Cover Page

The handle http://hdl.handle.net/1887/22953 holds various files of this Leiden University
dissertation

Author: Kalkman, Vincent J.

Title: Studies on phylogeny and biogeography of damselflies (Odonata) with emphasis
on the Argiolestidae

Issue Date: 2013-12-19


https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/22953

7. OUT OF AUSTRALIA: THE ARGIOLESTIDAE REVEAL THE
MELANESIAN ARC SYSTEM AND EAST PAPUA COMPOSITE TERRANE
AS POSSIBLE ANCIENT DISPERSAL ROUTES TO THE INDO-AUSTRALIAN

ARCHIPELAGO (ODONATA, ARGIOLESTIDAE)

Vincent J. Kalkman, Klaas-Douwe B. Dijkstra, Rory A. Dow, Frank Stokvis and
Jan van Tol

Citation: Kalkman, VJ., K.-D.B. Dijkstra, R.A. Dow, ER. Stokvis & J. van Tol 2013. Out of Australia: the Argio-
lestidae reveal the Melanesian Arc System and East Papua Composite Terrane as possible ancient dispersal routes to
the Indo-Australian archipelago (Odonata, Argiolestidae). — PhD-thesis, Naturalis Biodiversity Center, Leiden.

Information on the origin of distribution patterns shown by freshwater invertebrates in
the Indo-Australian Archipelago is poor. Here we present a molecular based hypothesis of
the phylogenetic relationschip of Argiolestidae, a family of damselflies found throughout
the tropical parts of the Eastern Hemisphere. We use this to address the following
questions: (1) did Argiolestidae colonize Wallacea and the Philippines from the Eurasian
or from the Australian continent?; (2) is the presence of Argiolestidae on New Guinea
the result of a single colonization event, i.e. are the Argiolestidae found on New Guinea
monophyletic? The results show that clades occurring in the Philippines, Wallacea and
New Guinea all originate from Australian ancestors. Representatives in Sundaland are
most closely related to African genera and failed to reach the Philippines and Wallacea.
The presence of Argiolestidae north of Australia was the result of at least three coloniza-
tion events from Australia to areas that presently compose New Guinea and probably a
fourth from Australia to Sulawesi. The two most diverse lineages found north of Australia
show different distribution patterns. One reaching north as far as Luzon, presumably
facilitated by Late Oligocene to Miocene islands arcs (Melanesian Arc System). The other
clade shows a diversification of two genera and numerous species in the eastern tail of
New Guinea, an area largely corresponding with the East Papuan Composite Terrane
(epcr) followed by the expansion of one genus into the rest of New Guinea. The EpcT’s
importance as source area for the New Guinean fauna has been suggested on the basis of
distribution patterns, but we present the first evidence based on phylogeny reconstruc-
tion of strong diversification on this formerly isolated landmass.

INTRODUCTION been connected to mainland Asia and are strongly
dominated by Asian groups. In the east a land
The Indo-Australian Archipelago (1aa) is a mixture ~ bridge connected New Guinea and adjacent

zone of flora and fauna of Asian and Australian island for long periods with Australia, resulting in
descent (Lohman et al. 2011). The islands of the a relatively high proportion of taxa of Australian
Sunda shelf in the west have for long periods descent (Lohman et al. 2011). In between are the
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islands of Wallacea (Sulawesi, Lesser Sunda Islands,
Moluccas) and the Philippines, most of which
have never been connected to Asia or Australia
and received their flora and fauna from overseas
dispersal or, in some cases, from drifting continen-
tal fragments. The species composition of these
islands is determined by the dispersal capacity

of the species, the islands’ sub-aerial history and
the opportunities they offer for speciation and
survival (Lomolino et al. 2010). These factors must
have played out differently for different taxonomic
groups and it is unlikely that a single pattern
describing the faunistic and floristic transition
between Asia and Australia can be found. None-
theless common patterns should occur in groups
with similar dispersal capacities and ecological
requirements. The present paper focuses on dam-
selflies, whose larvae require freshwater habitats.
It seems likely that this dependence restricted
their dispersal into Wallacea and the Philippines.
The distribution patterns of several groups of
freshwater invertebrates in the 1aa have been
described in detail, but biogeographic recon-
structions based on molecular data are still rare
(van Tol & Gassmann 2007, De Bruyn et al. 2012).
Most studies focus on crustaceans or molluscs
(see De Bruyn et al. 2012 for a review) with rela-
tively many studying the diversification in ancient
lakes in Sulawesi (Von Rintelen et al. 2006, 2007,
2010). Phylogenies describing the colonization

of the Philippines, Wallacea and New Guinea by
freshwater invertebrates show that there is huge
variation in the timing and direction of coloniza-
tion events, making it difficult to describe the
relative importance of the various dispersal routes.
Common patterns found are summarized in

