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Chapter 2

Stroboscopic Model of
Transport Through a
Quantum Dot with Spin-Orbit
Coupling

2.1 Introduction

Electrical conduction in semiconductor heterostructures is affected by the
spin degree of freedom through spin-orbit coupling. In quantum dots
with chaotic scattering a statistical approach is appropriate. The spin-
orbit Hamiltonian (of either Rashba or Dresselhaus form) has a special
structure, that of a non-Abelian vector potential. By a gauge transfor-
mation Aleiner and Fal’ko identified all possible symmetry classes and
described the crossovers between them by means of random-matrix theory
(RMT) [41]. This RMT has been extended by Brouwer et al. to the case
that the spin-orbit coupling is nonuniform and thus the gauge transforma-
tion cannot be made [42, 43]. Experiments are in good agreement with
the predictions of the theory [44, 45]. Recently a semiclassical theory of
quantum dots with spin-orbit coupling has been developed [7, 8]. Exact
quantum mechanical calculations of such “Rashba billiards” have also been
reported [46]. In this chapter we will focus on the regime of strong chaos,
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where RMT and semiclassics agree.

We present a fully quantum mechanical computer simulation to test
the theory. In the case of spinless chaotic quantum dots, the stroboscopic
model known as the quantum kicked rotator has been proven to be quite
successful [47–53]. This model exploits the fact that, although the phase
space of the open quantum dot is four-dimensional, the dynamics can be
described, on time scales greater than the time of flight across the dot, as a
mapping between points on a two-dimensional Poincaré surface of section.
The kicked rotator gives a map on a two-dimensional phase space that has
the same phenomenology as open quantum dots.

In this chapter we extend the model of the open kicked rotator to
include spin-orbit coupling in a perpendicular magnetic field. We begin
by describing the known model for a closed chaotic quantum dot [54] with
spin-orbit coupling in Sec. 2.2.1, before discussing the opening up of the
model in Sec. 2.2.2. The relation of the model to RMT is given in Sec. 2.3.
This relation will give us a mapping between the model parameters and
the microscopic parameters of a chaotic quantum dot. Numerical results
for the weak (anti)-localization peak and its dependence on magnetic field
and spin-orbit coupling strength are presented in Sec. 2.4 and compared
with the analytical predictions from Sec. 2.3.

2.2 Description of the Model

2.2.1 Closed System

The symplectic kicked rotator has been introduced by Scharf [54] and
studied extensively in Refs. 55–57. We summarize this known model of the
closed system before proceeding to the open system in the next subsection.

The symplectic kicked rotator describes an electron moving along a
circle with moment of inertia I0, kicked periodically at time intervals τ0

with a kicking strength that is a function of position and spin. We choose
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units such that τ0 ≡ 1 and � ≡ 1. The Hamiltonian H is given by [54, 55]

H =
1
2
(p + p0)2 + V (θ)

∞∑
n=−∞

δs(t− n), (2.1a)

V (θ) = K cos(θ + θ0) + Kso(σ1 sin 2θ + σ3 sin θ). (2.1b)

We have introduced the symmetrized delta function δs(t) = [δ(t + ε) +
δ(t− ε)]/2, with ε an infinitesimal. The dimensionless angular momentum
operator p = −i�eff∂/∂θ, with �eff = �τ0/I0 the effective Planck constant,
is canonically conjugate to the angle θ ∈ [0, 2π). The kicking potential
V (θ) contains the Pauli spin matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0
0 −1

)
. (2.2)

Potential scattering is parameterized by the kicking strength K and spin-
orbit coupling by Kso. We choose smoothly varying functions of θ, cor-
responding to a smooth potential. Disorder can be added via a rapidly
varying function of θ, cf. Ref. 58.

Spin rotation symmetry is broken if Kso �= 0. The generalized time-
reversal symmetry [54]

T : θ �→ −θ, p �→ p, σi �→ −σi, t �→ −t, (2.3)

is preserved if θ0 = 0 and is broken if θ0 ∈ (0, π). A nonzero p0 ensures
that the Hamiltonian has no other unitary or antiunitary symmetries [54].

