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introduction

the indo-Australian Archipelago (iaa) is a mixture 
zone of flora and fauna of Asian and Australian 
descent (Lohman et al. 2011). the islands of the 
sunda shelf in the west have for long periods 
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Information on the origin of distribution patterns shown by freshwater invertebrates in 
the Indo-Australian Archipelago is poor. Here we present a molecular based hypothesis of 
the phylogenetic relationschip of Argiolestidae, a family of damselflies found throughout 
the tropical parts of the Eastern Hemisphere. We use this to address the following  
questions: (1) did Argiolestidae colonize Wallacea and the Philippines from the Eurasian 
or from the Australian continent?; (2) is the presence of Argiolestidae on New Guinea  
the result of a single colonization event, i.e. are the Argiolestidae found on New Guinea 
monophyletic? The results show that clades occurring in the Philippines, Wallacea and 
New Guinea all originate from Australian ancestors. Representatives in Sundaland are 
most closely related to African genera and failed to reach the Philippines and Wallacea. 
The presence of Argiolestidae north of Australia was the result of at least three coloniza-
tion events from Australia to areas that presently compose New Guinea and probably a 
fourth from Australia to Sulawesi. The two most diverse lineages found north of Australia 
show different distribution patterns. One reaching north as far as Luzon, presumably  
facilitated by Late Oligocene to Miocene islands arcs (Melanesian Arc System). The other 
clade shows a diversification of two genera and numerous species in the eastern tail of 
New Guinea, an area largely corresponding with the East Papuan Composite Terrane 
(epct) followed by the expansion of one genus into the rest of New Guinea. The epct’s 
importance as source area for the New Guinean fauna has been suggested on the basis of 
distribution patterns, but we present the first evidence based on phylogeny reconstruc-
tion of strong diversification on this formerly isolated landmass.

been connected to mainland Asia and are strongly 
dominated by Asian groups. in the east a land 
bridge connected New Guinea and adjacent  
island for long periods with Australia, resulting in 
a relatively high proportion of taxa of Australian 
descent (Lohman et al. 2011). in between are the 
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exchange with Australia of groups of fishes, shrimps 
and crayfish (Bowman et al. 2010), this is not true 
for taxa strictly dependent on running freshwater 
(Balke et al. 2007, Kalkman & theischinger 
2013).

two available phylogenetic reconstructions for 
the colonization of New Guinea by freshwater  
insects show very different patterns. the possibly 
over 150 species of Exocelina diving beetles on 
New Guinea resulted from a single colonization 
event and is an example of how such rare events 
can have a major impact on the fauna (Balke et al. 
2004, 2007). Rhantus diving beetles dispersed east 
from eurasia, resulting in about 25 closely related 
species in Australasia and oceania, with one spe-
cies originating in the New Guinean highlands 
and subsequently establishing itself from New 
Zealand to Portugal (Balke et al. 2009).
here we present a phylogeny of Argiolestidae,  
an eastern hemisphere damselfly family, in order 
to answer the following two questions:
(1)   Did Argiolestidae colonize Wallacea and the 

Philippines from the Asian continent or from 
the Australian continent?

(2)   is the presence of Argiolestidae on New  
Guinea the result of a single dispersal event, 
i.e., do the species of New Guinea form a 
monophyletic group?

the larvae of odonata (dragonflies and damsel-
flies) strictly depend on aquatic habitats for their 
development. the adult stage is winged and some 
species fly well, allowing them to colonize habitats 
on isolated islands. this capability, however, is 
largely restricted to species of standing waters. 
species of running water, especially in the tropics, 
usually have low dispersal capacities (Kalkman  
et al. 2008). With almost 6,000 described species 
odonata constitute almost 5% of the animal  
diversity in freshwater (Balian et al. 2008).  
the highest species and family diversity is found 
in the tropics, especially those of America and 
Asia (Dijkstra et al. 2013a, Kalkman et al. 2008). 
Due to their size and coloration odonata receive 
much attention and therefore their taxonomy and 

