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General discussion






General discussion

The aim of this thesis was to identify novel
lifespan regulating loci that influence human
longevity and population mortality. The
genetic component of longevity is expected
to be small (~25%, Table 1.2). However,
it is more prominent in families in which
longevity clusters [1,2], which makes
individuals from such families very suitable
for genetic research. Since long-lived
family members show a low prevalence of
common diseases from middle age onwards
[3-7], the genome of long-lived individuals
is expected to harbor genetic variants that
promote healthy aging and protect against
age-related disease. We previously showed
that longevity is not easily explained by the
absence of susceptibility loci involved in
common age-related diseases [8]. Therefore,
we performed a genome-wide association
study (GWAS) of long-lived individuals
from the family-based Leiden Longevity
Study (LLS) to identify genetic variants
associated with increased survival into old
age and extended the analysis by including
individuals from other family-based and
population-based cohorts of European
descent. In addition, we performed gene
set analysis on the LLS longevity GWAS
dataset to determine the combined effect of
genetic variation in two candidate pathways
on longevity. We additionally investigated
whether leukocyte telomere length (LTL)
could be used as a biomarker of healthy
aging in genomic studies of large cohorts
of middle-aged individuals and whether the
genetic component of LTL may be involved
in human lifespan regulation.

Main findings

In Chapter 2 we give an overview of the
different genomic approaches that have
thus far been used to identify mechanisms
underlying healthy aging and longevity. Up
till the start of this project, the number of
identified genes and pathways contributing to
human lifespan regulation had been limited.

As a first attempt to identify novel
longevity loci, we performed a GWAS for
longevity in long-lived families (Chapter
3), in which we identified one locus, the
previously implicated TOMM40/APOE/
APOCI locus [9,10], which associates with
a decreased probability to survive to ages
beyond 85 years. Through a prospective
analysis, we additionally showed that the
ApoE €4 allele associates with increased
mortality after 90 years, while we observed
the opposite effect for the ApoE &2 allele,
although the latter was not significant.
We confirmed the previously reported
associations of the locus with metabolic
and immune-related parameters and found
a novel association with insulin-like growth
factor 1 (IGF-1) signaling in women. Hence,
the mechanism underlying the association
of the TOMM40/APOE/APOCI locus with
increased mortality likely involves a complex
interaction between multiple physiological
processes.

As our LLS longevity GWAS
(Chapter 3), as well as those performed by
other groups [11-15], had limited power,
we substantially increased the sample size,
thereby potentially enabling the identification
of loci with smaller effects (odds ratio (OR)
< 0.9 and > 1.1). Hence, in this extended

GWAS in individuals from all over Europe
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(Chapter 4), we identified a novel locus
on chromosome 5q33.3 that associates with
an increased probability to survive to ages
beyond 90 years. In addition, prospective
analysis showed that genetic variation at
this locus also associates with decreased
mortality. The locus has previously been
reported to associate with low blood pressure
in middle age, although we show that the
mortality effects of the locus above 75 years
seem to be independent from blood pressure,
at least in the PROspective Study of
Pravastatin in the Elderly at Risk and Leiden
85-plus study Cohort II. Thus, although
the locus is implicated in blood pressure
regulation, the mechanism by which genetic
variation at chromosome 5q33.3 influences
longevity likely also involves other traits.
The genetic component of longevity
is expected to be small (~25%, Table 1.2)
and assumed to be determined by many
genes with small effects [16], which might
explain the limited number of GWAS-
identified longevity loci. Moreover, the
increase in human life expectancy over the
last two centuries due to environmental
factors has resulted in the presence of so-
called long-lived "phenocopies" in the
population, i.e., individuals that survived
to high ages independent of their genetic
Although GWA
has successfully been applied to identify

background. analysis
common genetic variants with small effects
for several traits and diseases [17-19], the
main problem of performing GWAS for
longevity is the relatively low number of
long-lived individuals with GWA data. The
EU longevity GWAS described in Chapter
4, which is the largest GWAS for longevity
up to date, contained ~18,000 long-lived
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individuals with GWA data. By combining
the data of all currently available longevity
cohorts with GWA data worldwide (~30,000
individuals above 85 years of age), we
might be able to identify some additional
longevity loci, although this sample size
will still be insufficient to identify common
genetic variants with relatively small effects
(OR’s between 0.9 and 1.1). Thus, instead
of focusing on common genetic variants,
genetic research of longevity should move
towards genetic approaches in which the
effect of high-impact private, i.e., observed
in a single family, and rare genetic variants
can be investigated, using, for example,
next-generation sequencing.