De Bruyn et al. (2012) and include repeated
colonization of the Philippines from Borneo and
Sulawesi, colonization of Sulawesi mainly by
dispersal from the west with a small portion of
groups with an eastern origin which might have
arrived by terrane drifting (De Bruyn et al. 2012,
Stelbrink et al. 2012). Finally, the New Guinea
fauna is largely derived from Asia (e.g. crossing
Wallacea and/or the Philippines), but where

the landbridges on the Sahul Shelf allowed for a

exchange with Australia of groups of fishes, shrimps
and crayfish (Bowman et al. 2010), this is not true
for taxa strictly dependent on running freshwater
(Balke et al. 2007, Kalkman & Theischinger
2013).

Two available phylogenetic reconstructions for
the colonization of New Guinea by freshwater
insects show very different patterns. The possibly
over 150 species of Exocelina diving beetles on
New Guinea resulted from a single colonization
event and is an example of how such rare events
can have a major impact on the fauna (Balke et al.
2004, 2007). Rhantus diving beetles dispersed east
from Eurasia, resulting in about 25 closely related
species in Australasia and Oceania, with one spe-
cies originating in the New Guinean highlands
and subsequently establishing itself from New
Zealand to Portugal (Balke et al. 2009).

Here we present a phylogeny of Argiolestidae,

an Eastern Hemisphere damselfly family, in order

to answer the following two questions:

(1) Did Argiolestidae colonize Wallacea and the
Philippines from the Asian continent or from
the Australian continent?

(2) Is the presence of Argiolestidae on New
Guinea the result of a single dispersal event,
i.e., do the species of New Guinea form a
monophyletic group?

The larvae of Odonata (dragonflies and damsel-
flies) strictly depend on aquatic habitats for their
development. The adult stage is winged and some
species fly well, allowing them to colonize habitats
on isolated islands. This capability, however, is
largely restricted to species of standing waters.
Species of running water, especially in the tropics,
usually have low dispersal capacities (Kalkman

et al. 2008). With almost 6,000 described species
Odonata constitute almost 5% of the animal
diversity in freshwater (Balian et al. 2008).

The highest species and family diversity is found
in the tropics, especially those of America and
Asia (Dijkstra et al. 2013a, Kalkman et al. 2008).
Due to their size and coloration Odonata receive
much attention and therefore their taxonomy and
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Figure 1. Distribution of Argiolestidae. The number of described species is given between parentheses.

No pNa-material was available for the two genera marked with an asterisk.

distribution are relatively well known. This makes
odonates one of the few groups of freshwater
invertebrates, and one of very few insect orders,
for which it is possible to reconstruct the phylog-

eny and biogeography within the coming decades.

Several large phylogenetic studies, based mainly
on molecular data, have been published recently
(Hovmoller et al. 2002, Rehn 2003, Dumont et
al. 2005, Ware et al. 2007, Fleck et al. 2008,
Bybee et al. 2008, Carle et al. 2008, Dumont et al.
2010, Dijkstra et al. 20133, Dijkstra et al. 2013b).
Many of these suffer from poor support of the
deeper nodes, so that the phylogeny within the
families is well-resolved but the relationships
between them remain obscure. This is partly due
to their great age with nearly all extant families
known from the Mesozoic onwards and most
probably originating in the Jurassic period
(Dumont et al. 2005, Grimaldi & Engel 2005,
Ware et al. 2008). Furthermore, dating phyloge-
nies is difficult as the identification of fossils is
generally based on wing venation, which is often

a poor indicator of taxonomic affinity (Dijkstra
et al. 2013a). Nonetheless, the group’s age, phylo-
genetic progress and detailed distribution data
offer good opportunities for biogeographic
reconstructions, also on longer time scales.

