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Chapter 4

Degradation of Electron-Hole
Entanglement by Spin-Orbit
Coupling

4.1 Introduction

Spin-orbit coupling is one of the sources of degradation of spin entangle-
ment that has been extensively investigated for electron pairs confined to
two quantum dots [75]. In that context the spin-orbit coupling induces
dephasing by coupling the electron spins via the orbital motion to fluctu-
ating electric fields in the environment (due to lattice vibrations or gate
voltage fluctuations). The coupling of the spins to the environment is
needed for entanglement degradation because the spin-orbit coupling by
itself amounts to a local unitary transformation of the electron states in
the two quantum dots, which cannot change the degree of entanglement.

The characteristic feature of these quantum dots is that they are single-
channel conductors with a conductance G that is small compared to the
conductance quantum e2/h. This implies in particular that the width of
the energy levels is much smaller than the mean level spacing. At low
voltages and temperatures there is then only a single accessible orbital
mode. This is the main reason that spin-orbit coupling by itself cannot
degrade the spin entanglement.
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Figure 4.1. Multi-channel conductor containing a tunnel barrier. The applied
voltage creates electron-hole pairs (solid and open circles) at opposite side of the
barrier, whose spin state is maximally entangled. As the pair moves through the
leads, the spin and orbital degrees of freedom become entangled by the spin-orbit
coupling, degrading the spin entanglement upon tracing out the orbital degrees
of freedom.

In a multi-channel conductor the situation is altogether different. Fly-
ing qubits in a multi-channel conductor can lose their entanglement as a
result of spin-orbit coupling even in the absence of electric field fluctu-
ations, because the large number of orbital degrees of freedom can play
the role of an environment. This mechanism is the electronic analog of
the loss of polarization entanglement by polarization-dependent scattering
in quantum optics [76–78]. Fully-phase-coherent spin-orbit coupling can
degrade the spin entanglement by reducing the pure spin state to a mixed
spin density matrix — which typically has less entanglement than the pure
state. Here we investigate this mechanism in the context of electron-hole
entanglement in the Fermi sea [27]. Apart from the practical significance
for the observability of the entanglement, this study provides a test for
a theory of entanglement transfer based on the “isotropy approximation”
that the spin state has no preferential quantization axis.

The system we consider, a multi-channel conductor containing a tunnel
barrier, is schematically depicted in Fig. 4.1. The applied voltage V cre-
ates, at each tunnel event, a maximally entangled electron-hole pair [79].
Spin-orbit coupling in the leads entangles the spin and orbital degrees of
freedom. The spin state (obtained by tracing out the orbital degrees of
freedom) is degraded from a pure state to a mixed state. The degree of en-
tanglement of the spin state decreases and can vanish for strong spin-orbit
coupling. We consider two cases. In the first case the leads are diffusive
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wires while in the second case we model the leads as two chaotic cavities.
Although the first case is our primary interest, we include the second case
in order to test our approximate analytical calculations against an exact
numerical simulation of the spin kicked rotator (cf. chapter 2).

The outline of this chapter is as follows. In Sec. 4.2 we calculate the
density matrix of the electron-hole pairs in the regime where the tunnel
conductance Gtunnel is � e2/h. This is the regime in which the electron-
hole pairs form well separated current pulses, so that their entanglement
can be measured easily [27]. (For Gtunnel � e2/h different electron-hole
pairs overlap in time, complicating the detection of the entanglement.)
From the density matrix we seek, in Sec. 4.3, the degree of entanglement
as measured by the concurrence [80]. For our analytical treatment we
approximate the density matrix by the spin-isotropic Werner state [81].
The absence of a preferential basis in spin space is a natural assumption
for a disordered or chaotic system, but it needs to be tested. For that
purpose we use the spin kicked rotator, which as explained in Ch. 2 is a
stroboscopic model of a chaotic cavity. We conclude in Sec. 4.4.

