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The aim of this thesis was to identify novel 
lifespan regulating loci that influence human 
longevity and population mortality. The 
genetic component of longevity is expected 
to be small (~25%, Table 1.2). However, 
it is more prominent in families in which 
longevity clusters [1,2], which makes 
individuals from such families very suitable 
for genetic research. Since long-lived 
family members show a low prevalence of 
common diseases from middle age onwards 
[3-7], the genome of long-lived individuals 
is expected to harbor genetic variants that 
promote healthy aging and protect against 
age-related disease. We previously showed 
that longevity is not easily explained by the 
absence of susceptibility loci involved in 
common age-related diseases [8]. Therefore, 
we performed a genome-wide association 
study (GWAS) of long-lived individuals 
from the family-based Leiden Longevity 
Study (LLS) to identify genetic variants 
associated with increased survival into old 
age and extended the analysis by including 
individuals from other family-based and 
population-based cohorts of European 
descent. In addition, we performed gene 
set analysis on the LLS longevity GWAS 
dataset to determine the combined effect of 
genetic variation in two candidate pathways 
on longevity. We additionally investigated 
whether leukocyte telomere length (LTL) 
could be used as a biomarker of healthy 
aging in genomic studies of large cohorts 
of middle-aged individuals and whether the 
genetic component of LTL may be involved 
in human lifespan regulation.

Main findings

In Chapter 2 we give an overview of the 
different genomic approaches that have 
thus far been used to identify mechanisms 
underlying healthy aging and longevity. Up 
till the start of this project, the number of 
identified genes and pathways contributing to 
human lifespan regulation had been limited.
	 As a first attempt to identify novel 
longevity loci, we performed a GWAS for 
longevity in long-lived families (Chapter 
3), in which we identified one locus, the 
previously implicated TOMM40/APOE/
APOC1 locus [9,10], which associates with 
a decreased probability to survive to ages 
beyond 85 years. Through a prospective 
analysis, we additionally showed that the 
ApoE ε4 allele associates with increased 
mortality after 90 years, while we observed 
the opposite effect for the ApoE ε2 allele, 
although the latter was not significant. 
We confirmed the previously reported 
associations of the locus with metabolic 
and immune-related parameters and found 
a novel association with insulin-like growth 
factor 1 (IGF-1) signaling in women. Hence, 
the mechanism underlying the association 
of the TOMM40/APOE/APOC1 locus with 
increased mortality likely involves a complex 
interaction between multiple physiological 
processes.
	 As our LLS longevity GWAS 
(Chapter 3), as well as those performed by 
other groups [11-15], had limited power, 
we substantially increased the sample size, 
thereby potentially enabling the identification 
of loci with smaller effects (odds ratio (OR) 
< 0.9 and > 1.1). Hence, in this extended 
GWAS in individuals from all over Europe 
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(Chapter 4), we identified a novel locus 
on chromosome 5q33.3 that associates with 
an increased probability to survive to ages 
beyond 90 years. In addition, prospective 
analysis showed that genetic variation at 
this locus also associates with decreased 
mortality. The locus has previously been 
reported to associate with low blood pressure 
in middle age, although we show that the 
mortality effects of the locus above 75 years 
seem to be independent from blood pressure, 
at least in the PROspective Study of 
Pravastatin in the Elderly at Risk and Leiden 
85-plus study Cohort II. Thus, although 
the locus is implicated in blood pressure 
regulation, the mechanism by which genetic 
variation at chromosome 5q33.3 influences 
longevity likely also involves other traits.
	 The genetic component of longevity 
is expected to be small (~25%, Table 1.2) 
and assumed to be determined by many 
genes with small effects [16], which might 
explain the limited number of GWAS-
identified longevity loci. Moreover, the 
increase in human life expectancy over the 
last two centuries due to environmental 
factors has resulted in the presence of so-
called long-lived "phenocopies" in the 
population, i.e., individuals that survived 
to high ages independent of their genetic 
background. Although GWA analysis 
has successfully been applied to identify 
common genetic variants with small effects 
for several traits and diseases [17-19], the 
main problem of performing GWAS for 
longevity is the relatively low number of 
long-lived individuals with GWA data. The 
EU longevity GWAS described in Chapter 
4, which is the largest GWAS for longevity 
up to date, contained ~18,000 long-lived 

