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Worldwide, life expectancy has shown a 
remarkable linear increase over the last two 
centuries [1]. However, the number of years 
of life spent in disability also increases and 
individuals from the European Union born 
in 2009 are expected to spend on average 
25% (women) or 20% (men) of their life in 
poor health, i.e., experience limited or severe 
long-term limitation (> 6 months) in usual 
activity caused by ill-health (http://www.
healthy-life-years.eu/) [2]. This stresses the 
importance of efforts aimed at increasing the 
disability-free life expectancy. The majority 
of disabilities are caused by diseases, such as 
cancer, cardiovascular disease, hypertension, 
osteoarthritis, and type 2 diabetes, for which 
chronological age is the main risk factor. 
Interestingly, part of the individuals that 
survive to exceptionally old ages do not 
display excessive levels of disability [3,4], 
indicating that reaching a high age does 
not necessarily result in an increase in age-
related disability.

Use of family-based cohorts to 
study healthy aging and longevity

It is expected that the number of years spent in 
disability could be reduced by avoiding age-
related diseases [5]. Remarkably, long-lived 
families indeed display a low prevalence of 
age-related diseases from middle age onwards 
[6-10]. In addition, they show beneficial or 
"youthful" profiles for numerous cognitive, 
metabolic, and immune-related parameters. 
Examples of these features are the low 
prevalence of cytomegalovirus infections, 
low free triiodothyronine and triglyceride 

serum levels, and preservation of insulin 
sensitivity in middle age [7,11-16]. Thus, 
by studying long-lived families (Table 1.1), 
one might be able to identify mechanisms 
driving healthy aging and protection from 
age-related diseases in middle and old age. 
Ultimately, this knowledge may be used to 
extend the disability-free life expectancy in 
the population.
	 One strategy to identify the 
mechanisms underlying lifespan regulation 
is by applying genetic approaches. The 
genetic component of longevity, as estimated 
from twin and family-based studies, is ~25% 
(Table 1.2) and the genetic contribution 
increases with age [17,18]. However, there is 
large heterogeneity in the genetic component 
estimates between studies, which could be 
caused by geographical or methodological 
differences [19]. The genetic component 
is most prominent in long-lived families 
[20,21], which makes them highly suitable 
for genomic approaches.
	 In addition to the genetic approach, 
research into biological and physiological 
phenotypes accompanying a long life may 
illuminate mechanisms of healthy aging. To 
this end, long-lived families are being studied 
for quantitative parameters or profiles that 
mark chronological and/or biological age, 
i.e., the age based on the molecular and 
psychological functioning of the individual, 
which could subsequently be investigated 
in large cohorts of middle-aged individuals. 
Thus, identifying the genetic component and/
or biomarkers of longevity may contribute to 
the disclosure of mechanisms driving healthy 
aging and longevity.
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Genetic research of aging and 
longevity in animal models

The first studies into the genetics of lifespan 
regulation were performed in animal models, 
such as yeast, worms, flies, and mice. In 
contrast to human longevity studies, which 
are mainly observational, animal-based 
studies benefit from genetic manipulation 
(mutagenesis) via RNA interference, knock-
out or overexpression of single genes. Using 
these approaches, many genes have been 
identified that extend lifespan in these models 
(GenAge; http://genomics.senescence.info/
genes/) [33]. The most interesting conserved 
pathways identified using animal models are 
the growth hormone (GH)/insulin/insulin-
like growth factor 1 (IGF-1) signaling and 
mammalian target of rapamycin signaling 
pathways [34]. The limitation of the animal-
based longevity studies in lower species, 
such as worms, is that they mainly focus 
on lifespan as an outcome and that the 
parameters that reflect the physiology and 
pathology of aging are not well defined or 
highly difficult to compare with their human 
counterparts. Nonetheless, these studies 
have been crucial for the identification of  
lifespan regulating pathways that also 
contribute to human longevity. 

Application of GWAS for 
identification of novel human 
longevity loci 

Most genetic research on human longevity 
has been focused on lifespan regulating loci 
involved in GH/insulin/IGF-1 signaling [35]. 
Although many of the GH/insulin/IGF-1 

signaling genes have been investigated (see 
http://genomics.senescence.info/longevity/ 
[36] for an overview), the only gene 
associated with human longevity in multiple 
independent studies is FOXO3A [37-39]. 
FOXO3A encodes the protein forkhead 
box O3, which acts as a transcription 
factor for many different genes involved 
in, e.g., apoptosis and oxidative stress [40]. 
In addition, a study by van Heemst and 
colleagues showed that a composite pathway 
score based on 6 genetic variants in GH/
insulin/IGF-1 signaling genes is associated 
with mortality in women, which further 
highlights the role of this pathway in lifespan 
regulation [41]. The other candidate gene that 
has consistently been associated with human 
longevity in multiple independent studies is 
APOE [35,42]. APOE encodes the protein 
apolipoprotein E (ApoE), which seems to 
be involved in, e.g., lipoprotein metabolism, 
cognitive function, and immune regulation 
[43]. The ApoE protein has three isoforms 
(ApoE ε2, ApoE ε3, and ApoE ε4) defined 
by two single nucleotide polymorphisms 
(SNPs), rs7412 (Arg136Cys; ε2) and 
rs429358 (Cys112Arg; ε4). Interestingly, 
ApoE ε4 has been associated with a decreased 
probability to become long-lived, while 
ApoE ε2 has an opposite effect. However, 
since the effect of ApoE ε4 seems to be most 
prominent, APOE is generally considered a 
"frailty gene" [44]. Thus, although candidate 
gene studies have shown to be useful, the 
number of human longevity genes identified 
by these studies is limited.
	 Instead of studying the genome using 
a hypothesis-based approach, hypothesis-
free approaches could be performed. An 
example of such an approach is the genome-
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wide association study (GWAS), aimed at 
identifying common genetic variants with, 
usually, small effects. In a GWAS, 300,000-
2,500,000 SNPs are assessed for association 
with the trait of interest. This approach has 
successfully been applied to many diseases 
and traits (National Human Genome 
Research Institute GWAS Catalog; http://
www.genome.gov/gwastudies/) [45]. In 
GWAS for longevity, genotype frequencies 
are compared between long-lived cases and 
shorter-lived or young controls. The genome 
of long-lived individuals is assumed to be 
characterized by a decreased prevalence of 
disease-promoting variants of considerable 
effect and an increased prevalence of variants 
promoting healthy aging. Since longevity is 
assumed to be determined by many genes 
with small effects, GWAS is expected to be 
a successful method to identify novel human 
longevity loci.

Genomic research might benefit 
from biomarker research

The number of long-lived individuals 
that can currently be included in genomic 
studies is limited (~30,000 individuals). 
Hence, it is almost impossible to reach a 
sufficient sample size required to identify 
genetic variants with relatively small 
effects, such as those identified for more 
common traits, like height and lipid levels, 
with sample sizes > 100,000 individuals. 
To overcome this problem, one might try 
to identify (combinations of) phenotypes 
that could be used as biomarkers of healthy 
aging in genomic studies of large cohorts of 
middle-aged individuals. We propose that a 

biomarker of healthy aging should; (1) show 
a change with chronological age, at least 
above 40 years, (2) discriminate individuals 
with a “youthful” or old level relative to their 
age category in the general population, (3) 
associate with known health parameters, and 
(4) associate with future morbidity and/or 
mortality in prospective studies (Chapter 2).

Aim and outline of the thesis

The drivers of human longevity may provide 
insight in the mechanisms that result in 
delay or avoidance of age-related diseases. 
Since knowledge of such mechanisms may 
contribute to the extension of disability-free 
lifespan, the aim of this thesis was to identify 
novel lifespan regulating loci that influence 
human longevity and population mortality. 
We performed our research in various 
cohorts of elderly individuals, including the 
family-based Leiden Longevity Study (LLS) 
and GEnetics of Healthy Ageing project 
(Table 1.1), the population-based Rotterdam 
Study, which includes individuals above 55 
years that were followed-up for > 20 years, 
and the prospective Leiden 85-plus study 
and PROspective Study of Pravastatin in the 
Elderly at Risk, in which the association of a 
genetic variant with mortality can be tested.
	 To identify genetic drivers of human 
longevity by GWAS, we first compared 
unrelated nonagenarians from the LLS (Table 
1.1) with young controls from the Rotterdam 
Study. The loci that showed suggestive 
evidence for association with survival ≥ 
90 years were tested for replication in the 
Rotterdam Study, Leiden 85-plus study, 
and Danish 1905 cohort. Subsequently, 
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we performed a combined analysis of the 
discovery and replication cohorts (4,149 
cases and 7,582 controls) (Chapter 3).
	 Due to the complexity of the longevity 
phenotype and the relatively small sample 
size, the LLS longevity GWAS turned out to 
have insufficient power to detect significant 
effects besides the well-established 
TOMM40/APOE/APOC1 locus (Chapter 3). 
We therefore carried out an extended GWAS, 
in which we studied the genetics of long-
lived cases (≥ 85 years) and younger controls 
(< 65 years of age) from all over Europe. 
The loci that showed suggestive evidence 
for association with survival ≥ 85 and/or ≥ 
90 years were taken forward for replication 
in 6 additional cohorts and we performed 
a combined analysis of the discovery and 
replication cohorts (20,789 cases and 77,277 
controls) (Chapter 4).
	 Instead of analyzing single SNPs, 
as was done in the LLS and EU longevity 
GWAS (Chapter 3 and 4), the combined 
effect of a SNP set, grouped per pathway 
or gene region, can be tested for association 
with longevity. The advantage of these tests 
is that they are very suitable for studies of 
polygenic complex traits with limited power 
for GWAS analysis, such as longevity [46], 
due to the low penalty for multiple testing 
as compared to single SNP analysis. Two 
candidate pathways for human longevity are 
the insulin/IGF-1 signaling (IIS) pathway 
and the telomere maintenance (TM) 
pathway. The IIS pathway is involved in the 
adaptation of the organism to its (changing) 
environment [47], while the TM pathway 

regulates telomere integrity [48,49]. Genetic 
variation in genes that play a role in IIS 
and TM has previously been associated 
with human longevity [37,39,41,50]. To 
determine if the combined effect of IIS and 
TM pathway SNPs is associated with human 
longevity, we performed gene set analysis 
with gene sets based on these pathways using 
the LLS longevity GWAS dataset (Chapter 
5).
	 Since our genetic approaches 
delivered a limited number of longevity loci 
and pathways, we also performed a study on 
leukocyte telomere length (LTL), a potential 
biomarker of healthy aging that could be 
used for genomic studies in large cohorts of 
middle-aged individuals. Previous studies 
have shown that LTL is associated with 
multiple diseases and increased prospective 
mortality [51]. In addition, a study in an 
Ashkenazi Jewish population (Table 1.1) 
showed that offspring of centenarians have 
a longer mean LTL as compared to controls 
from the general population [50], indicating 
that mechanisms regulating LTL might also 
be involved in human lifespan regulation. 
Hence, to test the proposed criteria for 
biomarkers of healthy aging, we investigated 
LTL for association with chronological 
age, familial longevity, known health 
parameters, and prospective mortality in 
long-lived families from the LLS (Chapter 
6). In addition, we performed a look-up of 
the LTL-associated genetic variants in our 
EU longevity GWAS results described in 
Chapter 4 to determine the association with 
survival to ages beyond 90 years.
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Abstract

Human lifespan variation is mainly determined by environmental factors, whereas the genetic 
contribution is 25-30% and expected to be polygenic. Two complementary fields go hand in 
hand in order to unravel the mechanisms of biological aging: genomic and biomarker research. 
Explorative and candidate gene studies of the human genome by genetic, transcriptomic, and 
epigenomic approaches have resulted in the identification of a limited number of interesting 
positive linkage regions, genes, and pathways that contribute to lifespan variation. The 
possibilities to further exploit these findings are rapidly increasing through the use of novel 
technologies, such as next-generation sequencing. Genomic research is progressively being 
integrated with biomarker studies on aging, including the application of (noninvasive) deep 
phenotyping and omics data – generated using novel technologies – in a wealth of studies in 
human populations. Hence, these studies may assist in obtaining a more holistic perspective on 
the role of the genome in aging and lifespan regulation.



Review: Genomic and biomarker research of human aging and longevity

19

C
ha

pt
er

 2

Introduction

Human life expectancy has increased 
remarkably over the last two centuries 
worldwide [1], although it is still highly 
variable between countries [2]. This lifespan 
extension is mainly due to improvement 
of health care, hygiene, and nutrition. 
The healthy life expectancy, however, has 
not increased at the same rate; in Europe, 
men spend on average 20.5% and women 
25.4% of their life dealing with disability 
caused through disease or injury (Healthy 
Life Years; http://www.healthy-life-years.
eu/) [3]. Although age is the main risk 
factor for the majority of common diseases 
contributing to disability, reaching an old age 
does not necessarily result in a higher degree 
of age-related disability. This is illustrated by 
the presence of long-lived individuals from 
families expressing exceptional longevity 
that may reach high ages without major 
disabilities [4,5]. Moreover, their offspring – 
considered “decelerated” or “healthy agers” 
– have a lower prevalence of age-related 
diseases, such as cancer, cardiovascular 
disease, hypertension, and type 2 diabetes 
[6-9], compared to similar-aged controls. 
Concomitantly, they show beneficial or 
“youthful” profiles for many metabolic and 
immune-related parameters [10]. Most of 
the human aging studies are concentrated 
around long-lived families, including highly 
and middle-aged members, sporadic highly 
aged individuals from the general population 
or population-based cohorts containing 
different age groups.
	 Due to the different study designs (Box 
2.1 and Figure 2.1), human aging cohorts 
provide complementary information and are 

intensively being studied from a biomarker 
and genomic perspective. The assumption 
is that, together, these studies will provide 
insight into the mechanisms that could (i) 
drive the biological aging rate, (ii) positively 
and negatively influence the risk for age-
related disease, and (iii) explain the variation 
in lifespan between individuals. Genomic 
research, including genetic, epigenetic, and 
transcriptomic studies, is expected to provide 
both markers and determinants of aging. The 
search for biomarkers of human aging and 
longevity is aimed at identifying parameters 
and profiles that reflect the biological age of 
individuals and predict long-term morbidity 
and/or mortality [11].
	 For most diseases, like osteoar
thritis, osteoporosis, and type 2 diabetes, 
standardized phenotypes and diagnostic 
criteria are used for genomic research. No 
standardized phenotype or marker, however, 
is indicating biological aging rate. Hence, 
genomic studies into aging thus far focus on 
the determinants of human lifespan variation 
by using age at death, prospective survival, 
disease-free survival, or exceptional longevity 
as outcome. Biomarker research is therefore 
just as relevant for genomic studies of human 
aging as the analysis of the genome itself.
	 The possibility to study causal 
determinants and quantitative biomarkers 
of biological aging and longevity in humans 
strongly depends on the study designs that 
are available (Box 2.1 and Figure 2.1). Using 
these designs, we determined four relevant 
phases in aging studies in order to establish 
whether a quantitative parameter (or profile) 
is a biomarker of biological age; (i) Determine 
the change in a quantitative parameter with 
chronological age in cross-sectional studies 
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and, preferably, by repeated measures in 
longitudinal studies. Parameters reflecting 
biological age are expected to show an 
increased variance with age. (ii) Determine 
whether a marker of chronological age also 
discriminates individuals with a "youthful" 
or old level relative to their age category 
in the general population, which would 
indicate that the quantitative parameter 
potentially marks biological age (Figure 
2.2). The comparison between offspring 
of long-lived individuals and age-matched 
population controls is also part of this 
phase. (iii) Determine whether the potential 
marker for biological age associates with 

known parameters of health, such as blood 
pressure, serum levels of glucose, insulin, 
and cholesterol. (iv) Determine whether the 
potential marker for biological age associates 
with morbidity (based on clinical endpoints) 
and/or mortality in prospective studies.
	 In this review we will give an 
overview of the main genomic approaches 
and discuss the concept of biomarker 
approaches used in the research field of 
human aging and longevity. In addition, we 
will discuss the progress and challenges of 
integration of data that has been generated 
using these approaches.

Figure 2.1 Study designs applied in studies of healthy aging and longevity. Family- or population-based 
cross-sectional designs usually compare highly aged individuals with younger controls (blue ovals). 
Alternatively, the offspring of long-lived individuals is compared to age-matched controls (their spouses 
or random population controls) (purple oval). Thirdly, prospective studies are performed in highly or 
middle-aged individuals (unrelated or from (long-lived) families) which are followed over time (ranging 
from 10 to 30 years, depending on the study). Highly aged individuals are depicted in green, their 
offspring in light green and middle-aged individuals in red.
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Box 2.1

Study designs

The ultimate epidemiological study design to investigate markers and determinants of biological 
aging and longevity in humans would be to follow a large group of individuals during their entire 
lifetime. These individuals should be examined at different time points so that changes in markers 
could be related to the actual lifespan of the individual. However, since this design is not feasible, 
several other designs are being applied in human studies (Figure 2.1).

Cross-sectional study designs

Population-based cohorts: Cross-sectional longevity studies typically compare unrelated highly 
aged individuals (nonagenarians/centenarians) with younger controls or evaluate differences 
between groups of unrelated individuals in categories of increasing age. Inclusion of individuals 
for these studies is relatively easy, which is reflected by the large sample sizes of population-based 
cross-sectional studies. The cross-sectional study usually provides the first level of observation 
that a parameter is correlated with chronological age or a health condition. However, causality 
of the genetic and/or genomic parameter on aging and longevity cannot be determined from a 
cross-sectional design. For cross-sectional studies the long-lived cases should be compared with 
controls originating from the same birth cohort. However, since these controls usually already died, 
controls are generally selected from other birth cohorts. Given that these cohorts have a different 
life expectancy, this could confound the studied association. In addition, structural differences 
between birth cohorts, caused by, e.g., migration, could also confound the results. Examples of 
longevity studies used for cross-sectional analysis in unrelated individuals are the New England 
Centenarian Study (NECS) [12], German long-lived individuals [13], French centenarians [14], 
and Southern Italian Centenarian Study (SICS) [15]. In addition, various cross-sectional studies 
are included in the MARK-AGE project, which consists of 2,320 randomly recruited volunteers 
from the general population (35-74 years).

Family-based cohorts: Family-based longevity studies consist of nonagenarians/centenarians 
(siblings) and their middle-aged offspring. The controls used in these studies are either (age-
matched) random individuals from the general population or spouses of the offspring of the long-
lived individuals. Due to the common genetic background among family members, family-based 
longevity studies are enriched for familial and genetic effects on longevity and are more robust 
against population substructure. However, these studies generally have a small sample size, since it 
is quite difficult to collect long-lived families. To determine which age-related phenotypes associate 
with human familial longevity, the offspring of long-lived individuals, which are predisposed to 
longevity, can be compared to geographically- and age-matched population controls. This design 
allows analysis of molecular and clinical parameters specific for long-lived family members in 
multiple generations. Examples of family-based longevity studies are the Ashkenazi Jews cohort 
[16], GEnetics of Healthy Ageing (GEHA) project (of which the offspring is collected in the MARK-
AGE project) [17], Long Life Family Study (LLFS) [7], and Leiden Longevity Study (LLS) [18].

Prospective studies

Most prospective longevity studies consist of highly (> 85 years of age) or middle-aged (> 55 years 
of age) individuals (related or unrelated) that are followed over time and sampled at multiple time 
points. This design is most often applied to provide more evidence for causality of determinants 
or markers detected in cross-sectional studies. In this design an (unbiased) baseline parameter 
may show to precede a functional aspect of aging. Several large population-based prospective 
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Genomic research

Human longevity is not just explained 
by the absence of disease-susceptibility 
alleles
Genomic research into human lifespan 
regulation could be subdivided into 
genetic, epigenetic, and transcriptomic 

research. Studies of mono- and dizygous 
twins have revealed that the genetic 
contribution to the variation in human 
lifespan is about 25-30% [26,27] and 
is most prominent in families clustered 
for longevity [18,28]. This genetic 
contribution is mainly apparent after the 
age of 60 years and seems to increase with 

studies have been initiated. However, the main disadvantage of these studies is that the number of 
individuals that will become long-lived is usually very small. Examples of prospective longevity 
studies are the Leiden 85-plus study [19,20], Newcastle 85+ study [21,22], Danish 1905 cohort 
[23], the population-based Rotterdam Study [24], and Framingham Heart Study (FHS) (consisting 
of three generations) [25].

Figure 2.2 Interpretation of the potential relationship between a marker of chronological age and 
biological age using categories of increasing age. The blue zone indicates the increasing variance of the 
marker with age. Individuals can be assigned to having a marker level which matches (i) the expected 
level for their age in the population (gray dot, 75 years in this example), (ii) the level of a younger age 
group (green dot, biological age may be lower than chronological age), or (iii) the level of an older age 
group (red dot, biological age may be higher than chronological age).
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age [27,29]. Furthermore, human lifespan 
is a complex trait, which is assumed to 
be determined by many genes with small 
individual effects [30], although the 
polygenic architecture still needs to be 
characterized [31,32]. The diverse health 
features of long-lived families illustrate 
that different age-related diseases have 
common determinants and implicate that 
pathways can be identified that attenuate 
aging and delay age-related disease. From 
a genomic perspective, individuals from 
long-lived families are assumed to be 
characterized by a decreased prevalence 
of disease-promoting variants (referred 
to as disease-susceptibility alleles) and an 
increased prevalence of variants conferring 
maintenance of health and protection from 
disease, when compared to population 
controls. In the last 5 years, many disease-
susceptibility alleles have been identified 
(National Human Genome Research 
Institute genome-wide association study 
(GWAS) Catalog; http://www.genome.
gov/gwastudies/) [33]. A first comparison 
between long-lived individuals, selected 
from both long-lived families (LLS) and 
the general population (Leiden 85-plus 
study), and young controls showed no 
difference in the distribution or frequency 
of disease-susceptibility alleles identified 
in cancer, coronary artery disease, and 
type 2 diabetes [34]. The search for 
lifespan regulating loci – contributing 
to longevity and population mortality – 
must therefore extend beyond a focus on 
disease-susceptibility alleles. We will first 
discuss the efforts to identify longevity 
loci by genetics approaches.

Candidate gene studies identified APOE 
and FOXO3A as human longevity genes
The first genetic longevity studies mainly 
focused on lifespan regulating loci that 
emerged from animal models [35]. Lifespan 
extension in animal models was obtained by 
applying caloric restriction or by modifying 
gene functions (mutagenesis) using RNA 
interference, knock-out or overexpression 
of single genes (GenAge; http://genomics.
senescence.info/genes/) [36]. The most 
interesting pathways identified using these 
models are the growth hormone (GH)/
insulin/insulin-like growth factor 1 (IGF-
1) signaling and mammalian target of 
rapamycin (mTOR) signaling pathways 
[37]. Thus far, lifespan has been the main 
phenotype investigated in animal models. In 
order to make these models more translatable 
to human studies research should focus 
on defining the parameters that reflect the 
physiology and pathology of aging in both 
animals and humans [38,39].
	 Most of the human candidate gene 
studies were performed in cross-sectional 
designs (Box 2.1 and Figure 2.1), comparing 
allele frequencies of potential longevity 
loci between highly aged individuals and 
young controls. The candidate gene studies 
based on single genes have pointed a role for 
genes involved in, e.g., GH/insulin/IGF-1 
signaling, immune regulation, and lipoprotein 
metabolism (Table S2.1), although most of 
these results have not (yet) been confirmed 
in sufficient independent studies. The most 
convincing human longevity loci today are 
APOE and FOXO3A, which have frequently 
been associated with longevity in cross-
sectional studies (see for a review [39]) 
and survival in prospective studies [40-42] 
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(Figure 2.3). APOE encodes the protein 
apolipoprotein E (ApoE), which seems to 
play a role in e.g., lipoprotein metabolism, 
cognitive function, and immune regulation 
[43]. FOXO3A encodes the protein forkhead 
box O3 (FOXO3a), which acts as a 
transcription factor for many different genes 
involved in processes like apoptosis and 
oxidative stress [44].
	 In addition to single gene studies, 
several candidate gene studies based on 
whole pathways have been performed. 
These pathway-based candidate gene studies 
showed a role for genes within the DNA 
damage signaling and repair, GH/insulin/
IGF-1 signaling, immune regulation, pro/
antioxidant, and telomere maintenance 
pathways [45-49] (Table S2.1). Most of these 
pathway-based studies tested for effects of 
individual single nucleotide polymorphisms 
(SNPs) on prospective mortality or longevity 
[45,47,48] and, so far, only a limited number 
of studies determined the joint effect of SNPs 
within a pathway [46,49].

Large meta-GWAS are required for 
identification of novel human longevity 
loci
As an alternative to hypothesis-based 
candidate gene studies, hypothesis-free or 
explorative approaches could be applied 
to studies of the genome. These methods 
should initially be aimed at prioritizing 
the location of regions linked to longevity 
and, subsequently, identifying the genetic 
variation causal to the trait. One example 
of an explorative approach is the GWAS. 
In this cross-sectional approach, in which 
long-lived individuals are compared with 
young or shorter-lived controls, the – usually 

small – effect of common variants can be 
identified. Typically, genotype distributions 
of 300,000-2,500,000 SNPs are assessed 
for association with the trait in GWAS. 
Since longevity is assumed to be determined 
by many genes with small effects, it could 
be a successful method to identify novel 
longevity loci. However, so far, GWAS 
for longevity in the LLS [50], Cohorts for 
Heart and Aging Research in Genomic 
Epidemiology (CHARGE) [51,52], NECS 
[53], German long-lived individuals [54], 
and SICS [55] have only identified one 
genome-wide significant (P < 5 x 10-8) locus: 
APOE, which has long been established as 
a longevity gene. Several other loci showed 
suggestive association with longevity (P < 5 
x 10-6), namely MINPP1 [51], OTOL1 [52], 
and CAMKIV [55] (Figure 2.3). However, the 
effect of these loci on prospective mortality 
is not yet known. All GWAS-identified 
suggestive longevity loci are deleterious, 
i.e., the minor allele is associated with a 
decreased probability to become long-lived, 
and, as expected, their effects are small (odds 
ratio’s > 0.5).
	 In general, to have sufficient power 
to detect significant effects, GWAS require 
much larger sample sizes than thus far 
accomplished for human longevity. One of 
the challenges of GWAS for longevity is 
that the lifespan variation induced by the 
genetic component is expected to be small 
relative to that induced by the environmental 
component (i.e., health care and nutrition). 
A large sample size, acquired through meta-
analysis of GWAS (meta-GWAS), may cope 
with the so-called “phenocopies” and could 
potentially detect genome-wide significant 
loci besides APOE. Currently, two initiatives 
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Figure 2.3 Karyogram (adapted from http://hapmap.ncbi.nlm.nih.gov/karyogram/gwas.html) containing 
candidate genes whose association with longevity has been replicated in multiple association studies 
(green), candidate genes with interesting results from sequencing studies (yellow), interesting loci from 
linkage (logarithm (base 10) of odds ≥ 2.95) (red) and copy number variant (orange) studies, and loci that 
showed suggestive association with longevity (P ≤ 5 x 10-6) in genome-wide association studies (blue).
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for meta-GWAS for longevity are on-going. 
One consists of ~8,000 long-lived individuals 
(≥ 85 years of age) from all over Europe (EU 
longevity GWAS), while the other consists 
of ~6,000 long-lived individuals (≥ 90 years 
of age), collected in Northern America and 
Europe, from the CHARGE consortium. If 
these meta-GWAS lead to the identification 
of new loci that significantly associate with 
longevity, they should consequently be 
tested for an effect on prospective survival in 
middle and old age.

CNV studies identified potential longevity 
regions
Besides SNP analysis, several other methods 
have been applied to study the genetics 
of longevity, mainly using a prospective 
design (Box 2.1 and Figure 2.1). One study 
determined the effect of copy number 
variants (CNVs), which are deletions 
or duplications of stretches of DNA, on 
longevity in the Rotterdam Study and FHS. 
The meta-analysis of these cohorts showed 
an association between the burden of large 
(≥ 500 kb) CNVs and mortality at old age. 
In addition, they showed an association 
of common CNV regions on 11p15.5 and 
14q21.3 [56] (Figure 2.3). However, to 
qualify them as longevity-regions, these 
associations still need to be replicated in 
several larger independent cross-sectional 
and prospective studies.
	 The same group also studied the effect 
of regions of homozygosity (ROHs), which 
are uninterrupted stretches of homozygous 
SNPs, on longevity in the Rotterdam Study 
and found no association between ROHs 
and survival into old age [57]. However, to 
rule out effects of ROHs on longevity, larger 

cross-sectional and prospective studies 
should be performed.

Linkage studies have discovered 
chromosomal regions linked to human 
longevity
The explorative studies of the genome 
for longevity effects actually started with 
linkage analysis in family-based designs 
(Box 2.1 and Figure 2.1). For this approach, 
the excess sharing of alleles between siblings 
identical by descent at 6,000-12,000 loci 
not in linkage disequilibrium over sharing 
by chance provides a likelihood for the 
presence of a longevity locus in any region 
on the genome. There have been several 
small-scale genome-wide linkage studies 
of long-lived sibling pairs (ncases < 300) that 
showed inconsistent results [58-61] (Figure 
2.3). Recently, a large linkage analysis 
for longevity has been performed in 2,118 
nonagenarian Caucasian sibling pairs from 
the GEHA project. In this study, linkage 
with longevity was observed at chromosome 
14q11.2 (logarithm (base 10) of odds (LOD) 
= 3.47), chromosome 17q12-22 (LOD = 
2.95), chromosome 19p13.3-13.11 (LOD 
= 3.76), and chromosome 19q13.11-13.32 
(LOD = 3.57) (Figure 2.3), of which the 
latter was explained by the ApoE ε4 and 
ApoE ε2 alleles [62]. Since the linkage at 
the remaining loci could not be explained 
by association of common variants, human 
familial longevity at these loci may be 
explained by rare variants.