Another approach is to determine
the combined effect of single nucleotide
polymorphisms (SNPs) on a trait, which may
reflect the involvement of specific networks
on aging. Hence, we performed candidate
pathway-based SNP set analysis (Chapter
5) using the genotypes from the dataset
described in Chapter 3. Based on results
from previous studies in humans and animal
models, we selected two candidate pathways
for human longevity, the insulin/IGF-1
signaling (IIS) and telomere maintenance
(TM) pathways. We showed that genetic
variation in both these pathways is indeed
associated with human longevity, at least
in the LLS, which is mainly caused by the
IS genes AKT1, AKT3, FOX04, IGF2, INS,
PIK3CA, SGK, SGK2, and YWHAG and the
TM gene POTI. In addition, we performed
gene-set enrichment analysis on the summary
data from the EU longevity GWAS described
in Chapter 4 using Meta-Analysis Gene-set
Enrichment of variaNT Associations (http://
www.broadinstitute.org/mpg/magenta/)
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[20]. However, in this larger dataset, we
were unable to find an enrichment of the loci
within the IIS and TM pathways (P = 0.656
and P = 1.000, respectively), nor in any of
the SNP sets from Kyoto Encyclopedia of
Genes and Genomes and Gene Ontology.
The difference with the results from the
analysis described in Chapter 5 might, for
example, be due to the use of summary data
instead of "raw" genotypes, although the
observed associations within the IIS and TM
could also be specific to individuals from
long-lived families, like the LLS, or be false
positives. Thus, SNP set analysis may be a
useful method, that can be applied in addition
to GWAS, to determine the combined effect
of genetic variation in (known) genes and
pathways on longevity.

A possibility to increase the sample
size and, thus, the power of genetic
approaches is by using biomarkers of healthy
aging as a standardized phenotype for genetic
studies. In Chapter 2, we discuss the concept
of biomarker approaches and we propose
four criteria for quantitative parameters
(or profiles) that should be fulfilled before
consideration as biomarkers of healthy aging.
In short, a biomarker of healthy aging must
(1) show a change with chronological age,
(2) discriminate individuals based on their
biological age and/or genetic propensity for
longevity, and associate with (3) known
health parameters and (4) morbidity and/or
mortality in prospective studies.

A potential biomarker of healthy
aging is LTL, since it has previously been
associated with multiple diseases and
increased prospective mortality [21]. We
therefore investigated whether LTL satisfies
the proposed criteria for biomarkers of

healthy aging (Chapter 6). We showed that
LTL indeed changes with chronological
age and is associated with known health
parameters and  (immune-independent)
prospective mortality. However, LTL was
unable to discriminate individuals based
on their genetic propensity for longevity
(criterion 2). To determine whether LTL
could nevertheless be used as a standardized
phenotype for genetic studies of healthy aging
and longevity, we performed a look-up of the
previously identified LTL-associated genetic
variants [22] in our EU longevity GWAS
results described in Chapter 4. Interestingly,
two of these variants, rs10936599 (TERC)
and rs2736100 (TERT), were located near or
in genes that we also analyzed in the gene
set analysis of the TM pathway described
in Chapter 5. However, none of the LTL-
associated variants showed an association
with survival to ages above 90 years (Table
7.1). Thus, although LTL meets three of
the four proposed criteria for a biomarker
of healthy aging, it could not be used as a
standardized phenotype for genetic studies
of healthy aging and longevity. Hence, we
need to search for parameters that meet all
four proposed criteria for biomarkers of
healthy aging.