The current paper is only the second in which a
nearly complete phylogenetic and biogeographic
reconstruction of a damselfly family is presented
after the Calopterygidae (Dumont et al. 2005).
Argiolestidae contains 113 described and an
estimated 40-80 undescribed species. The family
was included in the Megapodagrionidae until
recently (Kalkman et al. 2010, Dijkstra et al.
2013a). Argiolestidae in the present sense is
confined to the Eastern Hemisphere with the
majority of species restricted to tropical or sub-
tropical regions. A recent revision (Kalkman &
Theischinger 2013) recognized twenty genera

in two subfamilies, with the Argiolestinae

(16 genera, 86 species) found in Australasia east
of Huxley’s line and the Podolestinae (4 genera,
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27 species) in Africa and Southeast Asia west of
Huxley’s line (fig. 1). Although many species of
Argiolestidae occur in poorly explored areas, the
ranges of the genera are considered to be well
known (Kalkman & Theischinger 2013).

The family is almost restricted to running waters:
most species inhabit seepages or streams, with

a few found in rivers. The only exceptions are
the Southeast Asian Podolestes, found mainly in
swamps, and Podopteryx, of which probably all
species breed in phytotelmata (plant-held waters).
All species inhabit forest habitats with the excep-
tion of some Australian species found in more
open alpine marshland. A larva (or larval skin)
and wingtip enclosed together in Baltic amber of
Eocene age is the only fossil that can indisputably
be attributed to Argiolestidae (Bechly & Wichard
2008). The larva shows flat horizontal caudal gills,
which is an apomorphy of the family, but a more
precise identification is impossible.

MATERIAL AND METHODS

Taxon selection

The study relies on collections assembled in
recent years at Naturalis Biodiversity Center,
Leiden, The Netherlands (formerly National
Museum of Natural History) by the authors,
supplemented with donations (see acknowledge-
ments). The pNa-material includes 91 samples

of over fifty taxa belonging to 18 of the 20 recog-
nized genera (table 1, fig. 1). All genera with more
than three species are represented by samples of
at least three different taxa. The genera Mezagrion,
Nesolestes and Wahnesia are in need of revision and
not all material could be identified to species
level. No pNa-material was available of two
genera: Solomonargiolestes, of which only three
old specimens are known, and Caledargiolestes.
The latter is considered on morphological charac-
ters the sister genus of Caledopteryx. Both are
endemic to New Caledonia and share a unique
character of the genital ligula (apical lobes with
numerous minute spines). Solomonargiolestes is
not discussed as its position is unknown.

DNA extraction and amplification

Genomic DNA was extracted from one or two legs
per specimen using the Qiagen DNeasy Blood &
Tissue Kit. Elution was performed in 100 pl elu-
tion buffer. Fragments of the nuclear 285 rRNA
gene (1346-1532 bp) and the mitochondrial 16S
rRNA (522-542 bp) were amplified using primer
combinations developed with Primer3 (Rozen &
Skaletsky 2000). Primer combinations are depict-
ed in Table 2. The 25 pl pcr reaction mixes for
16S contained 2.5 pl of 10 X CoralLoad pcr
Buffer (Qiagen, usa), 1 pl of each primer (10 pM),
1.25 U of Taq pNa Polymerase (Qiagen, usa),

0.5 pl of ANTP’s and 1 pl of DNA template. 5 pl
Q-solution (Qiagen, usa) was added to the
reaction mix for 28S. The amplification protocol
consisted of 3 min at 94°C followed by 40 to 50
cycles of 15 s at 94°C, 30 s at 60°C to 35°C and
40 s at 72°C, and a final 5 min at 72°C. Direct
sequencing was performed at Macrogen Europe
on an ABI 3730XL sequencer. COI was available
for only 62 of the 91 samples and missing for
some key samples and has therefore been discard-
ed in the analyses.