islands of Wallacea (sulawesi, Lesser sunda islands, 
Moluccas) and the Philippines, most of which 
have never been connected to Asia or Australia 
and received their flora and fauna from overseas 
dispersal or, in some cases, from drifting continen-
tal fragments. the species composition of these 
islands is determined by the dispersal capacity  
of the species, the islands’ sub-aerial history and 
the opportunities they offer for speciation and 
survival (Lomolino et al. 2010). these factors must 
have played out differently for different taxonomic 
groups and it is unlikely that a single pattern  
describing the faunistic and floristic transition  
between Asia and Australia can be found. None-
theless common patterns should occur in groups 
with similar dispersal capacities and ecological  
requirements. the present paper focuses on dam-
selflies, whose larvae require freshwater habitats. 
it seems likely that this dependence restricted 
their dispersal into Wallacea and the Philippines. 
the distribution patterns of several groups of 
freshwater invertebrates in the iaa have been  
described in detail, but biogeographic recon-
structions based on molecular data are still rare 
(van tol & Gassmann 2007, De Bruyn et al. 2012). 
Most studies focus on crustaceans or molluscs 
(see De Bruyn et al. 2012 for a review) with rela-
tively many studying the diversification in ancient 
lakes in sulawesi (Von rintelen et al. 2006, 2007, 
2010). Phylogenies describing the colonization  
of the Philippines, Wallacea and New Guinea by 
freshwater invertebrates show that there is huge 
variation in the timing and direction of coloniza-
tion events, making it difficult to describe the  
relative importance of the various dispersal routes. 
common patterns found are summarized in  
De Bruyn et al. (2012) and include repeated  
colonization of the Philippines from Borneo and 
sulawesi, colonization of sulawesi mainly by  
dispersal from the west with a small portion of 
groups with an eastern origin which might have 
arrived by terrane drifting (De Bruyn et al. 2012, 
stelbrink et al. 2012). finally, the New Guinea 
fauna is largely derived from Asia (e.g. crossing 
Wallacea and/or the Philippines), but where  
the landbridges on the sahul shelf allowed for a 
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a poor indicator of taxonomic affinity (Dijkstra  
et al. 2013a). Nonetheless, the group’s age, phylo-
genetic progress and detailed distribution data  
offer good opportunities for biogeographic  
reconstructions, also on longer time scales.

the current paper is only the second in which a 
nearly complete phylogenetic and biogeographic 
reconstruction of a damselfly family is presented 
after the calopterygidae (Dumont et al. 2005). 
Argiolestidae contains 113 described and an  
estimated 40-80 undescribed species. the family 
was included in the Megapodagrionidae until  
recently (Kalkman et al. 2010, Dijkstra et al. 
2013a). Argiolestidae in the present sense is  
confined to the eastern hemisphere with the  
majority of species restricted to tropical or sub-
tropical regions. A recent revision (Kalkman & 
theischinger 2013) recognized twenty genera  
in two subfamilies, with the Argiolestinae  
(16 genera, 86 species) found in Australasia east 
of huxley’s line and the Podolestinae (4 genera, 

distribution are relatively well known. this makes 
odonates one of the few groups of freshwater  
invertebrates, and one of very few insect orders, 
for which it is possible to reconstruct the phylog-
eny and biogeography within the coming decades. 
several large phylogenetic studies, based mainly 
on molecular data, have been published recently 
(hovmöller et al. 2002, rehn 2003, Dumont et 
al. 2005, Ware et al. 2007, fleck et al. 2008,  
Bybee et al. 2008, carle et al. 2008, Dumont et al. 
2010, Dijkstra et al. 2013a, Dijkstra et al. 2013b). 
Many of these suffer from poor support of the 
deeper nodes, so that the phylogeny within the 
families is well-resolved but the relationships  
between them remain obscure. this is partly due 
to their great age with nearly all extant families 
known from the Mesozoic onwards and most 
probably originating in the Jurassic period  
(Dumont et al. 2005, Grimaldi & engel 2005, 
Ware et al. 2008). furthermore, dating phyloge-
nies is difficult as the identification of fossils is 
generally based on wing venation, which is often 

figure 1. Distribution of Argiolestidae. the number of described species is given between parentheses.  
No dna-material was available for the two genera marked with an asterisk. 
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dna extraction and amplification
Genomic dna was extracted from one or two legs 
per specimen using the Qiagen DNeasy Blood & 
tissue Kit. elution was performed in 100 μl elu-
tion buffer. fragments of the nuclear 28s rrNA 
gene (1346-1532 bp) and the mitochondrial 16s 
rrNA (522-542 bp) were amplified using primer 
combinations developed with Primer3 (rozen & 
skaletsky 2000). Primer combinations are depict-
ed in table 2. the 25 μl pcr reaction mixes for 
16s contained 2.5 μl of 10 × coralLoad pcr 
Buffer (Qiagen, usa), 1 μl of each primer (10 pM), 
1.25 U of taq dna Polymerase (Qiagen, usa),  
0.5 μl of dNtP’s and 1 μl of dna template. 5 μl 
Q-solution (Qiagen, usa) was added to the  
reaction mix for 28s. the amplification protocol 
consisted of 3 min at 94°c followed by 40 to 50 
cycles of 15 s at 94°c, 30 s at 60°c to 35°c and 
40 s at 72°c, and a final 5 min at 72°c. Direct  
sequencing was performed at Macrogen europe 
on an abi 3730xl sequencer. coi was available 
for only 62 of the 91 samples and missing for 
some key samples and has therefore been discard-
ed in the analyses.