Next-generation sequencing studies may 
reveal rare longevity-associated variants
Rare variants can be identified by applying 
next-generation (whole-genome or exome) 
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sequencing. In the case of Mendelian dis
orders and strong familial traits, next-
generation sequencing of a limited num
ber of well-selected individuals may 
reveal relevant alleles with functional 
consequences. Analysis of sequencing data is 
a bioinformatic challenge and good sample 
selection is therefore extremely important. 
The most informative individuals for next-
generation sequencing in longevity research 
would be individuals from long-lived families 
with a long family history of longevity. One 
candidate gene study analyzed the complete 
coding region of IGF1 and IGF1R using 
2D gene scanning and DNA sequencing in 
centenarians and their offspring. Two rare 
nonsynonymous SNPs in IGF1R associated 
with both longevity and decreased IGF-1 
signaling. This further indicates a role for 
GH/insulin/IGF-1 signaling genes in human 
longevity [63] (Figure 2.3).
	 For exploratory analyses, the whole 
genome can be analyzed. Up to now, this has 
been published for one female and one male 
supercentenarian [64]. To identify variants 
relevant for longevity, analysis on the 
genomes of many more of such individuals 
must be performed. Various initiatives are 
ongoing in which larger numbers of genomes 
of population and family-based centenarians 
are being sequenced, e.g., the Wellderly 
Study (consisting of ~1,000 individuals ≥ 80 
years of age) and the LLS (consisting of 220 
individuals ≥ 90 years of age).

Explorative studies identify 
transcriptomic profiles marking longevity
Since the genetic approaches have thus 
far provided little robust evidence for loci 
contributing to human aging and longevity, 

attempts have been made to identify such loci 
by exploration of the human transcriptome. 
The transcriptome of an individual reflects 
the influence of genetic variation, as well 
as the response to the environment. As an 
approach to find determinants of aging and 
longevity, transcriptomic studies require 
specific designs to disentangle primary and 
causal changes in gene expression from the 
consequences of aging.
	 Most studies of the transcriptome 
try to identify genes that show a differential 
change with chronological age and mainly 
use cross-sectional designs (Box 2.1 and 
Figure 2.1). In these designs, highly aged 
individuals are compared to young controls 
or categories of increasing age are examined. 
The larger studies are performed in whole 
blood, since this is the most accessible tissue. 
However, whole blood contains different cell 
populations, which may confound observed 
differences in gene expression. If possible, 
observations of differential gene expression 
should thus be adjusted for proportions 
of blood cell subsets, which is not always 
done. One study partly circumvented this 
problem by investigating the transcriptome 
of T cells from healthy individuals with 
ages ranging from 25 to over 95 years and 
highlighted similarities in gene expression 
profiles between young and “successfully 
aged” individuals [65]. This illustrates that 
cross-sectional transcriptome studies may be 
used to identify genes potentially indicative 
of the biological age of an individual by 
comparing the expression level of the gene 
for an individual to the average expression of 
individuals of his/her chronological age.
	 The transcriptomic studies focused 
on chronological age revealed that genes 
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and microRNAs involved in many different 
processes, e.g., oxidative phosphorylation, 
complement activation, and synaptic 
transmission, change with age [66-71]. 
The pathways that have been associated 
with chronological age include peroxisome 
proliferator-activated receptor, glucose 
and glutathione metabolism, and mTOR 
signaling [65]. The relevance of mTOR 
pathway genes for human aging has been 
further illustrated by associations of gene 
expression changes with chronological age 
in a candidate gene study of two independent 
human cohorts [69]. Most of the gene 
expression associations with chronological 
age in human populations have not yet been 
validated and replicated with comparable 
technology platforms in independent studies. 
In addition, transcriptomic studies on 
chronological age cannot rate which changes 
are causal and which are consequential to 
aging.
	 One way to overcome (part of) this 
problem is by using a family-based study 
design (Box 2.1 and Figure 2.1), in which 
the offspring of long-lived individuals 
– representing “healthy agers” – are 
compared to similar-aged controls from the 
general population. The differential gene 
expression profiles identified using this 
design may represent markers of healthy 
aging and familial longevity. This approach 
has been applied in the LLS to explore the 
transcriptome in whole blood for association 
with human familial longevity. Genes 
belonging to the mTOR pathway, as well 
as ASF1A and IL7R, were differentially 
expressed between offspring and controls 
[72,73]. In addition, the expression of mTOR 
genes in blood associated to prevalent 

diabetes and serum glucose. However, the 
association with familial longevity was not 
dependent on this. Thus, gene expression 
profiles in blood mark human longevity 
in middle age and potentially provide 
information on the pathways that contribute 
to healthy aging and longevity.

Epigenomic studies are at hand
Another molecular level that could provide 
additional insight in the processes of 
aging is the epigenome, the intermediate 
layer of genomic information between the 
genome and transcriptome. Epigenetic 
regulation of transcription is mediated by 
histon modification, DNA methylation, and 
microRNAs. Changes in the epigenome 
with chronological age have been explored 
and show that methylation patterns of 
genes involved in, e.g., development and 
morphogenesis, DNA binding and regulation 
of transcription [74-76] tend to change 
with age. A recent remarkable finding in a 
small study sample, confirmed in a cohort 
of 501 individuals ranging from birth to 99 
years, was the progressive linear increase in 
methylation with age at the ELOVL2 gene 
[77]. Because the epigenomic field recently 
became more accessible for the screening of 
large study populations, the identification of 
a new range of epigenetic biomarkers is at 
hand. To consider such epigenetic measures 
as markers for biological age, confounding 
of cell type distributions should be accounted 
for – like in transcriptomic studies – and 
effects should be established using various 
study designs.

In conclusion, up to now, genomic research 
to identify drivers of healthy aging and 
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longevity in humans has not yet delivered 
many robust longevity loci and pathways. 
However, larger studies, new methodologies, 
and the consistent use of different study 
designs to follow up results might help to 
unravel the genomic component of healthy 
aging and longevity.

Phenotypes that reflect biological 
aging

In addition to focusing on lifespan as primary 
phenotype, genomic studies into aging may 
profit from insights into phenotypes that reflect 
biological age. One can think of parameters 
or profiles reflecting immunosenescence or 
metabolic health established as pre-clinical 
measures in middle-aged individuals. In 
addition, phenotyping by novel noninvasive 
technologies, such as imaging (e.g., 
functional magnetic resonance imaging) and 
longitudinal and ambulatory measurements 
using electronic devices (e.g., gait speed, 
24-hour glucose, and blood pressure), will 
improve the monitoring of the physiology 
of aging in epidemiological studies. Such 
research is often referred to as biomarker 
research and is aimed at finding parameters 
and profiles predicting long-term morbidity 
and/or mortality. Classical examples are 
blood pressure and hypertension as markers 
for clinical events in cardiovascular disease, 
joint-space width as marker for osteoarthritis, 
and bone mineral density and risk of fracture 
as markers for osteoporosis. Comparable to 
the genomic research of the transcriptome and 
epigenome, the main problem with biomarker 
research is that it is hard to disentangle the 
changes causal to aging and longevity from 

those that are a consequence of normative 
aging. For classical (e.g., leukocyte telomere 
length (LTL)) and novel potential biomarker 
of aging the four relevant phases to establish 
whether a quantitative parameter (or profile) 
is a biomarker of biological aging should  
be taken into account (see Introduction 
section).

Clinical biomarkers of biological age hint 
at metabolic processes
Several prospective studies investigated the 
effect of clinical, physical, and cognitive 
parameters on mortality. Many different 
parameters have been shown to influence 
mortality after 55 years of age in the general 
population [78-83]. To determine whether 
these parameters potentially contribute to 
longevity from middle age onwards, family-
based studies have been performed (Box 
2.1 and Figure 2.1), whereby the offspring 
of long-lived individuals is compared with 
similar-aged controls from the general 
population. Of the parameters that associate 
with mortality after 55 years of age, cortisol 
levels, digit symbol substitution test score, 
fasting glucose levels, free triiodothyronine 
levels, and gait speed also mark familial 
longevity in middle age [7,16,84-90] (Table 
2.1). Together, these biomarkers of biological 
age suggest the involvement of metabolic 
processes in healthy aging and longevity.

Metabolic profiles seem promising 
predictive biomarkers
Instead of testing single quantitative 
parameters from a clinical perspective, 
the development of novel technologies 
and methodologies has made it possible 
to study age-related changes in the whole 
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glycome and metabolome [91,92]. These 
novel explorative omics studies could 
potentially be much more informative on 
physiological aspects of aging than the 
single parameters studied so far, since 
a single-point measurement contains a 
wealth of information. A cross-sectional 
comparison of “healthy agers” and similar-
aged controls has shown that decreased 
levels of bisecting GlcNAc glycoforms of 
IgG and higher levels of specific N-glycan 
features mark healthy aging and familial 
longevity [93,94]. Datasets generated by 
metabolomic platforms provide information 
on biogenic amines, central metabolism, 
and lipids and can give insight into their 
relevance for morbidity and/or mortality, 
as was previously shown for cardiovascular 
disease [95]. In a recent study, using a 
prospective design, it was shown that a 
single-point nuclear magnetic resonance 
measurement could also predict incident 
risk of coronary heart disease, comparable 
to the gold standard, i.e., the Framingham 
risk score (unpublished results). However, 
additional prospective studies into morbidity 
and/or mortality, preferably on the basis of 
repeated measures, need to be performed 
to provide more information about the 
usefulness of metabolomic and glycomic 
profiles as biomarkers of biological age and 
longevity.

Integrating genomics and biomarker 
research
Once the use of established biomarkers of 
biological age is standardized, the biomarker 
information can be integrated into studies 
aimed at finding causal determinants of aging 
and longevity. An example of an integrated 

approach to identify lifespan regulating 
loci is represented by testing whether 
genetic variants associated with potential 
biomarkers also associate with longevity. To 
date, GWAS have identified many genetic 
variants that associate with age-related traits, 
such as LTL and features from glycome and 
metabolome profiles [96-98]. The joint effect 
of the majority of these variants on aging and 
longevity still needs to be determined. One 
study identified a haplotype in the TERT 
gene that was associated with increased LTL 
and longevity, which indicates that genetic 
variants associated with telomere length 
regulation might also play a role in longevity 
[99].

Conclusions and prospects 

Over the past two decades the human aging 
field has built up the necessary resources 
to study the biology of aging and longevity 
by establishing human populations with a 
diversity of designs. Meta-analyses integra
ting genetic and phenotypic datasets have 
successfully identified variants associated 
with a range of age-related traits and 
diseases. Despite these accomplishments, the 
number of novel leads contributing to human 
lifespan regulation is limited. Although 
positive regions of linkage and suggestive 
GWAS hits have been reported, the field 
has not yet identified the loci that explain 
the clustering of longevity in families and 
the variation in biological aging rate in the 
population. As for animal models, down-
signaling of the GH/insulin/IGF-1 and 
mTOR signaling pathways appears to be 
relevant in humans. These findings are being 
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followed up by molecular and physiological 
profiling using skin, fat, and muscle tissue 
of long-lived family members and controls. 
Human studies now also include the response 
of nutrient sensing systems to the application 
of dietary and physical challenges.
	 The ongoing whole genome sequen
cing of centenarians and their families 
may provide novel genes contributing to 
longevity. Relevant variations may include 
gain-of-function mutations or heterozygous 
loss-of-function mutations in genes with 
deleterious effect late in life. Novel bio
markers represented by omics profiles 
and ambulatory measures to establish the 
biological aging rate (such as 24-hour 
glucose [100]) will be used in integrated 
analyses. It has already become feasible  
to study the integrative personal omics 
profiles, the combination of the genetic, 
transcriptomic, proteomic, metabolomic, and 
autoantibody profile of individuals [101].
	 In conclusion, novel methodologies, 
comprehensively applied to multiple studies 
of well-phenotyped (middle and highly aged) 
individuals from long-lived families and 

large prospective cohort studies, will help to 
connect human molecular epidemiology and 
biology in aging research. Ultimately, this 
will provide leads that can be followed up in 
animal studies.
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Abstract

By studying the loci that contribute to human longevity, we aim to identify mechanisms that 
contribute to healthy aging. To identify such loci, we performed a genome-wide association 
study (GWAS) comparing 403 unrelated nonagenarians from long-living families included 
in the Leiden Longevity Study (LLS) and 1,670 younger population controls. The strongest 
candidate single nucleotide polymorphisms (SNPs) from this GWAS have been analyzed in 
a meta-analysis of nonagenarian cases from the Rotterdam Study, Leiden 85-plus study, and 
Danish 1905 cohort. Only one of the 62 prioritized SNPs from the GWAS analysis (P < 1 x 
10-4) showed genome-wide significance with survival into old age in the meta-analysis of 
4,149 nonagenarian cases and 7,582 younger controls (OR = 0.71 (95% CI 0.65 – 0.77), P = 
3.39 x 10-17). This SNP, rs2075650, is located in TOMM40 at chromosome 19q13.32 close to 
the APOE gene. Although there was only moderate linkage disequilibrium between rs2075650 
and the apolipoprotein E (ApoE) ε4 defining SNP rs429358, we could not find an ApoE-
independent effect of rs2075650 on longevity, either in cross-sectional or in longitudinal 
analyses. As expected, rs429358 associated with metabolic phenotypes in the offspring of 
the nonagenarian cases from the LLS and their partners. In addition, we observed a novel 
association between this locus and serum levels of insulin-like growth factor 1 in women 
(P = 0.005). In conclusion, the major locus determining familial longevity up to high age as 
detected by GWAS was marked by rs2075650, which tags the deleterious effects of the ApoE 
ε4 allele. No other major longevity locus was found.
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Introduction

Worldwide human populations have shown 
an increase in mean life expectancy in 
the past two centuries [1]. This is mainly 
because of environmental factors, such as 
improved hygiene, nutrition, and health 
care. The large variation in healthy lifespan 
among the elderly has prompted research 
into the determinants of aging and lifespan 
regulation. The genetic contribution to human 
lifespan variation was estimated at 25-30% 
in twin studies [2-4]. The most prominent 
genetic influence is observed in families in 
which the capacity to attain a long lifespan 
clusters [5,6]. Exceptional longevity can be 
reached with a low degree of age-related 
disability [7,8], raising the question whether 
protective mechanisms against disease exist 
in long-lived subjects.
	 In most experimentally modified 
animal model systems, single-gene mutations 
in many different genes have major life 
extension effects [9,10]. However, natural 
human and animal longevity is presumed 
to be a complex trait [11]. In humans, both 
candidate gene and genome-wide genetic 
association approaches have been applied 
in an attempt to identify longevity loci. 
The frequency of genetic variants has been 
typically compared between nonagenarian 
cases and young controls, revealing loci at 
which genetic variants may contribute to a 
higher or lower probability of survival into 
old age. The initial candidate gene studies 
aimed at finding human longevity genes 
were dominated by contradictory results 
[12]. The more consistent evidence obtained 
by repeated observation in independent 
cohort studies for association with longevity 

has so far only been observed for three loci, 
the APOE locus [12,13], the FOXO3A locus 
[14-17], and the AKT1 locus [15]. Thus, 
despite the expectation that longevity would 
be influenced by many genetic variants with 
small effect sizes, the effect of variants has 
consistently been shown in only three genes.
	 Hypothesis-free genome-wide 
approaches have also been undertaken. 
Genome-wide linkage scans reported 
evidence for linkage with longevity on 
chromosome 4q25 [18], 3p24-22, 9q31-34, 
and 12q24 [19]. However, the evidence for 
these loci is still very weak, as the results, 
obtained in centenarians and their families, 
could not be replicated in nonagenarian 
sibling pairs [20] or have yet to be tested 
in other studies. A meta-genome-wide 
association study (GWAS) for survival to 
90 years or older in 1,836 cases and 1,955 
controls did not find any significant genome-
wide associations [21]. Thus far, hypothesis-
free approaches have not identified any loci 
involved in longevity.
	 In a few studies, such as the 
Ashkenazi Jewish Centenarian Study and 
the Leiden Longevity Study (LLS), different 
generations of long-lived families are being 
investigated for parameters and pathways 
contributing to the longevity phenotype 
[6,22]. The survival benefit of the LLS 
families is marked by a 30% decreased 
mortality risk in the survival analysis of three 
generations, i.e., the parents of the probands 
in this study (nonagenarian sibling pairs), 
their unselected additional siblings, and their 
offspring [6]. As compared to their partners, 
the offspring of nonagenarians siblings 
have a lower prevalence of type 2 diabetes, 
myocardial infarction, and hypertension 
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[23], a beneficial glucose, lipid, and thyroid 
metabolism, and a preservation of insulin 
sensitivity with age [24-28]. Hence, in 
middle age, these families display beneficial 
metabolic profiles.
	 Because the longevity phenotype 
is inherited in the LLS families, they offer 
a route to identify genetic variants that 
influence human longevity. Previously, 
we tested whether the absence of GWAS-
identified alleles promoting common diseases 
might explain their familial longevity [29]. 
Longevity was not easily explained by the 
absence of disease-susceptibility alleles. 
More likely therefore, the genome of the 
long-lived harbors longevity-promoting 
alleles. To identify such loci, we performed 
a GWAS comparing nonagenarian siblings 
from the LLS and younger population 

controls. We subsequently investigated 
emerging candidate single nucleotide 
polymorphisms (SNPs) in nonagenarian 
cases from the Rotterdam Study (RS), the 
Leiden 85-plus study, and the Danish 1905 
cohort.

Results

GWAS
A GWAS was performed in nonagenarian 
participants from the LLS and middle-aged 
controls from the RS. Genotype data for 
516,721 SNPs that passed quality control 
thresholds were analyzed in a comparison 
of 403 unrelated nonagenarians (94 years 
on average) and 1,670 controls (58 years 
on average). A flow chart of the consecutive 

Figure 3.1 Flow chart of experimental work.
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analysis steps is depicted in Figure 3.1 and 
a description of the population samples 
investigated in the GWAS and subsequent 
replication studies is given in Table 3.1. 
Results of the association analysis of stage 
1 are depicted in Figure S3.1. None of the 
SNPs reached genome-wide significance (P 
< 5 x 10-8).

Replication studies
We prioritized the SNPs that had the most 
significant association with survival into 
old age according to the analysis of stage 
1 (P < 1 x 10-4, Table S3.1). For 58 of the 
62 selected SNPs, successful genotyping 
was obtained in the replication cohorts. 
In stage 2, these 58 SNPs were tested for 
association comparing 960 RS replication 
cases (mean age of 93 years), 1,208 Leiden 
85-plus replication cases (mean age of 92 
years), and 1,578 Danish replication cases 
(mean age of 93 years) with appropriate 
middle-aged population controls (Table 3.1). 
Meta-analysis for the 58 SNPs, comprising a 
total of 4,149 nonagenarian cases and 7,582 
younger controls (from the LLS GWAS, RS 

replication, Leiden 85-plus replication, and 
Danish replication studies), was performed.
	 Rs2075650 on chromosome 19 was 
the only SNP that was associated with survival 
into old age at the genome-wide significance 
level (P = 3.39 x 10-17) (Table S3.2A). The 
minor allele was underrepresented among 
the older cases as compared to middle-aged 
controls, hence associated with the decreased 
probability of carriers surviving into old age, 
corresponding to an odds ratio (OR) below 
unity (OR = 0.71 (95% CI 0.65 – 0.77)). 
This effect is observed in both sexes (Tables 
S3.2B and S3.2C). The remaining 57 SNPs 
did not show genome-wide significant effects 
on longevity either in men or women (Tables 
S3.2B, for men, and S3.2C, for women). 
The association of rs2075650 with survival 
did show some heterogeneity across the 
four studies (P = 0.0495), which is mainly 
because of the RS replication study.

Rs2075650 and the ApoE ε2/ε3/ε4 
polymorphism
Rs2075650 is located in the TOMM40 gene, 
next to the APOE gene (Figure S3.2). APOE 

Table 3.1 Characteristics of the genotyped samples used for analysis.

Study SNPs Samples n Mean age Age range Men/women
LLS GWAS 517K Cases 403 94 89 - 102 137/266

517K Controls 1,670 58 55 -   59  745/925
RS replication study 58 Cases 960 94 90 - 106 217/743

58 Controls 1,835 62 60 -   65  809/1,026
Leiden 85-plus replication study 58 Cases 1,208 92 85 - 109 372/836

58 Controls 2,090 35 15 -   70  743/1,347
Danish replication study 58 Cases 1,578 93 92 -   93  430/1,148

58 Controls 1,997 57 46 -   68  900/1,097

SNPs, single nucleotide polymorphisms; LLS, Leiden Longevity Study; GWAS, genome-wide association study; RS, 
Rotterdam Study.
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was previously associated with longevity 
[12,13]. The apolipoprotein E (ApoE) 
protein has three isoforms (ApoE ε2, ApoE 
ε3, and ApoE ε4), which are defined by two 
SNPs, rs7412 (Arg136Cys; ε2) and rs429358 
(Cys112Arg; ε4). A meta-analysis of rs7412 
and rs429358 in the LLS GWAS, the Leiden 
85-plus replication study, and the Danish 
replication study samples (3,189 cases 
and 5,757 controls), showed a significant 
association of rs429358 with longevity (OR 
= 0.62 (95% CI 0.56 – 0.68), P = 1.33 x 
10-23), which was comparable to rs2075650 
(OR = 0.67 (95% CI 0.61 – 0.74), P = 9.15 
x 10-17). Rs7412 also showed an association 
with longevity, with a higher prevalence of 
the minor allele in nonagenarians (OR = 1.31 
(95% CI 1.17 – 1.46), P = 1.35 x 10-6).
	 We observed only moderate linkage 
disequilibrium (LD) between rs2075650 and 
rs429358 (r2 = 0.553) and low LD between 
rs2075650 and rs7412 (r2 = 0.014) when 
analyzing all samples with genotype data of 
rs2075650, rs429358, and rs7412 (n = 8,946). 
Nevertheless, in a conditional analysis with 
rs429358 and rs7412 (Model 1, described 
in the Materials and methods section), 
rs2075650 was no longer associated with 
longevity (OR = 0.93 (95% CI 0.81 – 1.07), 
P = 0.337). The OR increased from 0.67 to 
0.93, i.e., the deleterious effect of rs2075650 
on longevity diminishes and is statistically 
non-significant. However, the deleterious 
effect of rs429358 (OR = 0.64 (95% CI 0.56 
– 0.74), P = 2.68 x 10-9) and the protective 
effect of rs7412 (OR = 1.20 (95% CI 1.07 
– 1.36), P = 0.002) on longevity remained 
significant.
	 To determine whether there was an 
ApoE-independent effect of rs2075650 on 

survival after 90 years, prospective analysis 
of rs2075650, adjusted for rs429358 and 
rs7412, was performed. This analysis 
showed that carriers of the minor allele of 
rs2075650 displayed no increased mortality, 
i.e., a significant hazard ratio (HR) above 1, 
after 90 years of age independently of ApoE 
in two of the three cohorts analyzed (LLS, 
HR = 0.99 (95% CI 0.78 – 1.25), P = 0.914; 
Leiden 85-plus study, HR = 1.06 (95% CI 
0.89 – 1.27), P = 0.521; Danish 1905 cohort, 
HR = 1.21 (95% CI 1.01 – 1.44), P = 0.036, 
Table S3.3A and Figure S3.3).
	 Overall, our results suggest that the 
association of rs2075650 with longevity 
is most likely a reflection of the effects 
of rs429358, caused by the moderate LD 
between the loci.

Association of rs429358 (ε4) and 
rs2075650 with serum parameters
As previous studies showed that rs429358 
was associated with several metabolic 
phenotypes [30-32], association of this 
SNP with relevant serum parameters 
was determined in the offspring of the 
elderly LLS cases and their partners (n = 
2,324, Model 2 described in the Materials 
and methods section). We replicated the 
previously reported associations of rs429358 
with plasma levels of ApoE (P = 7.42 x 
10-28), total cholesterol (P = 0.001), low-
density lipoprotein (LDL) cholesterol (P = 
4.91 x 10-5), high-density lipoprotein (HDL) 
cholesterol (P = 0.062), and C-reactive 
protein (CRP) (P = 0.028) and with HDL 
(P = 0.061) and LDL particle size (P = 
0.062) (Table 3.2). In addition, we detected 
a minor effect on Insulin-like growth factor 1 
(IGF-1) (P = 0.025) and insulin-like growth 
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factor binding protein 3 (IGFBP3) levels (P 
= 0.042) (Table 3.2). The effect on IGF-1 
seems to be female-specific (P = 0.005 and 
P = 0.748, in women and men, respectively) 
and is still significant after correction for 
multiple testing. We observed no ApoE-
independent effect of rs2075650 on these 
traits, except for an increase of 0.18 mmol/L 
total cholesterol (P = 0.017) and 0.14 mmol/L 
LDL cholesterol (P = 0.014) with each minor 
allele of rs2075650 (using Model 3 described 
in the Materials and methods section).
No significant effects of rs429358 were 
observed on glucose (P = 0.388), insulin 
(P = 0.123), triglyceride (P = 0.203), and 
free triiodothyronine (fT3) (P = 0.141) 
levels (Table 3.3); the phenotypes that have 
previously been associated, in middle age, 
with familial longevity in the LLS families 
[24-28].

Analysis of Alzheimer’s disease SNPs
Rs2075650 has consistently been associated 
with an increased risk of Alzheimer’s disease 
in several independent GWAS [33-35]. 
Therefore, we studied the effect of SNPs 
present in the AlzGene database (http://www.
alzgene.org/) [36], on survival into old age in 
the LLS GWAS. Apart from rs2075650, none 
of the 751 measured Alzheimer’s disease 
SNPs showed a significant association after 
adjustment for multiple testing (Table S3.4).

Analysis of FOXO3A and AKT1 SNPs
Apart from APOE, two other genes have 
shown consistent evidence for association 
with longevity, FOXO3A  [14-17] and AKT1 
[15]. For the longevity-promoting FOXO3A 
SNPs previously reported with centenarian 
longevity, we observed no association with 

survival into old age in our nonagenarians 
(Table S3.5). For AKT1, one of the two 
measured SNPs, rs2498804, showed a 
significant association with survival into old 
age (OR = 0.75 (95% CI 0.63 – 0.89), P = 
0.001) (Table S3.5).

Discussion

To identify common SNPs contributing 
to longevity, GWAS analysis of 403 
nonagenarian cases and 1,670 population 
controls was performed. Of the 62 top 
associating SNPs, 58 were tested in a meta-
analysis of 4,149 nonagenarian cases and 
7,582 younger controls and we identified one 
SNP, rs2075650, that associated significantly 
with survival into old age (P = 3.39 x 10-

17). Carriers of the minor allele had a 29% 
decreased probability of reaching 90 years 
on average. Although cases and controls 
originate from different generations, we 
concluded that there was no substructure to 
an extent that would affect the observations.
	 Rs2075650 is located in the TOMM40 
gene at chromosome 19q13.32 close to and 
centromeric of the APOE gene (Figure S3.2), 
which has shown consistent evidence for 
association with longevity [12,13]. The ApoE 
protein has three isoforms (ApoE ε2, ApoE 
ε3, and ApoE ε4) that are defined by two 
SNPs, rs7412 (Arg136Cys; ε2) and rs429358 
(Cys112Arg; ε4). ApoE ε4 carriers have an 
increased risk of cardiovascular disease and 
Alzheimer’s disease, while ApoE ε2 carriers 
are protected from these diseases [12,37,38]. 
Although we detected only moderate LD 
(r2 = 0.553) between rs2075650 and the 
ApoE ε4-defining SNP rs429358, we could 
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not detect a significant effect of rs2075650 
on longevity independent of rs429358. 
Several prospective studies, including one 
with the Danish 1905 cohort [39], reported 
increased mortality for ApoE ε4 carriers, 
even though there is still much debate about 
APOE being a "frailty gene" or a "longevity 
gene" [12,39-41]. The prospective data in 
the LLS and Leiden 85-plus study support 
the "frailty gene" hypothesis, as rs429358 
affects mortality after 85 years and continues 
the effect after 90 years (HR = 1.08 (95% CI 
1.03 – 1.13), P = 0.001 and HR = 1.08 (95% 
CI 1.03 – 1.12), P = 0.001, respectively, 
Table S3.3B and Figure S3.4). In these 
prospective studies, carriers of the minor 
allele of rs2075650 showed no increased 
mortality independent of rs429358, which 
indicates that the association of rs2075650 
with longevity is most likely due to variation 
in the APOE gene. Although GWAS have 
reported significant associations between 
rs2075650 and Alzheimer’s disease, 
brain imaging, total cholesterol, and CRP 
plasma levels [35,42-44], no analyses were 
performed to determine whether these 
associations are ApoE-independent. We 
observed no ApoE-independent effect on 
the phenotypes investigated in the LLS 
offspring and partners except for total and 
LDL cholesterol.
	 Previously, rs429358 had been 
associated with several metabolic 
phenotypes, such as ApoE, total cholesterol, 
HDL cholesterol, LDL cholesterol, and CRP 
levels, as well as HDL and LDL particle 
size [30-32] and, here, we have confirmed 
these findings using serum measurements 
of the offspring and partners from the 
LLS. Because the insulin/IGF-1 signaling 

(IIS) pathway has a lifespan regulating 
effect in several model organisms [9,10] 
and humans [45], we also investigated the 
effect of rs429358 on serum levels of IGF-
1 and IGFBP3, which both play a role in 
this pathway. Both proteins are involved in 
the etiology of several age-related diseases. 
However, up till now, it is not clear whether 
higher or lower serum levels are beneficial 
for longevity. Low IGF-1 serum levels 
associate with a decreased risk of cancer, 
but an increased risk of cardiovascular 
disease and neurodegenerative disease [46]. 
Previously, we showed in the Leiden 85-plus 
study cohort that genetic variants known to 
associate with lower IIS activity and IGF-
1 serum levels at younger age associated 
with better survival at ages above 85 years 
[47]. However, the effect of these genetic 
variants on IGF-1 serum levels was not 
tested in the Leiden 85-plus study cohort. 
In addition, we showed previously that 
neither IGF-1 and IGFBP3 levels nor their 
ratio differed between partners and offspring 
from the LLS [24], which indicates that 
IGF-1 serum levels are, in middle age, not 
a marker for longevity, whereas a decreased 
risk of metabolic diseases was evident at 
that age in long-lived families [23]. In the 
current study, we found that the minor allele 
of rs429358 associates with lower IGF-1 
levels in middle-aged women, which, to 
our knowledge, has not previously been 
reported. Like low IGF-1 levels, ApoE ε4 
was previously associated with an increased 
risk of developing cardiovascular disease 
and neurodegenerative disease [12,37,38]. 
Thus, the mechanism behind the increased 
risk of female ApoE ε4 carriers of developing 
cardiovascular and/or neurodegenerative 
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diseases might involve serum levels of IGF-
1 or other aspects of IIS activity reflected by 
these levels. Apart from lipid metabolism, 
the parameters determining the longevity 
phenotype in middle age in the LLS, such 
as glucose metabolism, insulin sensitivity, 
and thyroid hormone metabolism [24-28], 
were not influenced by the presence of the 
minor allele of rs429358. This indicates that 
it is likely that other loci could explain the 
differences in these phenotypes between 
LLS offspring and partners.
	 The strength of this study is that, by 
using a GWAS, we were able to replicate 
the previously reported association of the 
APOE locus with longevity [12,13] as 
the major locus. This was not observed in 
the previously published meta-GWAS of 
Newman et al. [21], possibly because of 
differences in the study design and population 
control selection between the studies. While 
Newman et al. used nonagenarian cases in 
a population-based design, we made use of 
a family-based design in which the families 
are genetically enriched for longevity. In 
addition, Newman et al. used population 
controls from the same cohort which had 
died before the age of 80. Between 60 and 
80 years, however, there might already have 
been a selection on survival, decreasing the 
frequency of ApoE ε4 carriers in the control 
group. In contrast, we made comparisons to 
a younger population group (55-60 years) 
from a different cohort (RS).
	 As we previously reported that long-
lived individuals carry the same number of 
disease risk alleles for cardiovascular disease, 
cancer, and type 2 diabetes as young controls 
[29], we expected to primarily find longevity-
promoting alleles. However, although most 

of the 58 prioritized SNPs (n = 43) from the 
LLS GWAS showed a longevity-promoting 
effect ranging from 36 to 168%, none of 
them could be replicated in additional study 
populations of nonagenarian singletons. 
The only replicated locus is APOE, which 
is a mortality locus that has previously been 
reported to be the major locus responsible for 
Alzheimer’s disease [33-35], a well-known 
age-related disease. Nevertheless, none of 
the other Alzheimer’s disease loci showed an 
association with survival to 90 years, which 
indicates that the remaining genetic variation 
in longevity in the LLS could not be explained 
by the genetic variation which contributes to 
Alzheimer’s disease. In addition to APOE, 
we also observed evidence for association 
at the previously reported AKT1 locus 
[15] with survival into old age in the LLS 
GWAS, although the effect of this SNP is 
relatively small (25% decreased probability 
of becoming 90 years) compared to the effect 
of rs429358 (51%). The previously reported 
longevity-promoting effect of the FOXO3A 
locus could not be replicated in this study. 
This is probably due to the relatively low 
number of centenarians in the LLS GWAS 
case group, in which the effect of SNPs in 
FOXO3A on longevity seems to be most 
prominent. The still unexplained genetic 
variation in longevity might be attributable 
to rare variants or variants with small effects, 
which has previously been reported for 
other complex traits, such as Alzheimer’s 
disease. These loci could not be identified 
in this study because of the relatively small 
number of cases in the LLS GWAS, the 
heterogeneity of factors influencing lifespan 
within populations, and the difference in the 
design of the studies used for replication. 
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One way to identify variants with small 
effects would be to increase the initial sample 
size of the GWAS and perform replication in 
other studies of nonagenarians. Given the 
higher heritability of longevity at older ages 
[48], one may also limit the study population 
to centenarians or supercentenarians. In 
addition to common variants with small 
effects, rare variants with large effects 
might play a role in longevity. By whole-
genome⁄exome sequencing of long-lived 
subjects and their families, rare variants can 
be identified and associated with human 
longevity.
	 In conclusion, we have shown that 
the deleterious effect of the ApoE ε4 allele, 
tagged by rs2075650, is the single major hit 
in our GWAS for longevity, indicating that 
no other major longevity locus was present 
among these nonagenarians. We confirmed 
the previously reported associations of 
the ApoE ε4 allele with lipid metabolism 
parameters and report an additional effect 
on IGF-1 signaling in women. To identify 
genetic variants with smaller and protective 
effects on human lifespan, a meta-GWAS for 
longevity with a larger sample size is merited.