Notice that the roles of p and θ are interchanged in T compared to the
conventional time-reversal symmetry of the Rashba Hamiltonian and the
spinless kicked rotator, which reads

T ′ : θ �→ θ, p �→ −p, σi �→ −σi, t �→ −t. (2.4)

For this reason time-reversal symmetry in the symplectic kicked rotator is
broken by a displacement of θ, rather than by a displacement of p as in
the spinless kicked rotator [59].

The stroboscopic time evolution of a wave function is governed by the
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Floquet operator

F = T exp
[
− i

�eff

∫ t0+1

t0

H(t)dt

]
, (2.5)

where T denotes time ordering of the exponential. In the range [−1/2, 1/2)
only t0 = 0 and t0 = −1/2 preserve T -symmetry for θ0 = 0. We will find
it convenient to choose t0 = −1/2 for numerical calculations and t0 = 0
for analytical work.

For p0 = 0 the reduction of the Floquet operator to a discrete finite
form is obtained for special values of �eff, known as resonances [59]. For
�eff = 4π/M , with M an integer, the Floquet operator is represented
by an M × M matrix of quaternions (cf. Sec. 1.2.2). For this value of
�eff the momentum is restricted to p ∈ [0, 4π), i.e. one can think of the
Floquet operator as describing a map on a torus. For t0 = −1/2 the matrix
elements in the p-representation are given by

Fll′ = (ΠUXU †Π)ll′ , l, l′ = 0, 1, . . . , M − 1, (2.6a)

Πll′ = δll′e
−iπl2/M11, (2.6b)

Ull′ = M−1/2e−i2πll′/M11, (2.6c)

Xll′ = δll′e
−i(M/4π)V (2πl/M). (2.6d)

For t0 = 0 one has instead

F = UX1/2U †Π2UX1/2U †. (2.7)

These maps (2.6) and (2.7) are equivalent to the Hamiltonian (2.1)
with p0 = 0. A nonzero p0 may be introduced into the map by replacing
Π with [59]

Πll′ = δll′e
−iπ(l+l0)2/M11, l0 =

p0M

4π
. (2.8)

This map is not rigorously equivalent to the Hamiltonian (2.1), but it has
the same classical limit (for Kso = 0) [51].

The generalized time-reversal symmetry (2.3) is expressed by the iden-
tity

F = FR, if θ0 = 0. (2.9)
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The superscript R denotes the dual of a quaternionic matrix (as in Sec. 1.2.2),

FR ≡ σ2FT σ2.

Here T denotes the transpose in the basis of eigenstates of p (p-representa-
tion). To verify Eq. (2.9) note that σ2σ

T
i σ2 = −σi and that the transpose

in p-representation takes θ to −θ.

2.2.2 Open System

To describe electrical conduction we open up the kicked rotator, following
the general scheme of Refs. 47–50. We model a pair of N -mode ballis-
tic point contacts that couple the quantum dot to electron reservoirs, by
imposing open boundary conditions in a subspace of Hilbert space repre-
sented by the indices l

(μ)
k . The subscript k = 1, 2, . . . N , with N = N1+N2,

labels the modes (both spin directions), and the superscript μ = 1, 2 labels
the point contacts. The N ×M quaternionic projection matrix P is given
by

Pkk′ =

{
11 if k′ = l

(μ)
k ,

0 otherwise.
(2.10)

The matrices P and F together determine the scattering matrix

S(ε) = P (e−iε −FQT Q)−1FP T , (2.11)

where ε ∈ [0, 2π) is the quasi-energy and QT Q = 1 − P T P . One readily
verifies that S is unitary.