Phylogenetic analyses
sequences were edited with sequencher 4.10.1 
(Gene codes corporation) and assembled using 
Bioedit 7.0.9.0 (hall 1999). Geneious Pro 5.6.4 
(Biomatters Ltd) was used for stop codons 
(Drummond et al. 2011). All sequence data  
and additional geographic data are deposited at 
GenBank. in addition, coi sequence data of  
62 samples as well as photographs of the specimens 
were uploaded to the Barcode of Life Data system 
(bold, ratnasingham & hebert 2007). GenBank 
accession numbers are included are listed in table 
1. the sequences included 2033 base pairs while 
the number of unique sites was 635 for 28s and 
452 for 16s.

Multiple sequence alignments were performed  
using mafft (Katoh et al. 2002, 2005, 2009)  
under default parameters. Maximum likelihood 
(ml) and Bayesian inference (bi) analyses were 
performed on the combined 28s+16s datasets. 

27 species) in Africa and southeast Asia west of 
huxley’s line (fig. 1). Although many species of 
Argiolestidae occur in poorly explored areas, the 
ranges of the genera are considered to be well 
known (Kalkman & theischinger 2013).  
the family is almost restricted to running waters: 
most species inhabit seepages or streams, with  
a few found in rivers. the only exceptions are  
the southeast Asian Podolestes, found mainly in 
swamps, and Podopteryx, of which probably all 
species breed in phytotelmata (plant-held waters). 
All species inhabit forest habitats with the excep-
tion of some Australian species found in more 
open alpine marshland. A larva (or larval skin) 
and wingtip enclosed together in Baltic amber of 
eocene age is the only fossil that can indisputably 
be attributed to Argiolestidae (Bechly & Wichard 
2008). the larva shows flat horizontal caudal gills, 
which is an apomorphy of the family, but a more 
precise identification is impossible. 

material and methods

Taxon selection
the study relies on collections assembled in  
recent years at Naturalis Biodiversity center,  
Leiden, the Netherlands (formerly National  
Museum of Natural history) by the authors,  
supplemented with donations (see acknowledge-
ments). the dna-material includes 91 samples  
of over fifty taxa belonging to 18 of the 20 recog-
nized genera (table 1, fig. 1). All genera with more 
than three species are represented by samples of  
at least three different taxa. the genera Metagrion, 
Nesolestes and Wahnesia are in need of revision and 
not all material could be identified to species  
level. No dna-material was available of two  
genera: Solomonargiolestes, of which only three  
old specimens are known, and Caledargiolestes. 
the latter is considered on morphological charac-
ters the sister genus of Caledopteryx. Both are  
endemic to New caledonia and share a unique 
character of the genital ligula (apical lobes with 
numerous minute spines). Solomonargiolestes is 
not discussed as its position is unknown.
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rasp preferring scenario’s in which the number of 
dispersal events needed is limited. We therefore 
choose to discard the outcomes of rasp and  
present a reconstruction of the ancestral ranges 
based on common sense.

We refrained from molecular dating as no suitable 
fossils are available for calibration and simply  
applying a standard diversification rate of, for  
instance, insects, is problematic due to the  
presumed old age of the group. calibration based 
on geological events would introduce circularity 
to our biogeographic reasoning.