Materials and methods

Study Populations

Leiden Longevity Study
For the LLS, long-lived siblings of European 
descent were recruited together with their 
offspring and the partners of the offspring. 
Families were included if at least two long-
lived siblings were alive and fulfilled the age 
criterion of 89 years or older for men and 
91 years or older for women, representing < 

0.5% of the Dutch population in 2001 [6]. In 
total, 944 long-lived proband siblings were 
included with a mean age of 94 years (range 
89-104), 1,671 offspring (61 years, 39-81), 
and 744 partners (60 years, 36-79). DNA 
from the LLS was extracted from samples 
at baseline using conventional methods [20]. 
For the GWAS, 403 unrelated LLS siblings 
(one sibling from each sibling pair) were 
included (LLS GWAS cases).

Rotterdam Study
The RS is a prospective population-
based study of people aged 55 years 
and older, which was designed to study 
neurological, cardiovascular, locomotor, 
and ophthalmological diseases [49]. The 
study consists of 7,983 participants from the 
baseline cohort (RS-I) and 3,011 participants 
from an independent extended cohort formed 
in 1999 (RS-II) from which DNA was isolated 
between 1990 and 1993 (RS-I) or between 
2000 and 2001 (RS-II). For the GWAS, 1,731 
participants from the combined cohort who 
were below 60 years of age and for whom 
GWAS data were available were included 
as controls (RS GWAS controls). For the 
replication study, 960 cases above 90 years 
at time of recruitment (RS replication cases) 
and 1,825 controls between 60 and 65 years 
at baseline (RS replication controls) from the 
combined cohorts, for whom GWAS data 
were also available, were included.

Leiden 85-plus study
In the Leiden 85-plus study, two prospective 
population-based cohorts were recruited 
from inhabitants of Leiden [50,51]. Between 
1987 and 1989, 673 subjects aged 85 years 
and older were enrolled in a prospective 
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study (Cohort 1). Between 1997 and 1999, 
563 subjects were enrolled in the month of 
their 85th birthday with follow-up (Cohort 2). 
Subjects were visited at their home and there 
were no exclusion criteria related to health. 
DNA was available from the combined 
cohorts consisting of 1,208 subjects aged 85 
years and older (Leiden 85-plus replication 
cases).

Netherlands Twin Registry
From the Netherlands Twin Registry (NTR), 
2,090 unrelated participants of European 
descent for whom DNA was available were 
selected as control samples [52] (Leiden 85-
plus replication controls). The substructure 
in the NTR has been reported before [53], 
and in this study, we included samples aged 
between 15 and 70 years at the time of blood 
sampling, without known family relations 
(i.e., those without any substructure).

Danish 1905 cohort
The participants in this study are from the 
Danish 1905 birth cohort recruited in 1998 
[54] when they were aged 92-93 years. From 
this cohort, 3,600 subjects were still alive, 
of whom 2,262 participated in the study. 
Participants were subjected to a home-based 
interview on health and lifestyle parameters, 
physical and cognitive function tests, and the 
collection of biological material. The current 
genetic study comprises a total of 1,578 of 
these individuals (Danish replication cases). 
Survival was followed up until January 
2010. Ninety-nine percent (1,561 subjects) 
of subjects died in the 12 years of follow-up. 
Control samples were 1997 twins (one twin 
for each pair) between 46 and 68 years of 

age collected from all over Denmark (Danish 
replication controls).

The cases in all three replication cohorts 
originate from population-based cohort 
studies from a genetic background similar 
to the LLS [55]. All the participants in these 
studies have signed an informed consent.

Genotyping

Genome-wide association study
LLS GWAS cases were genotyped using 
Illumina Infinium HD Human660W-Quad 
BeadChips (Illumina, San Diego, CA, USA). 
The RS-I and RS-II cohorts were genotyped 
using Illumina Infinium II HumanHap 
550K Beadchips and Illumina Infinium II 
HumanHap550-Duo BeadChips (Illumina), 
respectively [49].
	 For the GWAS, we selected 551,606 
SNPs for analysis because these were 
genotyped in both the LLS GWAS cases and 
(some of) the RS GWAS controls. Of these 
551,606 SNPs, 34,885 SNPs were excluded 
on the basis of the following criteria: SNP call 
rate < 0.95 or minor allele frequency < 0.01 
in RS GWAS controls or LLS GWAS cases 
(n = 8,908 and n = 24,586, respectively), and 
PHWE < 10-4 in RS GWAS controls (n = 1,355). 
In addition, SNPs with a between-chip effect 
in the RS GWAS controls were removed 
using a genotype trend test comparing the 
RS GWAS controls from RS-I with RS-II (n 
= 36), leaving 516,721 SNPs for statistical 
analysis. The Illumina clusterplots of the 
SNPs with P < 1 x 10-4 (n = 71) were visually 
inspected to confirm high-quality genotyping 
and 9 SNPs were excluded on the basis of 
bad clustering in the LLS GWAS cases or RS 
GWAS controls.
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Genotype data were used to confirm gender 
and family relationships. Two RS GWAS 
control samples were excluded because 
of abnormalities in the sex chromosomes 
(both samples had Triple X Syndrome). 
Latent clustering of genotypes because of 
population substructure was assessed by 
pairwise identity-by-state (IBS) distance 
using Graphical Relationship Representation 
(ht tp: / /bioinformatics.well .ox.ac.uk/
GRR) [56]. LLS GWAS cases showed no 
relationship errors. From the RS GWAS 
controls, 59 samples were excluded because 
of high IBS. In total, 403 LLS GWAS cases 
and 1,670 RS GWAS control samples with 
a sample call rate > 0.95 were analyzed. 
Because cases and controls originate from 
different generations, we investigated 
whether substructure in these cohorts could 
have influenced the observed associations. 
IBS estimates for all pairs of subjects in 
the data set were computed on a randomly 
selected set of 10% of the SNPs that 
passed quality control thresholds, using 
the --genome, --cluster, and --mds-plot 4 
commands in PLINK (http://pngu.mgh.
harvard.edu/purcell/plink) [57]. The first 
two resulting principal components (C1 and 
C2) were plotted against each other, which 
gives a representation of the data in two 
dimensions. In the resulting scatter plot, each 
point represents an individual (green = LLS 
GWAS case and blue = RS GWAS control, 
Figure S3.5). If there had been substructure, 
one would see multiple clusters in one plot. 
However, because all our samples seem to be 
in one cluster, we concluded that there was 
no substructure to an extent that would affect 
the observations.

Replication studies
For the RS replication study, we used the 
existing GWAS data in the Rotterdam Study 
after the quality control screening described 
by Teichert et al. [49]. For the Leiden 85-plus 
and Danish replication studies, genotyping 
was performed using the Sequenom 
MassARRAY iPLEX Gold and TaqMan SNP 
Genotyping assays. Of the 62 prioritized 
SNPs, 58 could be designed for replication 
studies using Sequenom, of which 56 were 
successfully genotyped in > 95% of the 
samples displayed in Table 3.1. The average 
genotype call rate for SNPs genotyped with 
Sequenom was 98.40%, and the average 
concordance rate with GWAS data among 
the LLS GWAS cases was 99.97%. For 2 of 
the 6 SNPs that could not be genotyped with 
Sequenom, rs2075650 and rs642990, pre-
designed TaqMan SNP genotyping assays 
(C____3084828_20 and C____2206314_20, 
respectively) were used for genotyping, 
following the manufacturer’s instructions. 
The average genotype call rate for the SNPs 
genotyped with TaqMan was 99.04%, and 
the average concordance rate with GWAS 
data among the LLS GWAS cases was 100%.

ApoE ε2/ε3/ε4 polymorphism
The ApoE ε2 ⁄ ε3 ⁄ ε4 defining SNPs, rs429358 
(Cys112Arg; ε4) and rs7412 (Arg136Cys; 
ε2), were genotyped in the LLS GWAS 
cases, Leiden 85-plus replication study, and 
Danish replication study controls using pre-
designed TaqMan SNP genotyping assays 
(C___3084793_20 and C____904973_10, 
respectively). For the RS GWAS controls and 
Danish replication study cases, previously 
measured data were used [39,58].
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Measurement of serum parameters
All standard serum measurements were 
performed using fully automated equipment.
	 Glucose, total cholesterol, HDL 
cholesterol, and triglyceride levels were 
measured using the Hitachi Modular P 800 
(Roche, Almere, the Netherlands) [24]. 
LDL cholesterol was calculated using the 
Friedewald formula [59].
	 LDL and HDL particle sizes were 
measured using proton NMR spectroscopy 
(LipoScience Inc, Raleigh, NY, USA) [60].
	 IGF-1, IGFBP3, and insulin levels 
were measured using the Immulite 2500 
(DPC, Los Angeles, CA, USA) [24].
	 fT3 was measured using the Modular 
E170 and high-sensitivity CRP was measured 
using Cobas Integra 800 (both from Roche) 
[26].
	 The level of ApoE was determined in 
serum samples using a human ApoE-specific 
sandwich ELISA [61,62].

Statistical analysis

GWAS and replication studies
For the association analysis of the GWAS 
data, we applied a Cochran-Armitage 
trend test [63,64]. For X-linked SNPs, the 
genotypes of the men were considered 
as homozygous genotypes. SNPs with a 
P-value < 1 x 10-4 (n = 62) were selected for 
replication. Odds ratios were estimated and 
the corresponding 95% confidence intervals 
were computed. For meta-analyses, a fixed 
effect approach was used. Scores and their 
variances were computed within each study 
and combined across the four studies to 
obtain a single meta-statistic. P-values below 
5 x 10-8 were considered as genome-wide 
significant [65]. The between-study variance 

was calculated to determine heterogeneity 
across the four studies. All these analysis 
were performed using Bioconductor R 
(http://www.bioconductor.org) [66].
	 The quantile–quantile plot (Figure 
S3.6), constructed using Bioconductor R 
(http://www.bioconductor.org) [66], showed 
that the P-value distribution of stage 1 
conformed to a null distribution at all but the 
extreme tail. The genomic inflation factor 
(λ), which measures over-dispersion of test 
statistics from association tests indicating 
population stratification, was 1.027 and we 
therefore decided not to adjust for population 
stratification.

Linkage Disequilibrium between rs2075650 
and the ApoE ε2/ε3/ε4 polymorphism
Pairwise linkage disequilibrium (LD) 
between rs2075650 and the ApoE ε2/ε3/ε4 
polymorphism determining SNPs rs7412 and 
rs429358 was calculated in 8,946 individuals 
using the --ld command in PLINK (http://
pngu.mgh.harvard.edu/purcell/plink) [57].

ApoE-independent association of rs2075650 
with longevity
To determine whether the association of 
rs2075650 with longevity was independent 
of the ApoE ε2/ε3/ε4 polymorphism, a 
logistic regression model with adjustment 
for rs429358, rs7412 and an interaction term 
for ε2/ε3 with ε3/ε4 was tested [67]:

Logit (Pstatus = 1) = β0 + β1*rs2075650 
+ β2*rs429358 + β3*rs7412 + 
β4*(rs429358*rs7412) + β5*study (Model 1)

status was coded as 0 (control) or 1 (long-
lived case), study was coded as 0 (LLS 
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GWAS), 1 (Leiden 85-plus replication 
study) or 2 (Danish replication study) and 
the genotypes of rs2075650, rs429358 and 
rs7412 were coded as 0 (homozygous for 
the common allele), 1 (heterozygous) or 2 
(homozygous for the rare allele). STATA/SE 
11.1 (StataCorp LP, TX, USA) was used for 
this analysis.

Prospective analysis
Prospective analysis of rs2075650 and 
rs429358 was performed with 944 
nonagenarian siblings from the LLS, 
976 octogenarians and nonagenarians 
from the Leiden 85-plus study, and 1,578 
nonagenarians from the Danish 1905 cohort.
	 After a mean follow-up time of 
5.7 years (LLS), 14.8 years (Leiden 85-
plus study), and 11.4 years (Danish 1905 
cohort), 73.2% (n = 691) (LLS), 84.8% (n 
= 828) (Leiden 85-plus study), and 98.9% 
(n = 1,561) (Danish 1905 cohort) of the 
individuals had died.
	 Mortality analyses were performed 
with STATA⁄SE 11.1 (StataCorp LP) using 
a gender-adjusted, left-truncated Cox 
proportional hazards model to adjust for late 
entry into the data set according to age.

Association of rs429358 (ε4) and rs2075650 
with serum parameters
To determine the association of rs429358 
and the ApoE-independent association of 
rs2075650 with serum parameters in the 
offspring and their partners from the LLS the 
following regression models were tested:

Serum parameter = β0 + β1*age + 
β2*gender + β3*(age*gender) + β4*group 
+ β5*rs429358 (Model 2)

Serum parameter = β0 + β1*age + 
β2*gender + β3*(age*gender) + β4*group + 
β5*rs2075650 + β6*rs429358 + β7*rs7412 
+ β8*(rs429358*rs7412) (Model 3)

age was coded in years, gender was coded as 
1 (male) or 2 (female), group was coded as 0 
(partner) or 1 (offspring) and the genotypes 
of rs2075650, rs429358 and rs7412 were 
coded as 0 (homozygous for the common 
allele), 1 (heterozygous) or 2 (homozygous 
for the rare allele). Robust standard errors 
were used to account for sibship relations. 
STATA/SE 11.1 (StataCorp LP) was used for 
these analyses.
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Abstract

The genetic contribution to the variation in human lifespan is ∼25%. Despite the large number 
of identified disease-susceptibility loci, it is not known which loci influence population 
mortality. We performed a genome-wide association meta-analysis of 7,729 long-lived 
individuals of European descent (≥ 85 years) and 16,121 younger controls (< 65 years) followed 
by replication in an additional set of 13,060 long-lived individuals and 61,156 controls. In 
addition, we performed a subset analysis in cases aged ≥ 90 years. We observed genome-wide 
significant association with longevity, as reflected by survival to ages beyond 90 years, at a 
novel locus, rs2149954, on chromosome 5q33.3 (OR = 1.10, P =1.74 x 10-8). We also confirmed 
association of rs4420638 on chromosome 19q13.32 (OR = 0.72, P = 3.40 x 10-36), representing 
the TOMM40/APOE/APOC1 locus. In a prospective meta-analysis (n = 34,103), the minor 
allele of rs2149954 (T) on chromosome 5q33.3 associates with increased survival (HR = 0.95, 
P = 0.003). This allele has previously been reported to associate with low blood pressure 
in middle age. Interestingly, the minor allele (T) associates with decreased cardiovascular 
mortality risk, independent of blood pressure. We report on the first genome-wide association 
study-identified longevity locus on chromosome 5q33.3 influencing survival in the general 
European population. The minor allele of this locus associates with low blood pressure in 
middle age, although the contribution of this allele to survival may be less dependent on blood 
pressure. Hence, the pleiotropic mechanisms by which this intragenic variation contributes to 
lifespan regulation have to be elucidated.
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Introduction

Worldwide, human life expectancy has 
increased remarkably over the last two 
centuries [1], although the healthy life 
expectancy lags behind. Citizens of the 
European Union, for example, spend only 
75-80% of their lifespan in good health [2]. 
Families in which longevity clusters form an 
exception in this sense, by showing beneficial 
or "youthful" profiles for many metabolic 
and immune-related parameters [3-7] and 
a low prevalence of common diseases from 
middle age onwards [5,8,9]. Therefore, 
the genome of long-lived individuals is 
investigated to identify variants that promote 
healthy aging and protect against age-related 
disease. This is a major challenge because 
the genetic component of lifespan variation 
in the population at large has been estimated 
to be only ~25% [10,11] and is assumed to be 
determined by many, still uncharacterized, 
genes [12,13]. Genetic influences on human 
longevity are expected to reflect longevity 
assurance mechanisms acting across 
species [14], as well as more heterogeneous 
population-specific effects. Although 
numerous genome-wide association studies 
(GWAS) have successfully identified loci 
involved in common age-related diseases 
[15], the corresponding susceptibility loci do 
not explain the genetic component of human 
longevity [16]. GWAS for human longevity 
have thus far failed to identify genome-wide 
significant loci, besides the well-known 
TOMM40/APOE/APOC1 locus [17-19].
	 In this paper we conducted a large 
genome-wide association meta-analysis of 
human longevity in 14 studies with long-
lived cases (≥ 85 years) and younger controls 

(< 65 years) from European descent. In 
addition, we performed a subset analysis in 
cases aged ≥ 90 years. The novel longevity 
locus we identified was tested for association 
with prospective (cause-specific) mortality 
in a meta-analysis of 11 European cohorts 
and examined for association with various 
metabolic traits that may explain the 
mechanism by which the locus contributes to 
survival to high ages.

Results

Genome-wide association analysis
In order to identify novel loci involved in 
lifespan regulation, we conducted a meta-
analysis on GWAS data of 7,729 long-lived 
cases (≥ 85 years) and 16,121 younger 
controls (< 65 years) from 14 studies 
originating from 7 European countries (Table 
S4.1). For each study, cases and controls 
originated from the same country. Given the 
higher heritability of longevity at older ages 
[11,20], we performed a subset analysis in 
which we compared cases aged ≥ 90 years 
(n = 5,406) with 15,112 controls (< 65 years) 
from the corresponding control cohorts. 
Replication was performed in 13,060 cases 
aged ≥ 85 years (of which 7,330 were ≥ 90 
years) and 61,156 controls from 6 additional 
studies, of which 3 originated from European 
countries not represented in the discovery 
phase meta-analysis (Table S4.1). Analysis 
of each study was performed using a logistic 
regression-based method and results were 
adjusted for study-specific genomic inflation 
factors (λ) (Table S4.2). Meta-analysis 
was performed on 2,480,356 (≥ 85 years) 
and 2,470,825 (≥ 90 years) imputed single 
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nucleotide polymorphisms (SNPs) using 
a fixed-effect approach and results were 
further adjusted for the overall genomic 
inflation factor (λ = 1.019) (Figure S4.1). A 
flow chart of the consecutive analysis steps is 
depicted in Figure 4.1.
	 The discovery phase meta-analyses 
of the cases aged ≥ 85 years (n = 7,729) 
showed genome-wide significant association 
with survival into old age at one locus, the 
previously identified TOMM40/APOE/
APOC1 locus [17,21] (rs4420638 (G); odds 
ratio (OR) = 0.71, P = 6.14 x 10-19, Table 4.1). 
No gender-dependent effects were observed 
in the sex-stratified analysis of the cases aged 
≥ 85 years (Table S4.4). The discovery-phase 
meta-analysis of the cases aged ≥ 90 years 
(n = 5,406) showed a similar result, i.e., the 
TOMM40/APOE/APOC1 locus was the only 
genome-wide significant locus (OR = 0.64, 
P = 4.09 x 10-21, Figure 4.2 and Table 4.2). 
The regional association plot and forest plot 
for the TOMM40/APOE/APOC1 locus are 
depicted in Figures 4.3 and 4.4, respectively.
	 Although several SNPs on 
chromosome 19q13.32, which are in 
moderate linkage disequilibrium (LD) with 
rs4420638, show additional association 
with survival into old age, meta-analysis 
conditional on rs4420638 showed no 
independent associations among these SNPs 
(Figure S4.2 and Table S4.3).

Replication
In addition to the TOMM40/APOE/APOC1 
locus, we found eight loci that showed 
suggestive evidence for association in the 
discovery-phase meta-analysis of cases aged 
≥ 85 years (P ≤ 1 x 10-5, Table 4.1), whereas 
six additional SNPs met this criterion in the 

meta-analysis of cases aged ≥ 90 years (Table 
4.2). The most or (when not successfully 
measured) second most significant SNPs 
from these 14 loci and the TOMM40/APOE/
APOC1 locus were taken forward for 
replication in 13,060 cases aged ≥ 85 years 
(of which 7,330 were also ≥ 90 years) and 
61,156 controls from 6 additional studies. 
In the joint analysis of the discovery and 
replication phase of the cases aged ≥ 85 years 
(9 loci), the TOMM40/APOE/APOC1 locus 
remained the only genome-wide significant 
locus (Table 4.1). The joint analysis of the 
discovery and replication phase of the cases 
aged ≥ 90 years (12 loci), however, showed 
an additional genome-wide significant locus, 
rs2149954 (T), on chromosome 5q33.3 (OR 
= 1.10, P = 1.74 x 10-8, Table 4.2). Although 
the association of this SNP with survival up 
to 85 years is not genome-wide significant 
(OR = 1.07, P = 4.34 x 10-6, Table 4.1), the 
locus likely affects survival from middle age 
onwards. The regional association plot (based 
on the discovery phase only) and forest plot 
of this locus are depicted in Figures 4.3 and 
4.4, respectively. Conditional analysis of 
rs4420638 in the discovery phase studies 
showed that the association of rs2149954 (T) 
with survival is independent of the TOMM40/
APOE/APOC1 locus (P = 7.20 x 10-6 instead 
of P = 5.98 x 10-6 in the analysis of survival 
up to 85 years).

Prospective analysis
To determine the association of rs4420638 
(TOMM40/APOE/APOC1 locus) and 
rs2149954 (chromosome 5q33.3 locus) 
with longitudinal survival, we performed 
a prospective meta-analysis of the 2 SNPs 
in 34,103 individuals aged 30-105 years 
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from 11 different cohorts, of which 8,582 
had died after a mean follow-up time 
ranging from 2.2 to 17.4 years (Table S4.5). 
Carriers of the minor allele of rs4420638 
(G) showed significantly higher all-cause 
mortality (hazard ratio (HR) = 1.07, P = 
0.019), whereas carriers of the minor allele 
of rs2149954 (T) demonstrated significantly 
lower all-cause mortality (HR = 0.95, P = 
0.003, Table S4.6).

Figure 4.1 Flow chart of experimental work. The analysis in the cases aged ≥ 90 years is a subset 
analysis of the analysis in the cases aged ≥ 85 years. Twelve out of 14 studies used for the discovery 
phase analysis of cases aged ≥ 85 years contained at least 100 cases over 90 years of age and were thus 
analyzed in the subset analysis of cases aged ≥ 90 years.

Association with cardiovascular disease 
and blood pressure
To gain insight into the mechanism by which 
the chromosome 5q33.3 locus might promote 
human longevity, we analyzed the cause-
specific mortality of rs2149954. Carriers of 
the minor allele of rs2149954 have a lower 
mortality risk for cardiovascular disease 
(CVD) (HR = 0.86, P = 0.004), which 
mainly appeared to be caused by protection 
from stroke (HR = 0.60, P = 2.27 x 10-7). In 



68

Chapter 4

C
hapter 4

Ta
bl

e 
4.

1 
R

es
ul

ts
 o

f t
he

 d
is

co
ve

ry
 p

ha
se

, r
ep

lic
at

io
n 

ph
as

e 
an

d 
jo

in
t a

na
ly

si
s o

f c
as

es
 a

ge
d 

≥ 
85

 y
ea

rs
.

n
EA

F

Lo
cu

s
Le

ad
 S

N
P

C
hr

Po
si

tio
n 

(b
p)

C
an

di
da

te
 / 

cl
os

es
t g

en
e

EA
A

na
ly

si
s

C
as

es
C

on
tro

ls
C

as
es

C
on

tro
ls

O
R

95
%

 C
I

P
I2  (

%
)

P 
he

t

1q
43

rs1
62

50
40

1
23

5,
21

3,
00

2
M

TR
, R

YR
2

A
D

is
co

ve
ry

7,
72

9
16

,1
21

0.
17

0
0.

15
0

1.
16

1.
09

 - 
1.

23
3.

36
 x

 1
0-6

R
ep

lic
at

io
n

13
,0

27
60

,9
14

0.
17

8
0.

18
2

1.
02

0.
98

 - 
1.

07
0.

21
6

Jo
in

t
20

,7
56

77
,0

35
1.

07
1.

03
 - 

1.
10

3.
50

 x
 1

0-4
31

.0
0.

09
3

2q
24

.3
rs6

43
28

32
2

16
6,

07
9,

07
2

C
SR

N
P3

A
D

is
co

ve
ry

7,
72

9
16

,1
21

0.
34

4
0.

32
1

1.
12

1.
07

 - 
1.

17
2.

79
 x

 1
0-6

R
ep

lic
at

io
n

13
,0

19
60

,8
24

0.
34

6
0.

33
9

1.
03

1.
00

 - 
1.

07
0.

02
9

Jo
in

t
20

,7
48

76
,9

45
1.

06
1.

03
 - 

1.
09

8.
73

 x
 1

0-6
0.

0
0.

46
7

4q
27

rs1
31

14
42

6
4

12
0,

94
2,

53
3

PD
E5

A,
 

M
AD

2L
1

T
D

is
co

ve
ry

7,
72

9
16

,1
21

0.
38

7
0.

40
5

0.
90

0.
87

 - 
0.

95
2.

20
 x

 1
0-5

R
ep

lic
at

io
n

13
,0

24
60

,9
32

0.
36

4
0.

35
1

1.
00

0.
97

 - 
1.

04
0.

71
1

Jo
in

t
20

,7
53

77
,0

53
0.

97
0.

94
 - 

0.
99

0.
03

3
46

.5
0.

01
2

5q
33

.3
rs2

14
99

54
5

15
7,

75
3,

18
0

EB
F1

T
D

is
co

ve
ry

7,
72

9
16

,1
21

0.
38

8
0.

36
0

1.
12

1.
07

 - 
1.

17
5.

98
 x

 1
0-6

R
ep

lic
at

io
n

12
,9

73
60

,2
62

0.
36

5
0.

35
2

1.
04

1.
01

 - 
1.

07
0.

01
3

Jo
in

t
20

,7
02

76
,3

83
1.

07
1.

04
 - 

1.
09

4.
34

 x
 1

0-6
28

.2
0.

11
8

8q
13

.3
rs1

09
57

55
0*

8
72

,4
57

,1
42

EY
A1

A
D

is
co

ve
ry

7,
72

7
16

,0
93

0.
26

8
0.

28
5

0.
88

0.
84

 - 
0.

93
3.

61
 x

 1
0-6

R
ep

lic
at

io
n

10
,0

56
56

,2
62

0.
23

6
0.

24
4

0.
95

0.
92

 - 
0.

99
0.

01
2

Jo
in

t
17

,7
83

72
,3

55
0.

92
0.

90
 - 

0.
95

1.
41

 x
 1

0-6
29

.4
0.

13
0

10
q2

3.
33

rs4
46

67
55

10
96

,6
22

,2
43

C
YP

2C
19

, 
C

YP
2C

9
T

D
is

co
ve

ry
7,

72
9

16
,1

21
0.

45
4

0.
44

3
1.

12
1.