4.2 Calculation of the Electron-Hole State

4.2.1 Incoming and Outgoing States

Since the scattering of both orbital and spin degrees of freedom is elastic,
we may consider separately each energy E in the range (EF, EF+eV ). For
ease of notation we will omit the energy arguments in what follows. We
assume zero temperature, so the incoming state is

|Ψin〉 =
2N∏
ν=1

a†L,ν |0〉 . (4.1)

The creation operators a†L,ν , ν = 1, . . . , 2N (acting on the true vacuum |0〉)
occupy the ν-th channel incoming from the left. The index ν labels both
the N orbital and two spin degrees of freedom. The 2N channels incom-
ing from the right (creation operators a†R,ν) are unoccupied in the energy
range (EF, EF + eV ). We collect the creation and annihilation operators
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in vectors aL = (aL,1, aL,2, . . . , aL,2N ), aR = (aR,1, aR,2, . . . , aR,2N ).

The annihilation operators bL,ν and bR,ν of the outgoing channels are
related to those of the incoming channels by the scattering matrix(

bL

bR

)
= S

(
aL

aR

)
=

(
r t′

t r′

)(
aL

aR

)
. (4.2)

The 4N × 4N unitary scattering matrix S is decomposed into 2N ×
2N transmission and reflection matrices t, t′, r, and r′. Substitution into
Eq. (4.1) gives the outgoing state

|Ψout〉 =
2N∏
ν=1

(
2N∑

ν′=1

[
b†L,ν′rν′ν + b†R,ν′tν′ν

])
|0〉 . (4.3)

4.2.2 Tunneling Regime

We expand the outgoing state (4.3) in the small parameter ε = (h/e2)Gtunnel,
neglecting terms of order ε and higher. Since t, t′ are O(ε1/2) while r, r′

are O(ε0), we keep only terms linear in t and t′. The result is

|Ψout〉 = |0F〉+
∑
ν,μ

(tr†)νμb
†
R,νbL,μ |0F〉+O(ε), (4.4)

where |0F〉 is the unperturbed Fermi sea,

|0F〉 = det(r)
2N∏
ν=1

b†L,ν |0〉 . (4.5)

Since rr† = 11 − O(ε), we may assume that r is a unitary matrix to the
order in ε considered. The determinant det(r) is therefore simply a phase.
The state (4.4) is a superposition of the unperturbed Fermi sea and a single
electron-hole excitation, consisting of an electron in channel ν at the right
and a hole in channel μ at the left.

As a check, we verify that the multi-channel result (4.4) reduces for
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N = 1 to the single-channel result

∣∣ΨN=1
out

〉
= |0F〉+

1
det(r)

∑
ν,μ

(tσ2r
Tσ2)νμb

†
R,νbL,μ |0F〉+O(ε)

of Ref. 79. We use the identity [82]

σ2r
Tσ2 = det(r)r†, (4.6)

which holds for any 2 × 2 unitary matrix r (with σ2 a Pauli matrix).
Hence tσ2r

Tσ2 = det(r)tr† + O(ε). Substitution into the single-channel
result (4.6) indeed gives the multi-channel result (4.4) for N = 1.

4.2.3 Spin State of the Electron-Hole Pair

The spin state of the electron-hole pair is obtained from |Ψout〉 by project-
ing out the vacuum contribution and then tracing out the orbital degrees
of freedom. This results in the 4× 4 density matrix

ραβ,γδ =
1
w

N∑
n,m=1

(tr†)nα,mβ(tr†)∗nγ,mδ, (4.7)

with w = tr(t†tr†r). Here n and m label the orbital degrees of freedom
and α, β, γ, and δ label the spin degrees of freedom.

We assume that the tunnel resistance is much larger than the resistance
of the conductors at the left and right of the tunnel barrier. The trans-
mission eigenvalues Tn (eigenvalues of tt†) are then determined mainly by
the tunnel barrier and will depend only weakly on the mode index n. We
neglect this dependence entirely, so that Tn = T for all n, the tunneling
conductance being given by Gtunnel = (2e2/h)NT .