Distribution data
Kalkman & theischinger (2013) presented dot 
maps of the distribution of the genera based  
on both published and unpublished records.  
the main sources for these maps and the maps 
published here are the Australian odonata Data-
base, the Malesian odonata Database and the 
odonata Database of Africa. 

results

final maximum likelihood and Bayesian trees 
have very similar topologies with most clades  

ml analyses were run with ra×ml (stamatakis  
et al. 2008) using a Gamma model of rate hetero-
geneity. for the bi, the best-fitting nucleotide 
substitution model for each of the individual frag-
ments was assessed using hierarchical likelihood 
ratio tests in MrModeltest 2.3 (Nylander 2004). 
for all partitions a General time reversal 
(gtr+i+g) model (nst=6) with a proportion of  
invariable sites and a gamma distribution for  
rates across sites (rates=invgamma) was selected. 
for each dataset two independent Monte carlo 
Markov chain simulations were run in MrBayes 
3.2.1 (huelsenbeck & ronquist 2001) with four 
chains, for 10,000,000 generations and a sample 
frequency of 500 at a temperature of 0.05.  
A damselfly belonging to the basal superfamily 
Lestoidea was selected as representative outgroup 
(Lestes virens, Lestidae).

rasp (Yu et al. 2013) was used for a reconstruction 
of the ancestral ranges of the genera using the 
nine regions listed in fig. 3 as possible areas of 
distribution. rasp favored a scenario in which  
early dispersion resulted in a common ancestor 
occurring throughout most of the region under 
study with subsequent vicariance events leading to 
the distribution as observed today. this scenario 
is deemed unlikely and is regarded the result of 

figure 2. Bayesian consensus tree for Argiolestidae derived from 2033 bp of 16s and 28s with branches proportion-
ally transformed. Bayesian posterior probabilities and maximum likelihood bootstrap supports are given for all  
interspecific nodes respectively. those which are 1.00 or 100 are given with an asterisk. Branches with a Bayesian 
posterior probability below 0.50 are collapsed. region of occurrence is given on right. Locality and specimen details 
are provided in table 1. Numbered nodes are discussed in the text and are identical to figure 3.

▶

Primer name Target Direction  Sequence (5’ to 3’)
oDo_28s_f2_2 28s f cccGGccGGGtccccGAcGGt
oDo_28s_r2_p3 28s r ttAcAcActccttAGcGGAttc
oDo_28s_f3 28s f AccAtGAAAGGtGttGGttG
oDo_28s_r3_p3 28s r AtctccctGcGAGAGGAttc
oDo_12852f 16s f AGAAAccGAcctGGcttAAA
oDo_13393r 16s r cGcctGtttAtcAAAAAcAt

table 2. Primer combinations used for amplification of 16ss and 28s.
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corresponding with the revision by Kalkman &  
thei schinger (2013). for most genera unique 
morphological characters are available, allowing 
the placement of species not included in the  
molecular analysis. 

discussion 

The origin of Malesian lineages
the distribution of the two subfamilies best 
matches a Gondwanan origin in which the group 
evolved in the region Australia-Antarctica-Africa 
when these continents were still connected,  
followed by a split between the Podolestinae 

well supported (fig. 2). figure 3 gives a summary 
showing only the branches up to genus level.  
the one major difference between both analyses 
is that the origin of the clade of Austro argiolestes/
Archiargiolestes is placed between that of Grisear-
giolestes and Celebargiolestes in the maximum likeli-
hood analyses. the phylogeny is well resolved  
except for a polytomy including clades from New 
caledonia, New Guinea to the Philippines and 
the Australian Griseargiolestes. these clades them-
selves are well supported but due to the polytomy 
the order in which these groups split off remains 
unclear. Both the Bayesian analyses and the  
maximum likelihood retrieve the two subfamilies 
and the 18 included genera as monophyletic,  

figure 3. summary of the phylogeny of argiolestid genera and biogeographic hypothesis. the distribution of each 
clade is given in lower case letters (see legend in box). the processes thought to be responsible for divergence are 
given in bold with the upper case letters referring to the recognized areas of distribution. An arrow (>) indicates  
dispersal between region (either active or passive), a dash indicates fragmentation between regions and parentheses 
refers to extinction. speciation within the recognized areas is not indicated. Numbered nodes are discussed in the 
text and identical to figure 2. the two groups on which the discussion mainly focuses are highlighted in grey.
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The role of the Melanesian Arc System and the 
East Papua Composite Terrane 
the presence of Argiolestinae beyond Australia  
is probably the result of one range expansion to 
sulawesi (Celebargiolestes, node 6), one or two to 
New caledonia and three to areas presently part 
of New Guinea (Podopteryx, Argiolestes-Luzonargio-
lestes, pwm-group, nodes 3, 4, 6, respectively). 
two Podopteryx species are endemic to New 
Guinea and the Aru islands, while one is found 
in New Guinea and north-eastern Australia.  
Presumably ancestors of the genus colonized New 
Guinea and subsequently diversified, with one 
species (P. selysii) crossing the torres strait back to 
Australia. this is the only species and even genus 
of Argiolestidae shared by New Guinea and  
Australia despite a broad land connection for much 
of the Pleistocene (Voris 2000). the absence of 
exchange across this landbridge is apparent in all 
dragonflies: the seasonal drought associated with 
the monsoon climate acted as a filter allowing 
passage only of species breeding in standing  
(i.e. less stable) water (Kalkman & orr 2012).  
A similarly limited exchange has been noted for 
freshwater fish and some groups of aquatic beetles 
(Unmack 2001, Balke et al. 2007), although ex-
change may have been more common for aquatic 
groups that are salt tolerant or less dependent on 
running water (Balke 1995, Macqueen et al. 2010). 
Podopteryx is the only genus of the subfamily  
Argiolestinae not depending on running water, 
which might explain its unique distribution.