individuals with GWA data. By combining 
the data of all currently available longevity 
cohorts with GWA data worldwide (~30,000 
individuals above 85 years of age), we 
might be able to identify some additional 
longevity loci, although this sample size 
will still be insufficient to identify common 
genetic variants with relatively small effects 
(OR’s between 0.9 and 1.1). Thus, instead 
of focusing on common genetic variants, 
genetic research of longevity should move 
towards genetic approaches in which the 
effect of high-impact private, i.e., observed 
in a single family, and rare genetic variants 
can be investigated, using, for example, 
next-generation sequencing.
	 Another approach is to determine 
the combined effect of single nucleotide 
polymorphisms (SNPs) on a trait, which may 
reflect the involvement of specific networks 
on aging. Hence, we performed candidate 
pathway-based SNP set analysis (Chapter 
5) using the genotypes from the dataset 
described in Chapter 3. Based on results 
from previous studies in humans and animal 
models, we selected two candidate pathways 
for human longevity, the insulin/IGF-1 
signaling (IIS) and telomere maintenance 
(TM) pathways. We showed that genetic 
variation in both these pathways is indeed 
associated with human longevity, at least 
in the LLS, which is mainly caused by the 
IIS genes AKT1, AKT3, FOXO4, IGF2, INS, 
PIK3CA, SGK, SGK2, and YWHAG and the 
TM gene POT1. In addition, we performed 
gene-set enrichment analysis on the summary 
data from the EU longevity GWAS described 
in Chapter 4 using Meta-Analysis Gene-set 
Enrichment of variaNT Associations (http://
www.broadinstitute.org/mpg/magenta/) 
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[20]. However, in this larger dataset, we 
were unable to find an enrichment of the loci 
within the IIS and TM pathways (P = 0.656 
and P = 1.000, respectively), nor in any of 
the SNP sets from Kyoto Encyclopedia of 
Genes and Genomes and Gene Ontology. 
The difference with the results from the 
analysis described in Chapter 5 might, for 
example, be due to the use of summary data 
instead of "raw" genotypes, although the 
observed associations within the IIS and TM 
could also be specific to individuals from 
long-lived families, like the LLS, or be false 
positives. Thus, SNP set analysis may be a 
useful method, that can be applied in addition 
to GWAS, to determine the combined effect 
of genetic variation in (known) genes and 
pathways on longevity.
	 A possibility to increase the sample 
size and, thus, the power of genetic 
approaches is by using biomarkers of healthy 
aging as a standardized phenotype for genetic 
studies. In Chapter 2, we discuss the concept 
of biomarker approaches and we propose 
four criteria for quantitative parameters 
(or profiles) that should be fulfilled before 
consideration as biomarkers of healthy aging. 
In short, a biomarker of healthy aging must 
(1) show a change with chronological age, 
(2) discriminate individuals based on their 
biological age and/or genetic propensity for 
longevity, and associate with (3) known 
health parameters and (4) morbidity and/or 
mortality in prospective studies.
	 A potential biomarker of healthy  
aging is LTL, since it has previously been 
associated with multiple diseases and 
increased prospective mortality [21]. We 
therefore investigated whether LTL satisfies 
the proposed criteria for biomarkers of 

