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Chapter 5

Mesoscopic Spin Hall Effect

5.1 Introduction

The novel and rapidly expanding field of spintronics is interested in the cre-
ation, manipulation, and detection of polarized or pure spin currents [90].
The conventional methods of doing spintronics are to use magnetic fields
and/or ferromagnets as parts of the creation-manipulation-detection cycle,
and to use the Zeeman coupling and the ferromagnetic-exchange interac-
tions to induce the spin dependency of transport. More recently, ways
to generate spin accumulations and spin currents based on the coupling
of spin and orbital degrees of freedom have been explored. Among these
proposals, much attention has been focused on the spin Hall effect (SHE),
where pure spin currents are generated by applied electric currents on
spin-orbit (SO) coupled systems. Originally proposed by Dyakonov and
Perel [29, 91], the idea was resurrected by Hirsch [30] and extended to crys-
tal SO field (the intrinsic SHE) by Sinova et al. [31] and Murakami [92].
The current agreement is that the SHE vanishes for bulk, k-linear SO cou-
pling for diffusive two-dimensional electrons [32, 93, 94]. This result is
however specific to these systems [95], and the SHE does not vanish for
impurity-generated SO coupling, two-dimensional hole systems with either
Rashba or Dresselhaus SO coupling, and for finite-sized electronic sys-
tems [93, 95]. These predictions have been, to some extent, confirmed by
experimental observations of edge spin accumulations in electron [96, 97]
and hole [98] systems, and electrical detection of spin currents via ferro-
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magnetic leads [99–101].
Most investigations of the SHE to date focused on disordered con-

ductors with spin-orbit interaction, where the disorder-averaged spin Hall
conductivity was calculated using either the Kubo formalism or a diffusion
equation approach [30, 31, 94, 102, 32, 93, 103, 92, 95]. Few numerical
works alternatively used the scattering approach to transport [104] to cal-
culate the average spin Hall conductance of explicitly finite-sized samples
connected to external electrodes. These investigations were however re-
stricted to tight-binding Hamiltonians with no or weak disorder in simple
geometries [105–107]. The data of Ref. 108 in particular suggest that diffu-
sive samples with large enough SO coupling exhibit universal fluctuations
of the spin Hall conductanceGsH with rms[GsH] ≈ 0.18e/4π. These numer-
ical investigations call for an analytical theory of the SHE in mesoscopic
systems, which we provide here.
We analytically investigate the DC spin Hall effect in mesoscopic cav-

ities with SO coupling. We calculate both the ensemble-average and
the fluctuations of the transverse spin current generated by a longitu-
dinal charge current. Our approach is based on random matrix theory
(RMT) [60], and is valid for ballistic chaotic and mesoscopic diffusive sys-
tems at low temperature, in the limit when the spin-orbit coupling time
is much shorter than the mean dwell time of the electrons in the cavity,
τso � τdwell. We show that while the transverse spin current is generically
nonzero for a typical sample, its sign and amplitude fluctuate universally,
from sample to sample or upon variation of the chemical potential with
a vanishing average. We find that for a typical ballistic chaotic quantum
dot, the transverse spin current corresponds to slightly less than one excess
open channel for one of the two spin species. These analytical results are
confirmed by numerical simulations for a stroboscopic model of a ballistic
chaotic cavity.
In the ballistic regime, contributions to the SO coupling arise from the

crystal field and confinement potentials. In analogy with diffusive sys-
tems, the SHE originating from the crystal field as well as the asymmetry
of the confinement potential in the out of plane direction (i.e. the Rashba
term) can be thought of as the intrinsic effect, while in plane confinement
potentials generate extrinsic contributions to the SHE. Although the bal-
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Figure 5.1. Ballistic quantum dot connected to four electrodes. The longitudi-
nal bias V induces a charge current through terminals 1 and 2, while the voltages
V3,4 are adjusted such that no charge current flows through the transverse leads
3 and 4. Spin-orbit coupling is active only in the gray region.

ance between the two effects modifies nonuniversal properties such as the
spin-orbit time, it does not affect the universal features described in this
Letter.

5.2 Scattering Approach

We consider a ballistic chaotic quantum dot coupled to four external elec-
trodes via ideal point contacts, each with Ni open channels (i = 1, . . . 4).
The geometry is sketched in Fig. 5.1. Spin-orbit coupling exists only in-
side the dot, and the electrochemical potentials in the electrodes are spin-
independent. A bias voltage V is applied between the longitudinal elec-
trodes labeled 1 and 2. The voltages V3 and V4 are set such that no net
charge current flows through the transverse electrodes 3 and 4. We will
focus on the magnitude of the spin current through electrodes 3 and 4, in
the limit when the openings to the electrodes are small enough, and the
spin-orbit coupling strong enough that τso � τdwell.
We write the spin-resolved current through the i-th electrode as [104]

Iσ
i =

e2

h

∑
j,σ′

T σ,σ′
ij (Vi − Vj). (5.1)
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The spin-dependent transmission coefficients are obtained by summing
over electrode channels

T σ,σ′
i,j =

∑
m∈i

∑
n∈j

|tm,σ;n,σ′ |2, (5.2)

i.e. tm,σ;n,σ′ is the transmission amplitude for an electron initially in a
spin state σ′ in channel n of electrode j to a spin state σ in channel m

of electrode i. The transmission amplitudes t are the elements of the
2NT × 2NT scattering matrix S, with NT =

∑4
i=1 Ni.

