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Chapter 3

How Spin-Orbit Coupling can
Cause Electronic Shot Noise

3.1 Introduction

Electrical conduction is not much affected typically by the presence or
absence of spin-orbit coupling. A familiar example [5, 42, 44, 7], the
crossover from weak localization to weak anti-localization with increasing
spin-orbit coupling strength, amounts to a relatively small correction to
the classical conductance, of the order of the conductance quantum e2/h.
The relative smallness reflects the fact that the spin-orbit coupling energy
Eso is much smaller than the Fermi energy EF , basically because Eso is a
relativistic correction (cf. Ch. 1).

In this chapter we identify an effect of spin-orbit coupling on the
electrical current that has a quantum mechanical origin (like weak anti-
localization), but which is an order-of-magnitude effect rather than a cor-
rection. The effect is the appearance of shot noise in a ballistic chaotic
quantum dot with a large number N of modes in the point contacts.
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3.2 The Effect of Spin-Orbit Coupling on the Ehren-
fest Time

According to recent theory [62–65] and experiment [66], the shot noise
without spin-orbit coupling is suppressed exponentially ∝ exp(−τE/τdwell)
when the Ehrenfest time τE � λ−1

L lnN becomes greater than the mean
dwell time τdwell of an electron in the quantum dot. (The coefficient λL is
the Lyapunov exponent of the classical chaotic dynamics.) The suppression
occurs because electrons follow classical deterministic trajectories up to τE

(in accord with Ehrenfest’s theorem, hence the name “Ehrenfest time”). If
τE > τdwell an electron wave packet entering the quantum dot is either
fully transmitted or fully reflected, so no shot noise appears [67].
The electron spin of ±1

2� remains quantum mechanical in the limit
N → ∞. In the presence of spin-orbit coupling the quantum mechanical
uncertainty in the spin of the electron is transferred to the position, causing
a breakdown of the deterministic classical dynamics and hence causing shot
noise. The mechanism for the spin-orbit-coupling-induced shot noise is
illustrated in Fig. 3.1 (cf. also Sec. 1.4). The key ingredient is the splitting
of a trajectory upon reflection with a hard boundary [26].
Whether a boundary is “hard” or “soft” depends on the relative mag-

nitude of the penetration depth ξ into the boundary and the spin-orbit
precession length lso = hvF /Eso � λF EF /Eso. A soft boundary has
ξ � lso, so the spin evolves adiabatically during the reflection process
[26, 68] and the electron remains in the same spin band, without splitting
of the trajectory. In the opposite regime ξ � lso of a hard boundary the
spin is scattered into the two spin bands by the reflection process. The
energy splitting Eso of the spin bands at the Fermi level amounts to a dif-
ference δp⊥ � Eso/vF of the component of the momentum perpendicular
to the boundary, and hence to a splitting of the trajectories by an angle
δφso � δp⊥/pF � λF /lso. (A precise calculation of the splitting, which
depends on the angle of incidence, will be given later.)
Because of the chaotic dynamics, the angular opening δφso(t) � (λF /lso)

×eλLt of a pair of split trajectories increases exponentially with time t —
until they leave the dot through one of the two point contacts after a time
T . The splitting will not prevent the trajectories to exit together through
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Figure 3.1. Splitting of trajectories by spin-orbit coupling in an electron billiard.
(The dotted arrows indicate the spin bands, with ± spins.) The splitting produces
shot noise if not all trajectories can exit through the same opening.

the same point contact if δφso(T ) < W/L, with W the width of the point
contact and L the diameter of the (two-dimensional) quantum dot. The
time

Tso = λ−1
L ln(Wlso/LλF ) (3.1)

at which δφso(Tso) = W/L is an upper bound for deterministic noiseless
dynamics due to spin-orbit coupling.