To obtain a simpler form for the density matrix we use the polar de-
composition of the scattering matrix

S =

(
r t′

t r′

)
=

(
u 0
0 v

)(√
1− T

√
T√

T −
√

1− T

)(
u′ 0
0 v′

)
, (4.8)

where u, u′, v, and v′ are unitary matrices and T = diag(T1, T2, . . . , T2N ).
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For mode independent Tn’s the matrix T equals T times the unit matrix.
Hence

tr† =
√

(1− T )T U (4.9)

is proportional to the 2N ×2N unitary matrix U = vu†. Substitution into
the expression (4.7) for the density matrix gives

ραβ,γδ =
1

2N

N∑
n,m=1

Unα,mβU
∗
nγ,mδ. (4.10)

If there is no spin-orbit coupling, the matrix U is diagonal in the spin
indices: Unα,mβ = Ũnmδαβ with Ũ an N ×N unitary matrix. The density
matrix then represents the maximally entangled Bell state |ψBell〉,

(ρBell)αβ,γδ =
1
2
δαβδγδ = |ψBell〉 〈ψBell| , (4.11)

|ψBell〉 =
1√
2

(|↑〉e |↑〉h + |↓〉e |↓〉h) , (4.12)

with |σ〉e,h an electron (e) or hole (h) spin pointing up (σ =↑) or down
(σ =↓). The state (4.11) is a pure state (ρ2

Bell = ρBell). Spin-orbit coupling
will in general degrade ρ to a mixed state, with less entanglement.

4.3 Entanglement of the Electron-Hole Pair

We quantify the degree of entanglement of the mixed electron-hole state (4.7)
by means of the concurrence C (which is in one-to-one correspondence with
the entanglement of formation and varies from 0 for a nonentangled state
to 1 for a maximally entangled state). Following Wootters [80] the con-
currence is given by

C = max
{

0,
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4

}
, (4.13)

where the λi’s are the eigenvalues, in decreasing order, of the matrix prod-
uct ρ(σ2 ⊗ σ2)ρ∗(σ2 ⊗ σ2).

In the next two subsections we calculate the concurrence numerically
for a chaotic cavity using Eq. (4.7) and analytically with an isotropy ap-
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proximation for the density matrix.

4.3.1 Numerical Simulation

We calculate the concurrence C numerically for the case that the scattering
at the left and at the right of the tunnel barrier is chaotic. (The more
experimentally relevant case of diffusive scattering will be considered in
the next subsection.)

The total scattering matrix S of the system (shown in Fig. 4.2) is
constructed from the scattering matrix of the tunnel barrier,

ST =

(√
1− T 11N

√
T 11N√

T 11N −
√

1− T 11N

)
, (4.14)

and the scattering matrices S1 and S2 of the cavity on each side of the
tunnel barrier. (We denote by 11N the N ×N unit matrix.) We expand S
in the small parameter T and keep terms up to order O(T 1/2) = O(ε1/2),
consistent with the expansion of the outgoing state (4.4). This results in

r = r1 + t′1
1

1− r′1
t1 +O(T ), (4.15a)

t = t2
1

1 + r2

√
T

1
1− r′1

t1 +O(T 3/2), (4.15b)

and similar expressions for r′ and t′ which we do not need.
The scattering matrices S1 and S2 of the chaotic cavities are con-

structed from two spin kicked rotators. We briefly explain in Appendix 4.A
how we use the results of chapter 2 to make a connection with the work
in this chapter.

The resulting ensemble-averaged concurrence as a function of the ratio
τdwell/τ

′
so of the mean dwell time τdwell and spin-orbit coupling time τ ′so

is shown in Fig. 4.3. The dwell time τdwell is the average time between a
tunnel event and the escape of the particle into the left or right reservoir.
The time τ ′so is the exponential relaxation time of the spin-up and spin-
down densities towards the equilibrium distribution1. (Both time scales

1In chapter 2 we calculate the spin relaxation time for spin amplitudes τso = 2τ ′
so.
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Figure 4.2. Two chaotic cavities with scattering matrices S1 and S2 connected
by a tunnel barrier with scattering matrix ST . The chaotic cavities are modeled
by two spin kicked rotators.

are calculated in Appendixes 4.A and 4.B.) For a single channel, N = 1,
the concurrence is unity independent of spin-orbit coupling strength since
the trace over the orbital degrees of freedom leaves ρ unchanged. From
Fig. 4.3 (bottom panel) we see that for small N the concurrence saturates
at a nonzero value for large τdwell/τ ′so:

lim
τdwell/τ ′

so→∞
〈C〉 =

⎧⎪⎪⎨
⎪⎪⎩

1, N = 1,

0.15, N = 2,

0.01, N = 3.