Functional characterization of
longevity loci

Once novel longevity loci have been
identified
one of the challenges that lies ahead is the

through genetic approaches,

functional characterization of such loci,

since quite a few of them will be mapped
to non-protein-coding regions of which the
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Table 7.1 Association of leukocyte telomere length-associated genetic variants with survival to ages

above 90 years.

n EAF
SNP Chr Position (bp) Candidate/ EA Cases Controls Cases Controls P
closest gene
rs11125529 2 54,329,370 ACYP2 C 5406 15,112 0.864 0.861 0.872
1510936599 3 170974795 TERC T 5406 15112 0248 0250 0.467
17675998 4 164,227,270  NAFI G 5406 15112 0212 0217 0385
12736100 5 1339516 TERT ~ C 5024 9996 0474 0485 0452
19420007 10 105666455  OBFCI  C 5406 15112 0855 0872 0.140
18105767 19 22,007,281 ZNF208 G 5406 15112 0719 0714 0.702
1755017 20 61,892,066 RTELI G 5406 15108 0880  0.869 0.320

SNP, single nucleotide polymorphism; Chr, chromosome according to NCBI build 36; Position (bp), position
according to NCBI build 36; E4, effect allele (allele associated with shorter LTL); EAF, effect allele frequency; P,
P-value for the association with survival to ages above 90 years. Genes in bold were also analyzed in the gene set
analysis of the telomere maintenance pathway described in Chapter 5.

functional consequences are still unclear. An
example is the chromosome 5q33.3 locus
we identified in Chapter 4. The functional
characterization of longevity loci consist of
several steps (Figure 7.1), of which many
overlap with the steps proposed for other
traits [23,24].

The first step is genotypic fine-
mapping, i.e., to identify the causal variant(s)
by, for example, targeted resequencing
based on the linkage disequilibrium (LD)
structure within the locus. Since targeted
resequencing is expensive, one could first
browse the publically available data of the
1000 Genomes Project, which is aimed at
capturing all common and low-frequency
genetic variation (minor allele frequency
> 1%) in diverse ethnic populations [25],
to fine-map the region of interest based on
the haplotypes of the individuals from the
same ethnicity. Alternatively, one could
use population specific reference panels,
such as the ones that will be created in the
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Singapore Sequencing Malay Project [26]
and the Genome of the Netherlands project
[27]. We performed genotypic fine-mapping
for the chromosome 5q33.3 locus using
the publically available 1000 Genomes
Project data (Chapter 4) and were able to
fine-map our locus to a ~22.3 kb region.
However, we have thus far not identified
the causal variant(s), although several of the
variants in high LD with our lead SNP (12
> 0.8) are, according to the ENCODE data
implemented in the UCSC genome browser,
located in functional elements, such as
DNase I hypersensitivity sites, transcription
factor binding sites, and enhancer histone
marks (Figure 7.2). In addition, the ~22.3
kb region seems to contain a long intergenic
non-coding RNA, RP11-524N5.1, which has
recently been annotated by the GENCODE
consortium.

The second step is phenotypic fine-
mapping, i.e., to identify other (combinations
of) metabolic phenotypes, clinical endpoints,
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and diseases associating with the locus of
interestthat could shed light on the mechanism
underlying the association of interest. A
helpful intermediate step is to browse the
large publically available GWAS summary
datasets, such as those for cholesterol levels
[19], blood pressure [28], and type 2 diabetes
[18]. One has to note, however, that these
sets only contain data on HapMap imputed
SNPs (~2,500,000), although several large
GWAS initiatives based on 1000 Genomes
imputation are ongoing. Another approach
that may be helpful in identifying other
traits and diseases associating with a locus
of interest is to perform a PheWAS, i.e.,
to determine the association of a SNP
with thousands of different phenotypes
at once using, for example, International
Classification of Diseases codes in large
population-based studies. Up till now,
phenotypic fine-mapping of the chromosome
5933.3 locus using the publically available
GWAS summary datasets has not resulted
in identification of phenotypes that may
shed light on the mechanisms by which the
locus influences longevity (Chapter 4).
Furthermore, application of the PheWAS
approach using the available phenotypic data
in the LLS was unsuccessful. However, we
have, thus far, not performed the PheWAS
approach in a large population-based study
containing thousands of phenotypes, such as
the Rotterdam Study.

The third step is
epigenetic quantitative trait locus (eQTL/

expression/

epiQTL) analysis, i.e., to determine whether
there is an effect of the causal variant(s) on
expression and/or methylation of (nearby)
genes. The pathophysiology of aging and
longevity involves many different tissues.

