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Chapter 6

One-Parameter Scaling at the
Dirac Point in Graphene

6.1 Introduction

Graphene provides a new regime for two-dimensional quantum transport
[23–25], governed by the absence of backscattering of Dirac fermions [22].
A counterintuitive consequence is that adding disorder to a sheet of un-
doped graphene initially increases its conductivity [38, 109]. Interval-
ley scattering at stronger disorder strengths enables backscattering [110],
eventually leading to localization and to a vanishing conductivity in the
thermodynamic limit [36, 37]. Intervalley scattering becomes less and less
important if the disorder is more and more smooth on the scale of the lat-
tice constant a. The fundamental question of the new quantum transport
regime is how the conductivity σ scales with increasing system size L if
intervalley scattering is suppressed.

In usual disordered electronic systems, the hypothesis of one-parameter
scaling plays a central role in our conceptual understanding of the metal-
insulator transition [34, 111]. According to this hypothesis, the logarithmic
derivative d lnσ/d lnL = β(σ) is a function only of σ itself1 — irrespective

1We define the β-function in terms of the ensemble averaged conductivity σ, mea-
sured in units of 4e2/h (with the factor of four accounting for twofold spin and valley
degeneracies). This is the appropriate definition for our system. For a more general
definition of one-parameter scaling, one needs to scale a distribution function of con-
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of the sample size or degree of disorder. A positive β-function means that
the system scales towards a metal with increasing system size, while a
negative β-function means that it scales towards an insulator. The metal-
insulator transition is at β = 0, β′ > 0. In a two-dimensional system with
symplectic symmetry, such as graphene, one would expect a monotonically
increasing β-function with a metal-insulator transition at [112] σS ≈ 1.4
(see Fig. 6.1, green dashed curve).

Recent papers have argued that graphene might deviate in an interest-
ing way from this simple expectation. Nomura and MacDonald [113] have
emphasized that the very existence of a β-function in undoped graphene is
not obvious, in view of the diverging Fermi wave length at the Dirac point.
Assuming that one-parameter scaling does hold, Ostrovsky, Gornyi, and
Mirlin [39] have proposed the scaling flow of Fig. 6.1 (black solid curve).
Their β-function implies that σ approaches a universal, scale invariant
value σ∗ in the large-L limit, being the hypothetical quantum critical point
of a certain field theory. This field theory differs from the symplectic sigma
model by a topological term [39, 40]. The quantum critical point could
not be derived from the weak-coupling theory of Ref. 39, but its existence
was rather concluded from the analogy to the effect of a topological term
in the field theory of the quantum Hall effect [111, 114]. The precise value
of σ∗ is therefore unknown, but it is well constrained [39]: From below by
the ballistic limit2 σ0 = 1/π [115, 116] and from above by the unstable
fixed point σS ≈ 1.4.

In this chapter we present a numerical test firstly, of the existence
of one-parameter scaling, and secondly of the scaling prediction of Ref. 39
against an alternative scaling flow, a positive β without a fixed point (green
dotted curve in Fig. 6.1). For such a test it is crucial to avoid the finite-a
effects of intervalley scattering that might drive the system to an insulator
before it can reach the predicted scale invariant regime. We accomplish
this by starting from the Dirac equation, being the a → 0 limit of the
tight-binding model on a honeycomb lattice. We have developed an effi-

ductances [111].
2 We call σ0 the ballistic limit because it is reached in the absence of disorder, but

we emphasize that it is a conductivity — not a conductance. This is a unique property
(called “pseudodiffusive”) of graphene at the Dirac point, that its conductance scales
∝ 1/L like in a diffusive system even in the absence of disorder.
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Figure 6.1. Two scenarios for the scaling of the conductivity σ with sample
size L at the Dirac point in the absence of intervalley scattering. The black solid
curve with two fixed points is proposed in Ref. 39, the green dotted curve without
a fixed point is an alternative scaling supported by the numerical data presented
in this chapter. For comparison, we include as a red dashed curve the scaling
flow in the symplectic symmetry class, which has a metal-insulator transition at
σS ≈ 1.4 [112].

cient transfer operator method to solve this equation, which we describe
in Sec. 6.2 before proceeding to the results in Sec. 6.3.