the results are unclear about the origin of  
Celebargiolestes (node 6), a genus widespread on 
sulawesi with one described and several closely  
related undescribed species, all of which have  
allopatric ranges (fig. 4). the genus groups with 
low support with a clade of three Papuan genera 
whose origin lies in the east of New Guinea (the 
pwm-group discussed below). A scenario where  
the common ancestor colonized areas presently 
included in the east of New Guinea and from 
there sulawesi (or the other way round) seems 
unlikely as the group is largely absent in between. 
the alternative is that they share an extinct  

(presently found in Africa and Asia) and Argioles-
tinae (Australasia) induced by the northward drift 
of Africa, india and Madagascar (node 1 in fig. 2 
and 3). trans-oceanic dispersal between Africa 
and Australia would account for the same pattern 
and cannot be ruled out, as dating of the phylog-
eny is not possible due to the lack of calibration 
points. Dispersal between Africa and Australia has 
been suggested for several groups, including in-
sects (allodapine bees), to explain the divergence 
between African and Australian taxa after conti-
nental breakup (chenoweth & schwarz 2011). 
the tree indicates that the presence of the family 
in the Philippines, eastern indonesia and New 
Guinea results from colonization from Australia 
and not Asia. the Asian Podolestes is the sister  
genus of the African genera and must have arrived 
either by drift on the indian plate or by an over-
land route after Africa connected with eurasia 
(node 2), as has also been suggested for the family 
Platystictidae (van tol 2009). the dispersal of 
possibly Gondwanan derived taxa from india  
after it docked with the Asian mainland into  
sundaland followed by radiation accros sunda-
land has been suggested for various groups of 
freshwater crabs and the giant river prawn  
(Macrobrachium rosenbergii) (Klaus et al. 2009,  
de Bruyn et al. 2004). the fossil larva in Baltic 
amber indicates that the conditions in northern 
europe were favorable for the Argiolestidae during 
the eocene (Bechly & Wichard 2008) and thus 
an expansion from Africa over europe and Asia is 
also a possibility. Both subfamilies of Argiolestidae 
nearly meet, with Argiolestinae found in sulawesi 
(genus Celebargiolestes) and Podolestinae in Borneo 
(genus Podolestes) separated by less than 150 km 
of sea. since their last common ancestor these 
groups have dispersed across the distance of Asia, 
Africa and Australia including the iaa. interest-
ingly, they failed to cross the Makassar strait  
although this seems a relatively small barrier.  
the genera living on the opposite sites of the 
Makassar strait have different habitat preferences 
(streams versus swamps) suggesting that it is the 
barrier itself and not the competition by congeners 
that prevented them from crossing. 
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Luzonargiolestes
Argiolestes

Node 6

Node 4

Node 5

Node 7, 8
Node 8

Node 7

Argiolestes-Luzonargiolestes

PWM Group
Wahnesia & Pyrrhargiolestes
Metagrion

Celebargiolestes

the main diversity of Argiolestidae on New 
Guinea consists of two lineages, the ancestors  
of which colonized the island from Australia,  
resulting in two strikingly different distributional 
patterns (nodes 4, 6). the monophyletic group 
consisting of Pyrrhargiolestes, Wahnesia and Meta-
grion (pwm-group) is confined to New Guinea 
and surrounding islands with one species occur-
ring in the solomons. Whilst Metagrion occurs 
throughout most of the island (fig. 4), the distri-
bution of Wahnesia and Pyrrhargiolestes (node 7) 
is concentrated in eastern New Guinea in an area 
largely corresponding with the east Papuan  
composite terrane (epct). this terrane is by 
some authors inferred to have formed around  
60 Ma by the accretion of several sub-terranes 