Hence, eQTL/epiQTL effects of longevity
loci could be present in tissues for which gene
expression or methylation data is not (yet)
available. In addition, eQTL/epiQTL effects
are expected to be small, so large datasets
will be required to achieve sufficient power
to detect them. There are several publically
available databases containing eQTL data
for multiple tissue, such as adipose tissue,
brain (cerebellum, frontal cortex, temporal
cortex, and pons), fibroblasts, liver, skin, and
lymphoblastoid cell lines [29,30]. In addition,
the ongoing Genotype-Tissue Expression
project (http://www.broadinstitute.org/gtex/)
will provide publically available eQTL data
for around 30 different tissues. Thus far, there
is no publically available database containing
epiQTL data. However, novel platforms,
such as Infinlum HumanMethylation450
BeadChips and reduced representation
bisulfite sequencing, have made it possible
to determine epigenetic effects on the whole
genome, which will aid to the identification
of epiQTL effects in large datasets. We
performed a look-up of all SNPs in high LD
with our lead SNP at chromosome 5q33.3
(r* > 0.8) in several of these eQTL databases
(Chapter 4). However, none of the SNPs
showed an association with gene expression,
so it is still unclear on which gene(s) and in
which tissue(s) our locus exert its effects.
When a candidate susceptibility gene
or region is identified (through step 1-3), the
final step is to perform functional assays in
model systems (animals/cell models). There
are several animals that are routinely used
in research of healthy aging and longevity,
namely worms, flies, and mice. In these
animals lifespan regulating effects could
be studied by modifying gene functions
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Figure 7.1 Functional characterization of longevity loci.
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Genotypic fine-mapping:
¢ 1000 Genomes Project data
* Targeted resequencing

Phenotypic fine-mapping:
*  GWAS summary datasets
« Intensive phenotyping

Expression / epigenetic quantitative trait locus
(eQTL/epiQTL) analysis

Functional assays in model systems:

* Animal models: Effect on lifespan or physiology and pathology of
ageing in different tissues (RNAi / Knock-out / Overexpression)

* Human cell models: Effect on cell / tissue properties (iPSCs)

(mutagenesis) via RNA interference, knock-
out, or overexpression. In addition, mice
could also be used to study the effect of
genes on the physiology and pathology of
aging in different tissues [31]. However,
before a gene or region can be studies in
animal models it is important to determine
the conservation. The chromosome 5q33.3
region, for example, is only conserved in
primates, so for this region studies in animal
models seem not very useful. To study the
effects of the gene or region of interest
in humans, one could create cell lines of
different tissues by differentiation of induced
pluripotent stem cells obtained by de-
differentiation of fibroblast from carriers and
non-carriers of the locus of interest.

Reducing heterogeneity in the
healthy aging phenotype

Our genetic analyses illustrate that it is very
difficult to identify human longevity loci,
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which may be due to the complexity of the
phenotype along with the low number of
long-lived individuals available for genetic
research. In addition, analyses might be
confounded by environmental factors that
give rise to long-lived "phenocopies",
which could even be present within long-
lived families. Hence, to reduce phenotypic
heterogeneity, additional selection criteria
are required to select the most optimal
individuals for genetic research, which
could, for example, be based on the age
(centenarians or even supercentenarians),
Zygosity
family characteristics (families with the

(monozygotic twins), and/or
highest number of long-lived individuals or
best family history for longevity, i.e., the
longest survival among their parents) of an
individual.