We are interested in the transverse spin currents I
(z)
i = I↑i −I↓i , i = 3, 4,

under the two constraints that (i) charge current vanishes in the transverse
leads, I↑i + I↓i = 0, i = 3, 4 and (ii) the charge current is conserved,
I1 = −I2 = I. From Eq. (5.1), transport through the system is then
described by the following equation⎛

⎜⎝
2J

J
(z)
3

J
(z)
4

⎞
⎟⎠ = G

⎛
⎜⎝1/2

Ṽ3

Ṽ4

⎞
⎟⎠ , (5.3)

where

G =

⎛
⎜⎝2N1 − T (0)

11 + 2N2 − T (0)
22 + T (0)

12 + T (0)
21 T (0)

23 − T (0)
13 T (0)

24 − T (0)
14

T (z)
32 − T (z)

31 −T (z)
33 −T (z)

34

T (z)
42 − T (z)

41 −T (z)
43 −T (z)

44

⎞
⎟⎠

(5.4)
and the transverse voltages (in units of V ) read

Ṽ3 =
1
2
T (0)

34 (T (0)
42 − T (0)

41 ) + (2N4 − T (0)
44 )(T (0)

32 − T (0)
31 )

T (0)
34 T

(0)
43 − (2N3 − T (0)

33 )(2N4 − T (0)
34 )

, (5.5a)

Ṽ4 =
1
2
T (0)

43 (T (0)
32 − T (0)

31 ) + (2N3 − T (0)
33 )(T (0)

42 − T (0)
41 )

T (0)
34 T

(0)
43 − (2N3 − T (0)

33 )(2N4 − T (0)
34 )

, (5.5b)

and we defined the dimensionless currents I = e2V J/h. We introduced
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generalized transmission probabilities

T (μ)
ij =

∑
m∈i,n∈j

Tr[(tmn)†σ(μ)tmn], μ = 0, x, y, z, (5.6)

where σ(μ) are Pauli matrices (σ(0) is the identity matrix) and one traces
over the spin degree of freedom.

5.3 Random Matrix Theory

We calculate the average and fluctuations of the transverse spin currents
J

(μ)
i , μ = x, y, z within the framework of RMT. Accordingly, we replace
the scattering matrix S by a random unitary matrix, which, in our case
of a system with time reversal symmetry (absence of magnetic field) and
totally broken spin rotational symmetry (strong spin-orbit coupling), has
to be taken from the circular symplectic ensemble1 (CSE) [60, 41]. We
rewrite the generalized transmission probabilities T (μ)

ij as a trace over S

T (μ)
ij = Tr [Q(μ)

i SQ
(0)
j S†], (5.7)

[Q(μ)
i ]mα,nβ =

{
δmn σ

(μ)
αβ ,

∑i−1
j=1 Nj < m ≤ ∑i

j=1 Nj ,

0, otherwise.

Here, m and n are channel indices, while α and β are spin indices. The
trace is taken over both set of indices.

Averages, variances, and covariances of the generalized transmission
probabilities (5.7) over the CSE can be calculated using the method of
Ref. 17. For the average transmission probabilities, we find

〈T (μ)
ij 〉 =

2δμ0

NT − 1/2

(
NiNj −

1
2
Niδij

)
, (5.8)

1We assume that the SO coupling parameters are sufficiently nonuniform, so that
SO cannot be removed from the Hamiltonian by a gauge transformation, see Ref. 41.
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while variances and covariances are given by

〈δT (μ)
ij δT (ν)

kl 〉 =
4δμν

NT (2NT − 1)2(2NT − 3)

{
NiNj(NT − 1)(2NT − 1)(δikδjl + δilδjkδμ0)

+ (NiNkδijδkl − 2NiNkNlδij − 2NiNjNkδkl + 4NiNjNkNl)δμ0 (5.9)

−NiNT (2NT − 1)δijkl + (2NT − 1)
[
NiNlδijk + NiNkδijlδμ0

+ NiNj(δikl + δjklδμ0)−NiNjNl(δik + δjkδμ0)−NiNjNkδμ0(δil + δjl)
]}

,

where δT (μ)
ij = T (μ)

ij − 〈T (μ)
ij 〉.