Phylogenetic analyses

Sequences were edited with Sequencher 4.10.1
(Gene Codes Corporation) and assembled using
Bioedit 7.0.9.0 (Hall 1999). Geneious Pro 5.6.4
(Biomatters Ltd) was used for stop codons
(Drummond et al. 2011). All sequence data

and additional geographic data are deposited at
GenBank. In addition, COI sequence data of

62 samples as well as photographs of the specimens
were uploaded to the Barcode of Life Data System
(BoLD, Ratnasingham & Hebert 2007). GenBank
accession numbers are included are listed in Table
1. The sequences included 2033 base pairs while
the number of unique sites was 635 for 28S and
452 for 168S.

Multiple sequence alignments were performed
using MAFFT (Katoh et al. 2002, 2005, 2009)
under default parameters. Maximum likelihood
(ML) and Bayesian inference (81) analyses were
performed on the combined 285+16S datasets.
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Table 2. Primer combinations used for amplification of 16SS and 28S.

Primer name Target Direction Sequence (5’ to 3’)

ODO_28S_f2_2 28S F CCCGGCCGGGTCCCCGACGGT
ODO_28S_r2_p3 28S R TTACACACTCCTTAGCGGATTC
ODO_28S_f3 28S F ACCATGAAAGGTGTTGGTTG
ODO_28S_r3_p3 28S R ATCTCCCTGCGAGAGGATTC
ODO_12852F 16S F AGAAACCGACCTGGCTTAAA
ODO_13393R 16S R CGCCTGTTTATCAAAAACAT

ML analyses were run with Ra XML (Stamatakis

et al. 2008) using a Gamma model of rate hetero-
geneity. For the B1, the best-fitting nucleotide
substitution model for each of the individual frag-
ments was assessed using hierarchical likelihood
ratio tests in MrModeltest 2.3 (Nylander 2004).
For all partitions a General Time Reversal
(6TR+1+G) model (nst=6) with a proportion of
invariable sites and a gamma distribution for
rates across sites (rates=invgamma) was selected.
For each dataset two independent Monte Carlo
Markov Chain simulations were run in MrBayes
3.2.1 (Huelsenbeck & Ronquist 2001) with four
chains, for 10,000,000 generations and a sample
frequency of 500 at a temperature of 0.05.

A damselfly belonging to the basal superfamily
Lestoidea was selected as representative outgroup
(Lestes virens, Lestidae).

rasP (Yu et al. 2013) was used for a reconstruction
of the ancestral ranges of the genera using the
nine regions listed in fig. 3 as possible areas of
distribution. rasp favored a scenario in which
early dispersion resulted in a common ancestor
occurring throughout most of the region under
study with subsequent vicariance events leading to
the distribution as observed today. This scenario
is deemed unlikely and is regarded the result of

RASP preferring scenario’s in which the number of
dispersal events needed is limited. We therefore
choose to discard the outcomes of rasp and
present a reconstruction of the ancestral ranges
based on common sense.

We refrained from molecular dating as no suitable
fossils are available for calibration and simply
applying a standard diversification rate of, for
instance, insects, is problematic due to the
presumed old age of the group. Calibration based
on geological events would introduce circularity
to our biogeographic reasoning.

Distribution data

Kalkman & Theischinger (2013) presented dot
maps of the distribution of the genera based

on both published and unpublished records.
The main sources for these maps and the maps
published here are the Australian Odonata Data-
base, the Malesian Odonata Database and the
Odonata Database of Africa.

RESULTS

Final maximum likelihood and Bayesian trees
have very similar topologies with most clades

Figure 2. Bayesian consensus tree for Argiolestidae derived from 2033 bp of 16S and 28S with branches proportion-

ally transformed. Bayesian posterior probabilities and maximum likelihood bootstrap supports are given for all

interspecific nodes respectively. Those which are 1.00 or 100 are given with an asterisk. Branches with a Bayesian

posterior probability below o.50 are collapsed. Region of occurrence is given on right. Locality and specimen details

are provided in Table 1. Numbered nodes are discussed in the text and are identical to figure 3.
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Figure 3. Summary of the phylogeny of argiolestid genera and biogeographic hypothesis. The distribution of each

clade is given in lower case letters (see legend in box). The processes thought to be responsible for divergence are

given in bold with the upper case letters referring to the recognized areas of distribution. An arrow (>) indicates

dispersal between region (either active or passive), a dash indicates fragmentation between regions and parentheses

refers to extinction. Speciation within the recognized areas is not indicated. Numbered nodes are discussed in the

text and identical to figure 2. The two groups on which the discussion mainly focuses are highlighted in grey.

well supported (fig. 2). Figure 3 gives a summary
showing only the branches up to genus level.