In addition, genetic studies may
profit from biomarker studies that are
aimed to identify phenotypes that reflect
biological age. Up till now, several potential
biomarkers of biological age have been
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identified, such as fasting glucose levels,
free triiodothyronine (fT3) levels, and gait
speed (see Chapter 2 for an overview).
The next step is to determine whether these
biomarkers, which should preferably be
combined into one multimarker score, could
be used as standardized phenotype for genetic
studies. Therefore, the joint effect of (GWAS-
identified) genetic variants associated with
this multimarker score should be tested for
their effect on longevity in using, for example,
genetic risk scores. Ideally, one would
perform a GWAS for this multimarker score
in individuals from long-lived families, since
identified loci are expected to be involved in
the mechanism underlying their longevity as
well. However, there is large heterogeneity
between long-lived family studies and the
number of individuals with GWA data (<
10,000 individuals) is insufficient to identify
common genetic variants with small effects.
Hence, instead one could use the loci
identified through large GWAS of population-
based cohorts (> 100,000 individuals). Thus
far, however, the only potential biomarker of
biological age for which multiple GWAS-
identified loci have been reported is fasting
glucose, although the currently identified
genetic variants only explain 4.8% of the
variance in fasting glucose levels [32].
Hence, larger GWAS are required to identify
genetic variants explaining the remaining
heritability of fasting glucose, fT3, and
gait speed, which could subsequently be
tested for their association with mortality
and longevity. Interestingly, a look-up of
the fasting glucose-associated variants in
our EU longevity GWAS results described
in Chapter 4 showed that several of these
variants also seem to associate with survival

Figure 7.2 UCSC plot of the ~22.3 kb intergenic region on chromosome 5q33.3.

ha1e

157,817,000] 157,818, 0001 157,819, 000] 157,820,006] 157,821,608 157,822, 0001 157,823,000 157,524, 000|

10

| 157,804, 0001 157,805, 0001 157,805, 000] 157,807,000] 157,808,000 157,869,060] 157,810,000 157,811,006
NHGRI Gata

et e Rssoc 1at fon
ve Resulatory Elenents) on 7

2 of Pub.
rk (Often Found Nean Act i

ines from ENCODE

HaKa7AC Mar

HafK_(abse322)

o~
o
]
N
(=%
[}
=
@)

ceere.

ONase Clusters

135



a
=2
&
=
-
(5}
H
3

Chapter 7

to ages above 90 years (Table 7.2), which is
more promising than what we observed for
LTL-associated genetic variants (Table 7.1).

Combining study designs for
biomarker research

In addition to the lack of a well-defined
phenotype for healthy aging, there is
currently no study that allows testing of
all the proposed criteria for a biomarker of
healthy aging. The most optimal study design
would be a population-based study in which
a large group of families is followed during
their entire lifetime and examined at multiple
time points. An example of such a study
is LifeLines (https:/lifelines.nl/), which
currently contains ~146.000 individuals
from the Northern part of the Netherlands.
However, this study is still in the recruitment
phase and at the moment the best alternative
for studies of healthy aging and longevity is
to combine family-based studies with large
prospective population-based studies.

The advantage of the study design
of the LLS, as compared to other long-lived
family-based studies, is that individuals
have been followed-up for over 10 years.
Hence, the LLS allows testing of most of
the proposed criteria for a biomarker of
healthy aging, although replication of results
in larger family-based and prospective
studies with longer follow-up times is still
required. The association of a marker with
chronological age could be determined
using all individuals included in the study,
although one has to take into account that
the age range in the LLS is limited due to
the family-based design of the study. The
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association of a marker with biological age
could be determined by comparing the LLS
offspring (considered as "healthy agers")
with their spouses (controls). The strength
of this comparison is that the offspring and
their spouses share the same environment, so
observed difference are most likely caused
by differences in the genetic background.
However, since approximately 50% (for
a dominant inherited locus) or 75% (for a
recessive inherited locus) of the offspring
will not have inherited the genes responsible
for the long-lived phenotype in their parents,
phenotypic differences might be diluted due
to the presence of individuals in the offspring
group without the genetic background to
become long-lived. In addition, the effects
of a marker on biological age might only be
present at older ages. Hence, these effects
might not be detected in the middle-aged
offspring and spouses. The association of
a marker with known health parameters
could be determined in the combined group
of offspring and controls, for which data
on numerous phenotypes is available. The
association of a marker with mortality could
be determined in the LLS nonagenarians
(highly advanced age) and the combined
group of LLS offspring and controls (middle
age). In addition, the latter group could be
used to determine the association of a marker
with morbidity.