07
 - 

1.
16

2.
72

 x
 1

0-6

R
ep

lic
at

io
n

13
,0

51
61

,1
05

0.
48

8
0.

50
8

0.
98

0.
95

 - 
1.

01
0.

12
9

Jo
in

t
20

,7
80

77
.2

26
1.

03
1.

00
 - 

1.
05

0.
16

1
65

.6
2.

15
 x

 1
0-5

17
q2

3.
3

rs1
77

60
36

2
17

58
,7

72
,3

99
TA

N
C

2
A

D
is

co
ve

ry
7,

72
9

16
,1

21
0.

25
2

0.
23

3
1.

13
1.

07
 - 

1.
19

5.
38

 x
 1

0-6

R
ep

lic
at

io
n

13
,0

07
60

,6
79

0,
25

2
0.

24
9

1.
04

1.
00

 - 
1.

07
0.

03
3

Jo
in

t
20

,7
36

76
,8

00
1.

07
1.

04
 - 

1.
10

1.
56

 x
 1

0-5
0.

0
0.

47
3



EU longevity GWAS

69

C
ha

pt
er

 4

n
EA

F

Lo
cu

s
Le

ad
 S

N
P

C
hr

Po
si

tio
n 

(b
p)

C
an

di
da

te
 / 

cl
os

es
t g

en
e

EA
A

na
ly

si
s

C
as

es
C

on
tro

ls
C

as
es

C
on

tro
ls

O
R

95
%

 C
I

P
I2  (

%
)

P 
he

t

19
q1

3.
32

rs4
42

06
38

*
19

50
,1

14
,7

86
AP

O
E

G
D

is
co

ve
ry

7,
72

8
16

,1
11

0.
15

7
0.

19
5

0.
71

0.
67

 - 
0.

77
6.

14
 x

 1
0-1

9

R
ep

lic
at

io
n

10
,1

65
57

,1
26

0.
18

0
0.

20
2

0.
87

0.
83

 - 
0.

91
2.

12
 x

 1
0-1

2

Jo
in

t
17

,8
93

73
,2

37
0.

82
0.

79
 - 

0.
85

2.
33

 x
 1

0-2
6

80
.2

4.
35

 x
 1

0-1
0

20
q1

3.
2

rs8
12

63
77

20
51

,5
90

,2
54

TS
H

Z2
, 

ZN
F2

17
G

D
is

co
ve

ry
7,

53
2

15
,9

02
0.

05
9

0.
06

9
0.

79
0.

71
 - 

0.
87

1.
35

 x
 1

0-5

R
ep

lic
at

io
n

12
,9

74
60

,6
47

0.
05

8
0.

05
4

1.
01

0.
94

 - 
1.

08
0.

90
1

Jo
in

t
20

,5
06

76
,5

49
0.

93
0.

88
 - 

0.
99

0.
02

0
51

.1
0,

00
6

C
hr

, c
hr

om
os

om
e 

ac
co

rd
in

g 
to

 N
C

B
I b

ui
ld

 3
6;

 P
os

iti
on

, (
bp

), 
po

si
tio

n 
of

 th
e 

le
ad

 S
N

P 
ac

co
rd

in
g 

to
 N

C
B

I b
ui

ld
 3

6;
 E

A,
 e

ffe
ct

 a
lle

le
; E

AF
, e

ffe
ct

 a
lle

le
 fr

eq
ue

nc
y 

af
te

r p
oo

lin
g 

th
e 

da
ta

 o
f a

ll 
an

al
yz

ed
 in

di
vi

du
al

s;
 O

R,
 o

dd
s r

at
io

 fo
r t

he
 e

ffe
ct

 a
lle

le
; 9

5%
 C

I, 
95

%
 c

on
fid

en
ce

 in
te

rv
al

; I
2 , 

he
te

ro
ge

ne
ity

 st
at

is
tic

; P
he

t, 
P-

va
lu

e 
fo

r h
et

er
og

en
ei

ty
. *

G
en

ot
yp

in
g 

of
 th

es
e 

SN
Ps

 w
ith

 th
e 

Se
qu

en
om

 M
as

sA
R

R
AY

 sy
st

em
 fo

r t
he

 re
pl

ic
at

io
n 

ph
as

e 
w

as
 u

ns
uc

ce
ss

fu
l. 

Th
e 

SN
Ps

 in
 b

ol
d 

ov
er

la
p 

w
ith

 T
ab

le
 4

.2
.

 



70

Chapter 4

C
hapter 4

Ta
bl

e 
4.

2 
R

es
ul

ts
 o

f t
he

 d
is

co
ve

ry
 p

ha
se

, r
ep

lic
at

io
n 

ph
as

e 
an

d 
jo

in
t a

na
ly

si
s o

f c
as

es
 a

ge
d 

≥ 
90

 y
ea

rs
.

n
EA

F
Lo

cu
s

Le
ad

 S
N

P
C

hr
Po

si
tio

n 
(b

p)
C

an
di

da
te

 / 
cl

os
es

t g
en

e
EA

A
na

ly
si

s
C

as
es

C
on

tro
ls

C
as

es
C

on
tro

ls
O

R
95

%
 C

I
P

I2  
(%

)
P 

he
t

1q
43

rs
16

25
04

0
1

23
5,

21
3,

00
2

M
TR

, R
YR

2
A

D
is

co
ve

ry
5,

40
6

15
,1

12
0.

17
6

0.
15

0
1.

18
1.

10
 - 

1.
26

6.
53

 x
 1

0-6

R
ep

lic
at

io
n

7,
31

0
60

,9
14

0.
17

5
0.

18
2

1.
05

0.
99

 - 
1.

10
0.

06
5

Jo
in

t
12

,7
16

76
,0

26
1.

10
1.

05
 - 

1.
14

2.
60

 x
 1

0-5
9.

3
0.

34
3

4q
22

.2
rs

46
93

33
1

4
94

,7
60

,6
09

G
RI

D
2

C
D

is
co

ve
ry

5,
40

6
15

,1
12

0.
41

6
0.

44
4

0.
89

0.
84

 - 
0.

93
6.

63
 x

 1
0-6

R
ep

lic
at

io
n

7,
26

7
60

,3
24

0.
44

9
0.

44
0

1.
03

0.
99

 - 
1.

07
0.

09
5

Jo
in

t
12

,6
73

75
,4

36
0.

97
0.

94
 - 

1.
00

0.
13

9
61

.3
3.

51
 x

 1
0-4

4q
27

rs
13

11
44

26
4

12
0,

94
2,

53
3

PD
E5

A,
 

M
AD

2L
1

T
D

is
co

ve
ry

5,
40

6
15

,1
12

0.
38

1
0.

40
5

0,
88

0.
84

 - 
0.

92
2.

11
 x

 1
0-6

R
ep

lic
at

io
n

7,
30

5
60

,9
32

0.
36

9
0.

35
1

0.
98

0.
94

 - 
1.

02
0.

33
6

Jo
in

t
12

,7
11

76
,0

44
0.

94
0.

91
 - 

0.
97

1.
95

 x
 1

0-4
32

.5
0.

09
0

5q
33

.3
rs

21
49

95
4

5
15

7,
75

3,
18

0
EB

F1
T

D
is

co
ve

ry
5,

40
6

15
,1

12
0.

39
6

0.
36

0
1.

14
1.

09
 - 

1.
21

1.
85

 x
 1

0-6

R
ep

lic
at

io
n

7,
29

8
60

,2
62

0.
37

4
0.

35
2

1.
07

1.
03

 - 
1.

12
5.

98
 x

 1
0-4

Jo
in

t
12

,7
04

75
,3

74
1.

10
1.

06
 - 

1.
14

1.
74

 x
 1

0-8
28

.5
0.

12
5

7p
14

.2
rs

11
97

76
41

7
36

,7
61

,9
49

AO
AH

, E
LM

O
1

C
D

is
co

ve
ry

5,
40

6
15

,1
12

0.
06

2
0.

07
6

0.
78

0.
70

 - 
0.

87
7.

31
 x

 1
0-6

R
ep

lic
at

io
n

3,
04

9
4,

80
5

0.
07

1
0.

07
3

0.
93

0.
82

 - 
1.

06
0.

22
6

Jo
in

t
8,

45
5

19
,9

17
0.

84
0.

77
 - 

0.
91

1.
57

 x
 1

0-5
50

.2
0.

01
0

10
q2

3.
33

rs
44

66
75

5
10

96
,6

22
,2

43
C

YP
2C

19
, 

C
YP

2C
9

T
D

is
co

ve
ry

5,
40

6
15

,1
12

0.
45

5
0.

44
5

1.
13

1.
07

 - 
1.

18
1.

30
 x

 1
0-5

R
ep

lic
at

io
n

7,
32

6
61

,1
05

0.
47

7
0.

50
8

0.
98

0.
94

 - 
1.

02
0.

20
8

Jo
in

t
12

,7
32

76
,2

17
1.

03
1.

00
 - 

1.
07

0.
08

7
55

.4
0.

00
2

12
q1

5
rs

11
83

46
14

12
67

,1
97

,3
44

M
D

M
1,

 R
AP

1B
C

D
is

co
ve

ry
5,

40
6

15
,1

12
0.

13
8

0.
15

5
0.

85
0.

79
 - 

0.
91

9.
94

 x
 1

0-6

R
ep

lic
at

io
n

7,
27

2
60

,2
10

0.
16

5
0.

17
3

1.
01

0.
96

 - 
1.

07
0.

60
3

Jo
in

t
12

,6
78

75
,3

22
0.

95
0.

91
 - 

0.
99

0.
02

3
43

.9
0.

02
4

14
q2

3.
2

rs
27

84
50

5
14

61
,5

01
,7

66
SY

T1
6

G
D

is
co

ve
ry

5,
40

6
15

,1
12

0.
08

0
0.

06
7

1.
23

1.
11

 - 
1.

35
8.

87
 x

 1
0-5

R
ep

lic
at

io
n

7,
32

3
60

,9
79

0.
07

0
0.

06
6

1.
10

1.
02

 - 
1.

19
0.

01
2

Jo
in

t
12

,7
29

76
,0

91
1.

15
1.

08
 - 

1.
22

9.
47

 x
 1

0-6
28

.3
0.

12
7

17
p1

3.
1

rs
94

08
50

17
8,

87
0,

80
5

N
TN

1
T

D
is

co
ve

ry
5,

40
5

15
,1

12
0.

07
2

0.
09

3
0.

78
0.

70
 - 

0.
87

4.
93

 x
 1

0-6

R
ep

lic
at

io
n

7,
27

6
60

,1
46

0.
10

9
0.

11
8

1.
03

0.
97

 - 
1.

10
0.

31
8

Jo
in

t
12

,6
81

75
,2

58
0.

95
0.

90
 - 

1.
01

0.
11

1
63

.7
1.

32
 x

 1
0-4



EU longevity GWAS

71

C
ha

pt
er

 4

n
EA

F
Lo

cu
s

Le
ad

 S
N

P
C

hr
Po

si
tio

n 
(b

p)
C

an
di

da
te

 / 
cl

os
es

t g
en

e
EA

A
na

ly
si

s
C

as
es

C
on

tro
ls

C
as

es
C

on
tro

ls
O

R
95

%
 C

I
P

I2  
(%

)
P 

he
t

17
q2

3.
2

rs
21

09
26

5
17

58
,3

07
,0

01
M

AR
C

H
10

, 
TA

N
C

2
A

D
is

co
ve

ry
5,

40
6

15
,1

12
0.

44
3

0.
42

0
1.

13
1.

08
 - 

1.
19

3.
34

 x
 1

0-6

R
ep

lic
at

io
n

7,
30

7
60

,6
72

0.
45

3
0.

46
5

1.
01

0.
97

 - 
1.

05
0.

67
1

Jo
in

t
12

,7
13

75
,7

84
1.

06
1.

02
 - 

1.
09

0.
00

1
34

.7
0.

07
4

19
q1

3.
32

rs
44

20
63

8*
19

50
,1

14
,7

86
AP

O
E

G
D

is
co

ve
ry

5,
40

5
15

,1
02

0.
14

5
0.

19
5

0.
64

0.
59

 - 
0.

70
4.

09
 x

 1
0-2

1

R
ep

lic
at

io
n

4,
86

1
57

,1
26

0.
16

5
0.

20
2

0.
77

0.
72

 - 
0.

82
2.

95
 x

 1
0-

18

Jo
in

t
10

,2
66

72
,2

28
0.

72
0.

68
 - 

0.
76

3.
40

 x
 1

0-3
6

70
.1

3.
69

 x
 1

0-5

20
q1

3.
2

rs
81

26
37

7
20

51
,5

90
,2

54
TS

H
Z2

, Z
N

F2
17

G
D

is
co

ve
ry

5,
20

9
14

,8
93

0.
05

7
0.

06
8

0.
75

0.
66

 - 
0.

85
3.

38
 x

 1
0-5

R
ep

lic
at

io
n

7,
27

8
60

,6
47

0.
06

3
0.

05
4

1.
04

0.
95

 - 
1.

13
0.

30
9

Jo
in

t
12

,4
87

75
,5

40
0.

94
0.

87
 - 

1.
00

0,
11

7
58

.1
0.

00
1

C
hr

, c
hr

om
os

om
e 

ac
co

rd
in

g 
to

 N
C

B
I b

ui
ld

 3
6;

 P
os

iti
on

 (b
p)

; p
os

iti
on

 o
f t

he
 le

ad
 S

N
P 

ac
co

rd
in

g 
to

 N
C

B
I b

ui
ld

 3
6;

 E
A,

 e
ffe

ct
 a

lle
le

; E
AF

, e
ffe

ct
 a

lle
le

 fr
eq

ue
nc

y 
af

te
r p

oo
lin

g 
th

e 
da

ta
 o

f a
ll 

an
al

yz
ed

 in
di

vi
du

al
s;

 O
R,

 o
dd

s r
at

io
 fo

r t
he

 e
ffe

ct
 a

lle
le

; 9
5%

 C
I, 

95
%

 c
on

fid
en

ce
 in

te
rv

al
; I

2 , 
he

te
ro

ge
ne

ity
 st

at
is

tic
; P

he
t, 

P-
va

lu
e 

fo
r h

et
er

og
en

ei
ty

. *
G

en
ot

yp
in

g 
of

 th
is

 S
N

P 
w

ith
 th

e 
Se

qu
en

om
 M

as
sA

R
R

AY
 sy

st
em

 fo
r t

he
 re

pl
ic

at
io

n 
ph

as
e 

w
as

 u
ns

uc
ce

ss
fu

l. 
Th

e 
SN

Ps
 in

 b
ol

d 
ov

er
la

p 
w

ith
 T

ab
le

 4
.1

.



72

Chapter 4

C
hapter 4

Figure 4.2 Results of the discovery phase analysis. Manhattan plot presenting the -log10 P-values from 
the discovery phase analysis of cases aged ≥ 85 years (A) and ≥ 90 years (B). The loci that showed 
a genome-wide significant association after the joint analysis of the discovery and replication phase 
(chromosome 19q13.32 and 5q33.3) are shown in red.

addition, we observed an effect of this SNP 
on non-CVD mortality (HR = 0.86, P = 0.002, 
Table S4.7). We also examined the Coronary 
ARtery DIsease Genome-Wide Replication 
And Meta-Analysis (CARDIoGRAM) 
GWAS [23], which showed a significant 
association of rs2149954 with a decreased 
risk for coronary artery disease (CAD) 

(OR = 0.96, P = 0.011, Table S4.8). In 
addition, two SNPs on chromosome 5q33.3 
in high LD with rs2149954, rs9313772 (r2 
= 0.928) and rs11953630 (r2 = 0.854) have 
previously been reported to associate with 
blood pressure and hypertension [24,25]. 
As expected, examining rs2149954 in the 
International Consortium for Blood Pressure 
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GWAS [24] showed a significant association 
of the minor allele with lower diastolic (P 
= 3.46 x 10-5) and systolic (P = 6.55 x 10-

6) blood pressure (DBP/SBP) (Table S4.9). 
Despite the highly interesting association of 
the minor allele of rs2149954 with low blood 
pressure and a decreased risk for CAD, stroke, 
and mortality, its association with decreased 

all-cause mortality was not influenced by 
blood pressure in two studies of participants 
aged ≥ 75 years (the PROspective Study of 
Pravastatin in the Elderly at Risk (PROSPER) 
and Leiden 85-plus study Cohort II, Table 
S4.10). This may indicate that at higher ages, 
this locus influences longevity via pathways 

Figure 4.3 Regional association plots for the chromosome 19q13.32 and 5q33.3 loci. Results of the 
discovery-phase analysis of chromosome 19q13.32 (A) and 5q33.3 (B) in cases aged ≥ 90 years, 
generated using LocusZoom (http://csg.sph.umich.edu/locuszoom/) [22]. For the two single nucleotide 
polymorphisms (SNPs) taken forward to the replication phase (rs4420638 and rs2149954), the results of 
the joint analysis are plotted. The color of the SNPs is based on the linkage disequilibrium with the lead 
SNP (shown in purple). The blue peaks represent the recombination rates based on HapMap Phase I+II 
CEU release 22 (hg18/build36), and the RefSeq genes in the region are shown in the lower panel.
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additional to those involved in blood pressure 
regulation.

Phenotypic characterization and pathway 
analysis
In an attempt to identify the underlying 
mechanism by which this novel longevity 
locus at chromosome 5q33.3 could influence 
human longevity, we examined rs2149954 
in the published data of several large GWAS 
consortia for association with metabolic 
traits in generally middle-aged individuals. 
None of the investigated traits, i.e., 2-h 
glucose (OGTT), Hb1Ac, fasting glucose, 
fasting insulin, insulin resistance (HOMA-
IR), β-cell activity (HOMA-B), total/high-
density lipoprotein/low-density lipoprotein 
cholesterol, triglycerides, and type 2 
diabetes [26-32], demonstrated evidence for 
association (all P > 0.05) with rs2149954 
(Tables S4.8 and S4.9).
	 Gene set enrichment analysis (GSEA) 
of the meta-analysis results of the discovery-
phase analysis of survival ≥ 90 years of age 
using Meta-Analysis Gene-set Enrichment of 
variaNT Associations (MAGENTA) [33], as 
well as examination of interconnectivity of 
implicated genes using Gene Relationships 
Across Implicated Loci (GRAIL) [34] 
(Figure S4.3 and Table S4.11), provided no 
firm clues for potential pathways involved in 
human longevity.

Fine mapping and functional 
characterization
The newly identified longevity locus 
on chromosome 5q33.3 is located in an 
intergenic region on chromosome 5q33.3, 
302 kb downstream of the EBF1 gene. To 
determine the functional impact of this 
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locus, we first identified the SNPs in LD with 
rs2149954 (r2 ≥ 0.8) using the 1000 Genomes 
CEU Phase 1 data implemented in HaploReg 
v2 (http://www.broadinstitute.org/mammals/
haploreg/haploreg.php) [35]. In total, we 
identified 25 SNPs, spanning a region of 
~22.3 kb (Table S4.12). Subsequently, we 
examined the potential effects of these SNPs 
on gene expression using several expression 
quantitative trait locus (eQTL) databases. 
None of the SNPs showed an association 
with gene expression in the various examined 
tissues, so it is still unclear in which tissue(s) 
the locus exert its longevity-promoting 
effect. We did, however, find some promising 
functional implication of this locus, i.e., the 
presence of multiple DNase I hypersensitivity 
sites, transcription factor binding sites 
and enhancer histone marks, by exploring 
ENCODE data using HaploReg v2 [35] and 
RegulomeDB (http://www.regulomedb.org/) 
[36] (Table S4.12). Very recently, a large 
intergenic non-coding RNA (lincRNA), 
RP11-524N5.1, has been annotated right on 
top of our locus. The poly(A) features of this 
lincRNA are supported by PolyA-seq reads 
from liver, muscle, and testis. PhastCons 
44-way alignment supports conservation of 
the transcription start site, 3’ untranslated 
region and the third, fifth, and last exon of 
the lincRNA transcript (Figure 4.5). The 
transcript does not align to the mouse genome, 
but orthologous transcripts are found in other 
primate genome sequences, suggesting that 
this is a primate-specific lincRNA.

Discussion

We have performed the largest genome-
wide association meta-analysis for human 

longevity, in which a novel locus on 
chromosome 5q33.3 associating with 
survival beyond 90 years was identified.
	 The minor allele of rs2149954 (T) 
promotes human longevity by reducing 
the risk of mortality owing to stroke and 
non-cardiovascular causes. In addition, this 
allele has previously been associated with 
low blood pressure, which may explain 
the protection from CVD mortality risk in 
middle age. At ages above 80 years, however, 
low SBP associates with increased mortality 
[37,38]. Hence, the observed blood pressure-
independent association of the minor allele 
with mortality ≥ 75 years may be due to 
pleiotropic effects on other mortality-
related clinical parameters. Examination 
of publically available data of several large 
GWAS consortia for association of the locus 
with parameters related to glucose and fat 
metabolism provided as yet no clues for 
other potentially involved mechanisms.
	 Rs2149954 is located in an intergenic 
region on chromosome 5q33.3 between 
CLINT1 and EBF1. The presence of several 
regulatory elements in this region implies 
that transcription factor binding and/or 
expression of (nearby) genes could be 
influenced. The currently available eQTL 
databases did not provide evidence for such 
effects, which might be due to the limited 
tissue diversity of the databases. The effects 
of the chromosome 5q33.3 locus on human 
longevity might be exerted through the 
lincRNA, which has recently been annotated 
right on top of our locus (RP11-524N5.1) 
and shows evidence for expression in liver, 
muscle and testis. LincRNAs are involved in 
chromatin modification and transcriptional 
regulation [39] and seem to play a role in 



EU longevity GWAS

77

C
ha

pt
er

 4

human disease [40]. However, the newly 
annotated lincRNA is not yet available in 
the large eQTL databases, and the effect of 
SNPs in the chromosome 5q33.3 locus on 
expression of this transcript still needs to be 
determined. Hence, further functional studies 
are required to illuminate the mechanism by 
which this locus influences human longevity.
	 GWAS has thus far not been a 
successful approach to identify genome-
wide significant hits for human longevity or 
mortality besides the well-known TOMM40/
APOE/APOC1 locus [17-19]. The FOXO3A 
locus, for which the longevity effect is most 
prominent in individuals aged ≥ 100 years 
[41], showed only moderate evidence for 
association with survival ≥ 90 years in the 
discovery phase of our GWAS (lowest P = 
1.35 x 10-4 (rs1268161)). Sebastiani and 
colleagues suggested that human longevity 
might be explained by a signature consisting 
of 281 SNPs [42]. However, none of the SNPs 
(except the already known SNP rs2075650 in 
TOMM40) was significant after adjustment 
for multiple testing (P = 1.78 x 10-4 
(0.05/281)). In addition, we did not observe 
an enrichment of significant SNPs from their 
signature in our data (λ = 1.004, Figure S4.4). 
Because the association of SNPs other than 
the TOMM40/APOE/APOC1 locus could not 
be replicated in this, much larger, GWAS, we 
have doubts that these signature SNPs are 
indeed candidate SNPs influencing human 
longevity. Although we detected merely one 
novel genome-wide significant locus, the 
current GWAS had sufficient power, based 
on our results, to detect lifespan regulating 
loci with relatively small effects (OR’s < 0.9 
and > 1.1).

The genetic component of human longevity 
is small (~25%) [10,11] and is assumed 
to be determined by many genes [12,13]. 
Furthermore, the genetic heterogeneity in 
aging and lifespan regulation is expected 
to be high, because individual genes may 
contribute by a diversity of late acting 
deleterious stochastic (germline) variation 
resulting in a genetic component that is hard 
to disentangle [13]. GWAS for complex 
late-onset diseases, such as osteoarthritis 
and Alzheimer’s disease, with sample sizes 
comparable to our current study [43-45], 
have identified more loci compared with 
GWAS for longevity. This most likely 
reflects the greater inherent complexity of 
the longevity trait, with its diverse spectrum 
of biological pathways subject to intrinsic 
and extrinsic (environmental) interactions. 
Hence, even larger GWAS (> 50,000 long-
lived individuals) may be required to identify 
additional longevity loci, preferably in the 
most stringent phenotype, i.e., the oldest old.
	 As survival to ages ≥ 85 or 90 years is 
relatively common in Western populations, 
the human longevity trait suffers from 
etiological heterogeneity. Lifespan extension 
in the past generations owing to non-genetic 
factors likely created phenocopies diluting 
the genetic component of survival to ages ≥ 
85 years. The genetic contribution to survival 
to ages ≥ 100 years is higher but will render 
smaller sample sizes for GWAS. This may 
explain why the novel locus on chromosome 
5q33.3 was only genome-wide significant 
in the subset analysis of cases aged ≥ 90 
years. For the same reason, a large number 
of individuals from the control groups (up to 
50%, depending on the gender and year of 
birth of the individuals and demography of 
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the cohort) will live to ages ≥ 85 years. In 
2011, the mean life expectancy at age 65 in 
Europe was 21.3 years for women and 17.8 
years for men (http://epp.eurostat.ec.europa.
eu/portal/page/portal/product_details/
dataset?P_product_code=TSDDE210), 
which makes selection of proper controls a 
challenging issue. The most ideal controls 
would be individuals from the same birth 
cohort as the long-lived cases that survived 
to the mean age of death of that birth cohort. 
However, for most of these individuals 
there is no DNA available. Alternatively, we 
selected controls that have not yet reached 
the age of 65 years at inclusion to represent 
the frequency of variants in the general 
population and minimize selection owing to 
mortality. Hence, the low contrast between 
cases and controls likely has reduced our 
probability of identifying longevity loci.
	 In addition, there will be differences 
between case and control cohorts that 
may have had an impact on our results. 
An example of a potential confounder is 
smoking behavior, which was not adequately 
measured in most elderly cohorts. However, 
none of the SNPs that were previously 
associated with smoking behavior in cohorts 
from European descent (according to the 
National Human Genome Research Institute 
GWAS Catalog (http://www.genome.gov/
gwastudies/)), namely rs1051730, rs1329650 
and rs4105144, show differences between 
cases (≥ 85 years) and controls in the joint 
analysis of the discovery and replication 
phase (all P > 0.05). We have to note that 
these SNPs only explain a small proportion 
of the variance observed in smoking 
behavior. However, as the frequency of these 
proxy SNPs for smoking behavior is similar 

between cases and controls, we expect no 
obvious differences in smoking behavior 
between the groups.
	 In conclusion, besides the previously 
implicated TOMM40/APOE/APOC1 locus, 
we identified a novel locus on chromosome 
5q33.3 that associates with survival beyond 
90 years. Although rs2149954 is associated 
with survival beyond 90 years at a genome-
wide significant level in our study, replication 
in additional cohorts from European as well 
as non-European descent is warranted. The 
minor allele of the lead SNP at this locus, 
rs2149954, promotes human longevity in a 
prospective meta-analysis by lowering the 
risk of mortality owing to stroke and non-
cardiovascular causes. The locus harbors a 
lincRNA and is implicated in blood pressure 
regulation, but the mechanism by which it 
influences longevity likely also involves 
other traits.

Materials and methods

Study populations
The discovery analysis was performed in 
7,729 cases that survived to ages ≥ 85 years 
(of which 5,406 also survived to ages ≥ 90 
years) and 16,121 controls below 65 years 
at baseline, from 14 studies. Replication 
was performed in 13,060 cases that survived 
to ages ≥ 85 years (of which 7,330 also 
survived to ages ≥ 90 years) and 61,156 
controls below 65 years at baseline, from 
6 additional studies. All individuals were 
of European descent. The details of the 
discovery and replication studies can be 
found in Tables S4.1 and S4.2. Some cohorts 
only provided controls (GOYA, NTR, 
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SU.VI.MAX, TwinsUK and WTCCC2) or 
only cases (BELFAST, CEPH centenarian 
cohort, Danish longevity study I/II, Leiden 
85-plus study I/II and Newcastle 85+ Study), 
whereas others contained both (Calabria 
cohort, deCODE, EGCUT, GEHA project, 
German longevity study, Leiden Longevity 
Study, Rotterdam Study I/II and TwinGene). 
The names of the studies in the tables and 
figures are based on the names of the cohorts 
containing the cases. The cases and controls 
used for each study originated from the same 
country (Table S4.1). The only exception is 
BELFAST (Northern Ireland), for which we 
used controls from the NTR (Netherlands). 
A check in the PROSPER study, which 
includes individuals from Northern Ireland 
and the Netherlands, showed that the allele 
frequencies in control individuals from 
both countries are similar for our SNPs 
(data not shown). All participants provided 
written informed consent, and the study was 
approved by the relevant institutional review 
boards.

Genotyping, imputation and genome-
wide association analysis
All discovery studies were genotyped 
using Illumina genotyping arrays, and pre-
imputation quality control was performed 
for each study separately. Imputation was 
performed using IMPUTE or MACH with 
reference HapMap Phase I+II CEU
release 22 (hg18/build36). Further details 
about the genotyping, quality control and 
imputation of each study are summarized in 
Table S4.2.
	 Two replication studies (deCODE 
and the Danish longevity study II) were 
also genotyped using Illumina genotyping 

arrays and imputed using IMPUTE with 
reference HapMap Phase I+II CEU release 
22 (hg18/build36) (Danish longevity study 
II) or deCODE software (deCODE). The 
other replication studies were genotyped with 
the Sequenom MassARRAY system using 
iPLEX Gold genotyping assays (Sequenom, 
San Diego, CA, USA). More information 
about the studies used in the replication phase 
can be found in Tables S4.1 and S4.2. Of 
the 15 SNPs measured with the Sequenom 
MassARRAY system, 13 were successfully 
genotyped in at least 95% of the samples and 
the average genotyping call rate was 99.80%. 
We also checked the concordance between 
the SNPs measured with the Sequenom 
MassARRAY system and (imputed) GWAS 
data of the Leiden 85-plus study I cases, and 
the average concordance rate was 99.07%. 
The two SNPs that were not successfully 
genotyped with the Sequenom MassARRAY 
system (rs10957550 and rs4420368) were 
only analyzed in the replication studies, which 
had imputed GWAS data available (deCODE 
and the Danish longevity study II).
	 All studies were analyzed separately 
using CC-assoc (https://www.msbi.nl/
dnn/Research/Genetics/Software/Testsfor 
GWASinrelatedindividuals(cc_assoc).aspx), 
which is based on a modified version of the 
score test that takes into account imputation 
uncertainty and familial relatedness [46]. 
SNPs with a low imputation quality (RT

2 ≤ 
40) and a minor allele frequency of ≤ 1 or 
≤ 5% (if ncases < 200) were excluded from 
analysis in the discovery phase. Adjustment 
for population stratification of the discovery 
studies was performed by multiplying the 
RT

2-adjusted variances of the score statistic 
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with the genomic inflation factor (λrange = 
0.97 – 1.08, Table S4.2) of the study.
Meta-analyses
For the meta-analyses, a fixed-effect 
approach was used. Scores and variances of 
the studies were combined to obtain a single 
meta-statistic, which was adjusted using the 
genomic inflation factor (λ = 1.019, discovery 
phase only) (Figure S4.1). For each analysis, 
we only used studies with at least 100 cases 
(Table S4.1). P-values < 5 x 10-8 were 
considered genome-wide significant [47]. To 
determine heterogeneity across the studies, 
the between-study variance was calculated.