The one major difference between both analyses
is that the origin of the clade of Austroargiolestes/
Archiargiolestes is placed between that of Grisear-

molecular analysis.

giolestes and Celebargiolestes in the maximum likeli-

hood analyses. The phylogeny is well resolved

except for a polytomy including clades from New

DISCUSSION

Caledonia, New Guinea to the Philippines and

the Australian Griseargiolestes. These clades them-
selves are well supported but due to the polytomy
the order in which these groups split off remains
unclear. Both the Bayesian analyses and the
maximum likelihood retrieve the two subfamilies
and the 18 included genera as monophyletic,

corresponding with the revision by Kalkman &
Theischinger (2013). For most genera unique
morphological characters are available, allowing
the placement of species not included in the

The origin of Malesian lineages

The distribution of the two subfamilies best
matches a Gondwanan origin in which the group
evolved in the region Australia-Antarctica-Africa
when these continents were still connected,
followed by a split between the Podolestinae
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(presently found in Africa and Asia) and Argioles-
tinae (Australasia) induced by the northward drift
of Africa, India and Madagascar (node 1 in fig. 2
and 3). Trans-oceanic dispersal between Africa
and Australia would account for the same pattern
and cannot be ruled out, as dating of the phylog-
eny is not possible due to the lack of calibration
points. Dispersal between Africa and Australia has
been suggested for several groups, including in-
sects (allodapine bees), to explain the divergence
between African and Australian taxa after conti-
nental breakup (Chenoweth & Schwarz 2011).
The tree indicates that the presence of the family
in the Philippines, eastern Indonesia and New
Guinea results from colonization from Australia
and not Asia. The Asian Podolestes is the sister
genus of the African genera and must have arrived
either by drift on the Indian plate or by an over-
land route after Africa connected with Eurasia
(node 2), as has also been suggested for the family
Platystictidae (van Tol 2009). The dispersal of
possibly Gondwanan derived taxa from India
after it docked with the Asian mainland into
Sundaland followed by radiation accros Sunda-
land has been suggested for various groups of
freshwater crabs and the giant river prawn
(Macrobrachium rosenbergii) (Klaus et al. 2009,
de Bruyn et al. 2004). The fossil larva in Baltic
amber indicates that the conditions in northern
Europe were favorable for the Argiolestidae during
the Eocene (Bechly & Wichard 2008) and thus
an expansion from Africa over Europe and Asia is
also a possibility. Both subfamilies of Argjolestidae
nearly meet, with Argiolestinae found in Sulawesi
(genus Celebargiolestes) and Podolestinae in Borneo
(genus Podolestes) separated by less than 150 km
of sea. Since their last common ancestor these
groups have dispersed across the distance of Asia,
Africa and Australia including the 1aa. Interest-
ingly, they failed to cross the Makassar Strait
although this seems a relatively small barrier.

The genera living on the opposite sites of the
Makassar Strait have different habitat preferences
(streams versus swamps) suggesting that it is the
barrier itself and not the competition by congeners
that prevented them from crossing.

The role of the Melanesian Arc System and the
East Papua Composite Terrane

The presence of Argiolestinae beyond Australia

is probably the result of one range expansion to
Sulawesi (Celebargiolestes, node 6), one or two to
New Caledonia and three to areas presently part
of New Guinea (Podopteryx, Argiolestes-Luzonargio-
lestes, PwM-group, nodes 3, 4, 6, respectively).
‘Two Podopteryx species are endemic to New
Guinea and the Aru Islands, while one is found
in New Guinea and north-eastern Australia.
Presumably ancestors of the genus colonized New
Guinea and subsequently diversified, with one
species (2 selysii) crossing the Torres Strait back to
Australia. This is the only species and even genus
of Argiolestidae shared by New Guinea and
Australia despite a broad land connection for much
of the Pleistocene (Voris 2000). The absence of
exchange across this landbridge is apparent in all
dragonflies: the seasonal drought associated with
the monsoon climate acted as a filter allowing
passage only of species breeding in standing

(i.e. less stable) water (Kalkman & Orr 2012).