Novel methods and technologies
plea for data integration

Research into human lifespan may also benefit
from novel technologies and methodologies
that have (recently) become available.
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Table 7.2 Association of fasting glucose-associated genetic variants with survival to ages above 90 years.

n EAF
SNP Chr Position Candidate / EA Cases Controls Cases Controls P
(bp) closest gene
rs340874

2225879 PROXI C 5406 15112 0548 0553 0728
5406 15,111 0607 0626  0.509
5406 15112 0698 0703  0.515
5406 15104 0.692 0701  0.024
5406 15111 0765 0767 0491
5406 15112 0858 0867  0.685
5406 15112 0288 0302 0241
5406 15,105 0290 0280  0.505
5406 15,111 0689 0686 0915
5406 15112 0258 0253  0.493
5406 15107 0280 0272  0.527
5406 15112 0536 0532 0334
5406 15112 0.178 0.175  0.570
5406 15112 0314 0315  0.043
5406 15111 0.108 0.114  0.749
5406 15112 0687 0691  0.027
5406 15112 0497 0494 0375
5406 15112 0820 0828  0.803
4417 10445 0969 0972  0.800
5406 15112 0702 0711 0.091
5406 15112 0916 0911 0434
5406 15111 0283 0282  0.028
5406 15112 0473 0479 0475
5406 15112 0707 0724 0854
5406 15112 0.650 0.660  0.004
5406 15110 0844 0834  0.755
5406 15111 0283 0288  0.046
5406 15112 0203 0178  0.111
5406 15112 0683 0690 0921
5406 15108 0211 0217  0.568
5406 15112 0159 0160  0.747
5406 15112 0776 0763  0.367
5406 15112 0573 0561  0.799
5406 15112 0495 0488  0.877
16113722 20 22,505,099 FOXA2 G 4997 11529 0960 0963 0218

156072275 20 39,177,319 TOPI A 5,406 15,112 0.151  0.155 0.850

o~
o
]
N
(=%
[}
=
@)

SNP, single nucleotide polymorphism; Chr, chromosome according to NCBI build 36; Position (bp), position according
to NCBI build 36; E4, effect allele (allele associated with higher fasting glucose); EAF, effect allele frequency; P,
P-value for the association with survival to ages above 90 years.
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For genetic research, next-generation
(whole-genome or exome) sequencing and
multigenerational linkage may be used, since
these require a limited number of individuals
to identify novel longevity-associated loci.

Next-generation sequencing can be
used to identify high-impact private and rare
genetic variants associated with the trait of
interest. This method allows hypothesis-
based, such as regions identified through
linkage analysis, as well as explorative
studies of the genome and has successfully
been applied to detect novel genetic variants
associated with, for example, Alzheimer’s
disease [33] and bone mineral density
[34]. We recently finished whole-genome
sequencing of 220 nonagenarian individuals
from the LLS with the best family history for
longevity, i.e., the longest survival among
their parents, to reduce heterogeneity in the
phenotype due to "phenocopies". We will
compare the genome of these individuals
with that of younger controls to identify
genetic variants that could explain the long-
lived phenotype in their families.

Linkage analysis takes advantage
of the sharing of alleles between siblings
identical by descent and/or parents and
their offspring to identify genomic regions
associated with the trait of interest. The
most optimal linkage study would be
multigenerational, i.e., containing data
on multiple generations within families.
However, the main problem with the use of
the multigenerational design for longevity
research is that there is currently no
(combination of) phenotype(s) that is able
to predict which middle-aged individuals
will become long-lived. Hence, up till now,
linkage analysis for longevity has only
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been performed using long-lived siblings.
Nevertheless, the use of fasting glucose
levels, fT3 levels, and gait speed, or a
multimarker score based on all three, would
be a good starting point for multigenerational
linkage analysis.

Biomarker research has, thus far,
mostly been focussed on single quantitative
parameters that are also used in the clinic.
However, several technologies have recently
become available that made it possible to
study age-related changes in a large part of
the human transcriptome [35], epigenome
[36], metabolome [37], and glycome [38],
Due to the wealth of information obtained
using a single-point measurement these
omics-based technologies could potentially
be much more informative than the single
quantitative parameters studied so far. For
most of the omics-based technologies one or
more of the proposed criteria for biomarkers
of healthy aging have already been tested
and the most interesting potential biomarkers
identified using these platforms are the genes
RPTOR, ASFIA, IL7R (transcriptomics)
[39,40], and ELOVL2 (epigenomics) [41],
the N-glycan features LC-7 and LC-8
[42], bisecting GlcNAc glycoforms of IgG
(glycomics) [43], and several lipid species
(lipidomics) [44]. However, it still needs to
be determined whether these features also
associate with known health parameters and
morbidity and/or mortality before they can be
considered as biomarkers of healthy aging.