Conditional analysis
To ascertain independent signals at the 
chromosome 19q13.32 locus, we performed 
a meta-analysis conditional on rs4420638 
in all studies used for the discovery phase 
analysis in cases aged ≥ 85 years. The results 
are depicted in Figure S4.2 and Table S4.3.

Sex-stratified analysis
Sex-stratified analysis of the cases aged ≥ 
85 years (nwomen = 5,400 and nmen = 1,865) 
was performed to investigate the presence of 
gender-dependent associations. In addition, 
the 15 loci that showed (suggestive) 
evidence for association with survival ≥ 85 
and/or ≥ 90 years were tested for differences 
between sexes using the formula: (βwomen - 
βmen) / √(SEwomen

2 + SEmen
2). The results of this 

analysis are depicted in Table S4.4.

Prospective analysis
Prospective analysis of rs2149954 and 
rs4420638 was performed using a Cox 
proportional hazards model adjusted for age 
at baseline, sex and study-specific covariates. 

The details about each of the analyzed 
cohorts are summarized in Table S4.5.

Pathway analysis 
For the pathway analysis, we used GSEA 
implemented in MAGENTA (http://www.
broadinstitute.org/mpg/magenta/) [33]. 
In short, each SNP is mapped to a gene 
considering a window of 110 kb upstream 
and 40 kb downstream around the genes. 
Subsequently, each gene is assigned a 
gene association score based on the SNP 
with the lowest P-value, which is mapped 
to that gene and this score is adjusted for 
confounding factors like gene size and the 
number of SNPs per kb. Genes within the 
HLA region were removed from analysis 
owing to high LD and high gene density in 
that region. The GSEA algorithm tests for 
over-representation of adjusted gene scores 
in a given pathway using a pre-defined score 
rank cutoff (in our case, the 95th and 75th 
percentile). The generated statistic is then 
compared with 10,000 – 1,000,000 gene sets 
of identical size randomly sampled from the 
genome to generate an empirical P-value for 
each pathway.
	 In total, 3,216 pathways from Gene 
Ontology, PANTHER, Ingenuity, KEGG, 
REACTOME, and BIOCARTA were tested. 
Pathways were considered significant if the 
FDR-adjusted P-value (the 95th or 75th 
percentile) was ≤ 0.05.
	 To determine the relationship between 
loci associated with survival ≥ 90 years, we 
used GRAIL (http://www.broadinstitute.
org/mpg/grail/) [34]. In short, this program 
maps SNPs to genes and subsequently uses a 
text-mining algorithm on PubMed abstracts 
to determine connections between these 
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genes. Genes from independent loci, which 
share informative words, receive a high 
GRAIL similarity score and are more likely 
to be functionally related. As we only had a 
limited number of loci with at least one SNP 
with a P-value ≤ 1 x 10-5 (n = 12, Table 4.2), 
we decided to perform GRAIL analysis on 
all loci with at least one SNP with a P-value 
≤ 1 x 10-4 (n = 65).

eQTL analysis
To determine whether rs2149954 or SNPs in 
LD (r2 ≥ 0.8 based on 1000 Genomes CEU 
Phase 1 data) influenced gene expression, 
we searched several eQTL databases, 
namely (1) the Gutenberg Heart Study 
database [48], which is based on expression 
data of monocytes; (2) the Genotype-
Tissue Expression eQTL database (http://
www.ncbi .nlm.nih.gov/gtex/GTEX2/
gtex.cgi), which is based on expression 
data of brain (cerebellum, frontal cortex, 
temporal cortex, and pons), liver, and 
lymphoblastoid cell lines; (3) the GENe 
Expression VARiation database (http://www.
sanger.ac.uk/resources/software/genevar/), 
which is based on expression data of 
adipose tissue, fibroblasts, T cells, skin, and 
lymphoblastoid cell lines [49], and (4) the 
Blood eQTL browser (http://genenetwork.nl/
bloodeqtlbrowser/) [50].
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Abstract

In genome-wide association studies (GWAS) for complex traits, single single nucleotide 
polymorphism (SNP) analysis is still the most applied approach. However, the identified SNPs 
have small effects and provide limited biological insight. A more appropriate approach to 
interpret GWAS data of complex traits is to analyze the combined effect of a SNP set grouped 
per pathway or gene region. We used this approach to study the joint effect on human longevity 
of genetic variation in two candidate pathways, the insulin/insulin-like growth factor 1 (IGF-
1) signaling (IIS) pathway and the telomere maintenance (TM) pathway. For the analyses 
we used genotyped GWAS data of 403 unrelated nonagenarians from long-lived sibships 
collected in the Leiden Longevity Study (LLS) and 1,670 younger population controls. We 
analyzed 1,021 SNPs in 68 IIS pathway genes and 88 SNPs in 13 TM pathway genes using 
four self-contained pathway tests (PLINK set-based test, Global test, GRASS and SNP ratio 
test). Although we observed small differences between the results of the different pathway 
tests, they showed consistent significant association of the IIS and TM pathway SNP sets with 
longevity. Analysis of gene SNP sets from these pathways indicates that the association of the 
IIS pathway is scattered over several genes (AKT1, AKT3, FOXO4, IGF2, INS, PIK3CA, SGK, 
SGK2, and YWHAG), while the association of the TM pathway seems to be mainly determined 
by one gene (POT1). In conclusion, this study shows that genetic variation in genes involved 
in the IIS and TM pathways is associated with human longevity.
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Introduction

Genome-wide association studies (GWAS) 
using single single nucleotide polymorphism 
(SNP) analysis have been very successful 
in identifying loci for various quantitative 
traits and diseases [1]. It became apparent 
that complex traits are usually determined by 
many genes with small effects and that results 
from single SNP analysis provide limited 
biological insight and only partly explain the 
genotypic variation of the studied trait. Instead 
of analyzing single SNPs, the combined effect 
of a SNP set, grouped per pathway or gene 
region, can be tested for association with the 
trait of interest. Such SNP set analysis could 
be used as an alternative approach for GWAS 
analysis and, since the composition of SNP 
sets is often based on pathways, should be 
able to provide additional biological insight 
into the studied trait.
	 Since the number of tests in SNP 
set analysis is low compared to single SNP 
analysis, it requires a lower penalty for 
multiple testing. Therefore, SNP set analysis 
is also very suitable in studies with low 
power for GWAS analysis. The last couple of 
years, several methods have been developed 
to perform SNP set analysis on GWAS data 
[2-4]. There are two main types of methods, 
the competitive and the self-contained 
tests. The competitive tests compare the 
association between a SNP set and trait to 
a standard defined by the genotyped SNPs 
outside the SNP set (complement), while the 
self-contained tests compare the SNP set to 
a fixed standard that does not depend on the 
complement [5].
	 Human longevity is a complex trait 
that is assumed to be determined by variation 

in many genes with small effects. Previous 
GWAS, in which single SNP analyses were 
performed [6,7], have identified only one 
genome-wide significant locus contributing 
to survival into old age; APOE. However, 
the genetic contribution to human lifespan 
variation, determined in twin studies, is 
estimated at 25-30% [8-10] and, although 
the effect of genetic variation in APOE is 
relatively large, the heritability of longevity 
is only partially explained by this variation 
[6]. Part of the remaining heritability might 
be explained by functionally related SNPs 
with small effects, of which the joint effect 
could not be detected in a single SNP 
analysis. Testing of SNP sets of candidate 
pathways for association with longevity 
would therefore be valuable.
	 The insulin/insulin-like growth 
factor 1 (IGF-1) signaling (IIS) pathway 
is considered as a candidate pathway for 
studying human longevity. It is involved 
in the adaptation of the organism to its 
(changing) environment [11]. When 
experimentally induced in model organisms 
like worms, flies, and mice, mutations in 
genes that play a role in IIS, e.g., homologues 
of human IGF1R, INSR, IRS1, PI3K, and 
FOXO, were shown to have a considerable 
effect on lifespan [12-24]. Although the 
IIS pathway is evolutionarily conserved, 
the complexity of the human IIS pathway 
(Figure 5.1) is much larger compared to that 
of model organisms. Several studies have 
investigated associations between single 
SNPs in genes from the IIS pathway and 
human longevity. The most prominent results 
came from FOXO3A [25-30] and AKT1 [28], 
which showed associations with longevity in 
several independent cohort studies.
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Another candidate pathway for studying 
human longevity is the mechanism of 
telomere maintenance (TM). Telomeres 
are structures at the end of chromosomes, 
consisting of TTAGGG tandem repeats 
[31], which protect chromosomes from 
degradation or rearrangement [32]. In 
normal human cells, telomere length 
declines with every cell division [33] and 
when a critical length is reached, the cell will 
enter replicative senescence [34]. In human 
epidemiological studies in blood, increased 
telomere length has been associated with 
longevity [35], while decreased telomere 

length has been associated with increased 
mortality [36-38], although some studies 
showed contradictory results [39,40]. 
Telomere integrity is essentially regulated 
by two protein networks, telomerase and its 
associated factors, which regulate telomere 
length, and the shelterin complex, which 
covers the telomeres [41,42] (Figure 5.2). 
Several studies have investigated associations 
between single SNPs in telomerase and 
shelterin genes and telomere length. The 
most promising results came from TERC and 
TERT [35,43-46], of which the latter has also 
been associated with human longevity [35].

Figure 5.1 Insulin/insulin-like growth factor 1 (IGF-1) signaling pathway. The insulin/IGF-1 signaling 
pathway consists of the core components IGF1R/IR/IRR, IRS, PI3K, AKT/SGK, FOXO, and SIRT and 
proteins that have a direct activating or inhibiting effect on these proteins. The small closed circles 
(containing Ac, P, or Ub) indicate an activating effect of the posttranslational modification on the protein, 
while the small dashed circles indicate an inhibiting effect. The straight arrows pointing to these small 
circles indicate an activating effect on the posttranslational modification, while the dashed arrows 
indicate an inhibiting effect. Ac acetylation, P phosphorylation, Ub ubiquitylation.
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In this study, we used four self-contained 
tests (PLINK set-based test [47], GRASS 
[48], Global test [49], and SNP ratio test [50]) 
and one competitive test (the comparative 
approach of Global test) to study the joint 
effect of genetic variation in the IIS and 
TM pathways on human longevity. For the 
analyses we used genotyped GWAS data 
of nonagenarian siblings from the Leiden 
Longevity Study (LLS) and younger 
population controls from the Rotterdam 
Study (RS) [6].

Results

For the IIS pathway, we selected genes 
encoding proteins that belong to the well-
described core of the pathway, consisting 

of IGF1R/IR/IRR, IRS, PI3K, AKT/SGK, 
FOXO, and SIRT, or that had a direct 
activating or inhibiting effect on these core 
components [51,52]. In addition, we selected 
several FOXO target genes that play a role 
in cell-cycle inhibition, oxidative-stress 
resistance, metabolism, and apoptosis 
[52] (Figure 5.1). For the TM pathway, we 
selected genes encoding proteins that were 
specifically associated with telomeres and 
belonged to telomerase and its associated 
factors or to the shelterin complex [42,53,54] 
(Figure 5.2). We analyzed SNPs within a 10-
kb window around the selected genes (based 
on [28]) from genotyped GWAS data of 403 
unrelated nonagenarian participants from the 
LLS and 1,670 middle-aged controls from 
the RS [6]. A description of the investigated 

Figure 5.2 Telomere maintenance pathway. The telomere maintenance pathway consists of proteins 
belonging to telomerase and its associated factors or to the shelterin complex. Telomere elongation is 
performed by telomerase after binding to the telomere (a). However, binding of the shelterin protein 
POT1 to the telomere blocks this process (b).
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samples is given in Table S5.1. In total, 1,021 
SNPs in 68 IIS pathway genes and 88 SNPs 
in 13 TM pathway genes were analyzed 
(Tables 5.1, 5.2, S5.3A, and S5.3B).
	 Four methods, PLINK set-based 
test, Global test, GRASS, and SNP ratio 
test (Table S5.2), were used to investigate 
the association of the SNP sets from the 
IIS and TM pathways with longevity. As a 
biological negative control, we also analyzed 
a SNP set of 223 SNPs in 9 genes previously 
associated with eye and hair color [55] 
(Tables 5.3 and S5.3C). Both candidate 
pathways were consistently associated with 
longevity across all four tests (Table 5.4). 
We applied Bonferroni correction to adjust 
for the number of tested pathways (i.e., 2, so 
for significance P < 0.025). After Bonferroni 
correction, the IIS pathway SNP set remained 
significant in GRASS and Global test, while 
the TM pathway SNP set remained significant 
in the PLINK set-based test, GRASS, and 
Global test. Using the comparative approach 
in Global test as a competitive test, we also 
showed that the probability to find a random 
SNP set with the same number of genes as 
the IIS or TM pathway and a comparable or 
lower P-value is less than 5% (2.11% for the 
IIS and 2.95% for the TM pathway).
	 To determine which genes are mainly 
responsible for the observed association of 
the pathway SNP sets from the IIS and TM 
pathways with longevity, we also investigated 
the association of gene SNP sets from these 
pathways. Although the power to detect an 
association using gene SNP set analysis is 
lower than for pathway SNP set analysis, 
due to the larger number of tests, it provides 
a ranking of genes based on the contribution 
to the observed associations of the pathways. 

To analyze the gene SNP sets, we used the 
PLINK set-based test, Global test, and SNP 
ratio test. GRASS was not used, since the 
underlying statistical method of this test is 
less suitable for analysis of gene SNP sets. 
Nine of the 68 IIS pathway gene SNP sets 
(AKT1, AKT3, FOXO4, IGF2, INS, PIK3CA, 
SGK1, SGK2, and YWHAG) and 1 of the 13 
TM pathway gene SNP sets (POT1) showed 
an association (P < 0.05) with longevity in at 
least two tests (Tables 5.5 and 5.6).

Discussion

To study the effect of the IIS and TM 
pathways on longevity, SNP set analysis on 
GWAS data of 403 nonagenarian cases and 
1,670 population controls was performed. 
Both pathway SNP sets associated 
significantly with longevity. The gene SNP 
sets analysis showed that the association of 
the IIS pathway was scattered over several 
genes (AKT1, AKT3, FOXO4, IGF2, INS, 
PIK3CA, SGK1, SGK2 and YWHAG), while 
the association of the TM pathway seems to 
be mainly determined by one gene (POT1).
	 The proteins encoded by the IIS 
gene SNP sets that associate with longevity 
are involved in several parts of the IIS 
pathway (Figure 5.1). Akt1, Akt3, Foxo4, 
Igf2, Ins2, Pik3ca, and Sgk1 knockout mice 
all show abnormalities in growth and/or 
increased mortality (www.informatics.jax.
org) [56], which indicates that these genes 
are indeed responsible for the growth and 
lifespan regulating effects of the IIS pathway. 
Previously, SNPs in several of the significant 
IIS pathway genes (AKT1, FOXO4, INS, and 
PIK3CA) were studied by single SNP analysis 
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Table 5.2 Characteristics of the telomere maintenance pathway proteins.

Protein Gene ID Chr Start (bp) End (bp)
Size 
(kb) SNPs Coverage

TPP1 (Shelterin) ACD 65057 16 66,248,916 66,252,219 3.30 2 50.00%

Dyskerin (Telomerase) DKC1 1736 X 153,644,225 153,659,158 14.93 1 NA

GAR1 (Telomerase) GAR1 54433 4 110,956,115 110,965,342 9.23 1 14.29%

NHP2 (Telomerase) NHP2 55651 5 177,509,072 177,513,567 4.50 2 33.33%

NOP10 (Telomerase) NOP10 55505 15 32,421,209 32,422,654 1.45 7 45.45%

POT1 (Shelterin) POT1 25913 7 124,249,676 124,357,273 107.60 25 55.56%

TP1 TEP1 7011 14 19,903,666 19,951,419 47.75 21 40.00%

TERC (Telomerase) TERC 7012 3 170,965,092 170,965,542 0.45 1 25.00%

TERF1 (Shelterin) TERF1 7013 8 74,083,651 74,122,541 38.89 10 60.00%

TERF2 (Shelterin) TERF2 7014 16 67,946,965 67,977,392 30.43 6 57.14%

RAP1 (Shelterin) TERF2IP 54386 16 74,239,136 74,248,842 9.71 4 50.00%

TERT (Telomerase) TERT 7015 5 1,306,287 1,348,162 41.88 7 41.18%

TIN2 (Shelterin) TINF2 26277 14 23,778,691 23,781,720 3.03 1 14.29%

Total             88  

ID, Entrez Gene ID; Chr, chromosome according to NCBI Build 36; Start (bp), start position according to NCBI Build 
36; End (bp), end position according to NCBI Build 36; Coverage, coverage based on HapMap II release 22 CEU; 
NA, not available.

Table 5.3 Characteristics of the eye and hair color pathway proteins. 

Protein Gene ID Chr Start (bp) End (bp) Size (kb) SNPs Coverage

ASIP ASIP 434 20 32,311,832 32,320,809 8.98 5 50.00%

HERC2 HERC2 8924 15 26,029,778 26,240,893 211.12 9 41.67%

IRF4 IRF4 3662 6 336,739 356,443 19.70 14 65.00%

MC1R MC1R 4157 16 88,511,788 88,514,886 3.10 3 33.33%

OCA2 OCA2 4948 15 25,673,616 26,018,053 344.44 82 58.00%

SLC24A4 SLC24A4 123041 14 91,858,678 92,037,578 178.90 62 53.68%

SLC45A2 SLC45A2 51151 5 33,980,478 34,020,537 40.06 15 44.83%

TYR TYR 7299 11 88,550,688 88,668,575 117.89 22 56.00%

TYRP1 TYRP1 7306 9 12,683,386 12,700,266 16.88 11 50.00%

Total             223  

ID, Entrez Gene ID; Chr, chromosome according to NCBI Build 36; Start (bp), start position according to NCBI Build 
36; End (bp), end position according to NCBI Build 36; Coverage, coverage based on HapMap II release 22 CEU.
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Table 5.4 Results of gene set analysis of insulin/insulin-like growth factor 1 signaling, telomere 
maintenance, and eye and hair color pathway single nucleotide polymorphism sets. 

Pathway test Insulin/IGF-1 signaling Telomere maintenance Eye and hair color

PLINK set-based test* 0.064 0.019 0.340

GRASS* 0.010 0.023 0.540

Global test* 0.011 0.023 0.362

SNP ratio test* 0.044 0.034 0.337

IGF-1, insulin-like growth factor 1. *Permutation (n = 10,000) P-value.

Table 5.5 Results of gene set analysis of insulin/insulin-like growth factor 1 signaling pathway gene 
single nucleotide polymorphism sets.

Gene PLINK set-based test* Global test* SNP ratio test*

AKT1 0.003 0.002 0.099

AKT2 0.193 0.461 0.197

AKT3 0.101 0.023 0.043

BCL2L11 1 0.678 1

BCL6 1 0.539 1

CAT 1 0.661 1

CCND1 1 0.471 1

CCND2 0.248 0.073 0.073

CCNG2 1 0.528 1

CDKN1B 1 0.675 1

CREBBP 1 0.495 1

DEPDC6 1 0.378 1

EP300 1 0.823 1

FASLG 1 0.219 1

FOXO1 1 0.688 1

FOXO3A 0.181 0.138 0.180

FOXO4 0.023 0.023 0.055

G6PC 0.156 0.172 0.173

IGF1 0.342 0.042 0.148

IGF1R 0.054 0.373 0.491

IGF2 0.028 0.019 0.084

INS 0.022 0.049 0.188

INSR 0.154 0.217 0.286

INSRR 0.139 0.247 0.224

IRS1 1 0.873 1

IRS2 1 0.569 1

IRS4 1 0.605 1

KAT2B 1 0.905 1

MAPK1 1 0.248 1

MAPK3 1 0.132 1
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Gene PLINK set-based test* Global test* SNP ratio test*

MAPK8 0.185 0.531 0.215

MAPK9 1 0.198 1

MAPK10 0.191 0.885 0.068

MAPKAP1 1 0.372 1

MLST8 1 0.593 1

MTOR 1 0.722 1

PCK1 1 0.547 1

PHLPP1 0.113 0.398 0.200

PHLPP2 1 0.364 1

PIK3CA 0.003 9.36 x 10-4 0.022

PIK3CB 1 0.726 1

PIK3CD 1 0.828 1

PIK3R1 1 0.666 1

PIK3R2 1 0.722 1

PIK3R3 1 0.263 1

PPP2R5B 1 0.363 1

PRR5 0.355 0.163 0.257

PTEN 1 0.855 1

PTPN1 1 0.982 1

RBL2 1 0.061 1

RICTOR 1 0.343 1

SCP2 1 0.729 1

SGK1 0.091 0.007 0.016

SGK2 0.027 0.042 0.349

SIRT1 1 0.941 1

SIRT2 1 0.282 1

SIRT3 0.241 0.232 0.326

SKP2 1 0.898 1

SOCS1 1 0.349 1

SOCS3 1 0.996 1

SOD2 1 0.692 1

USP7 0.025 0.101 0.103

YWHAB 1 0.223 1

YWHAE 0.067 0.124 0.196

YWHAG 0.090 0.032 0.018

YWHAH 1 0.236 1

YWHAQ 0.228 0.175 0.293

YWHAZ 1 0.756 1

*Permutation (n = 10,000) P-value. 



98

Chapter 5

C
hapter 5

and only one SNP, rs3803304 in AKT1, which 
was not measured in our study, showed an 
association with longevity [28]. However, 
gene set analysis, which could have detected 
association of additional genes containing 
SNPs with many small effects, was not applied 
in that study. Most signaling cascades require 
cooperation of several genes in multiple 
branches of the cascade. This indicates that, 
for signaling pathways, mutations in different 
genes could result in similar downstream 
effects, which would explain the scattered 
association in the IIS pathway.
	 Although SNPs in FOXO3A have 
previously been associated with longevity 
in several independent studies [25-30], the 
gene SNP set showed no effect in our study 
in the PLINK set-based test, Global test, and 
SNP ratio test (P = 0.181, P = 0.138, and P = 
0.180, respectively, Table 5.5). This might be 
due to the fact that the effects of FOXO3A on 
longevity are most prominent in centenarians. 

As was previously reported by Flachsbart et 
al., centenarians represent a highly selected 
phenotype, even among nonagenarians 
[26]. In addition, the genetic contribution to 
longevity in general is increased at higher 
ages [9] and the small effects of longevity-
promoting gene variants, relative to other 
factors, may be larger in centenarians [57] 
and not detectable in nonagenarians. The 
cases in our study, which are from long-lived 
families, have a mean age of 94 years. Yet, we 
had only 11 individuals > 100 years, which 
may explain the absence of significance of 
the FOXO3A association in our population.
	 POT1 is part of the shelterin 
complex and is responsible for the binding 
of this complex to the TTAGGG repeats of 
telomeres. Binding of POT1 to the telomere 
leads to decreased elongation by telomerase 
[42]. Reduction of POT1 in human fibroblasts 
by RNAi leads to induction of apoptosis, 
chromosomal instability, and senescence 

Table 5.6 Results of gene set analysis of telomere maintenance pathway gene single nucleotide 
polymorphism sets.

Gene PLINK set-based test* Global test* SNP ratio test*

ACD 1 0.491 1

DKC1 1 0.642 1

GAR1 1 0.281 1

NHP2 1 0.759 1

NOP10 1 0.208 1

POT1 0.007 0.014 0.019

TEP1 1 0.525 1

TERC 1 0.202 1

TERF1 1 0.821 1

TERF2 0.018 0.160 0.164

TERF2IP 1 0.825 1

TERT 1 0.471 1

TINF2 1 0.587 1

*Permutation (n = 10,000) P-value.
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[58]. The same effects are observed in 
Pot1b knockout mice [59,60]. In addition, 
telomerase-deficient Pot1b knockout mice 
show a reduction in lifespan compared to 
“normal” telomerase-deficient mice [60], 
which stresses the importance of TM in 
lifespan regulation. Most protein complexes 
contain one or several proteins essential 
for specific functions of the complex, e.g., 
binding, transport, or activation/repression 
activity. This indicates that, for pathways 
containing a protein complex, mutations in 
a single gene, encoding such an essential 
protein, could be sufficient to alter the 
function of the complex, which would 
explain the single-gene association in the 
TM pathway.
	 There are two main kinds of pathway 
analyses, explorative and candidate-based. 
Since we want to focus on two pathways, 
the IIS and TM pathways, we performed 
candidate-based pathway analysis. The 
advantage of testing candidate pathways 
instead of explorative analysis is the 
decreased penalty for multiple testing, due 
to the limited number of tests performed. 
For information about pathways, several 
databases are available, e.g., Gene Ontology 
[61] and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) [62], which are 
particularly useful for explorative studies 
[4]. However, to our knowledge, the IIS 
and TM pathways are not described in 
sufficient detail in these databases and we 
therefore assembled these pathways based 
on literature. Although the IIS pathway is 
available in KEGG (hsa04910; insulin-
signaling pathway), only four of the nine 
IIS pathway genes that were associated with 
longevity, AKT1, AKT3, INS, and PIK3CA, 

were part of this pathway, which indicates 
that the pathway definition used in this study 
could have had a large influence on the 
results of the analysis.
	 Different pathway tests could show 
contradictory results, even when analyzing 
the same GWAS data [4]. These discrepancies 
are caused by differences in, for example, 
the underlying statistical methods of the 
tests. Therefore, we used several pathway 
tests in parallel for our analysis. Some of the 
available pathway tests require SNP P-values 
as input data, while others require raw 
genotypes [4]. Given that we have GWAS 
data available, we selected pathway tests that 
make use of raw genotypes. All four selected 
pathway tests are self-contained tests that 
deal with the complexity of SNP set analysis 
by permuting the case-control status. While, 
the PLINK set-based test, Global test, and 
SNP ratio test do not completely incorporate 
linkage disequilibrium (LD) information, 
GRASS employs principal component 
analysis to deal with correlations within 
each gene. A simulation study showed that 
in general, GRASS was more powerful than 
the PLINK set-based test [48]. Simulation 
studies for Global test or SNP ratio test 
are not yet available. However, despite the 
differences between the methods, they all 
showed similar results for the IIS and TM 
pathways in this study.
	 SNP set analysis could have power 
to detect significant association, even if 
the power to detect associations in single 
SNP analysis is low [2], as was previously 
shown in the Welcome Trust Case Control 
Consortium [63]. Our study has a power < 
1% to detect single SNP associations of the 
tested SNPs with an OR of 1.2 and a minor 
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allele frequency of 0.25 (the mean frequency 
of the tested SNPs). However, because the 
small (non-significant) effects of the SNPs are 
jointly tested, the pathway SNP set analysis 
is able to detect a significant association of 
the IIS and TM pathway. This indicates that 
SNP set analysis could be a useful approach 
for studies which showed no significant 
associations in single SNP analysis.
	 There is still much debate about the 
optimal size of the window used in SNP set 
analysis [2-4] and we therefore choose a fixed 
window of 10 kb to take into account effects 
of SNPs in regulatory regions surrounding 
the genes. The same window was also used 
in a previous study of the IIS pathway [28]. 
Although there is a chance that we will 
miss some functional SNPs, increasing the 
window would increase the chance that SNPs 
are included with no functional relationship 
to the tested gene.
	 The number and diversity of SNPs 
measured per gene/pathway is highly 
variable between genotyping platforms 
used for GWAS. In addition, there is a 
large variety in allele frequencies and 
presence of SNPs between populations. For 
single SNP analysis, one is dependent on 
association of the same SNP (or a SNP in 
high LD) for replication. However, when, 
due to varying allele frequencies, different 
SNPs associate in different populations, 
SNP set analysis determines the combined 
effect of SNPs within a gene and is able 
to overcome this problem. Therefore, 
replication of SNP set analysis is assumed 
to be more reproducible between genotyping 
platforms and populations [4,64]. To support 
these assumptions, our findings should be 
replicated in other cohorts.

In conclusion, we have shown that genetic 
variation in genes involved in the IIS and 
TM pathways is associated with human 
longevity. In addition, we provide evidence 
that different self-contained tests show 
similar results when applied to candidate-
based pathway analysis.

Materials and methods

Study Populations

Leiden Longevity Study
For the LLS, long-lived siblings of European 
descent were recruited together with their 
offspring and the partners of the offspring. 
Families were included if at least two long-
lived siblings were alive and fulfilled the age 
criterion of 89 years or older for men and 
91 years or older for women, representing 
less than 0.5% of the Dutch population in 
2001 [65]. In total, 944 long-lived proband 
siblings were included with a mean age of 
94 years (range, 89-104), 1,671 offspring (61 
years, 39-81), and 744 partners (60 years, 
36-79). DNA from the LLS was extracted 
from samples at baseline using conventional 
methods [66]. For the GWAS, 403 unrelated 
LLS siblings (one sibling from each sibling 
pair) were included (LLS GWAS cases) [6].

Rotterdam Study
The RS is a prospective population-
based study of people aged 55 years 
and older, which was designed to study 
neurological, cardiovascular, locomotor, 
and ophthalmological diseases [67]. The 
study consists of 7,983 participants from the 
baseline cohort (RS-I) and 3,011 participants 
from an independent extended cohort formed 
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in 1999 (RS-II) from which DNA was isolated 
between 1990 and 1993 (RS-I) or between 
2000 and 2001 (RS-II). For the GWAS, 1,731 
participants from the combined cohort who 
were below 60 years of age and for whom 
GWAS data were available were included as 
controls (RS GWAS controls) [6].