Dwell times shorter than Tso may yet contribute to the shot noise as
a result of diffraction at the point contact, which introduces an angular
spread δφpc � 1/N � λF /W in the scattering states. The time

Tpc = λ−1
L ln(WN/L) (3.2)

at which this angular spread has expanded to W/L is an upper bound for
deterministic noiseless dynamics due to diffraction at the point contact
[63]. The smallest of the two times Tso and Tpc is the Ehrenfest time of
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this problem,
τE = λ−1

L ln
[
(W/L) min(N, lso/λF )

]
, (3.3)

separating deterministic noiseless dynamics from stochastic noisy dynam-
ics. (By definition, τE ≡ 0 if the argument of the logarithm is < 1.)
Since the distribution of dwell times P (T ) ∝ exp(−T/τdwell) is exponen-
tial, a fraction

∫∞
τE

P (T ) dt = exp(−τE/τdwell) of the electrons entering the
quantum dot contributes to the shot noise.
Following this line of argument we estimate the Fano factor F (ratio

of noise power and mean current) as [62] F = 1
4 exp(−τE/τdwell), hence

F =
1
4

(
λF L

lsoW

)1/λLτdwell

if
λF L

W
, ξ < lso < W. (3.4)

The upper bound on lso indicates when diffraction at the point contact
takes over as the dominant source of shot noise, while the two lower bounds
indicate when full shot noise has been reached (Fano factor 1/4) and when
the softness of the boundary (penetration depth ξ) prevents trajectory
splitting by spin-orbit coupling.
Eq. (3.4) should be contrasted with the known result in the absence of

spin-orbit coupling [62, 63]:

F =
1
4

(
L

NW

)1/λLτdwell

if
λF L

W
< W < lso. (3.5)

Clearly, the role of the channel number N in determining the shot noise is
taken over by the ratio lso/λF once lso becomes smaller than W .

3.3 Numerical Simulation in a Stadium Billiard

We support our central result (3.4) with computer simulations, based on
the semiclassical theory of Refs. 69–71. In the limit λF → 0 at fixed
lso, L, W a description of the electron dynamics in terms of classical tra-
jectories is appropriate. For the spin-orbit coupling term we take the
Rashba Hamiltonian,

HRashba = (Eso/2pF )(pyσ1 − pxσ2), (3.6)
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Figure 3.2. (a) Dependence of the Fano factor on the spin-orbit coupling
strength for different widths of the opening in the billiard. The data points
are calculated from Eq. (3.10). The linear fits in the log-log plot (dashed lines)
confirm the predicted scaling log10 F ∝ log10(λF /lso). (b) Filled circles: slope
γ = d log10 F/d log10(λF /lso) extracted from Fig. 3.2a. The empty circles are the
theoretical prediction γ = 1/λLτdwell.
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with Pauli matrices σ1 and σ2. The two spin bands correspond to eigen-
states of the spin component perpendicular to the direction of motion p̂ in
the x− y plane (dotted arrows in Fig. 3.1). The spin direction n̂± of a ±
spin is defined by n̂± × p̂ = ±ẑ (cf. Eq. (1.83)). The corresponding wave
vectors are

k± =
√

k2
F + k2

so ∓ kso, (3.7)

with kso = Eso/2vF � = π/lso.

We consider the stadium-shaped billiard shown in Fig. 3.1 with hard-
wall confinement (ξ → 0). Since λF � L we can neglect the curvature
of the boundary when calculating the splitting of the trajectories by spin-
orbit coupling [26]. The two reflection angles χ± ∈ (0, π/2) of the split
trajectory, measured relative to the inward pointing normal, are related
by conservation of the momentum component parallel to the boundary,

k+ sin χ+ = k− sin χ−. (3.8)

An incident trajectory of with a − spin is not split near grazing incidence,
if χ− > arcsin(k+/k−) ≈ π/2 − 2