6.2 Transfer Matrix Approach

The single-valley Dirac Hamiltonian reads

H = vp · σ + V (x) + U(x, y). (6.1)

The vector of Pauli matrices σ acts on the sublattice index of the spinor
Ψ, p = −i�∂/∂r is the momentum operator, and v is the velocity of the
massless excitations. The disorder potential U(r) varies randomly in the
strip 0 < x < L, 0 < y < W (with zero average, 〈U〉 = 0). This disordered
strip is connected to highly doped ballistic leads, according to the doping
profile V (x) = 0 for 0 < x < L, V (x) → −∞ for x < 0 and x > L. We set
the Fermi energy at zero (the Dirac point), so that the disordered strip is
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undoped. The disorder strength is quantified by the correlator

K0 =
1

(�v)2

∫
dr′ 〈U(r)U(r′)〉. (6.2)

Following Refs. 38 and 117, we work with a transfer operator repre-
sentation of the Dirac equation HΨ = 0 at zero energy. We discretize
x at the N points x1, x2, . . . xN and represent the impurity potential by
U(r) =

∑
n Un(y)δ(x−xn). Upon multiplication by iσx the Dirac equation

in the interval 0 < x < L takes the form

�v
∂

∂x
Ψx(y) =

[
vpyσz − iσx

∑
n

Un(y)δ(x− xn)
]
Ψx(y). (6.3)

The transfer operatorM, defined by ΨL = MΨ0, is given by the operator
product

M = PL,xN
KNPxN ,xN−1 · · · K2Px2,x1K1Px1,0, (6.4)

Px,x′ = exp[(1/�)(x− x′)pyσz], (6.5)

Kn = exp[−(i/�v)Unσx]. (6.6)

The operator P gives the decay of evanescent waves between two scattering
events, described by the operators Kn. For later use we note the current
conservation relation

M−1 = σxM†σx. (6.7)

We assume periodic boundary conditions in the y-direction, so that we
can represent the operators in the basis

ψ±k =
1√
W
eiqky|±〉, qk =

2πk
W

, k = 0,±1,±2 . . . . (6.8)

The spinors |+〉 = 2−1/2
(
1
1

)
, |−〉 = 2−1/2

(
1
−1

)
are eigenvectors of σx.

In this basis, (py)kk′ = �qkδkk′ is a diagonal operator, while (Un)kk′ =
W−1

∫
dy Un(y) × exp[i(qk′ − qk)y] is nondiagonal. We work with finite-

dimensional transfer matrices by truncating the transverse momenta qk at
|k| = M .

The transmission and reflection matrices t, r are determined as in
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Ref. 116, by matching the amplitudes of incoming, reflected, and trans-
mitted modes in the heavily doped graphene leads to states in the undoped
strip at x = 0 and x = L. This leads to the set of linear equations

∑
k

[
δkk′ψ

+
k (y) + rkk′ψ

−
k (y)

]
= Ψ0(y), (6.9a)

∑
k

tkk′ψ
+
k (y) = ΨL(y) =MΨ0(y). (6.9b)

Using the current conservation relation (6.7) we can solve Eq. (6.9) for the
transmission matrix,(

1− r
1 + r

)
= M†

(
t

t

)
⇒ t−1 = 〈+|M†|+〉. (6.10)

The transmission matrix determines the conductance G = (4e2/h) Tr tt†,
and hence the dimensionless conductivity σ = (h/4e2)(L/W )G. The aver-
age conductivity 〈σ〉 is obtained by sampling some 102 − 103 realizations
of the impurity potential.

Because the transfer matrix P has both exponentially small and expo-
nentially large eigenvalues, the matrix multiplication (6.4) is numerically
unstable. As in Ref. 118, we stabilize the product of transfer matrices by
transforming it into a composition of unitary scattering matrices, involving
only eigenvalues of unit absolute value.

We model the disorder potential U(r) =
∑N

n=1 γnδ(x − xn)δ(y − yn)
by a collection of N isolated impurities distributed uniformly over a strip
0 < x < L, 0 < y < W . (An alternative model of a continuous Gaussian
random potential is discussed at the end of the chapter.) The strengths
γn of the scatterers are uniform in the interval [−γ0, γ0]. The number
N sets the average separation d = (WL/N)1/2 of the scatterers. The
cut-off |k| ≤ M imposed on the transverse momenta qk limits the spatial
resolution ξ ≡W/(2M + 1) of plane waves ∝ eiqky±qkx at the Dirac point.
The resulting finite correlation lengths of the scattering potential in the x-
and y-directions scale with ξ, but they are not determined more precisely.
The disorder strength (6.2) evaluates to K0 = 1

3γ
2
0(�vd)−2, independent of

the correlation lengths. We scale towards an infinite system by increasing
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Figure 6.2. Disorder strength dependence of the average conductivity for a
fixed system size (W = 4L = 40 d) and four values of the scattering range.

M ∝ L at fixed disorder strength K0, scattering range ξ/d, and aspect
ratio W/L. This completes the description of our numerical method.