healthy aging (Chapter 6). We showed that 
LTL indeed changes with chronological 
age and is associated with known health 
parameters and (immune-independent) 
prospective mortality. However, LTL was 
unable to discriminate individuals based 
on their genetic propensity for longevity 
(criterion 2). To determine whether LTL 
could nevertheless be used as a standardized 
phenotype for genetic studies of healthy aging 
and longevity, we performed a look-up of the 
previously identified LTL-associated genetic 
variants [22] in our EU longevity GWAS 
results described in Chapter 4. Interestingly, 
two of these variants, rs10936599 (TERC) 
and rs2736100 (TERT), were located near or 
in genes that we also analyzed in the gene 
set analysis of the TM pathway described 
in Chapter 5. However, none of the LTL-
associated variants showed an association 
with survival to ages above 90 years (Table 
7.1). Thus, although LTL meets three of 
the four proposed criteria for a biomarker 
of healthy aging, it could not be used as a 
standardized phenotype for genetic studies 
of healthy aging and longevity. Hence, we 
need to search for parameters that meet all 
four proposed criteria for biomarkers of 
healthy aging.

Functional characterization of 
longevity loci

Once novel longevity loci have been 
identified through genetic approaches, 
one of the challenges that lies ahead is the 
functional characterization of such loci, 
since quite a few of them will be mapped 
to non-protein-coding regions of which the 
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functional consequences are still unclear. An 
example is the chromosome 5q33.3 locus 
we identified in Chapter 4. The functional 
characterization of longevity loci consist of 
several steps (Figure 7.1), of which many 
overlap with the steps proposed for other 
traits [23,24].
	 The first step is genotypic fine-
mapping, i.e., to identify the causal variant(s) 
by, for example, targeted resequencing 
based on the linkage disequilibrium (LD) 
structure within the locus. Since targeted 
resequencing is expensive, one could first 
browse the publically available data of the 
1000 Genomes Project, which is aimed at 
capturing all common and low-frequency 
genetic variation (minor allele frequency 
> 1%) in diverse ethnic populations [25], 
to fine-map the region of interest based on 
the haplotypes of the individuals from the 
same ethnicity. Alternatively, one could 
use population specific reference panels, 
such as the ones that will be created in the 

Singapore Sequencing Malay Project [26] 
and the Genome of the Netherlands project 
[27]. We performed genotypic fine-mapping 
for the chromosome 5q33.3 locus using 
the publically available 1000 Genomes 
Project data (Chapter 4) and were able to 
fine-map our locus to a ~22.3 kb region. 
However, we have thus far not identified 
the causal variant(s), although several of the 
variants in high LD with our lead SNP (r2 
> 0.8) are, according to the ENCODE data 
implemented in the UCSC genome browser, 
located in functional elements, such as 
DNase I hypersensitivity sites, transcription 
factor binding sites, and enhancer histone 
marks (Figure 7.2). In addition, the ~22.3 
kb region seems to contain a long intergenic 
non-coding RNA, RP11-524N5.1, which has 
recently been annotated by the GENCODE 
consortium.
	 The second step is phenotypic fine-
mapping, i.e., to identify other (combinations 
of) metabolic phenotypes, clinical endpoints, 

Table 7.1 Association of leukocyte telomere length-associated genetic variants with survival to ages 
above 90 years.

n EAF
SNP Chr Position (bp) Candidate / 

closest gene
EA Cases Controls Cases Controls P

rs11125529 2 54,329,370 ACYP2 C 5,406 15,112 0.864 0.861 0.872
rs10936599 3 170,974,795 TERC T 5,406 15,112 0.248 0.250 0.467
rs7675998 4 164,227,270 NAF1 G 5,406 15,112 0.212 0.217 0.385
rs2736100 5 1,339,516 TERT C 5,024 9,996 0.474 0.485 0.452
rs9420907 10 105,666,455 OBFC1 C 5,406 15,112 0.855 0.872 0.140
rs8105767 19 22,007,281 ZNF208 G 5,406 15,112 0.719 0.714 0.702
rs755017 20 61,892,066 RTEL1 G 5,406 15,108 0.880 0.869 0.320