Because the transverse potentials Ṽ3,4 are spin-independent, they are
not correlated with T (μ)

ij . Additionally taking Eq. (5.8) into account, one
concludes that the average transverse spin current vanishes (i = 3, 4),

〈J (μ)
i 〉 =

1
2
〈T (μ)

i2 − T (μ)
i1 〉 −

∑
j=3,4

〈T (μ)
ij 〉〈Ṽj〉 = 0. (5.10)

However, for a given sample at a fixed chemical potential J
(μ)
i will in

general be finite. We thus calculate var [J (μ)
i ]. We first note that 〈Ṽ3,4〉 =

(N1−N2)/2(N1 +N2), and that var [Ṽ3,4] vanishes to leading order in the
inverse number of channels. One thus has

var [J (μ)
i ] =

1
4

∑
j=1,2

var[T (μ)
ij ]− 1

2
covar[T (μ)

i1 , T (μ)
i2 ] (5.11)

+
∑

j=3,4

{
var[T (μ)

ij ]〈Ṽj〉2 + covar[T (μ)
i1 − T (μ)

i2 , T (μ)
ij ]〈Ṽj〉

}

+ 2 covar[T (μ)
i3 , T (μ)

i4 ]〈Ṽ3〉〈Ṽ4〉.

From Eqs. (5.9) and (5.11) it follows that

var [J (μ)
i ] =

4NiN1N2(NT − 1)
NT (2NT − 1)(2NT − 3)(N1 + N2)

. (5.12)

Eqs. (5.10) and (5.12) are our main results. They show that, while the
average transverse spin current vanishes, it exhibits universal sample-to-
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sample fluctuations. The origin of this universality is the same as for
charge transport [60], and relies on the fact expressed in Eq. (5.9) that to
leading order, spin-dependent transmission correlators do not scale with
the number of channels. The spin current carried by a single typical sample
is given by rms[J (μ)

i ] × e2V/h, and is thus of order e2V/h in the limit of
large number of channels. In other words, for a given sample, one spin
species has of order one more open transport channel than the other one.
For a fully symmetric configuration, Ni ≡ N , the spin current fluctuates
universally for large N , with rms[Iz

3 ] � (e2V/h)/
√

32. This translates into
universal fluctuations of the transverse spin conductance with rms[GsH] =
(e/4π

√
32) ≈ 0.18(e/4π) in agreement with Ref. 108.

5.4 Numerical Simulation

In the setup of Ref. 108 the universal regime is not very large and thus
it is difficult to unambiguously identify it. Moreover, in the same setup
all four sides of a square lattice are completely connected to the external
leads (see inset to Fig. 1 in Ref. 108). Because of this geometry, there are
paths connecting longitudinal to transverse leads that are much shorter
than the elastic mean free path. It is well known that such paths con-
tribute nonuniversally to the average conductance. We therefore present
numerical simulations in chaotic cavities to further illustrate our analytical
predictions (5.10) and (5.12).
We model the electronic dynamics inside a chaotic ballistic cavity by

the spin kicked rotator of chapter 2. Averages were performed over 35
values of K in the range 41 < K < 48, 25 values of ε uniformly distributed
in 0 < ε < 2π, and 10 different lead positions l(k). We set the strength of
Kso such that τso = τdwell/1250, and fixed values ofM = 640 and l0 = 0.2.
Our numerical results are presented in Fig. 5.2. Two cases were consid-

ered, the longitudinally symmetric (N1 = N2) and asymmetric (N1 
= N2)
configurations. In both cases, the numerical data fully confirm our pre-
dictions that the average spin current vanishes and that the variance of
the transverse spin current is universal, i.e. it does not depend on N for
large enough value of N . In the asymmetric case N4 = 2N3, the variance
of the spin current in lead 4 is twice as big as in lead 3, giving further
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Figure 5.2. Average and variance of the transverse spin current vs. the number
of modes. Left panel: longitudinally symmetric configuration with N1 = N2 =
2N3 = 2N4 = 2N ; right panel: longitudinally asymmetric configuration with
N2 = N4 = 2N1 = 2N3 = 2N . In both cases the total number of modes
NT = 6N . The solid (dashed) lines give the analytical prediction (5.10) [(5.12)]
for the mean (variance) of the spin currents. Empty diamonds correspond to
〈J (μ)

i 〉, circles to var [J (μ)
3 ] and triangles to var [J (μ)

4 ].

confirmation to Eq. (5.12).

5.5 Conclusion

We have calculated the average and mesoscopic fluctuations of the trans-
verse spin current generated by a charge current through a chaotic quan-
tum dot with SO coupling. We find that, from sample to sample, the spin
current fluctuates universally around zero average. In particular, for a fully
symmetric configurationNi ≡ N , this translates into universal fluctuations
of the spin conductance with rms[GsH] = (e/4π

√
32) ≈ 0.18(e/4π). This

universal value is in agreement with the universality observed in the recent
simulations in the diffusive regime [108].