6.3 Numerical Results

We now turn to the results. In Fig. 6.2 we first show the dependence of the
average conductivity on K0 for a fixed system size. As in the tight-binding
model of Ref. 109, disorder increases the conductivity above the ballistic
value. This impurity assisted tunneling [38] saturates in an oscillatory
fashion for K0 
 1 (unitary limit [119, 120]). In the tight-binding model
[109] the initial increase of σ was followed by a rapid decay of the conduc-
tivity for K0 � 1, presumably due to Anderson localization. The present
model avoids localization by eliminating intervalley scattering from the
outset.

The system size dependence of the average conductivity is shown in
Fig. 6.3, for various combinations of disorder strength and scattering range.
We take W/L sufficiently large that we have reached an aspect-ratio in-
dependent scaling flow and L/d large enough that the momentum cut-off
M > 25. The top panel shows the data sets as a function of L/d. The in-
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Figure 6.3. System size dependence of the average conductivity, for W/L = 4
(black and green solid symbols) and W/L = 1.5 (all other symbols) and various
combinations of K0 and ξ/d. The top panel shows the raw data. In the bot-
tom panel the data sets have been given a horizontal offset, to demonstrate the
existence of one-parameter scaling. The inset shows the resulting β-function.

crease of σ with L is approximately logarithmic, 〈σ〉 = constant+0.25 lnL,
much slower than the

√
L increase obtained in Ref. 38 in the absence of

mode mixing.

If one-parameter scaling holds, then it should be possible to rescale
the length L∗ ≡ f(K0, ξ/d)L such that the data sets collapse onto a single
smooth curve when plotted as a function of L∗/d. (The function f ≡ d/l∗

determines the effective mean free path l∗, so that L∗/d ≡ L/l∗.) The
bottom panel in Fig. 6.3 demonstrates that, indeed, this data collapse
occurs. The resulting β-function is plotted in the inset. Starting from
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Figure 6.4. System size dependence of the average conductivity in the contin-
uous potential model, for several values of K0. The inset shows the raw data,
while the data sets in the main plot have a horizontal offset to demonstrate
one-parameter scaling when L � 5 ξ.

the ballistic limit (cf. footnote 2) at σ0 = 1/π, the β-function first rises
until σ ≈ 0.6, and then decays to zero without becoming negative. For
σ > σS ≈ 1.4 the decay ∝ 1/σ is as expected for a diffusive system
in the symplectic symmetry class. The positive β-function in the interval
(σ0, σS) precludes the flow towards a scale-invariant conductivity predicted
in Ref. 39.

The model of isolated impurities considered so far is used in much of
the theoretical literature, whereas experimentally a continuous random po-
tential is more realistic [113]. We have therefore also performed numerical
simulations for a random potential landscape with Gaussian correlations3,

〈U(r)U(r′)〉 = K0
(�v)2

2πξ2
e−|r−r′|2/2ξ2

. (6.11)

The discrete points x1, x2 . . . xN in the operator product (6.4) are taken

3The Dirac equation with a delta-function correlated random potential has a diver-
gent scattering rate, see, e.g., Ref. 121. Hence the need to regularize the continuous
potential model by means of a finite correlation length ξ.
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equidistant with spacing δx = L/N , and

Un(y) =
∫ xn+δx/2

xn−δx/2
dxU(x, y). (6.12)

We take M , N , and W/L large enough that the resulting conductivity
no longer depends on these parameters. We then scale towards larger
system sizes by increasing L/ξ and W/ξ at fixed K0. No saturation of
σ with increasing K0 is observed for the continuous random potential (as
expected, since the unitary limit is specific for isolated scatterers [119,
120]). Fig. 6.4 shows the size dependence of the conductivity — both
the raw data as a function of L (inset) as well as the rescaled data as a
function of L∗ ≡ g(K0)L. Single-parameter scaling applies for L � 5 ξ,
where 〈σ〉 = constant + 0.32 lnL. The prefactor of the logarithm is about
25% larger than in the model of isolated impurities (Fig. 6.3), which is
within the numerical uncertainty.

6.4 Conclusion

In conclusion, we have demonstrated that the central hypothesis of the
scaling theory of quantum transport, the existence of one-parameter scal-
ing, holds in graphene. The scaling flow which we find (green dotted curve
in Fig. 6.1) is qualitatively different both from what would be expected for
conventional electronic systems (red dashed curve) and also from what has
been predicted [120] for graphene (black solid curve). Our scaling flow has
no fixed point, meaning that the conductivity of undoped graphene keeps
increasing with increasing disorder in the absence of intervalley scatter-
ing. The fundamental question “what is the limiting conductivity σ∞ of
an infinitely large undoped carbon monolayer” has therefore three different
answers: σ∞ = 1/π in the absence of any disorder [115, 116], σ∞ = ∞
with disorder that does not mix the valleys (this chapter), and σ∞ = 0
with intervalley scattering [36, 37].

After the work described in this chapter was finished similar conclusions
have been reported by Nomura, Koshino, and Ryu [122].
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