SNP, single nucleotide polymorphism; Chr, chromosome according to NCBI build 36; Position (bp), position 
according to NCBI build 36; EA, effect allele (allele associated with shorter LTL); EAF, effect allele frequency; P, 
P-value for the association with survival to ages above 90 years. Genes in bold were also analyzed in the gene set 
analysis of the telomere maintenance pathway described in Chapter 5.
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and diseases associating with the locus of 
interest that could shed light on the mechanism 
underlying the association of interest. A 
helpful intermediate step is to browse the 
large publically available GWAS summary 
datasets, such as those for cholesterol levels 
[19], blood pressure [28], and type 2 diabetes 
[18]. One has to note, however, that these 
sets only contain data on HapMap imputed 
SNPs (~2,500,000), although several large 
GWAS initiatives based on 1000 Genomes 
imputation are ongoing. Another approach 
that may be helpful in identifying other 
traits and diseases associating with a locus 
of interest is to perform a PheWAS, i.e., 
to determine the association of a SNP 
with thousands of different phenotypes 
at once using, for example, International 
Classification of Diseases codes in large 
population-based studies. Up till now, 
phenotypic fine-mapping of the chromosome 
5q33.3 locus using the publically available 
GWAS summary datasets has not resulted 
in identification of phenotypes that may 
shed light on the mechanisms by which the 
locus influences longevity (Chapter 4). 
Furthermore, application of the PheWAS 
approach using the available phenotypic data 
in the LLS was unsuccessful. However, we 
have, thus far, not performed the PheWAS 
approach in a large population-based study 
containing thousands of phenotypes, such as 
the Rotterdam Study. 
	 The third step is expression/ 
epigenetic quantitative trait locus (eQTL/
epiQTL) analysis, i.e., to determine whether 
there is an effect of the causal variant(s) on 
expression and/or methylation of (nearby) 
genes. The pathophysiology of aging and 
longevity involves many different tissues. 

Hence, eQTL/epiQTL effects of longevity 
loci could be present in tissues for which gene 
expression or methylation data is not (yet) 
available. In addition, eQTL/epiQTL effects 
are expected to be small, so large datasets 
will be required to achieve sufficient power 
to detect them. There are several publically 
available databases containing eQTL data 
for multiple tissue, such as adipose tissue, 
brain (cerebellum, frontal cortex, temporal 
cortex, and pons), fibroblasts, liver, skin, and 
lymphoblastoid cell lines [29,30]. In addition, 
the ongoing Genotype-Tissue Expression 
project (http://www.broadinstitute.org/gtex/) 
will provide publically available eQTL data 
for around 30 different tissues. Thus far, there 
is no publically available database containing 
epiQTL data. However, novel platforms, 
such as Infinium HumanMethylation450 
BeadChips and reduced representation 
bisulfite sequencing, have made it possible 
to determine epigenetic effects on the whole 
genome, which will aid to the identification 
of epiQTL effects in large datasets. We 
performed a look-up of all SNPs in high LD 
with our lead SNP at chromosome 5q33.3 
(r2 > 0.8) in several of these eQTL databases 
(Chapter 4). However, none of the SNPs 
showed an association with gene expression, 
so it is still unclear on which gene(s) and in 
which tissue(s) our locus exert its effects.
	 When a candidate susceptibility gene 
or region is identified (through step 1-3), the 
final step is to perform functional assays in 
model systems (animals/cell models). There 
are several animals that are routinely used 
in research of healthy aging and longevity, 
namely worms, flies, and mice. In these 
animals lifespan regulating effects could 
be studied by modifying gene functions 
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(mutagenesis) via RNA interference, knock-
out, or overexpression. In addition, mice 
could also be used to study the effect of 
genes on the physiology and pathology of 
aging in different tissues [31]. However, 
before a gene or region can be studies in 
animal models it is important to determine 
the conservation. The chromosome 5q33.3 
region, for example, is only conserved in 
primates, so for this region studies in animal 
models seem not very useful. To study the 
effects of the gene or region of interest 
in humans, one could create cell lines of 
different tissues by differentiation of induced 
pluripotent stem cells obtained by de-
differentiation of fibroblast from carriers and 
non-carriers of the locus of interest.