A similarly limited exchange has been noted for
freshwater fish and some groups of aquatic beetles
(Unmack 2001, Balke et al. 2007), although ex-
change may have been more common for aquatic
groups that are salt tolerant or less dependent on
running water (Balke 1995, Macqueen et al. 2010).
Podopteryx is the only genus of the subfamily
Argiolestinae not depending on running water,
which might explain its unique distribution.

The results are unclear about the origin of
Celebargiolestes (node 6), a genus widespread on
Sulawesi with one described and several closely
related undescribed species, all of which have
allopatric ranges (fig. 4). The genus groups with
low support with a clade of three Papuan genera
whose origin lies in the east of New Guinea (the
pwM-group discussed below). A scenario where
the common ancestor colonized areas presently
included in the east of New Guinea and from
there Sulawesi (or the other way round) seems
unlikely as the group is largely absent in between.
The alternative is that they share an extinct

OUT OF AUSTRALIA: DISPERSAL ROUTES TOT THE INDO-AUSTRALIAN ARCHIPELAGO

201



Argiolestes-Luzonargiolestes
# Argiolestes

Node 4
Node 5

Luzonargiolestes
Node 6 Celebargiolestes
Node7 PWM Group

Node 7, 8 o Wahnesia & Pyrrhargiolestes
Node 8 o Metagrion

Figure. 4. Distribution of three of the fotir lineages that colonized the eastern part of the Malay Archipelago: (1)

Celebargiolestes, confined to Sulawesi and adjacent islands; (2) Argiolestes-Luzonargiolestes, the western two-thirds of

New Guinea, northern Moluccas, Sulawesi and Luzon; (3) pwm-group (Pyrrhargiolestes, Wahnesia, Metagrion), with

two genera largely confined to the East Papuan Composite Terrane and one genus found in the western two-thirds

of New Guinea (see also fig. 5). The grey shading indicates the extent of the East Papuan Composite Terrane (EpcT).

common ancestor, which was found in the north
of Australia and whose descendants, during sepa-
rate events, colonized the eastern parts of New
Guinea and Sulawesi. A meta-analysis of diver-
gence dates of 20 different taxonomical groups
occurring in Sulawesi showed that the majority of
these postdate relevant tectonic vicariant events,
suggesting that they arrived on Sulawesi by
dispersal, whereas only 20% of the analyzed taxa
showed divergence dates old enough to allow for
the possibility of tectonic dispersal (Stelbrink

et al. 2012). In the case of Celebargiolestes the
current phylogeny does not allow to distinguish
between dispersal or vicariance, although the
allopatric ranges of the species suggest a relative
recent arrival of the genus.

The main diversity of Argiolestidaec on New
Guinea consists of two lineages, the ancestors

of which colonized the island from Australia,
resulting in two strikingly different distributional
patterns (nodes 4, 6). The monophyletic group
consisting of Pyrrhargiolestes, Wahnesia and Meta-
grion (PwM-group) is confined to New Guinea
and surrounding islands with one species occur-
ring in the Solomons. Whilst Mezagrion occurs
throughout most of the island (fig. 4), the distri-
bution of Wahnesia and Pyrrhargiolestes (node 7)
is concentrated in eastern New Guinea in an area
largely corresponding with the East Papuan
Composite Terrane (epct). This terrane is by
some authors inferred to have formed around

60 Ma by the accretion of several sub-terranes
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Figure. 5. Distribution of the three genera whose origin is supposed to be linked to the East Papuan Composite

Terrane (epcT; grey shading). The distributions of both Pyrrhargiolestes and Wahnesia suggest that these evolved

when the epcT formed a separate island.

and is believed to have existed as a separate island
for at least 25 Ma before suturing on mainland
New Guinea at 28-22 Ma (Pigram & Davies 1987,
Davies et al. 1996, Davies et al. 1997, Hill & Hall
2003, Polhemus & Polhemus 2004). Based on
distribution patterns the EPcT has been recognized
as an important centre of endemism for various
groups of aquatic Heteroptera and Coleoptera.
This centre of endemism was linked to its history
as a separate landmass although no phylogenetic
support was provided (Polhemus & Polhemus
1998, 2002, 2004, Polhemus 2011). A plausible
scenario for the pwM-group is that an ancestor
reached the epct when it still formed a separate
island, which subsequently radiated to the 6o to
80 species presently forming the three genera.