√
kso/kF. Away from grazing incidence

the probability Rσσ′ = |rσσ′ |2 for an electron incident with σ′ spin at an
angle χσ′ to be reflected with with σ spin at an angle χσ is determined by
the 2× 2 unitary reflection matrix

r =

(
r++ r+−
r−+ r−−

)
, (3.9a)

r++ =
eiχ+ − e−iχ−

e−iχ+ + e−iχ−
, r−− =

eiχ− − e−iχ+

e−iχ+ + e−iχ−
, (3.9b)

r+− = −2√cos χ+ cos χ−
e−iχ+ + e−iχ−

= r−+. (3.9c)

The reflection matrix refers to a basis of incident and reflected plane waves
that carry unit flux perpendicular to the boundary, calculated using the
proper spin-dependent velocity operator [72].

By following the classical trajectories in the stadium billiard, and split-
ting them upon reflection with probabilities Rσσ′ , we calculate the prob-
ability f(x, y, p̂) that an electron at position x, y with direction p̂ of its
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Figure 3.3. Dependence of the Fano factor on W/L for different fixed val-
ues of λF /lso. The data points follow closely the predicted scaling log10 F ∝
(W/L) log10(λF L/lsoW ).

momentum originated from the upper left opening1. The Fano factor is
then given by [69–71]

F =
∫

dΩ f(1− f)
2
∫

dΩ f
, (3.10)

where dΩ = dx dy dp̂.
The results of the simulations are presented in Figs. 3.2 and 3.3. We

first varied λF /lso at fixed W/L to test the scaling F ∝ (λF /lso)1/λLτdwell

predicted by Eq. (3.4). We kept λF /lso � 1, to ensure that the classical
Lyapunov exponent λL = 0.86 vF /L [73] and mean dwell time τdwell ∝
L2/vF W (calculated numerically) are not affected significantly by the spin-
orbit coupling. The log-log plot in Fig. 3.2a confirms the scaling log10 F ∝
log10(λF /lso). The slope γ, plotted in Fig. 3.2b as a function ofW/L (filled
circles), is close to the predicted theoretical value γ = 1/λLτdwell (empty

1It is equivalent and computationally more efficient to use Birkhoff coordinates s, p‖,
with s the position along the boundary and p‖ the component of the momentum parallel
to the boundary. Then Eq. (3.10) holds with dΩ = ds dp‖.
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circles) if the ratioW/L becomes sufficiently small. There is no adjustable
parameter in this comparison of theory and simulation. We then tested the
scaling F ∝ (L/W )1/λLτdwell at fixed λF /lso. The data points in Fig. 3.3
all fall approximately on a straight line, confirming the predicted scaling
law log10 F ∝ (W/L) log10(λF L/lsoW ).
This completes our test of the scaling (3.4) in the regime lso � W .

The scaling (3.5), in the opposite regime lso � W , was verified in Ref. 50
using the quantum kicked rotator. We have tried to observe the crossover
from the scaling (3.4) to (3.5) in that model, but were not successful —
presumably because we could not reach sufficiently large system size.

3.4 Conclusion

In conclusion, we have identified and analyzed a mechanism by which spin-
orbit coupling in a ballistic system can produce electronic shot noise. The
origin of the current fluctuations is a quantum mechanical effect, the split-
ting of trajectories, which persists in the limit of classical orbital dynamics.
Since the strength of the Rashba spin-orbit coupling can be varied by a
gate voltage in a two-dimensional electron gas [74], the most natural way
to search for the effect would be to measure the shot noise as a function
of the spin-orbit precession length lso. One would then see an increase
in the Fano factor with decreasing lso, starting when lso drops below the
point contact widthW . Since the splitting of trajectories requires lso to be
larger than the boundary penetration depth ξ, the noise would go down
again when lso drops below ξ (assuming ξ � W ). This non-monotonic
dependence of the noise on the spin-orbit coupling strength would be an
unambiguous signature to search for in an experiment. In order to observe
the effect an experimental system should be sufficiently clean to guaran-
tee that the noise induced by quantum short-range disorder [71] is weak
enough.


