation
region, and subsequently also the amount and the location of detail lost to
the MAR algorithm. A detail-retaining compromise could involve decreasing
the interpolation regions’ size at the cost of artefact suppression.
We found no tendency for manual CT-based segmentation to either over- or
underestimate lesion volume in the absence of metal hardware. When a metal
prosthesis was introduced, however, lesion volume was underestimated. This
agrees with [Walde et al., 2005] and [Leung et al., 2005] who found that CT
neither consistently underestimated nor overestimated lesion volume, and
[Stamenkov et al., 2003] who found that CT systematically underestimates
lesion volume in the presence of metal artefacts. We explain this tendency
by our measurements, which show that metal-induced artefacts cause lower
contrast across lesion boundaries, which negatively influences their visibility.
Contrary to expectation we found that lesion segmentation deteriorated even
further after application of PI MAR, with larger associated underestimation of
lesion volume and larger geometrical errors. PI MAR reduced image noise in
homogenous regions, but this was achieved at the cost of a substantial loss of
detail, evidenced by lowered edge gradients and image contrast across lesion
boundaries. [Kalender et al., 1987] mentioned that PI MAR works best for
objects with simple near-circular geometries, while [Watzke and Kalender,
2004] mentioned that PI MAR is well suited to larger implants consisting of
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dense metal. This view is also echoed by [Liu et al., 2009] who wrote that
MAR improved image quality in scans of large prostheses, whereas it had a
negative effect on small metal objects due to image blurring. In this regard
we expected PI MAR to be of benefit since the Exeter prosthesis chosen for
this study meets the requirements mentioned above. Except for its smoother
appearance (Fig. 2.11C), there is little to recommend the application of PI
MAR above the original metal degraded image (Fig. 2.11B). Detail in the
MAR image is noticeably blurred – especially in regions closest to the metal
prosthesis. This is supported by a measured lowering of edge contrast and
edge gradient magnitude after application of PI MAR (Figs. 2.9 and 2.10).

Papers showcasing MAR algorithms [Mahnken et al., 2003, Bal and Spies,
2006, Lemmens et al., 2009] emphasize “starburst" artefacts by choosing dis-
play windows that create the impression that these artefacts completely oblit-
erate all image detail in their path. This study suggests that a human operator
who has to manually delineate structures adjacent to a metal prosthesis might
obtain better segmentations from unfiltered artefact-containing images than
from images processed with PI MAR. This contrasts with the view that MAR
invariably improves the appearance and usefulness of metal-affected clinical
scans. However, in patients with bilateral prostheses, as often seen in practice,
the beam hardening shadow connecting the two prostheses is much more pro-
nounced than in this single prosthesis experiment. In this scenario PI MAR
can improve the subjective appearance of radio- graphic cross sections by
equalizing the shadow regions [Watzke and Kalender, 2004, Lemmens et al.,
2009]. This improvement is often confirmed by radiologists’ subjective rating
[Liu et al., 2009]. For our application of measuring periprosthetic lesions,
however, there seems to be a net loss of quantifiable image information when
applying PI MAR.

CT, in the absence of metal artefacts, is an accurate and unbiased tool for mea-
suring the volume and geometry of periprosthetic lesions. When adding the
presence of a metal prosthesis the result remains usable, albeit with degraded
image quality, increased difficulty in discerning structures, and a tendency to
underestimate lesion volume. Previous studies [Liu et al., 2009, Bal and Spies,
2006] investigating the merits of MAR used subjective rating scales to assess
image quality and limited quantitative measurements to mean CT number
and standard deviation within certain regions of interest. A strength of our
study is its quantitative evaluation of segmentation performance, albeit for a
small set of lesions.

A limitation of this study is the inclusion of only 27 fibrotic lesions from 10 hu-
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man cadaver femora, all using the same type of metal prosthesis and scanned
in the same CT scanner. We limited ourselves to evaluating a single software
PI MAR implementation, and independent segmentations were performed by
only two operators. Although the femora were harvested from older patients,
only two of the 10 samples had DXA T-scores suggesting osteoporosis, whereas
osteoporosis may be more common in patient populations. Our manually cre-
ated lesions lacked the radio-dense sclerotic borders that may be found in
clinical practice [Bauer and Schils, 1999, Sofka, 2007]. The current clinical
significance of MAR algorithms is low, although it remains an active field of
research. We suggest that in addition to our general observations, validation
should be performed in any specific clinical setting whenever PI MAR is to be
considered.

2.5 Conclusion

Despite its popularity in the literature and superficial improvements to im-
age appearance, projection interpolation metal artefact reduction (PI MAR)
was detrimental to the user-guided segmentation described in this paper. It
remains to be seen whether other image-based metal artefact reduction tech-
niques can improve quantitative segmentation results of such periprosthetic
lesions.
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