common ancestor, which was found in the north 
of Australia and whose descendants, during sepa-
rate events, colonized the eastern parts of New 
Guinea and sulawesi. A meta-analysis of diver-
gence dates of 20 different taxonomical groups 
occurring in sulawesi showed that the majority of 
these postdate relevant tectonic vicariant events, 
suggesting that they arrived on sulawesi by  
dispersal, whereas only 20% of the analyzed taxa 
showed divergence dates old enough to allow for 
the possibility of tectonic dispersal (stelbrink  
et al. 2012). in the case of Celebargiolestes the  
current phylogeny does not allow to distinguish 
between dispersal or vicariance, although the  
allopatric ranges of the species suggest a relative 
recent arrival of the genus. 

figure. 4. Distribution of three of the four lineages that colonized the eastern part of the Malay Archipelago: (1) 
Celebargiolestes, confined to sulawesi and adjacent islands; (2) Argiolestes-Luzonargiolestes, the western two-thirds of 
New Guinea, northern Moluccas, sulawesi and Luzon; (3) pwm-group (Pyrrhargiolestes¸Wahnesia, Metagrion), with 
two genera largely confined to the east Papuan composite terrane and one genus found in the western two-thirds 
of New Guinea (see also fig. 5). the grey shading indicates the extent of the east Papuan composite terrane (epct).
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species of Wahnesia and Pyrrhargiolestes largely 
failed to colonize the main island of New Guinea, 
with only two of the 19 described species and 
none of the undescribed species found more than 
100 km outside the epct (fig. 5). Metagrion (node 
8 in fig. 3) consists of two clades of which one is 
found in the western part of the epct and the ad-
jacent huon Peninsula and Bismarck Archipelago 
(the Metagrion png-group of Kalkman & thei-
schinger 2013). the other clade is found through-
out New Guinea except the epct. this pattern 
suggests that a range expansion from the epct 
into New Guinea led to the rise of one of the 
most species-rich genera of damselflies currently 
found on New Guinea. our molecular analyses 
gives support to the idea that the epct has been 

and is believed to have existed as a separate island 
for at least 25 Ma before suturing on mainland 
New Guinea at 28-22 Ma (Pigram & Davies 1987, 
Davies et al. 1996, Davies et al. 1997, hill & hall 
2003, Polhemus & Polhemus 2004). Based on 
distribution patterns the epct has been recognized 
as an important centre of endemism for various 
groups of aquatic heteroptera and coleoptera. 
this centre of endemism was linked to its history 
as a separate landmass although no phylogenetic 
support was provided (Polhemus & Polhemus 
1998, 2002, 2004, Polhemus 2011). A plausible 
scenario for the pwm-group is that an ancestor 
reached the epct when it still formed a separate 
island, which subsequently radiated to the 60 to 
80 species presently forming the three genera. 

figure. 5. Distribution of the three genera whose origin is supposed to be linked to the east Papuan composite  
terrane (epct; grey shading). the distributions of both Pyrrhargiolestes and Wahnesia suggest that these evolved 
when the epct formed a separate island.
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islands. Assuming that most of these were above 
sea-level, these may have served as stepping stones 
allowing faunal exchange between the Philippines 
and New Guinea. taxa with limited dispersal  
capacity, unable to hop between islands, may still 
have been transported gradually by the rotating 
movement of the island arc: Argiolestes and  
Luzonargiolestes seem to be an example of this. 
there are various other groups of dragonflies that 
show close links between New Guinea and the 
Philippines and the oligocene-Miocene arc  
systems might have played a major role in their 
biogeography as well. examples include the  
Rhinocypha tincta-group (chlorocyphidae), 
Diplacina (Libellulidae), the Drepanosticta lymetta-
group (Platystictidae), the subfamily idiocnemidi-
nae (Platycnemididae) and possibly Neurobasis 
(calopterygidae) (Gassmann 2005, orr & 
hämäläinen 2007, van tol 2007, van tol & 
Gassmann 2007). it is interesting to note that  
the genus Argiolestes failed to colonize the epct, 
which suggests that at the time that the epct  
sutured with New Guinea most appropriate nich-
es were already occupied, preventing Argiolestes 
from expanding east and Pyrrhargiolestes and 
Wahnesia from expanding west.
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