(4.16)

The limiting value for N = 2 is close to that obtained in Ref. 83 in a
single chaotic cavity. For N � 5 the ensemble-averaged concurrence is
negligible for large τdwell/τ ′so. The dependence of 〈C〉 on τdwell/τ ′so becomes
N independent for N � 15.

4.3.2 Isotropy Approximation

To obtain an analytical expression for the entanglement degradation we
approximate the density matrix by the spin-isotropic Werner state [81].
The absence of a preferential basis in spin space means that the density
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Figure 4.3. Ensemble averaged concurrence of the electron-hole pair scattered
by two chaotic cavities, as a function of the spin-orbit coupling rate 1/τ ′so for
different number of modes, N , in the leads. The data points are calculated from
the spin kicked rotator; the lines are guides to the eye. The upper right panel
shows that the results become N -independent for large N while the bottom panel
shows that for small N the concurrence saturates at a finite value.

matrix ρ for an electron-hole pair is invariant under the transformation

(V ⊗ V ∗)ρ(V † ⊗ V T ) = ρ (4.17)

for all 2×2 unitary matrices V . This transformation rotates the spin basis
of the electron (acted on by V ) and the hole (acted on by V ∗) by the same
rotation angle. The isotropy relation (4.17) constrains the density matrix
to be of the Werner form

ρW =
1
4
(1− ξ)114 + ξ |ψBell〉 〈ψBell| , −1

3
≤ ξ ≤ 1, (4.18)
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with |ψBell〉 the Bell state defined in Eq. (4.12). The concurrence of the
electron-hole Werner state is given by

C(ρW) =
3
2

max
(

0, ξ − 1
3

)
. (4.19)

The parameter ξ characterizing the Werner state can be calculated
from

ξ = tr [(σ3 ⊗ σ3)ρ] = ρ11 − ρ22 − ρ33 + ρ44. (4.20)

Only diagonal elements of the density matrix appear in the expression (4.20)
for ξ. These can be calculated semiclassically in the N -independent limit
N 
 1 (see Appendix 4.B), leading to the following expressions for the
concurrence:

〈C〉diffusive =

{
3
2 [
∑∞

n=0 ξn]2 − 1
2 , 1.5 τdwell < τ ′so,

0, 0 < τ ′so < 1.5 τdwell,

ξn =
4π(−1)n(2n+ 1)

π2(2n+ 1)2 + 8τdwell/τ ′so
, (4.21a)

〈C〉chaotic =

⎧⎨
⎩

3
2(1 + τdwell/τ

′
so)

−2 − 1
2 ,

τdwell√
3−1

< τ ′so,

0, 0 ≤ τ ′so ≤ τdwell√
3−1

.
(4.21b)

In Fig. 4.4 we plot the analytical result (4.21) for the concurrence. The
two cases of diffusive and chaotic scattering differ only slightly. The initial
slopes are the same,

〈C〉diffusive = 〈C〉chaotic (4.22)

= 1− 3τdwell/τ ′so +O(τdwell/τ ′so)
2.

The critical spin-orbit coupling strengths, beyond which the concurrence
vanishes, are different: τ criticalso = 1.5 τdwell for diffusive scattering and
τ criticalso = τdwell/(

√
3− 1) = 1.37 τdwell for chaotic scattering.