Species of Wahnesia and Pyrrhargiolestes largely
failed to colonize the main island of New Guinea,
with only two of the 19 described species and
none of the undescribed species found more than
100 km outside the epcr (fig. 5). Metagrion (node
8 in fig. 3) consists of two clades of which one is
found in the western part of the epct and the ad-
jacent Huon Peninsula and Bismarck Archipelago
(the Metagrion pnG-group of Kalkman & Thei-
schinger 2013). The other clade is found through-
out New Guinea except the Epct. This pattern
suggests that a range expansion from the EpcT
into New Guinea led to the rise of one of the
most species-rich genera of damselflies currently
found on New Guinea. Our molecular analyses
gives support to the idea that the EpcT has been
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an important source area for the fauna of New
Guinea, although a dated phylogeny is needed
in order to determine if this diversification took
place before or after it docked to New Guinea.

The other lineage, which makes up a large part
of the argiolestine diversity of New Guinea, has a
completely different distribution (fig. 4). It con-
sists of two genera, of which Luzonargiolestes is
restricted to the northern Philippine island of
Luzon, and Argiolestes is found on Sulawesi (one
species), the northern Moluccas (two species) and
New Guinea (seven species). The occurrence of
related species or genera on New Guinea and the
Philippines, often including the northern Moluc-
cas and sometimes Sulawesi, has been noted for
several groups including aquatic bugs (Polhemus
& Polhemus 1987, Polhemus 1995). Molecular
studies confirm this recurrent pattern in birds
(Jensson et al. 2011), mammals (Steppan et al.
2003, Heaney et al. 2005, Jansa et al. 2006) and
the myrtle family (Ladiges et al. 2003). Its origin
is believed to lie in a series of arc systems, which
during the Late Oligocene to Miocene (25 to 10
Ma) provided a pathway between the Philippine
and Indonesian archipelagoes (Kroenke 1984,
Hall, 2002, Hill & Hall, 2003, with summaries
in Polhemus 2007, van Tol & Gassmann 2007).
The islands that today make up the northern
Moluccas were north of mainland New Guinea
30 Ma, with directly east of them a series of is-
lands that are now part of northern New Guinea,
and directly west a series of islands that now form
the eastern Philippines. This island arc rotated
clockwise so that by 15 Ma the northern Moluc-
cas were close to the northwest of New Guinea,
while some of the islands east of it moved south
towards the northern margin of New Guinea and
the eastern Philippines drifted northwards. In the
next millions of years the distance between the
northern Moluccas and the eastern Philippines
grew, while the eastern islands docked with New
Guinea, where they are currently recognizable

as a northern mountain chain. The tectonic
reconstruction suggests that for millions of years
this arc formed a semi-continuous series of

islands. Assuming that most of these were above
sea-level, these may have served as stepping stones
allowing faunal exchange between the Philippines
and New Guinea. Taxa with limited dispersal
capacity, unable to hop between islands, may still
have been transported gradually by the rotating
movement of the island arc: Argiolestes and
Luzonargiolestes seem to be an example of this.
There are various other groups of dragonflies that
show close links between New Guinea and the
Philippines and the Oligocene-Miocene arc
systems might have played a major role in their
biogeography as well. Examples include the
Rhinocypha tincta-group (Chlorocyphidae),
Diplacina (Libellulidae), the Drepanosticra lymetta-
group (Platystictidae), the subfamily Idiocnemidi-
nae (Platycnemididae) and possibly Newrobasis
(Calopterygidae) (Gassmann 2005, Orr &
Himildinen 2007, van Tol 2007, van Tol &
Gassmann 2007). It is interesting to note that
the genus Argiolestes failed to colonize the Epcr,
which suggests that at the time that the EpcT
sutured with New Guinea most appropriate nich-
es were already occupied, preventing Argiolestes
from expanding east and Pyrrhargiolestes and
Wahnesia from expanding west.
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