We need to ensure that the introduction of the point contacts does not
break the T -symmetry

S(ε) = SR(ε), if θ0 = 0, (2.12)

or for non-zero θ0 the more general duality relation

S(θ0) = SR(−θ0). (2.13)

This is assured by choosing the absorbing boundary conditions in a strip
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Figure 2.1. Location of the absorbing boundary conditions (grey rectangles) in
the classical phase space of the open kicked rotator. To ensure that the openings
do not break the time reversal symmetry they are oriented parallel to the p-axis in
the spinless kicked rotator (left panel) and parallel to the θ-axis in the symplectic
kicked rotator (right panel).

parallel to the θ-axis, rather than parallel to the p-axis as in the spinless
kicked rotator (cf. Fig. 2.1). The difference is due to the exchange of
the roles of p and θ in the time-reversal symmetry operation, compare
Eqs. (2.3) and (2.4).

By grouping together the Nμ indices belonging to the same point con-
tact, the N×N quaternionic matrix S can be decomposed into 4 sub-blocks
containing the quaternionic transmission and reflection matrices,

S =

(
r t′

t r′

)
. (2.14)

The value of ε is arbitrary; we will take ε = 0 in the analytical calculations
and average over ε in the numerics. The T -symmetry (2.12) requires that
r = σ2r

T σ2, r′ = σ2r
′T σ2, and t′ = σ2t

T σ2.

The conductance G follows from the Landauer formula

G =
e2

h
Tr tt†, (2.15)

where the trace Tr is over channel indices as well as spin indices. Unitarity
of S ensures that Tr tt† = Tr t′t′†. For θ0 = 0 the eigenvalues of tt†

are doubly degenerate due to the T -symmetry (Kramers degeneracy, cf.



2.3 Relation to Random-Matrix Theory 51

Sec. 1.2.5). It will prove useful to write the Landauer formula in the
form [42, 43]

G =
2e2

h

N1N2

N
− e2

h
TrSΛS†Λ ≡ G0 + δG, (2.16)

with Λ a diagonal matrix having diagonal elements

Λjj =

{
N2/N j = 1, . . . , N1,

−N1/N j = N1 + 1, . . . , N.
(2.17)

The term G0 = (2e2/h)N1N2/N is the classical conductance and the term
δG, of order e2/h, is the quantum correction from the weak localization
effect.

2.3 Relation to Random-Matrix Theory

Random-matrix theory (RMT) gives universal predictions for the quantum
correction δG in Eq. (2.16). We calculate this quantity for the symplec-
tic kicked rotator and compare with RMT. This will give us the relation
between the parameters of the stroboscopic model and the microscopic
parameters of the quantum dot.

The three universality classes of RMT are labeled by β = 1, 2, 4,
with [60]

δGRMT =
β − 2
2β

e2

h
. (2.18)

In the absence of T -symmetry one has β = 2. In the presence of T -
symmetry one has β = 1 (4) in the presence (absence) of spin rotation
symmetry. We will investigate the three symmetry breaking transitions
β = 1→ 2, β = 1→ 4, and β = 4 → 2 in separate subsections.

2.3.1 β = 1 → 2 Transition

The β = 1 → 2 transition takes place in the absence of spin-orbit coupling
(Kso = 0). This transition was studied in Ref. 51 for the case that the
symmetry T ′ rather than T is broken. To fully characterize the model we
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need to reconsider this transition for the case of T -symmetry breaking.

For small θ0, cos(θ+θ0) ≈ cos θ−θ0 sin θ and the Floquet matrix (2.7)
takes the form

F(Kso = 0, θ0 → 0) = eθ0WF0e
θ0W , (2.19a)

W = UY U †, Yll′ = δll′i(KM/8π) sin(2πl/M). (2.19b)

Here F0 = F(Kso = 0, θ0 = 0) is unitary symmetric and W is real anti-
symmetric. The scattering matrix (2.11) (at ε = 0) becomes

S = T (1−F0R)−1F0T
′, (2.20a)

T = Peθ0W , (2.20b)

T ′ = eθ0W P T , (2.20c)

R = eθ0W QT Qeθ0W . (2.20d)

Substitution of S into Eq. (2.16) gives the conductance G.