Instead of testing single parameters
and/or profiles for association with longevity
one could try to combine data to create a
multimarker prediction score. An example of
a multimarker prediction score that is highly
informative for the prediction of coronary
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heart disease is the Framingham risk score
[45]. This score is a combination of age,
gender, high-density lipoprotein cholesterol,
low-density lipoprotein cholesterol, blood
pressure, diabetes, and smoking. We
are currently working on a multimarker
prediction score for longevity by combining
all clinical measurements available in the
LLS. This multimarker prediction score,
which, in the future, may also take into
account omics-based measurements, should
be able to discriminate individuals based on
their biological age, i.e., classify individuals
as member of long-lived families or controls.
Subsequently, this score could be used in
middle-aged cohorts to identify individuals
suitable for genetic studies of longevity, even
before these individuals have reached a high
age.

Since the wuse of genome-wide
omics-based measurements often leads to
novel findings which are hard to interpret
biologically, multilevel data integration may
add to the interpretability of research into
healthy aging and longevity. Alternatively,
data may be integrated over species to
identify conserved pathways. In contrast
to human studies, animal-based studies
are being used to investigate the effect of
genetic manipulation and gene-environment
interactions on life history traits and lifespan
regulation. An example of a project which
makes use of a data integration approach is
the Integrated research on Developmental
determinants of Ageing and Longevity project
(http://www.ideal-ageing.eu/), in which late
effects of early adverse exposures are being
studied in various organisms simultaneously.

Optimistically, data integration approaches
over species contribute to the identification
of novel conserved pathways involved in
healthy aging and longevity. Not all the loci
relevant for human aging, however, obtain
attention in animal-based studies. The novel
identified chromosome 5q33.3 region, for
example, is a primate-specific locus involved
in blood pressure regulation. Hence, for this
locus, as well as the phenotype, animal-
based studies of mice and lower species may
not be very useful.

On the other hand, omics-based
measurements may be integrated using a
systems biology approach. This approach
covers the study of the complex interactions
within biological systems, which requires
both data-driven modelling and hypothesis-
driven experimental studies [46]. The
extensive systems biology animal and
human-based studies into the effects of aging
on metabolism of cells and tissues requires
perturbations and careful measurement of
system responses. This will contribute to a
deeper understanding of metabolism and will
open possibilities for interpretation of human
data. An example of this approach in humans
is to analyze integrative personal omics
profiles, the combination of the genetic,
transcriptomic, proteomic, metabolomic,
and autoantibody profile of individuals [47],
for association with phenotypes of interest.
This results in a model for the etiology of
the phenotype, which may be tested in other
individuals. Hence, a systems biology data
integration approach may provide insight
into the complex mechanisms underlying
lifespan regulation.

139

o~
o
]
N
(=%
[}
-
@)




a
=
&
=
-
(5}
H
3

Chapter 7

Conclusions

The past couple of years large genome-wide
association meta-analyses have successfully
identified genetic variants associated with
age-related diseases and traits [18,19,28].
However, the number of GWAS-identified
genetic variants associated with human
lifespan, thus far, has been limited to
TOMMA40/APOE/APOC! locus and our novel
identified locus on chromosome 5q33.3. In
addition, pathway analysis showed that there
seems to be a role for genes involved in IIS
and TM.

A better definition of the healthy aging
phenotype, combining study designs, as well
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as the use of novel methods and technologies,
such as next-generation sequencing, may
help to identify novel loci contributing to
longevity. In addition, biomarker approaches
using  omics-based  technologies and
multimarker prediction scores applied to
individuals from long-lived families and
large prospective study populations can help
to identify parameters and/or profiles that
can be used as standardized phenotype for
genetic research. The data created using these
approaches may subsequently be integrated
over different species or in a systems biology
approach to recognize the most relevant
profiles and pathways involved in healthy

aging and longevity.
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