Population substructure
Multidimensional scaling analysis in PLINK 
(http://pngu.mgh.harvard.edu/purcell/plink) 
[47] showed that there was no substructure 
in the GWAS data to an extent that would 
affect the observations [6].

Genotyping and SNP selection
For the SNP set analyses we used the genotype 
data from the GWAS described by Deelen et 
al. [6]. The LLS GWAS cases were genotyped 
using Illumina Infinium HD Human660W-
Quad BeadChips (Illumina, San Diego, 
CA, USA). The RS GWAS controls were 
genotyped using Illumina Infinium II Human-
Hap 550K Beadchips and Illumina Infinium 
II HumanHap550-Duo BeadChips (Illumina), 
respectively [67]. Of the 551,606 SNPs 
measured in both the LLS GWAS cases and 
RS GWAS controls, 516,712 SNPs passed 
quality control using the following criteria: 
SNP call rate ≥ 0.95 or minor allele frequency 
≥ 0.01 in RS GWAS controls and LLS GWAS 
cases, PHWE ≥ 10-4 and no between-chip effect 
in the RS GWAS controls, and good cluster 
plots in the LLS GWAS cases and RS GWAS 
controls if P < 1 x 10-4 [6]. 
	 We analyzed SNPs within a 10-kb 
window around genes encoding proteins 
that belonged to the IIS (Figure 5.1) and TM 
pathway (Figure 5.2). A gene was defined 
as an NCBI Entrez Gene (mRNA or RNA) 

cluster, corresponding to a set of transcripts 
(RefSeq) for which the alignments can be 
obtained from the UCSC genome browser 
(http://genome.ucsc.edu/), in which all 
transcripts within a cluster agree on strand 
and overlap. Due to an overlap of the 10-kb 
windows around IGF2 and INS, two SNPs, 
rs4320932 and rs7924316, were assigned to 
both genes.

Statistical analysis

PLINK set-based test
In the PLINK set-based test (--set-test, 
http://pngu.mgh.harvard.edu/purcell/plink) 
[47], a single SNP analysis (in our case, a 
trend test) of the original pathway or gene 
SNP set is performed. For each SNP set, a 
mean SNP statistic is calculated from the 
single SNP statistics of a maximum number 
(--setmax) of independent SNPs below 
a certain P-value threshold (--set-p). If 
SNPs are not independent, i.e., in case LD 
(r2) is above a certain threshold (--set-r2), 
the SNP with the lowest P-value in the 
single SNP analysis is selected. The same 
analysis is performed with a certain number 
(--mperm) of simulated SNP sets in which 
the phenotype status of the individuals is 
permuted. An empirical P-value for the SNP 
set is computed by calculating the number of 
times the test statistic of the simulated SNP 
sets exceeds that of the original SNP set. 
For the analysis in this study, the parameters 
were set to --setp 0.05 --set-r2 0.5, --set-max 
99,999, and --mperm 10,000.

GRASS
GRASS (http://linchen.fhcrc.org/grass.html) 
[48] calculates “eigenSNPs” for each gene 
in the pathway SNP set by summarizing the 
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variation of a gene using principal component 
analysis. Subsequently, one or more of these 
“eigenSNPs” per gene are selected using 
regularized logistic regression to calculate a 
test statistic for each pathway SNP set. The 
same analysis is performed with simulated 
SNP sets in which the phenotype status of 
the individuals is permuted. The P-value per 
pathway SNP set is calculated by comparing 
the test statistic of the original pathway SNP 
set with that of the combined simulated 
pathway SNP sets. For the analysis in this 
study, the number of simulated pathway SNP 
sets was 10,000.

Global test
In this study, we used a modified version of 
the Global test (http://www.bioconductor.
org/help/bioc-views/release/bioc/html/
globaltest.html) [49], which is capable and 
powerful for analyzing GWAS data [68,69]. 
This test is based on a multiple logistic 
regression model that uses the phenotype as 
the response variable and the SNPs in the 
SNP set as covariates and automatically takes 
the correlations between SNPs into account. 
The null hypothesis is tested that none of 
the SNPs in the SNP set are associated 
with the phenotype. P-values are calculated 
using a permutation test based on 10,000 
permutations. For the comparative approach, 
10,000 random SNP sets per pathway SNP 
set were generated and tested to determine 
the chance to find a similarsized SNP set with 
a comparable or lower P-value as compared 
to the original pathway SNP set.

SNP ratio test
The SNP ratio test (http://sourceforge.net/
projects/snpratiotest/) [50] performs a single 

SNP analysis (in our case, a trend test) of 
the original pathway or gene SNP set and of 
similar-sized SNP sets in which the phenotype 
status of the individuals is permuted. An 
empirical P-value of the SNP set is computed 
by calculating the ratio between the 
proportion of SNPs that shows an association 
below a certain P-value threshold (p) in the 
original GWAS dataset and in the simulated 
GWAS datasets. The number of significant 
SNPs in the simulated GWAS datasets is 
defined as the top n SNPs with the lowest 
P-values, where n is the number of SNPs 
with an association below p in the original 
GWAS dataset. For the analysis in this study, 
we made use of the scripts described in 
“SRT_documentation_090310.pdf” (http://
sourceforge.net/projects/snpratiotest/). For 
the analysis in this study, p was set to 0.05 
and the number of simulated datasets used 
was 10,000.

Statistical significance
To adjust for multiple testing, the significance 
level was set at the Bonferroni-corrected 
nominal P-value (which is 0.05/(number of 
pathway or gene SNP sets tested)).
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Abstract

Human leukocyte telomere length (LTL) decreases with age and shorter LTL has previously 
been associated with increased prospective mortality. However, it is not clear whether LTL 
merely marks the health status of an individual by its association with parameters of immune 
function, for example, or whether telomere shortening also contributes causally to lifespan 
variation in humans. We measured LTL in 870 nonagenarian siblings (mean age 93 years), 
1,580 of their offspring, and 725 spouses thereof (mean age 59 years) from the Leiden 
Longevity Study (LLS). We found that shorter LTL is associated with increased prospective 
mortality in middle (30-80 years; hazard ratio (HR) = 0.75, P = 0.001) and highly advanced age 
(≥ 90 years; HR = 0.92, P = 0.028) and show that this association cannot be explained by the 
association of LTL with the immune-related markers insulin-like growth factor 1 to insulin-like 
growth factor binding protein 3 molar ratio, C-reactive protein, interleukin 6, cytomegalovirus 
serostatus, or white blood cell counts. We found no difference in LTL between the middle-aged 
LLS offspring and their spouses (β = 0.006, P = 0.932). Neither did we observe an association 
of LTL-associated genetic variants with mortality in a prospective meta-analysis of multiple 
cohorts (n = 8,165). We confirm LTL to be a marker of prospective mortality in middle and 
highly advanced age and additionally show that this association could not be explained by 
the association of LTL with various immune-related markers. Furthermore, the approaches 
performed here do not further support the hypothesis that LTL variation contributes to the 
genetic propensity for longevity.
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Introduction

Telomeres are TTAGGG tandem repeat 
structures at the end of chromosomes that 
protect chromosomes from degradation and 
rearrangement [1]. In somatic cells, telomere 
length declines with every cell division and, 
accordingly, human leukocyte telomere 
length (LTL) decreases with age [2,3]. In 
addition, LTL differs between sexes, women 
have a longer LTL than men of the same 
age [4]. Shorter LTL has been associated 
with an increased risk of several age-related 
diseases, such as cardiovascular disease [5], 
hypertension [6], and cancer [7]. Likewise, 
several studies, although not all, have shown 
an association of shorter LTL with prospective 
mortality, mainly through infectious- and 
cardiovascular-related causes of death [8].
	 The shortening of telomeric DNA 
is mainly caused by incomplete DNA 
replication during the cell cycle S phase 
[9], but also by oxidative stress [10], which 
plays a role in the pathogenesis of viral 
infections [11]. An association of shorter 
LTL with increased prospective mortality 
is thus not necessarily explained by a 
causal effect of LTL on health conditions. 
The association of LTL with prospective 
mortality risk might be confounded by 
immune functions influencing prospective 
mortality, which may be investigated by 
immune-related markers. Previous studies 
showed that shorter LTL is associated with 
a decrease in serum levels of insulin-like 
growth factor 1 (IGF-1) [12,13], which is 
an important regulator of cell replication 
and, in addition, seems to play a role in the 
regulation of immunity and inflammation 
[14]. Furthermore, shorter LTL has been 

shown to associate with increased levels of 
the inflammatory markers C-reactive protein 
(CRP) and interleukin 6 (IL-6), although 
not in all studied populations [8]. During 
inflammation, IL-6 and other cytokines are 
secreted by T cells and macrophages and 
trigger the synthesis of CRP by the liver, 
ultimately resulting in clearance of necrotic 
and apoptotic cells. However, an increased 
level of IL-6 or CRP is not necessarily the 
result of increased inflammation [15,16].
	 Whether LTL is associated with 
familial longevity in middle age is not 
extensively studied. One study showed that 
offspring of Ashkenazi Jewish centenarians (n 
= 175) have a longer mean LTL as compared 
with controls from the general population 
(n = 93) [17]. Since the centenarians in this 
study (n = 86) and their offspring did not 
show a decline in LTL with age as observed 
in controls, the authors suggested that better 
LTL maintenance may be a feature in long-
lived families. These interesting observations 
in a relatively small study warrant replication 
in larger populations.
	 LTL is a highly heritable trait [3,18]. 
Insights into the causal effects of LTL on 
human lifespan might be obtained by testing 
genetic variants influencing LTL for their 
association with prospective mortality. 
Recently, nine loci have been identified 
that influence LTL variation in Western 
populations [19,20]. These loci include 
the known telomere biology genes CTC1, 
NAF1, OBFC1, RTEL1, TERC, and TERT, 
explaining ~1% of the variance in LTL. In 
addition, genetic variation in two genes 
involved in telomere maintenance, TERC 
and POT1, was found to be associated with 
human longevity [17,21,22].
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In this study, we explored the data of the 
Leiden Longevity Study (LLS) in which 
we measured LTL in nonagenarian siblings 
(n = 870), their offspring (n = 1,580) and 
the spouses thereof (n = 725; serving as 
controls). The survival benefit of LLS 
families is marked by a 30% decreased 
mortality risk in three generations, i.e., the 
parents of the nonagenarian siblings, their 
unselected additional siblings and their 
offspring, when compared with the general 
Dutch population [23]. In addition, the LLS 
offspring, who are considered "decelerated" 
or "healthy agers", have a lower prevalence of 
age-related diseases, such as type 2 diabetes, 
cardiovascular disease, and hypertension, 
as compared with their spouses, and show 
beneficial or "youthful" profiles for many 
metabolic parameters [24,25]. We first 
investigated whether the association of shorter 
LTL with increased prospective mortality, 
which is observed in both generations, could 
be explained by lymphocyte counts, serum 
CRP levels, serum IGF-1 to insulin-like 
growth factor binding protein 3 (IGFBP3) 
molar ratio (IGF-1/IGFBP3), serum IL-6, 
or the presence of cytomegalovirus (CMV) 
infection as immune-related markers. Next, 
we examined whether the LLS offspring 
have a longer LTL and a different association 
of LTL with age as compared with their 
spouses. Finally, we determined the effect 
of genetic variants associated with LTL 
on prospective mortality. We performed 
a prospective meta-analysis of multiple 
cohorts (n = 8,165) in which known LTL-
associated single nucleotide polymorphisms 
(SNPs) were investigated separately and in 
combination as a genetic risk score (GRS).

Results

LTL and prospective mortality in two 
generations
The characteristics of the LLS nonagenarians, 
their offspring and the spouses thereof for 
demographic variables, LTL, immune-
related markers, and mortality analysis are 
depicted in Tables 6.1, 6.2, and 6.3. We 
first analyzed the association between LTL 
and prospective mortality in the middle-
aged and nonagenarian generations. We 
found that shorter LTL is associated with 
increased prospective all-cause mortality in 
the combined group of middle-aged LLS 
offspring and their spouses (30-80 years of 
age), i.e., per unit longer LTL there is a 25% 
decrease in mortality risk (hazard ratio (HR) 
= 0.75 (95% CI 0.64 – 0.88), P = 0.001). In 
addition, we observed a similar association 
in the LLS nonagenarians (≥ 90 years of age, 
HR = 0.92 (95% CI 0.86 – 0.99), P = 0.028). 
Since it has previously been reported that 
LTL declines with decreasing serum IGF-
1 levels and increasing serum CRP levels, 
the effect of LTL on prospective mortality 
might be explained by the association of 
LTL with immune functions, as reflected by 
immune-related markers such as serum IGF-
1/IGFBP3, serum CRP levels, serum IL-6 
levels, presence of CMV infection and white 
blood cell (WBC) counts. We previously 
showed that long-lived family members 
from the LLS have a lower prevalence of 
CMV infection as compared to controls from 
the general population [26,27]. The levels 
of the other markers did not differ between 
long-lived family members and controls 
[28,29]. Most of these markers associated 
with LTL in the LLS (Table S6.1). Therefore, 
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we adjusted for IGF-1/IGFBP3, CRP, IL-
6, CMV infection, and lymphocyte counts 
in the Cox proportional hazard model used 
for prospective analysis of mortality. This 
showed that the association of LTL with all-
cause mortality in both generations of the 
LLS was independent from these immune-
related markers (HR = 0.68 (95% CI 0.56 – 
0.82), P = 9.23 x 10-5 (offspring and spouses) 
and HR = 0.90 (95% CI 0.84 – 0.97), P = 
0.006 (nonagenarians), even though all 
markers showed an association (in one or 
both generations) with mortality (Table 
S6.2). Since both a low and/or high level of 
WBC counts and CRP could be detrimental, 
we also performed the analyses without 
individuals with low (< 4 x 109, noffspring/

spouses = 36, nnonagerarians = 16) and high (> 10 x 
109, noffspring/spouses = 96, nnonagerarians = 58) WBC 
counts and high CRP levels (> 30 mg/L, 
noffspring/spouses = 2, nnonagerarians = 24). However, 
these analyses provide similar results 
(data not shown). In addition, there was 
no interaction between LTL and immune-
related markers. This indicates that the effect 
of LTL on prospective mortality could not 
be explained by its association with these 
immune-related markers.

LTL and familial longevity in middle age 
Next, we compared LTL between the LLS 
offspring (n = 1,580) and their spouses (n = 
725). We found no evidence for a difference 
in mean LTL between the groups considering 
age and gender as covariates in our linear 
regression model (β = 0.006 (95% CI -0.125 
– 0.136), P = 0.932, Figure 6.1A). In addition, 
we found no evidence that the association of 
LTL with age is different among long-lived 
families, since the estimated decline of LTL 

(in T/S ratio units) per calendar year in the 
LLS offspring (β = -0.009) and their spouses 
(β = -0.006) was similar to other studies with 
participants of middle age [20] (Figure 6.1B). 
This indicates that LTL does not explain the 
propensity for familial longevity in middle 
age.

Prospective meta-analysis of LTL-
associated genetic variants
To determine whether the genetic component 
of LTL contributes to prospective mortality, 
we investigated whether the lead SNPs from 
the 7 loci that showed association with LTL 
variation (P < 5 x 10-8) in the largest genome-
wide association study (GWAS) up to now 
[20], as well as a GRS based on these SNPs, 
also associate with prospective mortality. To 
this end, we performed a prospective meta-
analysis of mortality in 8,165 individuals 
above 75 years from 6 different cohorts, 
of whom 3,893 had died (Table S6.3). 
This analysis showed no association of the 
LTL SNPs, nor of the GRS, with all-cause, 
cardiovascular or cancer mortality after 
Bonferroni correction to adjust for multiple 
testing (Padjusted > 0.0056, Tables 6.4, S6.4, 
and S6.5), although we had an 80% power (α 
= 0.05) to detect HR’s below 0.91.

Discussion

To examine the association between 
telomeres and human lifespan we studied 
LTL in nonagenarians and their middle-aged 
offspring from the LLS for association with 
prospective mortality and familial longevity 
in middle age. Interestingly, carriers of long 
telomeres, as compared to those with shorter 
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Table 6.3 Characteristics of the Leiden Longevity Study samples used for the prospective analysis of 
leukocyte telomere length.

  n ndeaths Mean age (SD)
Age 

range Men/women
Mean follow-up 

time (SD)

LLS offspring + spouses 2,294 106 59.18 (6.78)   30 - 80 1,037/1,257 7.56 (0.95)

LLS nonagenarians 870 751 93.31 (2.63) 89 - 103 333/537 7.57 (0.84)

SD, standard deviation; LLS, Leiden Longevity Study.

Figure 6.1 Characteristics of leukocyte telomere length (LTL) in the Leiden Longevity Study (LLS) 
offspring and their spouses. Mean LTL (A) and the age-related decline of LTL (B) in the LLS offspring 
(n = 1580, green) and their spouses (n = 725, blue).

telomeres, have a clear survival benefit, 
which is independent of immune-related 
markers associated with LTL. We found no 
association of LTL with familial longevity 
in middle age. Neither did we observe 
an association of LTL-associated genetic 
variants with mortality in a prospective meta-
analysis of multiple cohorts (n = 8,165). This 
confirms the study of monozygotic twins, in 
which LTL predicts prospective mortality in 
the absence of genetic differences between 
the twins [30].
	 The observed association of shorter 
LTL with increased prospective mortality in 
two generations of the LLS is in accordance 
with previous studies [8]. However, it 
is unclear what biological phenomenon 
telomere length in blood reflects. Shorter 

LTL has previously been associated with 
decreased serum levels of IGF-1 [12,13] and 
increased levels of CRP and IL-6 [8], which 
are known markers of inflammation [31,32]. 
Hence, the established association between 
LTL and prospective mortality might be 
explained by confounding factors such as 
immune functions. These factors could on 
the one hand associate with LTL, by affecting 
replication of specific cell populations, and 
on the other hand with prospective mortality, 
reflecting the health status of an individual. 
To test this hypothesis, we investigated 
several immune-related markers, namely 
serum IGF-1/IGFBP3, which is a marker 
for the amount of biologically active IGF-
1, serum CRP levels, serum IL-6 levels, 
WBC counts, and seropositivity for CMV 
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infection. Whereas most of these markers 
were indeed associated with LTL and showed 
an individual effect on prospective mortality, 
shorter LTL remained independently 
associated with prospective mortality in two 
generations. We should note that we did not 
have data available regarding other relevant 
immune-related markers such as erythrocyte 
sedimentation rate and fibrinogen. The 
associations of LTL with prospective 
mortality could also be confounded by 
non-cell-autonomous senescence as a 
consequence of viral infection [33]. Another 
explanation for the association between LTL 
and prospective mortality might be found 
in the association of LTL with metabolic 
parameters associated with cardiovascular 
disease risk and/or mortality, such as fasting 
insulin and homocysteine [8]. Whether these 
markers explain LTL-related prospective 
mortality still needs to be determined.
	 Previous studies have shown that 
telomere length dynamics is age-related, i.e., 
the rate of LTL shortening during adulthood 
is much slower than during early life [34]. 

However, the age range of our samples 
within the middle-aged and highly advanced 
aged groups is relatively small and all our 
individuals are in adulthood (above 30 years 
of age). Hence, our finding that shorter LTL 
is associated with increased mortality is less 
likely to be confounded by this phenomenon.
	 Our finding that LTL is not associated 
with familial longevity in middle age is in 
contradiction to the observations in long-
lived Ashkenazi Jewish families [17]. 
This discrepancy could be explained by 
natural variation, such as differences in the 
demography or age of the samples (mean 
age 68 and 72 years (among Ashkenazi 
offspring and controls, respectively) versus 
59 years (LLS offspring and spouses)) 
or by differences in the selection criteria 
which may have an effect on the genetic 
component of the longevity trait (offspring 
of centenarians (mean age 97 years) versus 
offspring of nonagenarian siblings (mean age 
94 years)). Another possible explanation is 
the small sample size of the study of Atzmon 
and colleagues (noffspring = 175 and ncontrols 

Table 6.4 Association between leukocyte telomere length-associated genetic variants and all-cause 
mortality.

SNP/GRS n ndeaths HR SE 95% CI P

rs11125529 8,165 3,893 1.01 0.04 0.94 - 1.08 0.863

rs10936599 8,165 3,893 1.00 0.03 0.95 - 1.06 0.966

rs7675998 8,165 3,893 0.99 0.03 0.94 - 1.05 0.728

rs2736100 8,165 3,893 1.03 0.02 0.99 - 1.08 0.159

rs9420907 8,165 3,893 1.01 0.03 0.94 - 1.08 0.823

rs8105767 8,165 3,893 0.97 0.03 0.92 - 1.02 0.226

rs755017 8,165 3,893 0.92 0.03 0.86 - 0.98 0.009

Unweighted GRS 8,165 3,893 1.00 0.01 0.98 - 1.02 0.985

Weigthed GRS 8,165 3,893 0.97 0.02 0.93 - 1.01 0.133

SNP, single nucleotide polymorphism; GRS, genetic risk score; HR, hazard ratio; SE, standard error; 95% CI, 95% 
confidence interval.
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= 93) in comparison to the current study 
(noffspring = 1,580 and nspouses = 725), which 
may have led to a non-random selection of 
individuals from the population, resulting in 
a false positive association.
	 The GRS composed of the 7 genetic 
variants associated with LTL variation in the 
largest GWAS reported so far is associated 
with coronary artery disease risk [20], but 
does not associate with prospective mortality 
in our study of 8,165 individuals of whom 
3,893 died during follow-up. Since the 7 
genetic variants only explain ~1% of the 
variation in LTL [20], the sample size of the 
current study might be insufficient to detect 
their effect on prospective mortality. Hence, 
on the basis of our data we cannot exclude 
a causative role for genetic variants in LTL 
related genes in prospective mortality.
	 Critical telomere length in tissues may 
be causally involved in lifespan regulation 
and our results further highlight the role 
of telomere length in blood as marker for 
prospective mortality. The lack of association 
of LTL with familial longevity in middle age 
and of the LTL-associated genetic variants 
with prospective mortality provides thus far 
no support for LTL causally contributing 
to lifespan variation in humans. However, 
LTL does reflect environmental effects, as 
demonstrated by the observation that there is 
a correlation in LTL between spouses [18]. 
Assortative mating may thus have obscured 
a difference between the LLS offspring and 
their spouses. However, the LLS offspring do 
have a more "youthful" metabolic profile and 
a lower prevalence of age-related diseases 
compared with their spouses, whereas LTL 
is not different between the groups. This 
indicates that LTL seems to associate with 

mortality independent of the familial trait 
that influences the metabolic health in these 
families in middle age. LTL meets three of 
the four criteria we proposed for a biomarker 
of healthy aging in a recent review [35], i.e., 
LTL associates with chronological age and 
with morbidity and mortality in prospective 
studies. However, LTL cannot be used to 
discriminate individuals in middle age 
according to their genetic propensity for 
longevity. Other potential biomarkers of 
healthy aging, such as fasting glucose and 
free triiodothyronine, did meet all criteria in 
studies of various human cohorts.
	 LTL could reflect the compartment 
of vital haematopoietic stem cells (HSCs) in 
individuals. Leukocytes consist of different 
subsets of cells, namely lymphocytes, 
monocytes and granulocytes (neutophils, 
basophils and eosinophils), which all 
originate from the HSC. Telomere length 
differs between leukocyte subsets [36]. 
However, since there is synchrony between 
the different subsets, an individual’s LTL 
likely reflects the telomere length of the 
HSCs [37]. In this study, we show that LTL 
is associated with several leukocyte subset 
counts, namely lymphocyte, neutrophil and 
basophil counts (Table 6.1), which indicates 
that mean LTL is influenced by the frequency 
of the different leukocyte subsets. However, 
when we adjusted the prospective analysis 
of mortality for these counts, the effect of 
LTL on prospective mortality remained 
unchanged, indicating that the proportion of 
LTL variation caused by the frequency of the 
different leukocyte subsets does not influence 
prospective mortality. Nevertheless, this 
leaves the possibility open that LTL reflects 
the available HSC population.
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Telomere dysfunction was found to be 
determined by the frequency of critically 
short telomeres. A recent study showed that 
the rate of increase in the frequency of these 
critically short telomeres and not the rate 
of telomere length shortening determines 
longevity in mice [38]. Since in the current 
study we only determined the mean LTL of an 
individual, we could not discriminate between 
individuals according to the frequency of 
dysfunctional telomeres. It would therefore 
be interesting to use quantitative fluorescence 
in situ hybridization, a method that is able to 
quantify critically short telomeres in subsets 
of cells [39], to determine the influence of 
the frequency of dysfunctional telomeres 
on longevity and prospective mortality in 
humans.
	 In conclusion, we confirmed LTL to be 
a marker of prospective mortality in middle 
and highly advanced age and additionally 
show that this association could not be 
explained by the association of LTL with 
the immune-related markers IGF-1/IGFBP3, 
CRP, IL-6, CMV serostatus, or WBC counts 
or by the currently known genetic variants 
contributing to LTL variation. Furthermore, 
we have shown that LTL is not associated 
with familial longevity in middle age. Hence, 
the approaches followed here do not further 
support the hypothesis that LTL contributes to 
the genetic propensity for longevity. Further 
studies need to be performed to determine 
which other environmental or novel genetic 
effects could underlie the association of LTL 
with prospective mortality.

Material and methods

Study populations

Leiden Longevity Study
For the LLS, long-lived siblings of European 
descent were recruited together with their 
offspring and the spouses of the offspring. 
Families were included if at least two long-
lived siblings were alive and fulfilled the age 
criterion of 89 years or older for men and 91 
years or older for women, representing less 
than 0.5% of the Dutch population in 2001 
[23]. In total, 944 long-lived proband siblings 
with a mean age of 94 years (range, 89-
104), 1,671 offspring (61 years, 39-81), and 
744 spouses thereof (60 years, 36-79) were 
included. DNA from the LLS was extracted 
from samples at baseline using conventional 
methods [40] and genotyping was performed 
with Illumina Human660W-Quad and 
OmniExpress BeadChips (Illumina, San 
Diego, CA, USA). Imputation was performed 
using IMPUTE2 with reference HapMap 
Phase I + II CEU release 22 (hg18/build36). 

A description of the cohorts used for 
the prospective meta-analysis of LTL-
associated genetic variants is provided in the 
Supplementary Information.

Measurement of leukocyte telomere 
length 
Mean LTL was measured as a ratio (T/S) 
of telomere repeat length (T) to the copy 
number (S) of the single-copy gene 36B4, 
as previously described [20]. The inter- 
and intra-run coefficients of variation were 
2.73% and 2.73% for the LLS nonagenarians 
and 3.74% and 2.85% for the LLS offspring 
and spouses, respectively. LTL was obtained 



LLS healthy aging biomarker analysis of leukocyte telomere length

119

C
ha

pt
er

 6

in 3,194 samples from the LLS, of which 
19 were removed due to a deviation from 
the mean > 3 SD, leaving 3,175 samples for 
the analysis (Tables 6.1, 6.2, and 6.3). If we 
consider an LTL attrition rate of 30 telomeric 
base pairs per year and a decline of 0.006 
T/S units per year [20], a decrease of one T/S 
unit reflects a decrease of 5,000 telomeric 
base pairs in our study. This LTL attrition 
rate is based on several studies that have 
used DNA blotting to measure LTL [20]. A 
recent review indicated that the LTL attrition 
rate is most likely somewhere in the range of 
20-30 base pairs/year [41], so, the estimated 
telomeric base pairs representing one T/S 
ratio may vary between 3,333 and 5,000. In 
the analyses of LTL, one LTL unit represents 
1 kb telomeric base pairs.

Measurement of immune-related 
parameters
In the LLS all standard serum measurements 
were performed using fully automated 
equipment. WBC counts were measured 
using the Sysmex XE-2100 (TOA Medical 
Electronics, Kobe, Japan). IGF-1 and 
IGFBP3 were measured using the Immulite 
2500 (DPC, Los Angeles, CA, USA) [28] and 
high-sensitivity CRP was measured using the 
Hitachi Modular P800 (Roche, Almere, the 
Netherlands) [29]. Since the CRP levels were 
not normally distributed the log transformed 
values were used for analysis. IL-6 was 
measured with the PeliKine Compact 
human IL-6 ELISA kit (Sanquin Reagents, 
Amsterdam, the Netherlands) [42]. For 
calculation of IGF-1/IGFBP3 we used the 
following formula:

IGF-1/IGFBP3 = IGF-1 (ng/ml)*0.130 / 
IGFBP3 (ng/ml)*0.036

For all serum parameters, measurements 
with a deviation from the mean > 3 SD were 
removed. CMV serostatus was determined 
on blinded samples using the CMV-IgG-
ELISA PKS assay (Medac GmbH, Wedel, 
Germany) [26]. The characteristics of the 
measured parameters are depicted in Tables 
6.1 and 6.2.

Statistical analysis

Prospective analysis
Prospective analysis of LTL and LTL-
associated genetic variants was performed 
using a Cox proportional hazards model 
adjusted for age, gender, population 
stratification, and study specific covariates. 
The number of individuals and (cause-
specific) deaths for every cohort, as well 
as the follow-up times, are depicted in 
Tables 6.3 and S6.3. To determine whether 
the association of LTL with mortality was 
independent of immune-related markers, we 
fitted a model with and without adjustment 
for immune-related markers and determined 
whether the association of LTL with mortality 
remained (P < 0.05).

Association of LTL with immune-related 
markers
To determine the association of LTL with 
serum parameters in the LLS, we performed 
linear regression, adjusted for age, gender, 
and familial relationships, using the following 
model in STATA/SE 11.2 (StataCorp LP, 
College Station, TX, USA).
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T/S ratio ~ β0 + β1*age+ β2*gender + 
β3*(age*gender) + β4*group + β5*immune-
related marker

age was coded in years, gender was coded as 
1 (male) or 2 (female), and group was coded 
as 0 (LLS spouse) or 1 (LLS offspring). 
Robust standard errors were used to account 
for sibship relations.

We assumed a linear association between LTL 
and the different immune-related markers 
since the augmented partial residual plots of 
the markers showed no visual deviation from 
linearity.

Association of LTL with familial longevity in 
middle age
To determine the association of LTL with 
familial longevity in middle age in the LLS 
offspring (n = 1,580) and their spouses (n 
= 725), linear regression, adjusted for age, 
gender, and familial relationships, was 
performed using the following model in 
STATA/SE 11.2 (StataCorp LP):

T/S ratio ~ β0 + β1*age+ β2*gender + 
β3*(age*gender) + β4*group

age was coded in years, gender was coded as 
1 (male) or 2 (female), and group was coded 
as 0 (LLS spouse) or 1 (LLS offspring). 
Robust standard errors were used to account 
for sibship relations.