We also compare in Fig. 4.4 the analytical results in the chaotic case
from this section with the numerical results from the previous section. The
agreement is quite good for large N , where the semiclassical analytics is
expected to hold.
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Figure 4.4. Ensemble averaged concurrence as a function of spin-orbit coupling
rate 1/τ ′so. The solid and dashed curves are the analytical results (4.21) in the
case of diffusive wires and chaotic cavities, respectively, on each side of the tun-
nel barrier. These analytical curves use the isotropy approximation. The data
points are from the numerical simulation in the chaotic case without the isotropy
approximation (spin kicked rotator of Fig. 4.3, with N = 30).

4.4 Conclusion

Figure 4.4 summarizes our main findings: The effect of spin-orbit coupling
on the degree of spin-entanglement of the electron-hole pairs produced at
a tunnel barrier depends strongly on the ratio of the dwell time τdwell and
spin-orbit coupling time τ ′so. Even though τdwell and τ ′so each depend sensi-
tively on the nature of the dynamics (diffusive or chaotic) the dependence
of the concurrence on the ratio τdwell/τ

′
so is insensitive to the nature of the

dynamics. The initial decay (4.22) is the same and the critical spin-orbit
coupling strength (beyond which the entanglement vanishes) differs by less
than 10%. This has the useful experimental implication that a single pa-
rameter suffices to quantify the amount of entanglement degradation by
spin-orbit coupling.

We have tested our analytical theory using a computer simulation for
the case of chaotic dynamics. (The close similarity to the diffusive results
suggests that this test is representative.) Analytics and numerics are in
good agreement, differing by less than 10% in the regime N 
 1 of large
conductance G where the semiclassical analytics applies. While the semi-
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classical approximation is controlled by the small parameter 1/N (or, more
generally, h/e2G), the isotropy approximation has no small parameter that
controls the error. Its use is justified by the reasonable expectation that
an ensemble of disordered or chaotic systems should have no preferential
quantization axis for the electron and hole spins. It is gratifying to see
that the numerics supports this expectation.

The standard method of experimentally verifying the presence of en-
tanglement is by demonstrating violation of Bell inequalities. In optics this
is achieved by measuring coincidence rates of photons by photodetectors
(i.e. by counting photons) in different polarization bases. In the solid state
one cannot simply count electrons, but rather needs to formulate the Bell
inequalities in terms of correlators of spin currents (= spin noise) [84–86].
This has so far not been accomplished experimentally. Thus, the isotropy
approximation that has been used here as a way to simplify the calculation
of the concurrence, also has an experimental implication [87]: By relying
on spin isotropy the concurrence can be obtained directly from correlators
of time averaged spin currents. Our demonstration of the accuracy of the
isotropy approximation may motivate experimentalists to try this “poor
man’s method” of entanglement detection — since average spin currents
have been measured [88] while spin noise has not.

Appendix 4.A A Few Words on the Use of the
Spin Kicked Rotator

In this chapter we have compared numerical simulations with the spin
kicked rotator to analytical calculations. In order to do so, we need to
know the time scales τ ′so and τdwell in the spin kicked rotator. This was
implicit in our comparison with random-matrix theory in section 2.3. In
this appendix we give this relation a little more explicitly.

In chapter 2 we considered Eqs. (2.32) and (2.33) as giving the relation
between the model parameters of the spin kicked rotator to the physical
time scale τso = 2τ ′so. One can also take these equations to define τso for
the model. In the spin kicked rotator � = 1 and Δ = 2π/M . Inserting
into Eq. (2.33) and using the expression for Kc from (2.32) we find the
spin-orbit coupling time τso (in units of the stroboscopic period) in the
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model to be determined by the parameter Kso through

τso = 2τ ′so =
32π2

K2
soM

2
. (4.23)

The mean dwell time τdwell (in units of the stroboscopic period) is
similarly given by

τdwell =
M

N
=

2π
NΔ

, (4.24)

where we have taken into account the fact that N of the 2N channels are
closed by the tunnel barrier (cf. Fig. 4.2). Notice that the mean dwell time
is a classical quantity, while N and Δ separately are quantum mechanical
quantities.