Reducing heterogeneity in the 
healthy aging phenotype

Our genetic analyses illustrate that it is very 
difficult to identify human longevity loci, 

which may be due to the complexity of the 
phenotype along with the low number of 
long-lived individuals available for genetic 
research. In addition, analyses might be 
confounded by environmental factors that 
give rise to long-lived "phenocopies", 
which could even be present within long-
lived families. Hence, to reduce phenotypic 
heterogeneity, additional selection criteria 
are required to select the most optimal 
individuals for genetic research, which 
could, for example, be based on the age 
(centenarians or even supercentenarians), 
zygosity (monozygotic twins), and/or 
family characteristics (families with the 
highest number of long-lived individuals or 
best family history for longevity, i.e., the 
longest survival among their parents) of an 
individual.
	 In addition, genetic studies may 
profit from biomarker studies that are 
aimed to identify phenotypes that reflect 
biological age. Up till now, several potential 
biomarkers of biological age have been 

Figure 7.1 Functional characterization of longevity loci.
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identified, such as fasting glucose levels, 
free triiodothyronine (fT3) levels, and gait 
speed (see Chapter 2 for an overview). 
The next step is to determine whether these 
biomarkers, which should preferably be 
combined into one multimarker score, could 
be used as standardized phenotype for genetic 
studies. Therefore, the joint effect of (GWAS-
identified) genetic variants associated with 
this multimarker score should be tested for 
their effect on longevity in using, for example, 
genetic risk scores. Ideally, one would 
perform a GWAS for this multimarker score 
in individuals from long-lived families, since 
identified loci are expected to be involved in 
the mechanism underlying their longevity as 
well. However, there is large heterogeneity 
between long-lived family studies and the 
number of individuals with GWA data (< 
10,000 individuals) is insufficient to identify 
common genetic variants with small effects. 
Hence, instead one could use the loci 
identified through large GWAS of population-
based cohorts (> 100,000 individuals). Thus 
far, however, the only potential biomarker of 
biological age for which multiple GWAS-
identified loci have been reported is fasting 
glucose, although the currently identified 
genetic variants only explain 4.8% of the 
variance in fasting glucose levels [32]. 
Hence, larger GWAS are required to identify 
genetic variants explaining the remaining 
heritability of fasting glucose, fT3, and 
gait speed, which could subsequently be 
tested for their association with mortality 
and longevity. Interestingly, a look-up of 
the fasting glucose-associated variants in 
our EU longevity GWAS results described 
in Chapter 4 showed that several of these 
variants also seem to associate with survival 
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to ages above 90 years (Table 7.2), which is 
more promising than what we observed for 
LTL-associated genetic variants (Table 7.1).

Combining study designs for 
biomarker research

In addition to the lack of a well-defined 
phenotype for healthy aging, there is 
currently no study that allows testing of 
all the proposed criteria for a biomarker of 
healthy aging. The most optimal study design 
would be a population-based study in which 
a large group of families is followed during 
their entire lifetime and examined at multiple 
time points. An example of such a study 
is LifeLines (https://lifelines.nl/), which 
currently contains ~146.000 individuals 
from the Northern part of the Netherlands. 
However, this study is still in the recruitment 
phase and at the moment the best alternative 
for studies of healthy aging and longevity is 
to combine family-based studies with large 
prospective population-based studies.
	 The advantage of the study design 
of the LLS, as compared to other long-lived 
family-based studies, is that individuals 
have been followed-up for over 10 years. 
Hence, the LLS allows testing of most of 
the proposed criteria for a biomarker of 
healthy aging, although replication of results 
in larger family-based and prospective 
studies with longer follow-up times is still 
required. The association of a marker with 
chronological age could be determined 
using all individuals included in the study, 
although one has to take into account that 
the age range in the LLS is limited due to 
the family-based design of the study. The 