Genetic risk score
To determine the joint effect of LTL-
associated genetic variants on all-cause, 
cardiovascular, and cancer mortality, we 
created a GRS using a previously described 

approach [20,43]. The unweighted GRS of a 
subject was defined as the combined number 
of risk alleles associated with shorter LTL 
in a previous GWAS [20]. For the weighted 
GRS, the β for each SNP in this GWAS was 
added as weight and the total score was 
divided by the sum of all weights.
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The aim of this thesis was to identify novel 
lifespan regulating loci that influence human 
longevity and population mortality. The 
genetic component of longevity is expected 
to be small (~25%, Table 1.2). However, 
it is more prominent in families in which 
longevity clusters [1,2], which makes 
individuals from such families very suitable 
for genetic research. Since long-lived 
family members show a low prevalence of 
common diseases from middle age onwards 
[3-7], the genome of long-lived individuals 
is expected to harbor genetic variants that 
promote healthy aging and protect against 
age-related disease. We previously showed 
that longevity is not easily explained by the 
absence of susceptibility loci involved in 
common age-related diseases [8]. Therefore, 
we performed a genome-wide association 
study (GWAS) of long-lived individuals 
from the family-based Leiden Longevity 
Study (LLS) to identify genetic variants 
associated with increased survival into old 
age and extended the analysis by including 
individuals from other family-based and 
population-based cohorts of European 
descent. In addition, we performed gene 
set analysis on the LLS longevity GWAS 
dataset to determine the combined effect of 
genetic variation in two candidate pathways 
on longevity. We additionally investigated 
whether leukocyte telomere length (LTL) 
could be used as a biomarker of healthy 
aging in genomic studies of large cohorts 
of middle-aged individuals and whether the 
genetic component of LTL may be involved 
in human lifespan regulation.

Main findings

In Chapter 2 we give an overview of the 
different genomic approaches that have 
thus far been used to identify mechanisms 
underlying healthy aging and longevity. Up 
till the start of this project, the number of 
identified genes and pathways contributing to 
human lifespan regulation had been limited.
	 As a first attempt to identify novel 
longevity loci, we performed a GWAS for 
longevity in long-lived families (Chapter 
3), in which we identified one locus, the 
previously implicated TOMM40/APOE/
APOC1 locus [9,10], which associates with 
a decreased probability to survive to ages 
beyond 85 years. Through a prospective 
analysis, we additionally showed that the 
ApoE ε4 allele associates with increased 
mortality after 90 years, while we observed 
the opposite effect for the ApoE ε2 allele, 
although the latter was not significant. 
We confirmed the previously reported 
associations of the locus with metabolic 
and immune-related parameters and found 
a novel association with insulin-like growth 
factor 1 (IGF-1) signaling in women. Hence, 
the mechanism underlying the association 
of the TOMM40/APOE/APOC1 locus with 
increased mortality likely involves a complex 
interaction between multiple physiological 
processes.
	 As our LLS longevity GWAS 
(Chapter 3), as well as those performed by 
other groups [11-15], had limited power, 
we substantially increased the sample size, 
thereby potentially enabling the identification 
of loci with smaller effects (odds ratio (OR) 
< 0.9 and > 1.1). Hence, in this extended 
GWAS in individuals from all over Europe 
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(Chapter 4), we identified a novel locus 
on chromosome 5q33.3 that associates with 
an increased probability to survive to ages 
beyond 90 years. In addition, prospective 
analysis showed that genetic variation at 
this locus also associates with decreased 
mortality. The locus has previously been 
reported to associate with low blood pressure 
in middle age, although we show that the 
mortality effects of the locus above 75 years 
seem to be independent from blood pressure, 
at least in the PROspective Study of 
Pravastatin in the Elderly at Risk and Leiden 
85-plus study Cohort II. Thus, although 
the locus is implicated in blood pressure 
regulation, the mechanism by which genetic 
variation at chromosome 5q33.3 influences 
longevity likely also involves other traits.
	 The genetic component of longevity 
is expected to be small (~25%, Table 1.2) 
and assumed to be determined by many 
genes with small effects [16], which might 
explain the limited number of GWAS-
identified longevity loci. Moreover, the 
increase in human life expectancy over the 
last two centuries due to environmental 
factors has resulted in the presence of so-
called long-lived "phenocopies" in the 
population, i.e., individuals that survived 
to high ages independent of their genetic 
background. Although GWA analysis 
has successfully been applied to identify 
common genetic variants with small effects 
for several traits and diseases [17-19], the 
main problem of performing GWAS for 
longevity is the relatively low number of 
long-lived individuals with GWA data. The 
EU longevity GWAS described in Chapter 
4, which is the largest GWAS for longevity 
up to date, contained ~18,000 long-lived 

individuals with GWA data. By combining 
the data of all currently available longevity 
cohorts with GWA data worldwide (~30,000 
individuals above 85 years of age), we 
might be able to identify some additional 
longevity loci, although this sample size 
will still be insufficient to identify common 
genetic variants with relatively small effects 
(OR’s between 0.9 and 1.1). Thus, instead 
of focusing on common genetic variants, 
genetic research of longevity should move 
towards genetic approaches in which the 
effect of high-impact private, i.e., observed 
in a single family, and rare genetic variants 
can be investigated, using, for example, 
next-generation sequencing.
	 Another approach is to determine 
the combined effect of single nucleotide 
polymorphisms (SNPs) on a trait, which may 
reflect the involvement of specific networks 
on aging. Hence, we performed candidate 
pathway-based SNP set analysis (Chapter 
5) using the genotypes from the dataset 
described in Chapter 3. Based on results 
from previous studies in humans and animal 
models, we selected two candidate pathways 
for human longevity, the insulin/IGF-1 
signaling (IIS) and telomere maintenance 
(TM) pathways. We showed that genetic 
variation in both these pathways is indeed 
associated with human longevity, at least 
in the LLS, which is mainly caused by the 
IIS genes AKT1, AKT3, FOXO4, IGF2, INS, 
PIK3CA, SGK, SGK2, and YWHAG and the 
TM gene POT1. In addition, we performed 
gene-set enrichment analysis on the summary 
data from the EU longevity GWAS described 
in Chapter 4 using Meta-Analysis Gene-set 
Enrichment of variaNT Associations (http://
www.broadinstitute.org/mpg/magenta/) 
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[20]. However, in this larger dataset, we 
were unable to find an enrichment of the loci 
within the IIS and TM pathways (P = 0.656 
and P = 1.000, respectively), nor in any of 
the SNP sets from Kyoto Encyclopedia of 
Genes and Genomes and Gene Ontology. 
The difference with the results from the 
analysis described in Chapter 5 might, for 
example, be due to the use of summary data 
instead of "raw" genotypes, although the 
observed associations within the IIS and TM 
could also be specific to individuals from 
long-lived families, like the LLS, or be false 
positives. Thus, SNP set analysis may be a 
useful method, that can be applied in addition 
to GWAS, to determine the combined effect 
of genetic variation in (known) genes and 
pathways on longevity.
	 A possibility to increase the sample 
size and, thus, the power of genetic 
approaches is by using biomarkers of healthy 
aging as a standardized phenotype for genetic 
studies. In Chapter 2, we discuss the concept 
of biomarker approaches and we propose 
four criteria for quantitative parameters 
(or profiles) that should be fulfilled before 
consideration as biomarkers of healthy aging. 
In short, a biomarker of healthy aging must 
(1) show a change with chronological age, 
(2) discriminate individuals based on their 
biological age and/or genetic propensity for 
longevity, and associate with (3) known 
health parameters and (4) morbidity and/or 
mortality in prospective studies.
	 A potential biomarker of healthy  
aging is LTL, since it has previously been 
associated with multiple diseases and 
increased prospective mortality [21]. We 
therefore investigated whether LTL satisfies 
the proposed criteria for biomarkers of 

healthy aging (Chapter 6). We showed that 
LTL indeed changes with chronological 
age and is associated with known health 
parameters and (immune-independent) 
prospective mortality. However, LTL was 
unable to discriminate individuals based 
on their genetic propensity for longevity 
(criterion 2). To determine whether LTL 
could nevertheless be used as a standardized 
phenotype for genetic studies of healthy aging 
and longevity, we performed a look-up of the 
previously identified LTL-associated genetic 
variants [22] in our EU longevity GWAS 
results described in Chapter 4. Interestingly, 
two of these variants, rs10936599 (TERC) 
and rs2736100 (TERT), were located near or 
in genes that we also analyzed in the gene 
set analysis of the TM pathway described 
in Chapter 5. However, none of the LTL-
associated variants showed an association 
with survival to ages above 90 years (Table 
7.1). Thus, although LTL meets three of 
the four proposed criteria for a biomarker 
of healthy aging, it could not be used as a 
standardized phenotype for genetic studies 
of healthy aging and longevity. Hence, we 
need to search for parameters that meet all 
four proposed criteria for biomarkers of 
healthy aging.

Functional characterization of 
longevity loci

Once novel longevity loci have been 
identified through genetic approaches, 
one of the challenges that lies ahead is the 
functional characterization of such loci, 
since quite a few of them will be mapped 
to non-protein-coding regions of which the 
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functional consequences are still unclear. An 
example is the chromosome 5q33.3 locus 
we identified in Chapter 4. The functional 
characterization of longevity loci consist of 
several steps (Figure 7.1), of which many 
overlap with the steps proposed for other 
traits [23,24].
	 The first step is genotypic fine-
mapping, i.e., to identify the causal variant(s) 
by, for example, targeted resequencing 
based on the linkage disequilibrium (LD) 
structure within the locus. Since targeted 
resequencing is expensive, one could first 
browse the publically available data of the 
1000 Genomes Project, which is aimed at 
capturing all common and low-frequency 
genetic variation (minor allele frequency 
> 1%) in diverse ethnic populations [25], 
to fine-map the region of interest based on 
the haplotypes of the individuals from the 
same ethnicity. Alternatively, one could 
use population specific reference panels, 
such as the ones that will be created in the 

Singapore Sequencing Malay Project [26] 
and the Genome of the Netherlands project 
[27]. We performed genotypic fine-mapping 
for the chromosome 5q33.3 locus using 
the publically available 1000 Genomes 
Project data (Chapter 4) and were able to 
fine-map our locus to a ~22.3 kb region. 
However, we have thus far not identified 
the causal variant(s), although several of the 
variants in high LD with our lead SNP (r2 
> 0.8) are, according to the ENCODE data 
implemented in the UCSC genome browser, 
located in functional elements, such as 
DNase I hypersensitivity sites, transcription 
factor binding sites, and enhancer histone 
marks (Figure 7.2). In addition, the ~22.3 
kb region seems to contain a long intergenic 
non-coding RNA, RP11-524N5.1, which has 
recently been annotated by the GENCODE 
consortium.
	 The second step is phenotypic fine-
mapping, i.e., to identify other (combinations 
of) metabolic phenotypes, clinical endpoints, 

Table 7.1 Association of leukocyte telomere length-associated genetic variants with survival to ages 
above 90 years.

n EAF
SNP Chr Position (bp) Candidate / 

closest gene
EA Cases Controls Cases Controls P

rs11125529 2 54,329,370 ACYP2 C 5,406 15,112 0.864 0.861 0.872
rs10936599 3 170,974,795 TERC T 5,406 15,112 0.248 0.250 0.467
rs7675998 4 164,227,270 NAF1 G 5,406 15,112 0.212 0.217 0.385
rs2736100 5 1,339,516 TERT C 5,024 9,996 0.474 0.485 0.452
rs9420907 10 105,666,455 OBFC1 C 5,406 15,112 0.855 0.872 0.140
rs8105767 19 22,007,281 ZNF208 G 5,406 15,112 0.719 0.714 0.702
rs755017 20 61,892,066 RTEL1 G 5,406 15,108 0.880 0.869 0.320

SNP, single nucleotide polymorphism; Chr, chromosome according to NCBI build 36; Position (bp), position 
according to NCBI build 36; EA, effect allele (allele associated with shorter LTL); EAF, effect allele frequency; P, 
P-value for the association with survival to ages above 90 years. Genes in bold were also analyzed in the gene set 
analysis of the telomere maintenance pathway described in Chapter 5.
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and diseases associating with the locus of 
interest that could shed light on the mechanism 
underlying the association of interest. A 
helpful intermediate step is to browse the 
large publically available GWAS summary 
datasets, such as those for cholesterol levels 
[19], blood pressure [28], and type 2 diabetes 
[18]. One has to note, however, that these 
sets only contain data on HapMap imputed 
SNPs (~2,500,000), although several large 
GWAS initiatives based on 1000 Genomes 
imputation are ongoing. Another approach 
that may be helpful in identifying other 
traits and diseases associating with a locus 
of interest is to perform a PheWAS, i.e., 
to determine the association of a SNP 
with thousands of different phenotypes 
at once using, for example, International 
Classification of Diseases codes in large 
population-based studies. Up till now, 
phenotypic fine-mapping of the chromosome 
5q33.3 locus using the publically available 
GWAS summary datasets has not resulted 
in identification of phenotypes that may 
shed light on the mechanisms by which the 
locus influences longevity (Chapter 4). 
Furthermore, application of the PheWAS 
approach using the available phenotypic data 
in the LLS was unsuccessful. However, we 
have, thus far, not performed the PheWAS 
approach in a large population-based study 
containing thousands of phenotypes, such as 
the Rotterdam Study. 
	 The third step is expression/ 
epigenetic quantitative trait locus (eQTL/
epiQTL) analysis, i.e., to determine whether 
there is an effect of the causal variant(s) on 
expression and/or methylation of (nearby) 
genes. The pathophysiology of aging and 
longevity involves many different tissues. 

Hence, eQTL/epiQTL effects of longevity 
loci could be present in tissues for which gene 
expression or methylation data is not (yet) 
available. In addition, eQTL/epiQTL effects 
are expected to be small, so large datasets 
will be required to achieve sufficient power 
to detect them. There are several publically 
available databases containing eQTL data 
for multiple tissue, such as adipose tissue, 
brain (cerebellum, frontal cortex, temporal 
cortex, and pons), fibroblasts, liver, skin, and 
lymphoblastoid cell lines [29,30]. In addition, 
the ongoing Genotype-Tissue Expression 
project (http://www.broadinstitute.org/gtex/) 
will provide publically available eQTL data 
for around 30 different tissues. Thus far, there 
is no publically available database containing 
epiQTL data. However, novel platforms, 
such as Infinium HumanMethylation450 
BeadChips and reduced representation 
bisulfite sequencing, have made it possible 
to determine epigenetic effects on the whole 
genome, which will aid to the identification 
of epiQTL effects in large datasets. We 
performed a look-up of all SNPs in high LD 
with our lead SNP at chromosome 5q33.3 
(r2 > 0.8) in several of these eQTL databases 
(Chapter 4). However, none of the SNPs 
showed an association with gene expression, 
so it is still unclear on which gene(s) and in 
which tissue(s) our locus exert its effects.
	 When a candidate susceptibility gene 
or region is identified (through step 1-3), the 
final step is to perform functional assays in 
model systems (animals/cell models). There 
are several animals that are routinely used 
in research of healthy aging and longevity, 
namely worms, flies, and mice. In these 
animals lifespan regulating effects could 
be studied by modifying gene functions 
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(mutagenesis) via RNA interference, knock-
out, or overexpression. In addition, mice 
could also be used to study the effect of 
genes on the physiology and pathology of 
aging in different tissues [31]. However, 
before a gene or region can be studies in 
animal models it is important to determine 
the conservation. The chromosome 5q33.3 
region, for example, is only conserved in 
primates, so for this region studies in animal 
models seem not very useful. To study the 
effects of the gene or region of interest 
in humans, one could create cell lines of 
different tissues by differentiation of induced 
pluripotent stem cells obtained by de-
differentiation of fibroblast from carriers and 
non-carriers of the locus of interest.

Reducing heterogeneity in the 
healthy aging phenotype

Our genetic analyses illustrate that it is very 
difficult to identify human longevity loci, 

which may be due to the complexity of the 
phenotype along with the low number of 
long-lived individuals available for genetic 
research. In addition, analyses might be 
confounded by environmental factors that 
give rise to long-lived "phenocopies", 
which could even be present within long-
lived families. Hence, to reduce phenotypic 
heterogeneity, additional selection criteria 
are required to select the most optimal 
individuals for genetic research, which 
could, for example, be based on the age 
(centenarians or even supercentenarians), 
zygosity (monozygotic twins), and/or 
family characteristics (families with the 
highest number of long-lived individuals or 
best family history for longevity, i.e., the 
longest survival among their parents) of an 
individual.
	 In addition, genetic studies may 
profit from biomarker studies that are 
aimed to identify phenotypes that reflect 
biological age. Up till now, several potential 
biomarkers of biological age have been 

Figure 7.1 Functional characterization of longevity loci.
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identified, such as fasting glucose levels, 
free triiodothyronine (fT3) levels, and gait 
speed (see Chapter 2 for an overview). 
The next step is to determine whether these 
biomarkers, which should preferably be 
combined into one multimarker score, could 
be used as standardized phenotype for genetic 
studies. Therefore, the joint effect of (GWAS-
identified) genetic variants associated with 
this multimarker score should be tested for 
their effect on longevity in using, for example, 
genetic risk scores. Ideally, one would 
perform a GWAS for this multimarker score 
in individuals from long-lived families, since 
identified loci are expected to be involved in 
the mechanism underlying their longevity as 
well. However, there is large heterogeneity 
between long-lived family studies and the 
number of individuals with GWA data (< 
10,000 individuals) is insufficient to identify 
common genetic variants with small effects. 
Hence, instead one could use the loci 
identified through large GWAS of population-
based cohorts (> 100,000 individuals). Thus 
far, however, the only potential biomarker of 
biological age for which multiple GWAS-
identified loci have been reported is fasting 
glucose, although the currently identified 
genetic variants only explain 4.8% of the 
variance in fasting glucose levels [32]. 
Hence, larger GWAS are required to identify 
genetic variants explaining the remaining 
heritability of fasting glucose, fT3, and 
gait speed, which could subsequently be 
tested for their association with mortality 
and longevity. Interestingly, a look-up of 
the fasting glucose-associated variants in 
our EU longevity GWAS results described 
in Chapter 4 showed that several of these 
variants also seem to associate with survival 
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to ages above 90 years (Table 7.2), which is 
more promising than what we observed for 
LTL-associated genetic variants (Table 7.1).

Combining study designs for 
biomarker research

In addition to the lack of a well-defined 
phenotype for healthy aging, there is 
currently no study that allows testing of 
all the proposed criteria for a biomarker of 
healthy aging. The most optimal study design 
would be a population-based study in which 
a large group of families is followed during 
their entire lifetime and examined at multiple 
time points. An example of such a study 
is LifeLines (https://lifelines.nl/), which 
currently contains ~146.000 individuals 
from the Northern part of the Netherlands. 
However, this study is still in the recruitment 
phase and at the moment the best alternative 
for studies of healthy aging and longevity is 
to combine family-based studies with large 
prospective population-based studies.
	 The advantage of the study design 
of the LLS, as compared to other long-lived 
family-based studies, is that individuals 
have been followed-up for over 10 years. 
Hence, the LLS allows testing of most of 
the proposed criteria for a biomarker of 
healthy aging, although replication of results 
in larger family-based and prospective 
studies with longer follow-up times is still 
required. The association of a marker with 
chronological age could be determined 
using all individuals included in the study, 
although one has to take into account that 
the age range in the LLS is limited due to 
the family-based design of the study. The 

association of a marker with biological age 
could be determined by comparing the LLS 
offspring (considered as "healthy agers") 
with their spouses (controls). The strength 
of this comparison is that the offspring and 
their spouses share the same environment, so 
observed difference are most likely caused 
by differences in the genetic background. 
However, since approximately 50% (for 
a dominant inherited locus) or 75% (for a 
recessive inherited locus) of the offspring 
will not have inherited the genes responsible 
for the long-lived phenotype in their parents, 
phenotypic differences might be diluted due 
to the presence of individuals in the offspring 
group without the genetic background to 
become long-lived. In addition, the effects 
of a marker on biological age might only be 
present at older ages. Hence, these effects 
might not be detected in the middle-aged 
offspring and spouses. The association of 
a marker with known health parameters 
could be determined in the combined group 
of offspring and controls, for which data 
on numerous phenotypes is available. The 
association of a marker with mortality could 
be determined in the LLS nonagenarians 
(highly advanced age) and the combined 
group of LLS offspring and controls (middle 
age). In addition, the latter group could be 
used to determine the association of a marker 
with morbidity.

Novel methods and technologies 
plea for data integration

Research into human lifespan may also benefit 
from novel technologies and methodologies 
that have (recently) become available. 
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Table 7.2 Association of fasting glucose-associated genetic variants with survival to ages above 90 years.

n EAF
SNP Chr Position 

(bp)
Candidate /  
closest gene

EA Cases Controls Cases Controls P

rs340874 1 212,225,879 PROX1 C 5,406 15,112 0.548 0.553 0.728
rs780094 2 27,594,741 GCKR C 5,406 15,111 0.607 0.626 0.509
rs560887 2 169,471,394 G6PC2 C 5,406 15,112 0.698 0.703 0.515
rs11715915 3 49,430,334 AMT C 5,406 15,104 0.692 0.701 0.024
rs11708067 3 124,548,468 ADCY5 A 5,406 15,111 0.765 0.767 0.491
rs1280 3 172,195,984 SLC2A2 T 5,406 15,112 0.858 0.867 0.685
rs7651090 3 186,996,086 IGF2BP2 G 5,406 15,112 0.288 0.302 0.241
rs7708285 5 76,461,623 ZBED3 G 5,406 15,105 0.290 0.280 0.505
rs4869272 5 95,565,204 PCSK1 T 5,406 15,111 0.689 0.686 0.915
rs17762454 6 7,158,199 RREB1 T 5,406 15,112 0.258 0.253 0.493
rs9368222 6 20,794,975 CDKAL1 A 5,406 15,107 0.280 0.272 0.527
rs2191349 7 15,030,834 DGKB / TMEM195 T 5,406 15,112 0.536 0.532 0.334
rs2908289 7 44,190,467 GCK A 5,406 15,112 0.178 0.175 0.570
rs6943153 7 50,759,073 GRB10 T 5,406 15,112 0.314 0.315 0.043
rs983309 8 9,215,142 PPP1R3B T 5,406 15,111 0.108 0.114 0.749
rs11558471 8 118,254,914 SLC30A8 A 5,406 15,112 0.687 0.691 0.027
rs10814916 9 4,283,150 GLIS3 C 5,406 15,112 0.497 0.494 0.375
rs10811661 9 22,124,094 CDKN2B T 5,406 15,112 0.820 0.828 0.803
rs16913693 9 110,720,180 IKBKAP T 4,417 10,445 0.969 0.972 0.800
rs3829109 9 138,376,587 DNLZ G 5,406 15,112 0.702 0.711 0.091
rs11195502 10 113,029,657 ADRA2A C 5,406 15,112 0.916 0.911 0.434
rs7903146 10 114,748,339 TCF7L2 T 5,406 15,111 0.283 0.282 0.028
rs11607883 11 45,796,285 CRY2 G 5,406 15,112 0.473 0.479 0.475
rs11039182 11 47,303,299 MADD T 5,406 15,112 0.707 0.724 0.854
rs174576 11 61,360,086 FADS1 C 5,406 15,112 0.650 0.660 0.004
rs11603334 11 72,110,633 ARAP1 G 5,406 15,110 0.844 0.834 0.755
rs10830963 11 92,348,358 MTNR1B G 5,406 15,111 0.283 0.288 0.046
rs2657879 12 55,151,605 GLS2 G 5,406 15,112 0.203 0.178 0.111
rs10747083 12 131,551,691 P2RX2 A 5,406 15,112 0.683 0.690 0.921
rs11619319 13 27,385,599 PDX1 G 5,406 15,108 0.211 0.217 0.568
rs576674 13 32,452,302 KL G 5,406 15,112 0.159 0.160 0.747
rs3783347 14 99,909,014 WARS G 5,406 15,112 0.776 0.763 0.367
rs4502156 15 60,170,447 VPS13C / C2CD4A/B T 5,406 15,112 0.573 0.561 0.799
rs2302593 19 50,888,474 GIPR C 5,406 15,112 0.495 0.488 0.877
rs6113722 20 22,505,099 FOXA2 G 4,997 11,529 0.960 0.963 0.218
rs6072275 20 39,177,319 TOP1 A 5,406 15,112 0.151 0.155 0.850

SNP, single nucleotide polymorphism; Chr, chromosome according to NCBI build 36; Position (bp), position according 
to NCBI build 36; EA, effect allele (allele associated with higher fasting glucose); EAF, effect allele frequency; P, 
P-value for the association with survival to ages above 90 years.
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For genetic research, next-generation 
(whole-genome or exome) sequencing and 
multigenerational linkage may be used, since 
these require a limited number of individuals 
to identify novel longevity-associated loci.
	 Next-generation sequencing can be 
used to identify high-impact private and rare 
genetic variants associated with the trait of 
interest. This method allows hypothesis-
based, such as regions identified through 
linkage analysis, as well as explorative 
studies of the genome and has successfully 
been applied to detect novel genetic variants 
associated with, for example, Alzheimer’s 
disease [33] and bone mineral density 
[34]. We recently finished whole-genome 
sequencing of 220 nonagenarian individuals 
from the LLS with the best family history for 
longevity, i.e., the longest survival among 
their parents, to reduce heterogeneity in the 
phenotype due to "phenocopies". We will 
compare the genome of these individuals 
with that of younger controls to identify 
genetic variants that could explain the long-
lived phenotype in their families.
	 Linkage analysis takes advantage 
of the sharing of alleles between siblings 
identical by descent and/or parents and 
their offspring to identify genomic regions 
associated with the trait of interest. The 
most optimal linkage study would be 
multigenerational, i.e., containing data 
on multiple generations within families. 
However, the main problem with the use of 
the multigenerational design for longevity 
research is that there is currently no 
(combination of) phenotype(s) that is able 
to predict which middle-aged individuals 
will become long-lived. Hence, up till now, 
linkage analysis for longevity has only 

been performed using long-lived siblings. 
Nevertheless, the use of fasting glucose 
levels, fT3 levels, and gait speed, or a 
multimarker score based on all three, would 
be a good starting point for multigenerational 
linkage analysis.
	 Biomarker research has, thus far, 
mostly been focussed on single quantitative 
parameters that are also used in the clinic. 
However, several technologies have recently 
become available that made it possible to 
study age-related changes in a large part of 
the human transcriptome [35], epigenome 
[36], metabolome [37], and glycome [38], 
Due to the wealth of information obtained 
using a single-point measurement these 
omics-based technologies could potentially 
be much more informative than the single 
quantitative parameters studied so far. For 
most of the omics-based technologies one or 
more of the proposed criteria for biomarkers 
of healthy aging have already been tested 
and the most interesting potential biomarkers 
identified using these platforms are the genes 
RPTOR, ASF1A, IL7R (transcriptomics) 
[39,40], and ELOVL2 (epigenomics) [41], 
the N-glycan features LC-7 and LC-8 
[42], bisecting GlcNAc glycoforms of IgG 
(glycomics) [43], and several lipid species 
(lipidomics) [44]. However, it still needs to 
be determined whether these features also 
associate with known health parameters and 
morbidity and/or mortality before they can be 
considered as biomarkers of healthy aging.
	 Instead of testing single parameters 
and/or profiles for association with longevity 
one could try to combine data to create a 
multimarker prediction score. An example of 
a multimarker prediction score that is highly 
informative for the prediction of coronary 
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heart disease is the Framingham risk score 
[45]. This score is a combination of age, 
gender, high-density lipoprotein cholesterol, 
low-density lipoprotein cholesterol, blood 
pressure, diabetes, and smoking. We 
are currently working on a multimarker 
prediction score for longevity by combining 
all clinical measurements available in the 
LLS. This multimarker prediction score, 
which, in the future, may also take into 
account omics-based measurements, should 
be able to discriminate individuals based on 
their biological age, i.e., classify individuals 
as member of long-lived families or controls. 
Subsequently, this score could be used in 
middle-aged cohorts to identify individuals 
suitable for genetic studies of longevity, even 
before these individuals have reached a high 
age. 
	 Since the use of genome-wide 
omics-based measurements often leads to 
novel findings which are hard to interpret 
biologically, multilevel data integration may 
add to the interpretability of research into 
healthy aging and longevity. Alternatively, 
data may be integrated over species to 
identify conserved pathways. In contrast 
to human studies, animal-based studies 
are being used to investigate  the effect of 
genetic manipulation and gene-environment 
interactions on life history traits and lifespan 
regulation. An example of a project which 
makes use of a data integration approach is 
the Integrated research on Developmental 
determinants of Ageing and Longevity project 
(http://www.ideal-ageing.eu/), in which late 
effects of early adverse exposures are being 
studied in various organisms simultaneously. 