We now use the spin kicked rotator to generate two sets scattering
matrices (in our simulations we choose K = 41 (fully chaotic), M = 640,
and l0 = 0.2). From the reflection and transmission matrices (4.15) the
density matrix (4.7) is obtained, from which the concurrence (4.13) fol-
lows. The concurrence is averaged over 20 different quasienergies ε, ε′ and
over 20 different lead positions P , P ′ in the two cavities (assumed to be
independent scatterers). Results are shown in Fig. 4.3.

Appendix 4.B Calculation of Spin Correlators

The diagonal elements of the density matrix appearing in the expres-
sion (4.20) for the Werner parameter ξ represent spin correlators,

ρ11 = P↑↑, ρ22 = P↑↓, ρ33 = P↓↑, ρ44 = P↓↓. (4.25)

Here Pσσ′ is the probability that the outgoing electron has spin σ and the
outgoing hole has spin σ′. To calculate these correlators, it is convenient to
first consider only those electrons that exit after a time t and those holes
that exit after a time t′. The time-resolved correlator Pσσ′(t, t′) gives the
desired Pσσ′ after integration over time,

Pσσ′ =
∫ ∞

0
dt

∫ ∞

0
dt′Pσσ′(t, t′)Pdwell(t)Pdwell(t′), (4.26)
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weighted by the dwell time distribution Pdwell (we assume that the dwell
times at the left and right of the tunnel barrier are independent and iden-
tically distributed).

As initial condition we take

Pσσ′(0, 0) =
1
2
δσσ′ , (4.27)

corresponding to the spin state immediately after the tunnel event. Spin-
orbit coupling randomizes the spin with a rate 1/τ ′so, so that Pσσ′(t, t′)
decreases in time according to the rate equations

d

dt
Pσσ′(t, t′) =

1
2τ ′so

∑
σ′′

[Pσ′′σ′(t, t′)− Pσσ′(t, t′)], (4.28a)

d

dt′
Pσσ′(t, t′) =

1
2τ ′so

∑
σ′′

[Pσσ′′(t, t′)− Pσσ′(t, t′)]. (4.28b)

The solution of the rate equations (4.28) with the initial condition (4.27)
is

P↑↑(t, t′) = P↓↓(t, t′) =
1
4

+
1
4
e−(t+t′)/τ ′

so , (4.29a)

P↑↓(t, t′) = P↓↑(t, t′) =
1
4
− 1

4
e−(t+t′)/τ ′

so . (4.29b)

To complete the calculation we need the dwell time distribution. For
a chaotic cavity this has the well known exponential form [89]

Pdwell,chaotic =
1

τdwell
e−t/τdwell , (4.30)

with
τdwell =

2π�

NΔ
(4.31)

inversely proportional to the mean level spacing Δ of Kramers degenerate
levels in the cavity.

For the diffusive wire (diffusion constant D) we determine Pdwell by
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Figure 4.5. Dwell time distribution in a diffusive wire (solid line) and chaotic
cavity (dashed line).

solving the one-dimensional diffusion equation(
∂

∂t
−D ∂2

∂x2

)
p(x, t) = 0, 0 < x < L, (4.32)

with initial and boundary conditions

∂p

∂x
(0, t) = 0, p(L, t) = 0, p(x, 0) = δ(x). (4.33)

Here p(x, t) is the classical probability of finding a particle at point x at
time t. The boundary conditions represent reflection by the high tunnel
barrier at x = 0 and absorption by the reservoir at x = L.

The probability that the particle is still in the wire at time t is given
by

N(t) =
∫ L

0
p(x, t)dx, (4.34)

and therefore the dwell time distribution is

Pdwell = −dN(t)
dt

. (4.35)

Solution of the diffusion equation by expansion in eigenstates gives the
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result in the form

Pdwell, diffusive =
π

2τdwell

∞∑
n=0

(−1)n(2n+ 1)e−(2n+1)2 π2

8
t

τdwell . (4.36)

The mean dwell time is

τdwell =
L2

2D
. (4.37)

The dwell time distributions for the chaotic and diffusive dynamics are
compared in Fig. 4.5.

Collecting results we arrive at the expressions (4.21) for the concurrence
given in the main text.