association of a marker with biological age 
could be determined by comparing the LLS 
offspring (considered as "healthy agers") 
with their spouses (controls). The strength 
of this comparison is that the offspring and 
their spouses share the same environment, so 
observed difference are most likely caused 
by differences in the genetic background. 
However, since approximately 50% (for 
a dominant inherited locus) or 75% (for a 
recessive inherited locus) of the offspring 
will not have inherited the genes responsible 
for the long-lived phenotype in their parents, 
phenotypic differences might be diluted due 
to the presence of individuals in the offspring 
group without the genetic background to 
become long-lived. In addition, the effects 
of a marker on biological age might only be 
present at older ages. Hence, these effects 
might not be detected in the middle-aged 
offspring and spouses. The association of 
a marker with known health parameters 
could be determined in the combined group 
of offspring and controls, for which data 
on numerous phenotypes is available. The 
association of a marker with mortality could 
be determined in the LLS nonagenarians 
(highly advanced age) and the combined 
group of LLS offspring and controls (middle 
age). In addition, the latter group could be 
used to determine the association of a marker 
with morbidity.

Novel methods and technologies 
plea for data integration

Research into human lifespan may also benefit 
from novel technologies and methodologies 
that have (recently) become available. 
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Table 7.2 Association of fasting glucose-associated genetic variants with survival to ages above 90 years.

n EAF
SNP Chr Position 

(bp)
Candidate /  
closest gene

EA Cases Controls Cases Controls P

rs340874 1 212,225,879 PROX1 C 5,406 15,112 0.548 0.553 0.728
rs780094 2 27,594,741 GCKR C 5,406 15,111 0.607 0.626 0.509
rs560887 2 169,471,394 G6PC2 C 5,406 15,112 0.698 0.703 0.515
rs11715915 3 49,430,334 AMT C 5,406 15,104 0.692 0.701 0.024
rs11708067 3 124,548,468 ADCY5 A 5,406 15,111 0.765 0.767 0.491
rs1280 3 172,195,984 SLC2A2 T 5,406 15,112 0.858 0.867 0.685
rs7651090 3 186,996,086 IGF2BP2 G 5,406 15,112 0.288 0.302 0.241
rs7708285 5 76,461,623 ZBED3 G 5,406 15,105 0.290 0.280 0.505
rs4869272 5 95,565,204 PCSK1 T 5,406 15,111 0.689 0.686 0.915
rs17762454 6 7,158,199 RREB1 T 5,406 15,112 0.258 0.253 0.493
rs9368222 6 20,794,975 CDKAL1 A 5,406 15,107 0.280 0.272 0.527
rs2191349 7 15,030,834 DGKB / TMEM195 T 5,406 15,112 0.536 0.532 0.334
rs2908289 7 44,190,467 GCK A 5,406 15,112 0.178 0.175 0.570
rs6943153 7 50,759,073 GRB10 T 5,406 15,112 0.314 0.315 0.043
rs983309 8 9,215,142 PPP1R3B T 5,406 15,111 0.108 0.114 0.749
rs11558471 8 118,254,914 SLC30A8 A 5,406 15,112 0.687 0.691 0.027
rs10814916 9 4,283,150 GLIS3 C 5,406 15,112 0.497 0.494 0.375
rs10811661 9 22,124,094 CDKN2B T 5,406 15,112 0.820 0.828 0.803
rs16913693 9 110,720,180 IKBKAP T 4,417 10,445 0.969 0.972 0.800
rs3829109 9 138,376,587 DNLZ G 5,406 15,112 0.702 0.711 0.091
rs11195502 10 113,029,657 ADRA2A C 5,406 15,112 0.916 0.911 0.434
rs7903146 10 114,748,339 TCF7L2 T 5,406 15,111 0.283 0.282 0.028
rs11607883 11 45,796,285 CRY2 G 5,406 15,112 0.473 0.479 0.475
rs11039182 11 47,303,299 MADD T 5,406 15,112 0.707 0.724 0.854
rs174576 11 61,360,086 FADS1 C 5,406 15,112 0.650 0.660 0.004
rs11603334 11 72,110,633 ARAP1 G 5,406 15,110 0.844 0.834 0.755
rs10830963 11 92,348,358 MTNR1B G 5,406 15,111 0.283 0.288 0.046
rs2657879 12 55,151,605 GLS2 G 5,406 15,112 0.203 0.178 0.111
rs10747083 12 131,551,691 P2RX2 A 5,406 15,112 0.683 0.690 0.921
rs11619319 13 27,385,599 PDX1 G 5,406 15,108 0.211 0.217 0.568
rs576674 13 32,452,302 KL G 5,406 15,112 0.159 0.160 0.747
rs3783347 14 99,909,014 WARS G 5,406 15,112 0.776 0.763 0.367
rs4502156 15 60,170,447 VPS13C / C2CD4A/B T 5,406 15,112 0.573 0.561 0.799
rs2302593 19 50,888,474 GIPR C 5,406 15,112 0.495 0.488 0.877
rs6113722 20 22,505,099 FOXA2 G 4,997 11,529 0.960 0.963 0.218
rs6072275 20 39,177,319 TOP1 A 5,406 15,112 0.151 0.155 0.850