Optimistically, data integration approaches 
over species contribute to the identification 
of novel conserved pathways involved in 
healthy aging and longevity. Not all the loci 
relevant for human aging, however, obtain 
attention in animal-based studies. The novel 
identified chromosome 5q33.3 region, for 
example, is a primate-specific locus involved 
in blood pressure regulation. Hence, for this 
locus, as well as the phenotype, animal-
based studies of mice and lower species may  
not be very useful.
	 On the other hand, omics-based 
measurements may be integrated using a 
systems biology approach. This approach 
covers the study of the complex interactions 
within biological systems, which requires 
both data-driven modelling and hypothesis-
driven experimental studies [46]. The 
extensive systems biology animal and 
human-based studies into the effects of aging 
on metabolism of cells and tissues requires 
perturbations and careful measurement of 
system responses. This will contribute to a 
deeper understanding of metabolism and will 
open possibilities for interpretation of human 
data. An example of this approach in humans 
is to analyze integrative personal omics 
profiles, the combination of the genetic, 
transcriptomic, proteomic, metabolomic, 
and autoantibody profile of individuals [47], 
for association with phenotypes of interest. 
This results in a model for the etiology of 
the phenotype, which may be tested in other 
individuals. Hence, a systems biology data 
integration approach may provide insight 
into the complex mechanisms underlying 
lifespan regulation.
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Conclusions

The past couple of years large genome-wide 
association meta-analyses have successfully 
identified genetic variants associated with 
age-related diseases and traits [18,19,28]. 
However, the number of GWAS-identified 
genetic variants associated with human 
lifespan, thus far, has been limited to 
TOMM40/APOE/APOC1 locus and our novel 
identified locus on chromosome 5q33.3. In 
addition, pathway analysis showed that there 
seems to be a role for genes involved in IIS 
and TM.
	 A better definition of the healthy aging 
phenotype, combining study designs, as well 

as the use of novel methods and technologies, 
such as next-generation sequencing, may 
help to identify novel loci contributing to 
longevity. In addition, biomarker approaches 
using omics-based technologies and 
multimarker prediction scores applied to 
individuals from long-lived families and 
large prospective study populations can help 
to identify parameters and/or profiles that 
can be used as standardized phenotype for 
genetic research. The data created using these 
approaches may subsequently be integrated 
over different species or in a systems biology 
approach to recognize the most relevant 
profiles and pathways involved in healthy 
aging and longevity.
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One of the main problems in the Western 
world is the increase in years of life 
individuals spent in disability, which is 
mainly caused by the increased prevalence 
of diseases with increasing age. However, by 
identification of mechanisms driving healthy 
aging and protection from age-related 
diseases, we might be able to extend the 
disability-free life expectancy. In this thesis, 
we mainly focused on the genetic component 
of longevity, which has been estimated to 
explain ~25% of the variation in human 
lifespan.
	 In Chapter 2 we have reviewed 
the different genetic studies that have thus 
far been performed to study healthy aging 
and longevity. In addition, we discussed 
several of the family-based and prospective 
studies that have been initiated to identify 
biomarkers of healthy aging. We propose 
that quantitative parameters (or profiles) 
must (1) show a change with chronological 
age, (2) discriminate individuals based on 
their biological age and/or genetic propensity 
for longevity, and associate with (3) known 
health parameters and (4) morbidity and/
or mortality in prospective studies before 
consideration as biomarkers of healthy 
aging.
	 In Chapter 3, 4, and 5 we tried to 
identify (novel) lifespan regulating loci 
using a genetic approach. Hence, we used 
two different methods, namely single single 
nucleotide polymorphism (SNP)-based 
genome-wide association study (GWAS) 
analysis (Chapter 3 and 4) and gene set 
analysis, which is able to determine the 
combined effect of SNPs on a trait (Chapter 
5) In our first GWAS (Chapter 3), we 
identified one locus that associates with 

a decreased probability to survive to ages 
beyond 85 years, which is the previously 
implicated TOMM40/APOE/APOC1 locus. 
In our extended GWAS, in individuals from 
all over Europe (Chapter 4), we confirmed 
the association of the TOMM40/APOE/
APOC1 locus with decreased survival to 
ages beyond 85 and 90 years (Table 8.1). 
In addition, we identified a novel locus that 
associates with an increased probability 
to survive to ages beyond 90 years (Table 
8.1), which is located in an intergenic 
region on chromosome 5q33.3. As expected, 
prospective analysis showed that the minor 
allele of the lead SNP at the TOMM40/
APOE/APOC1 locus (rs4420638) associates 
with increased mortality, while the minor 
allele of the lead SNP at the chromosome 
5q33.3 locus (rs2149954) associates with 
decreased mortality (Table 8.1). In Chapter 
3 we showed that the association at the 
TOMM40/APOE/APOC1 locus is caused 
by the ApoE ε4 defining SNP rs429358, 
which has previously been associated with 
an increased risk of cardiovascular disease 
and Alzheimer’s disease and unfavorable 
levels of several metabolic phenotypes, 
such as total/high-density lipoprotein/
low-density lipoprotein cholesterol and 
C-reactive protein. We additionally show 
an effect of ApoE ε4 on insulin-like growth 
factor 1 (IGF-1) signaling in women. The 
locus on chromosome 5q33.3, on the other 
hand, has previously been associated with 
lower systolic and diastolic blood pressure 
in middle age. However, we showed that 
the association of the locus with decreased 
mortality above 75 years is not explained by 
its relation with blood pressure and, most 
likely, also involves other traits (Chapter 
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4). In the gene set analysis (Chapter 5) 
we showed that genetic variation in genes 
involved in the insulin/IGF-1 signaling (IIS) 
and telomere maintenance (TM) pathways 
is associated with human longevity. Hence, 
gene set analysis may be used, in addition 
to GWAS, to study the combined effect of 
genetic variation in (known) genes and 
pathways on longevity.
	 Since our genetic studies identified 
a limited number of longevity loci, we 
additionally examined whether leukocyte 
telomere length (LTL) could be used as 
a biomarker of healthy aging in genomic 
studies of large cohorts of middle-aged 
individuals (Chapter 6). We showed that 
LTL meets three of the four criteria for a 
biomarker of healthy aging in the Leiden 
Longevity Study (LLS), i.e., LTL changes 
with chronological age and is associated with 
prospective mortality and immune-related 
parameters (Table 8.2). However, this is still 
insufficient to use LTL as a standardized 
phenotype for genetic studies of healthy 
aging and longevity. Thus, we need to search 
for parameters that meet all four proposed 
criteria for biomarkers of healthy aging.
	 When novel longevity loci, such as 
the chromosome 5q33.3 locus, have been 
identified, functional characterization needs 
to be performed to determine the mechanism 
underlying the association with healthy 
aging and longevity. This process consist 
of several steps, namely (1) genotypic fine-
mapping, (2) phenotypic fine-mapping, (3) 
expression/epigenetic quantitative trait locus 
analysis, and (4) functional assays in model 
systems (animals/cell models). Functional 
characterization of the chromosome 5q33.3 
locus showed that the locus encompasses a 
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~22.3 kb region containing several functional 
elements, such as DNase I hypersensitivity 
sites, as well as a long intergenic noncoding 
RNA, which is conserved in primates. 
However, we have thus far not identified 
diseases or traits, additional to blood pressure, 
associating with the locus. In addition, it is 
still unclear on which gene(s) and in which 
tissue(s) the locus exerts its effects.
	 To identify novel longevity loci, 
future studies should use stricter criteria for 
selection of individuals for genetic research 
to reduce the phenotypic heterogeneity. 
In addition, genetic studies may use 
biomarkers of healthy aging, preferable 
combined into one multimarker score, as a 
standardized phenotype for genetic studies. 

Identification of such biomarkers may profit 
from combining family-based studies, like 
the LLS, and population-based prospective 
studies with long follow-up times, since 
this will allow testing of all four proposed 
criteria for biomarkers of healthy aging. 
Furthermore, research into human lifespan 
may benefit from novel technologies and 
methodologies, such as next-generation 
sequencing, multigenerational linkage 
analysis, omics-based measurements, and 
multimarker prediction scores. Subsequent 
integration of the created data over different 
species, or in a system biology approach, 
may provide insight into the complex 
mechanisms underlying lifespan regulation.

Table 8.2 Association of leukocyte telomere length with chronological age, prospective mortality, 
familial longevity and immune-related parameters in the Leiden Longevity Study (LLS) offspring and 
partners and LLS nonagenarians.

LLS offspring + partners LLS nonagenarians
β / HR P β / HR P

Age (years) -0.040 0.002 -0.044 0.003
Prospective mortality 0.75 0.001 0.92 0.028
Familial longevity 0.006 0.932 NA NA
IGF-1/IGFBP3 (molar ratio)* 0.052 1.19 x 10-5 -0.004 0.800
CRP (mg/L)** -0.007 0.802 0.008 0.821
IL-6 (pg/ml) 0.099 0.010 NA NA
CMV infection -0.168 0.005 -0.305 1.57 x 10-4

Lymphocyte count (%) -0.015 1.84 x 10-4 -0.013 0.011
Neutrophil count (%) 0.014 1.51 x 10-4 0.013 0.006
Monocyte count (%) -0.020 0.383 -0.016 0.502
Eosinophil count (%) -0.007 0.727 -0.038 0.123
Basophil count (%) 0.353 3.63 x 10-5 -0.263 0.019

HR, hazard ratio; IGF-1, insulin-like growth factor 1; IGFBP3, insulin-like growth factor binding protein 3; CRP, 
C-reactive protein; IL-6, interleukin 6; CMV, cytomegalovirus. The LTL outcome used for this analysis represents 
the number of 1 kb telomeric base pair units. *The outcome represents the effect of a 0.01 increase in the parameter. 
**Natural log transformed parameter was used in the analysis.
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Introductie

De afgelopen 200 jaar is de levens
verwachting wereldwijd sterk toegenomen, 
wat voornamelijk komt door verbeterde 
hygiëne, voeding en gezondheidszorg. De 
toename in levensduur bestaat echter niet 
alleen uit gezonde jaren. We spenderen 
ongeveer 25% van ons leven in slechte 
gezondheid, voornamelijk veroorzaakt door 
leeftijd gerelateerde ziekten zoals kanker, 
hart- en vaatziekten en diabetes mellitus type 
II. Er zijn families waarin personen generaties 
achtereen langer leven in vergelijking tot 
personen uit hetzelfde geboortecohort. Op 
middelbare leeftijd ontwikkelen personen 
uit zulke langlevende families minder 
leeftijd gerelateerde ziekten en hebben ze 
daarnaast gezondere bloedspiegels voor 
vet- (cholesterol) en suikerhuishouding 
(glucose) en afweer (immuun) gerelateerde 
eigenschappen. Het lijkt er dus op dat 
personen uit langlevende families op een 
natuurlijke manier bescherming genieten 
tegen leeftijd gerelateerde ziekten, waarbij 
het met name gaat om aandoeningen die 
verband houden met veranderingen in de 
stofwisseling die optreden tijdens het ouder 
worden. Door het bestuderen van langlevende 
families hopen we mechanismen te kunnen 
vinden die bescherming bieden tegen leeftijd 
gerelateerde ziekten en daarmee bijdragen 
aan gezonde veroudering.
	 Om die mechanismen te ontrafelen, 
kunnen verschillende strategieën worden 
toegepast. Ongeveer 25% van de variatie 
in levensduur kan verklaard worden door 
genetische verschillen tussen personen 
(variatie), wat impliceert dat er een erfelijke 
basis is voor langlevendheid. Eén van 

de strategieën is dus om op zoek te gaan 
naar genetische varianten die samengaan 
met het bereiken van een hoge leeftijd, 
waarbij het erfelijk materiaal van groepen 
langlevende personen wordt vergeleken 
met dat van jongere controlegroepen. 
Omdat het aantal beschikbare studies met 
langlevende deelnemers echter beperkt 
is, kan men er ook voor kiezen om in veel 
grotere bevolkingsgroepen biomarkers 
voor gezonde veroudering te meten en 
vervolgens te kijken welke genetische 
varianten samengaan met deze biomarker. 
Omdat er nog geen betrouwbare biomarkers 
bekend zijn die langlevendheid voorspellen, 
is een deel van het onderzoek gericht op 
het identificeren van zulke biomarkers. Dat 
gebeurt door biologische eigenschappen 
en karakteristieken van fysiologische 
gezondheid (biologische leeftijd) van 
individuen te koppelen aan de leeftijd op 
basis van geboortedatum (kalenderleeftijd).
	 Verschillende soorten studie designs 
worden toegepast voor het genetisch 
en biomarker onderzoek naar gezonde 
veroudering en langlevendheid. Allereerst 
worden langlevende personen (≥ 85 jaar) 
of hun kinderen (die door hun genetische 
achtergrond een verhoogde kans hebben om 
langlevend te worden) vergeleken met jonge 
(< 65 jaar), nog levende, personen uit niet-
langlevende families. Dit soort studies wordt 
ook wel cross-sectionele studies genoemd. 
Daarnaast worden langlevende personen 
of personen van middelbare leeftijd (≥ 55 
jaar) voor langere tijd gevolgd, idealiter tot 
hun overlijden, in zogeheten prospectieve 
studies. In dit proefschrift wordt gebruik 
gemaakt van diverse cross-sectionele en 
prospectieve studies.
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Overzicht eerder genetisch 
onderzoek naar gezonde 
veroudering en langlevendheid

Hoofdstuk 2 geeft een overzicht van cross-
sectionele studies waarin is gekeken naar de 
genetische basis van gezonde veroudering 
en langlevendheid. De meeste van deze 
studies hebben onderzoek gedaan naar 
DNA variaties, waarbij één bouwsteen van 
het DNA (nucleotide) bij een deel van de 
bevolking is vervangen door een andere. 
Dit soort genetische variaties worden ook 
wel ‘single nucleotide polymorphisms 
(SNPs)’ genoemd. Personen kunnen (1) 
de veel voorkomende variant van een SNP 
dragen op beide chromosomen, (2) de veel 
voorkomende variant van een SNP dragen 
op één chromosoom en de zeldzame variant 
op de andere of (3) de zeldzame variant van 
een SNP dragen op beide chromosomen. 
Als de zeldzame variant van de SNP vaker 
voorkomt in langlevende personen (cases) in 
vergelijking tot jonge personen (controles), 
dan zeggen we dat deze SNP samengaat 
(geassocieerd is) met langlevendheid. Komt 
de zeldzame variant juist minder vaak voor 
in cases dan in controles dan is de SNP 
mogelijk geassocieerd met mortaliteit.
	 Uit eerdere studies kwam naar 
voren dat verschillende isovormen van het 
apolipoproteïne E (ApoE) eiwit associëren 
met langlevendheid. Dit eiwit speelt onder 
andere een rol bij cholesterol huishouding, 
cognitief functioneren en het ontstaan 
van hart- en vaatziekten. Er bestaan drie 
isovormen van dit eiwit (ApoE ε2, ApoE 
ε3 en ApoE ε4). De ApoE ε4 isovorm is 
geassocieerd met een verlaagde kans om oud 
te worden, terwijl de ApoE ε2 isovorm juist 

geassocieerd is met een verhoogde kans om 
oud te worden. Uit genetische studies bleek 
vervolgens dat deze isovormen bepaald 
worden door twee variaties (SNPs) in het 
APOE gen, rs7412 (ApoE ε2) en rs429358 
(ApoE ε4). 
	 Naast de studies naar variatie in 
APOE waren de eerste genetische studies 
naar langlevendheid vooral gericht op de 
menselijke versies (homologen) van genen 
die na manipulatie in wormen, fruitvliegen 
en/of knaagdieren (muizen/ratten) leiden 
tot een verlengde levensduur. Voor één zo’n 
‘kandidaatgen’, namelijk FOXO3A, bleek in 
meerdere onafhankelijke studies dat SNPs 
in dit gen ook samengaan met humane 
langlevendheid, vooral bij heel oude mensen. 
FOXO3A codeert voor het eiwit forkhead 
box O3, dat de transcriptie reguleert van 
genen die onder andere betrokken zijn bij 
geprogrammeerde celdood (apoptose). 

Genoomwijde associatie studies 
voor langlevendheid

Naast het bestuderen van ‘kandidaatgenen’ 
werden er ook genoomwijde associatie 
studies (GWAS) naar langlevendheid 
verricht om in het hele genoom genen op te 
sporen die de menselijke levensverwachting 
beïnvloeden. In zo’n GWAS wordt voor 
300.000 tot 2.500.000 SNPs, verspreid over 
alle chromosomen, getest of de zeldzame 
variant vaker, of juist minder vaak, voorkomt 
bij langlevende cases in vergelijking met 
jongere controles. 
	 In hoofdstuk 3 werd dit 
onderzocht voor ongeveer 520.000 SNPs 
in negentigjarigen cases uit de Leiden 
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LangLeven Studie en controles (< 60 jaar) 
uit de Rotterdam Studie. Vervolgens werden 
de 62 SNPs waarvan de zeldzame variant 
vaker, of juist minder vaak, voorkwam 
in de cases ook bestudeerd in een groep 
langlevende cases (≥ 85 jaar) uit de 
Rotterdam Studie, Leiden 85-plus studie en 
het Deense 1905 cohort en controles (< 65 
jaar) uit het Nederlands Tweeling Register, 
Deense Tweeling Register en, wederom, 
de Rotterdam Studie. In de gecombineerde 
analyse van al deze studies (4.149 cases ≥ 
85 jaar en 7.582 controles < 65 jaar) bleek 
er één SNP te zijn, rs2075650, waarvan de 
zeldzame variant minder vaak voorkomt in 
langlevende cases. Dragers van de zeldzame 
variant van rs2075650 bleken een 29% 
lagere kans te hebben om 85 jaar te worden 
en bleken na de 85 jaar nog steeds sneller te 
overlijden in vergelijking met niet-dragers. 
De SNP is gepositioneerd op de lange arm 
van chromosoom 19 in het gen TOMM40, 
direct naast het APOE gen. Na bestudering 
van deze SNP bleek echter dat het effect op 
langlevendheid eigenlijk bepaald wordt door 
de al bekende SNP rs429358 (ε4) in APOE, 
die niet gemeten was in deze GWAS.
	 Omdat er in hoofdstuk 3 voor slechts 
één genetische variant bewijs werd gevonden 
voor associatie met langlevendheid, rees 
het vermoeden dat van andere genetische 
varianten die samengaan met langlevendheid 
het effect kleiner is. Om zulke genetische 
varianten te kunnen detecteren, hebben 
we daarom ook een groter aantal SNPs 
(~2.500.000) bestudeerd in een veel grotere 
groep cases (≥ 85 jaar) en controles (< 65 
jaar) uit zesentwintig studies verspreid over 
Europa (hoofdstuk 4). Uiteindelijk bleek 
uit de gecombineerde analyse van al deze 

studies (20.789 cases en 77.277 controles 
) dat er een nieuwe SNP was, rs2149954, 
die associeerde met langlevendheid. Deze 
SNP is gepositioneerd op de lange arm 
van chromosoom 5 onder een zogeheten 
‘lincRNA’, een stukje RNA dat andere genen 
aanstuurt. Dragers van de zeldzame variant 
van rs2149954 bleken een 10% hogere 
kans te hebben om 90 jaar te worden en 
bleken daarnaast minder snel te overlijden 
in vergelijking met niet-dragers. Uit eerder 
gepubliceerd onderzoek bleek dat het dragen 
van deze variant is geassocieerd met een 
verlaagde bloeddruk op middelbare leeftijd. 
Dit benadrukt het belang van het vermijden 
van een hoge bloeddruk op middelbare 
leeftijd voor het bereiken van een hoge 
leeftijd, bijvoorbeeld door middel van een 
gezonde leefstijl of medicatie. Het is nog 
niet duidelijk welke fysiologische processen 
de variant verder nog beïnvloedt.
	 Ondanks dat we twee SNPs gevonden 
hebben die van invloed lijken te zijn op 
langlevendheid is dit aantal vrij klein 
vergeleken met studies van vergelijkbare 
grootte naar erfelijke oorzaken van leeftijd 
gerelateerde ziekten als artrose en de 
ziekte van Alzheimer. Dit zou kunnen 
komen doordat slechts een klein deel van 
de levensduur bepaald wordt door de 
genetische achtergrond van een individu. 
Omgevingsfactoren hebben in feite een 
grotere invloed op de levensduur dan 
erfelijke factoren. De sterk toegenomen 
levensverwachting veroorzaakt door 
verbeterde hygiëne, voeding en medische 
zorg heeft er toe geleid dat er ook veel 
personen zijn die een hoge leeftijd bereiken 
zonder dat dit direct wordt veroorzaakt 
door hun genetische achtergrond. Daarnaast 
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lijkt het effect van genetische variatie op 
langlevendheid veroorzaakt te worden 
door een groot aantal varianten met kleine 
effecten. Om het effect van genetische 
variatie op langlevendheid beter te kunnen 
bestuderen, zouden daarom nog meer 
langlevende personen onderzocht moeten 
worden, met name uit langlevende families 
waarin de invloed van erfelijke factoren 
groter is dan in de algemene bevolking. 
Het aantal langlevende personen dat voor 
een GWAS in aanmerking komt, is echter 
beperkt. Er zal dus gezocht moeten worden 
naar andere methoden om nieuwe genetische 
varianten voor langlevendheid te vinden.

Genetische variatie in genen 
betrokken bij insuline/IGF-1 
signaaltransductie en regulering 
van telomeerlengte

Zoals uit hoofdstuk 3 en 4 blijkt, is het effect 
van genetische varianten die samengaan met 
langlevendheid waarschijnlijk te klein om te 
kunnen onderzoeken met behulp van GWAS. 
Een mogelijkheid om deze kleine effecten 
toch te kunnen detecteren, is door het 
gezamenlijk effect van SNPs gegroepeerd 
per gen of proces te bestuderen. In hoofdstuk 
5 werd deze methode toegepast om te kijken 
naar het gecombineerde effect van SNPs in 
‘kandidaatgenen’ die betrokken zijn bij twee 
processen waarvan wordt verondersteld dat 
ze een rol spelen in langlevendheid. Het 
eerste proces is insuline/insulin-like growth 
factor 1 (IGF-1) signaaltransductie (IIS), 
dat betrokken is bij groei en stofwisseling. 
Het tweede proces is de regulering van de 
lengte van telomeren (TM). Telomeren zijn 

de uiteinden van chromosomen die er voor 
zorgen dat het DNA beschermd wordt. Met 
iedere celdeling neemt de lengte van het 
telomeer af en op het moment dat de lengte te 
kort wordt, stopt de cel met delen en gaat hij 
uiteindelijk dood. Indien de lengte van een 
telomeer constant kan worden gehouden, kan 
een cel in potentie dus vaker delen en langer 
leven of zich tot een kankercel ontpoppen. 
Uit de analyse, waarbij we gebruik hebben 
gemaakt van de dataset zoals beschreven in 
hoofdstuk 3, bleek inderdaad dat genetische 
variatie in beide processen van invloed lijkt 
te zijn op langlevendheid. Dit lijkt vooral 
veroorzaakt te worden door gecombineerde 
genetische variatie in de genen AKT1, AKT3, 
FOXO4, IGF2, INS, PIK3CA, SGK, SGK2, 
YWHAG (IIS) en POT1 (TM). Analyse 
in grotere datasets met gebruik van meer 
geavanceerde methoden zal moeten uitwijzen 
of de complexiteit van langlevendheid kan 
worden ontrafeld door het onderzoeken van 
het gecombineerde effect van SNPs met 
kleine effecten.

Biomarkers voor gezonde 
veroudering

Zoals bediscussieerd in hoofdstuk 3 en 
4 zouden genetische varianten met heel 
kleine effecten op langlevendheid mogelijk 
nog gevonden kunnen worden in grotere 
genetische studies, maar helaas is het aantal 
beschikbare langlevende personen voor dit 
soort studies beperkt. Een mogelijkheid om 
toch grotere genetische studies te kunnen 
uitvoeren, is door het gebruik van een 
biomarker voor gezonde veroudering die 
gemeten kan worden in grote populatie 
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studies. In hoofdstuk 2 worden vier 
criteria beschreven waaraan een dergelijke 
biomarker voor gezonde veroudering in onze 
ogen zou moeten voldoen. Ten eerste moet 
de waarde van de biomarker toe- of afnemen 
met de kalenderleeftijd. Ten tweede moet de 
biomarker onderscheid kunnen maken tussen 
personen op basis van hun biologische leeftijd 
of genetische aanleg voor langlevendheid. 
Ten derde moet de biomarker gerelateerd 
zijn aan eigenschappen die de verandering 
in gezondheid van een individu weergeven. 
Ten slotte moet de biomarker van invloed 
zijn op het risico op ziekten en mortaliteit in 
prospectieve studies.
	 Voor het testen van de verschillende 
criteria voor een biomarker voor gezonde 
veroudering zou het ideaal zijn om een 
studie te hebben waarin meerdere generaties 
familieleden van een groot aantal personen uit 
de bevolking voor langere tijd gevolgd wordt, 
idealiter tot aan hun dood. Een voorbeeld 
van zo’n studie is LifeLines (https://lifelines.
nl/). Ondanks dat deze studie al een paar 
jaar geleden begonnen is, zal het echter nog 
vele jaren duren voordat de data gebruikt 
kunnen worden voor biomarker onderzoek. 
Het beste alternatief voor biomarker studies 
is daarom om cross-sectionele studies (het 
liefst gebaseerd op families) te combineren 
met grote populatie-gebaseerde prospectieve 
studies, zoals het Erasmus Rotterdam 
Gezondheid Onderzoek. Voor de biomarker 
studie beschreven in dit proefschrift is 
gebruik gemaakt van de Leiden LangLeven 
Studie. Deze studie bestaat uit langlevende 
personen (> 90 jaar), hun kinderen en de 
partners van die kinderen die inmiddels 
gedurende ongeveer 10 jaar gevolgd zijn. 
Aangezien de Leiden LangLeven Studie 

een combinatie is van een cross-sectionele 
en prospectieve studie kunnen de meeste 
criteria voor een biomarker voor gezonde 
veroudering getest worden.

Studie naar telomeerlengte 
als biomarker voor gezonde 
veroudering

Een potentiële biomarker voor gezonde 
veroudering is de lengte van telomeren 
gemeten in leukocyten (LTL), een 
bepaald type bloedcellen. In eerdere 
studies is gevonden dat LTL afneemt 
met kalenderleeftijd en dat verkorte LTL 
samengaat met slechtere waardes voor 
gezondheid gerelateerde eigenschappen en 
een verhoogde kans op ziekten en overlijden 
in prospectieve studies. Om te kijken of LTL 
als biomarker voor gezonde veroudering zou 
kunnen worden gebruikt, hebben wij getest 
of LTL ook aan het tweede criterium voor 
een biomarker voldoet (hoofdstuk 6). Met 
andere woorden, of LTL ook onderscheid 
kan maken tussen personen op basis van 
hun biologische leeftijd of genetische aanleg 
voor langlevendheid. Hiervoor werd LTL 
van langlevende personen uit de Leiden 
LangLeven Studie bestudeerd, evenals 
van hun kinderen en de partners van die 
kinderen. Zoals verwacht is LTL in personen 
uit de Leiden LangLeven Studie inderdaad 
gerelateerd aan de kalenderleeftijd, oudere 
mensen hebben een verkorte LTL. Tevens 
is een verkorte LTL geassocieerd met 
ongunstige bloedspiegels voor immuun 
gerelateerde eigenschappen en een 
verhoogde kans op overlijden. Echter, LTL 
is niet verschillend tussen de kinderen van 
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de langlevende personen en hun partners. 
Dit geeft aan dat LTL geen onderscheid 
kan maken tussen personen op basis van 
hun genetische aanleg voor langlevendheid. 
Verder bleek dat SNPs die van invloed 
lijken te zijn op LTL niet associëren met 
langlevendheid in de GWAS beschreven 
in hoofdstuk 4. Dus ondanks dat LTL aan 
drie van de vier criteria voor een biomarker 
van gezonde veroudering voldoet, lijkt dit 
onvoldoende te zijn om LTL als voorspeller 
van langlevendheid te kunnen gebruiken 
in grote genetische studies bij personen 
van middelbare leeftijd. Er zal dus gezocht 
moeten worden naar eigenschappen die aan 
alle vier de criteria voldoen.

Van genetische variant naar 
mechanisme

Nadat nieuwe genetische varianten voor 
langlevendheid zijn gevonden, zoals 
rs2149954 op chromosoom 5, moet worden 
bepaald hoe deze varianten gezonde 
veroudering en langlevendheid beïnvloeden. 
Hoofdstuk 7 geeft een overzicht van de 
stappen die hiervoor nodig zijn. Allereerst 
zal worden gekeken welke genetische 
variant in de buurt van de gevonden SNP 
de causale variant is, oftewel de variant die 
daadwerkelijk het effect op langlevendheid 
veroorzaakt. Hiervoor zal de complete DNA 
volgorde in het gebied worden bepaald 
en zullen de zogenaamde ‘epigenetische’ 
signalen worden bekeken. Tevens zal bekeken 
worden voor welke ‘kandidaatgenen’ de 
expressie in gekweekte cellen door de 
variant wordt beïnvloedt. Verder zal in 
andere epidemiologische studies onderzocht 

worden of de causale variant gerelateerd 
is aan andere eigenschappen of ziekten 
om te ontdekken welke processen worden 
beïnvloed door deze variant. Daarnaast zal 
onderzocht worden hoe veranderingen in de 
expressie van de ‘kandidaatgenen’ bijdragen 
aan het ontstaan van ziekten en de kans op 
overlijden beïnvloeden door gebruik te 
maken van diermodellen. 

Conclusie en toekomst

Het onderzoek beschreven in dit proefschrift 
laat zien dat het lastig is om genetische 
varianten te ontdekken die invloed hebben 
op langlevendheid. Desondanks hebben wij 
een nieuwe SNP ontdekt op chromosoom 5 
waarvan de zeldzame variant associeert met 
een verhoogde kans om 90 jaar te worden 
en een verlaagde kans om te overlijden en 
op middelbare leeftijd bijdraagt aan een 
lage bloeddruk. Om nieuwe genetische 
varianten te vinden die samengaan met 
langlevendheid worden in hoofdstuk 7 
enkele mogelijkheden voor toekomstig 
onderzoek gegeven. Allereerst moeten er 
betere criteria komen voor het selecteren 
van personen voor  genetische studies 
naar langlevendheid waardoor personen 
waarvan duidelijk is dat hun hoge leeftijd 
voornamelijk veroorzaakt wordt door 
omgevingsfactoren geëxcludeerd zullen 
worden. Daarnaast kunnen toekomstige 
genetische studies gebruik maken van 
biomarkers voor gezonde veroudering, 
het liefst samengevoegd tot een patroon 
gebaseerd op meerdere eigenschappen. 
Het combineren van verschillende soorten 
cross-sectionele familie studies, zoals de 
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Leiden LangLeven Studie, en prospectieve 
studies kan helpen bij het zoeken naar zulke 
biomarkers, aangezien we op deze manier alle 
vier de criteria voor een biomarker kunnen 
testen. In dit proefschrift hebben wij aan de 
hand van LTL laten zien hoe de vier criteria 
voor een potentiële biomarker getest kunnen 
worden. LTL bleek echter niet verschillend 
te zijn tussen kinderen van de langlevende 

personen en hun partners, waardoor LTL 
niet als biomarker voor langlevendheid  kan 
worden gebruikt. Tot slot kan toekomstig 
onderzoek naar gezondere veroudering en 
langlevendheid gebruik maken van nieuwe 
technologieën waarbij de nucleotidevolgorde 
van het hele genoom van een individu wordt 
bepaald, zodat de relevante genetische 
variatie kan worden onderzocht. 
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