To make contact with RMT we assume that F0 is a random matrix
from the circular orthogonal ensemble (COE), expand the expression for G

in powers of F0 and average F0 over the COE. In the regime 1 � N � M ,
we can perform the average over the unitary group with the help of the
diagrammatic technique of Ref. 17. Since Tr Λ = 0 only the maximally
crossed diagrams contribute to leading order in N . The result for the
average quantum correction becomes

〈δG〉 = −2e2

h
tr T †ΛT (T ′ΛT ′†)T 1

M − tr R†RT
. (2.21)

The factor of 2 comes from the spin degeneracy and the trace tr is over
channel indices only. The two remaining traces are evaluated in the limit
N, M →∞ at fixed N/M . We find

M−1tr T †ΛT (T ′ΛT ′†)T =
N1N2

N2

N

M
, (2.22)

M−1tr R†RT = 1−N/M − θ2
0(KM/4π)2(1−N/M). (2.23)
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Substitution into Eq. (2.21) gives the average quantum correction

〈δG〉 = −e2

h

2N1N2

N2

1
1 + (θ0/θc)2

, (2.24a)

θc =
4π
√

N

KM3/2
. (2.24b)

The RMT result has the same Lorentzian profile [61, 60]

δGRMT = −e2

h

2N1N2

N2

1
1 + (B/Bc)2

, (2.25a)

Bc = C
h

eL2

(
NLΔ
�vF

)1/2

, (2.25b)

with C a numerical constant of order unity, L =
√

A the size of the dot,
A the area of the dot, Δ = 2π�

2/mA the mean spacing of the Kramers
degenerate levels, and vF the Fermi velocity. Comparison of Eqs. (2.24)
and (2.25) allows us to identify

θ0/θc = B/Bc. (2.26)

2.3.2 β = 1 → 4 Transition

The β = 1 → 4 transition is realized by turning on spin-orbit coupling
(Kso) in the absence of a magnetic field (θ0 = 0). In this transition the
quaternionic structure of the Floquet matrix plays a role. The Floquet
matrix (2.7) has the form

F(Kso, θ0 = 0) = eKsoAF0e
KsoA, (2.27a)

A = U(σ1Y1 + σ3Y3)U †, (2.27b)

(Y1)ll′ = −δll′i(M/8π) sin(4πl/M), (2.27c)

(Y3)ll′ = −δll′i(M/8π) sin(2πl/M). (2.27d)

The matrix A is real antisymmetric and thus Ã = −A, where the tilde
denotes quaternion complex conjugation (cf. Sec. 1.2.2). The scattering
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matrix takes the same form (2.20a), but now with

T = PeKsoA, (2.28a)

T ′ = eKsoAP T , (2.28b)

R = eKsoAQT QeKsoA. (2.28c)

The average of F0 over the ensemble of unitary symmetric matrices
only involves the channel indices and not the spin indices. To keep the
quaternions in the correct order we adopt the tensor product notation of
Brouwer et al. [42, 43]. The average of δG over F0 gives, to leading order
in N ,

〈δG〉 =
e2

h

∑
μν

[
τ

tr E ⊗ Ẽ′

M11⊗ 11− tr R⊗ R̃
τ

]
μν;μν

, (2.29)

where τ = 1 ⊗ σ2, E = T †ΛT , and E′ = T ′ΛT ′†. The tensor product has
a backward multiplication in the second argument,

(a⊗ b)(c⊗ d) ≡ ac⊗ db, (2.30)

and the indices μ and ν are the spin indices.
The two traces are calculated in the limit Kso → 0, N, M → ∞ at

fixed N/M , leading to

M−1tr E ⊗ Ẽ′ =
N1N2

N2

N

M
11⊗ 11, (2.31a)

M−1tr R⊗ R̃ = (1−N/M)(1− 4K2
so(M/8π)2)11⊗ 11

+ 2K2
so(M/8π)2(1−N/M)(σ1 ⊗ σ1 + σ3 ⊗ σ3). (2.31b)

After substitution into Eq. (2.29) there remains a matrix structure that
can be inverted, resulting in

〈δG〉 =
e2

h

N1N2

N2

(
1− 2

1 + 2a2
− 1

1 + 4a2

)
, (2.32a)

a = Kso/Kc, Kc =
4π
√

2N

M3/2
. (2.32b)