SNP, single nucleotide polymorphism; Chr, chromosome according to NCBI build 36; Position (bp), position according 
to NCBI build 36; EA, effect allele (allele associated with higher fasting glucose); EAF, effect allele frequency; P, 
P-value for the association with survival to ages above 90 years.



138

Chapter 7

C
hapter 7

For genetic research, next-generation 
(whole-genome or exome) sequencing and 
multigenerational linkage may be used, since 
these require a limited number of individuals 
to identify novel longevity-associated loci.
	 Next-generation sequencing can be 
used to identify high-impact private and rare 
genetic variants associated with the trait of 
interest. This method allows hypothesis-
based, such as regions identified through 
linkage analysis, as well as explorative 
studies of the genome and has successfully 
been applied to detect novel genetic variants 
associated with, for example, Alzheimer’s 
disease [33] and bone mineral density 
[34]. We recently finished whole-genome 
sequencing of 220 nonagenarian individuals 
from the LLS with the best family history for 
longevity, i.e., the longest survival among 
their parents, to reduce heterogeneity in the 
phenotype due to "phenocopies". We will 
compare the genome of these individuals 
with that of younger controls to identify 
genetic variants that could explain the long-
lived phenotype in their families.
	 Linkage analysis takes advantage 
of the sharing of alleles between siblings 
identical by descent and/or parents and 
their offspring to identify genomic regions 
associated with the trait of interest. The 
most optimal linkage study would be 
multigenerational, i.e., containing data 
on multiple generations within families. 
However, the main problem with the use of 
the multigenerational design for longevity 
research is that there is currently no 
(combination of) phenotype(s) that is able 
to predict which middle-aged individuals 
will become long-lived. Hence, up till now, 
linkage analysis for longevity has only 

been performed using long-lived siblings. 
Nevertheless, the use of fasting glucose 
levels, fT3 levels, and gait speed, or a 
multimarker score based on all three, would 
be a good starting point for multigenerational 
linkage analysis.
	 Biomarker research has, thus far, 
mostly been focussed on single quantitative 
parameters that are also used in the clinic. 
However, several technologies have recently 
become available that made it possible to 
study age-related changes in a large part of 
the human transcriptome [35], epigenome 
[36], metabolome [37], and glycome [38], 
Due to the wealth of information obtained 
using a single-point measurement these 
omics-based technologies could potentially 
be much more informative than the single 
quantitative parameters studied so far. For 
most of the omics-based technologies one or 
more of the proposed criteria for biomarkers 
of healthy aging have already been tested 
and the most interesting potential biomarkers 
identified using these platforms are the genes 
RPTOR, ASF1A, IL7R (transcriptomics) 
[39,40], and ELOVL2 (epigenomics) [41], 
the N-glycan features LC-7 and LC-8 
[42], bisecting GlcNAc glycoforms of IgG 
(glycomics) [43], and several lipid species 
(lipidomics) [44]. However, it still needs to 
be determined whether these features also 
associate with known health parameters and 
morbidity and/or mortality before they can be 
considered as biomarkers of healthy aging.
	 Instead of testing single parameters 
and/or profiles for association with longevity 
one could try to combine data to create a 
multimarker prediction score. An example of 
a multimarker prediction score that is highly 
informative for the prediction of coronary 



General discussion

139

C
ha

pt
er

 7

heart disease is the Framingham risk score 
[45]. This score is a combination of age, 
gender, high-density lipoprotein cholesterol, 
low-density lipoprotein cholesterol, blood 
pressure, diabetes, and smoking. We 
are currently working on a multimarker 
prediction score for longevity by combining 
all clinical measurements available in the 
LLS. This multimarker prediction score, 
which, in the future, may also take into 
account omics-based measurements, should 
be able to discriminate individuals based on 
their biological age, i.e., classify individuals 
as member of long-lived families or controls. 
Subsequently, this score could be used in 
middle-aged cohorts to identify individuals 
suitable for genetic studies of longevity, even 
before these individuals have reached a high 
age. 
	 Since the use of genome-wide 
omics-based measurements often leads to 
novel findings which are hard to interpret 
biologically, multilevel data integration may 
add to the interpretability of research into 
healthy aging and longevity. Alternatively, 
data may be integrated over species to 
identify conserved pathways. In contrast 
to human studies, animal-based studies 
are being used to investigate  the effect of 
genetic manipulation and gene-environment 
interactions on life history traits and lifespan 
regulation. An example of a project which 
makes use of a data integration approach is 
the Integrated research on Developmental 
determinants of Ageing and Longevity project 
(http://www.ideal-ageing.eu/), in which late 
effects of early adverse exposures are being 
studied in various organisms simultaneously. 

Optimistically, data integration approaches 
over species contribute to the identification 
of novel conserved pathways involved in 
healthy aging and longevity. Not all the loci 
relevant for human aging, however, obtain 
attention in animal-based studies. The novel 
identified chromosome 5q33.3 region, for 
example, is a primate-specific locus involved 
in blood pressure regulation. Hence, for this 
locus, as well as the phenotype, animal-
based studies of mice and lower species may  
not be very useful.
	 On the other hand, omics-based 
measurements may be integrated using a 
systems biology approach. This approach 
covers the study of the complex interactions 
within biological systems, which requires 
both data-driven modelling and hypothesis-
driven experimental studies [46]. The 
extensive systems biology animal and 
human-based studies into the effects of aging 
on metabolism of cells and tissues requires 
perturbations and careful measurement of 
system responses. This will contribute to a 
deeper understanding of metabolism and will 
open possibilities for interpretation of human 
data. An example of this approach in humans 
is to analyze integrative personal omics 
profiles, the combination of the genetic, 
transcriptomic, proteomic, metabolomic, 
and autoantibody profile of individuals [47], 
for association with phenotypes of interest. 
This results in a model for the etiology of 
the phenotype, which may be tested in other 
individuals. Hence, a systems biology data 
integration approach may provide insight 
into the complex mechanisms underlying 
lifespan regulation.
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Conclusions

The past couple of years large genome-wide 
association meta-analyses have successfully 
identified genetic variants associated with 
age-related diseases and traits [18,19,28]. 
However, the number of GWAS-identified 
genetic variants associated with human 
lifespan, thus far, has been limited to 
TOMM40/APOE/APOC1 locus and our novel 
identified locus on chromosome 5q33.3. In 
addition, pathway analysis showed that there 
seems to be a role for genes involved in IIS 
and TM.
	 A better definition of the healthy aging 
phenotype, combining study designs, as well 

as the use of novel methods and technologies, 
such as next-generation sequencing, may 
help to identify novel loci contributing to 
longevity. In addition, biomarker approaches 
using omics-based technologies and 
multimarker prediction scores applied to 
individuals from long-lived families and 
large prospective study populations can help 
to identify parameters and/or profiles that 
can be used as standardized phenotype for 
genetic research. The data created using these 
approaches may subsequently be integrated 
over different species or in a systems biology 
approach to recognize the most relevant 
profiles and pathways involved in healthy 
aging and longevity.
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