The RMT result has the same functional form [42], with a2 = 2π�/NτsoΔ.
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Here τso is the spin-orbit coupling time. Thus we identify

Kso/Kc = (2π�/NτsoΔ)1/2. (2.33)

2.3.3 β = 4 → 2 Transition

In the presence of strong spin-orbit coupling (Kso � Kc) the Floquet
matrix takes for small θ0 the same form as in Eq. (2.19a) for Kso = 0, but
now F0 = F(Kso � Kc, θ0 = 0) is a unitary self-dual matrix rather than
a unitary symmetric matrix. We can repeat exactly the same steps as we
did for Kso = 0 but with F0 a random matrix in the circular symplectic
ensemble (CSE). We then average F0 over the CSE. This leads to

〈δG〉 =
e2

h

N1N2

N2

1
1 + (θ0/θc)2

, (2.34)

with θc as in Eq. (2.24b). The width of the Lorentzian is therefore the
same in the β = 1 → 2 and β = 4 → 2 transitions, in agreement with
RMT [60].

2.4 Numerical Results

The numerical technique we use is the same as has been used before for the
spinless kicked rotator [50, 51]. A combination of an iterative procedure
for matrix inversion and the fast-Fourier-transform algorithm allows for an
efficient calculation of the scattering matrix from the Floquet matrix.

The average conductance 〈G〉 was calculated with the Landauer for-
mula (2.15) by averaging over 60 different uniformly distributed quasi-en-
ergies and 40 randomly chosen lead positions. The quantum correction
〈δG〉 is obtained by subtracting the classical conductance G0. The numer-
ical data is shown in Figs. 2.2 and 2.3. The magnetic field parameter θ0 is
given in units of θc from Eq. (2.24b) and the spin-orbit coupling strength
parameter Kso is given in units of Kc from Eq. (2.32b). The solid lines
are the analytical predictions (2.24), (2.32), and (2.34) without any fitting
parameter.

The small difference between the data and the predictions can be at-
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Figure 2.2. Average quantum correction 〈δG〉 to the conductance as a function
of the T -symmetry breaking parameter θ0. The data points are for the symplectic
kicked rotator characterized by K = 41, M = 500, N1 = N2 = 10, l0 = 0.2.
The solid lines are the analytical predictions (2.24) and (2.34) in the absence
and presence of spin-orbit coupling. The dotted lines are the solid lines with a
vertical offset, to account for a difference between the predicted and actual value
of the classical conductance G0.

tributed to an uncertainty in the value G0 of the classical conductance.
A small vertical offset (corresponding to a change in G0 of about 0.1%)
can correct for this (dotted lines in Fig. 2.2). The strongly non-Lorentzian
lineshape seen by Rahav and Brouwer [52, 53] in the spinless kicked rotator
is not observed here.

2.5 Conclusion

We have presented a numerically highly efficient model of transport through
a chaotic ballistic quantum dot with spin-orbit coupling, extending the ear-
lier work on the spinless kicked rotator. Through a simple assumption of
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Figure 2.3. Average quantum correction 〈δG〉 to the conductance as a function
of spin-orbit coupling strength Kso at zero magnetic field. Other parameters are
the same as in Fig. 2.2. The solid line is the analytical prediction (2.32) for the
crossover from weak localization to weak anti-localization.

a random Floquet matrix we have derived analytical predictions for the
conductance of the model as a function of spin-orbit coupling strength
and magnetic field. The functional form of the conductance coincides with
random-matrix theory (RMT) and through this correspondence we obtain
a mapping from microscopic parameters to model parameters. Numerical
calculations are in good agreement with the analytical predictions.

In this chapter we have applied the model in a parameter regime where
the transport properties of the system are analytically known through
RMT, in order to test the validity of the model. In future work this
model may provide a starting point for studies of transport properties in
parameter regimes where RMT is known to break down. In certain cases,
for example in the study of the effect of a finite Ehrenfest time on weak
anti-localization, very large system sizes are required (cf. Refs. 52 and 53).
An efficient dynamical model, as the one presented in this chapter, is then
a valuable tool.
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