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Chapter 1

Introduction

In the center of Leiden there is a little park alongside a tranquil canal. On
the other side of the canal, facing the park, is a magnificent old building
that radiates history. The first hint towards its nature is the towering
name Kamerlingh Onnes that marks the buildings front face1. This is,
of course, the old physics building of the University of Leiden. Many
great minds have graced this place with their presence and one of them,
Paul Ehrenfest2, has a particularly strong influence on this thesis. This
influence, as we will discuss shortly, is both direct and indirect through
three of his students: Hendrik Anthony Kramers, George Uhlenbeck, and
Samuel Goudsmit (Fig. 1.1).

A few words about the contents of this thesis are, before revealing the
connection to Ehrenfest, in order. The word effects in the title, hints at a
certain diversity in the topics covered. In fact, in later chapters we will be
concerned with a number of seemingly unrelated topics including quantum

1Heike Kamerlingh Onnes received the Nobel Prize in Physics in 1913 “for his in-
vestigations on the properties of matter at low temperatures which led, inter alia, to
the production of liquid helium”. He discovered superconductivity with his student
Holst [1].

2It is fitting that it is Ehrenfest that takes the central stage in this story, for he was
a genuine scientist. Einstein supposedly said that “he was not merely the best teacher
in our profession whom I have ever known; he was also passionately preoccupied with
the development and destiny of men, especially his students. To understand others, to
gain their friendship and trust, to aid anyone embroiled in outer or inner struggles, to
encourage youthful talent – all this was his real element, almost more than his immersion
in scientific problems”.
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Figure 1.1. Left panel: The inventors of spin, George Uhlenbeck (left) and
Samuel Goudsmit (right), with Hendrik Kramers who first noticed a twofold
degeneracy in the solutions to the Schrödinger equation with spin: the Kramers
degeneracy. All three were students of Paul Ehrenfest (right panel) in Leiden.

chaos, electronic shot noise, electron-hole entanglement, spin Hall effect,
and (absence of) Anderson localization. While it certainly would be useful
to have an extensive introduction to all these different topics there simply
is not enough space to do them all justice (a brief introduction is given in
Sec. 1.4). Instead, in this introduction, the focus is on what brings all these
topics together in this thesis, namely spin-orbit coupling. In particular, we
will concentrate on some fundamental aspects of quantum transport in the
presence of spin-orbit coupling, the details of which are assumed known in
the literature but are not always easily found in textbooks.

Before going into details, it is unavoidable in a thesis so involved with
spin, to mention spintronics; if only as a means of motivation. Spintronics
is a large field whose name indicates the wish to do electronics with spins.
There are several technological reasons why one would want to do that,
and initial successes are a testimony to their validity. Let us, however, not
go down that road, but rather view the word spintronics as denoting the
drive towards a fundamental understanding of quantum transport of spins.
With this view it is difficult, for a physicist, not to get excited. The spin
has from its discovery by Uhlenbeck and Goudsmit (under the guidance of
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Ehrenfest3) tickled the imagination of physicists. Being purely quantum
mechanical some of its properties are plain puzzling, but it is the simplicity
of its description coupled with the richness of its physics that excites.

But let us not get too carried away, we were talking about spintronics.
Initially, much of the interest was in systems that combined ferromagnets
with metals or semiconductors. Later, interest grew in purely electronic
systems, in which one talks to the spin degree of freedom through spin-
orbit coupling. In this thesis we will be concerned with the latter type of
systems.

To set the stage we will in this introduction start by giving a general in-
troduction to spin and spin-orbit coupling in Sec. 1.1. Spin-orbit coupling
conserves time reversal symmetry. The consequences of time reversal have
thus to be taken into account. One particularly important consequence
is a degeneracy named after the third of Ehrenfest students, the Kramers
degeneracy. (We have now mentioned all the indirect influences of Ehren-
fest, his direct influence will be encountered in chapter 3 on the effect of
spin-orbit coupling on the Ehrenfest time4.) In Sec. 1.2 we give a detailed
account of time reversal symmetry and its consequences for the spectrum
and symmetries of Hamiltonians and scattering matrices.

In Sec. 1.3 we solve two model Hamiltonians, the Rashba Hamiltonian
and the single valley graphene Dirac Hamiltonian, whose solutions will be
useful in later chapters. Finally, in Sec. 1.4 we give a brief introduction to
each of the chapters of this thesis.

1.1 Spin and Spin-Orbit Coupling

It was after a detailed study of spectroscopic data that Uhlenbeck and
Goudsmit came to suggest that the electron has spin, an intrinsic angular

3Ehrenfest’s contribution, allowing his students to go ahead with a wild idea with the
words “you are both young enough to be able to afford a stupidity”, was crucial. About
the same time, Ralph Kronig had similar ideas, but the response of his supervisor,
Wolfgang Pauli, “it is indeed very clever but of course has nothing to do with reality”,
was in stark contrast to Ehrenfest’s.

4Strictly speaking, the Ehrenfest time does not come directly from Ehrenfest himself.
The Ehrenfest time τE is the time it takes a wavepacket to spread to a size on the order
of the system size. For times smaller then τE the center of the wavepacket and its group
velocity satisfy Ehrenfest’s theorem, thus the name.
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momentum that gives arise to a magnetic moment. Most physicists first
acquaintance with spin, however, is through a recount of the Stern-Gerlach
experiment [2]. Building on this familiarity, we will begin our discussion
by using a combination of the results of the experiment and classical argu-
ments to deduce the presence of the spin and a coupling of this spin to the
orbital motion. The same results are then obtained more rigorously from
the nonrelativistic limit of the Dirac equation. In turn, this leads us to
an analysis of the rotation properties of spin and the accompanying Berry
phase. We demonstrate the importance of this phase by considering its
role in weak (anti) localization. To complete this section, we sketch how
the spin-orbit coupling in semiconductors gives rise to the familiar Rashba
and Dresselhaus terms.

1.1.1 Spin and the Stern-Gerlach Experiment

With their experiment, Stern and Gerlach, established the following em-
pirical fact: The electron has an intrinsic magnetic moment μs which
takes on quantized values ±μB along any axis (μB = e�/2mc is the Bohr
magneton). This suggests the introduction of a quantum number σ = ±
such that the wavefunction of the electron can be represented by a two
component spinor

ψ(r) =

(
ψ+(r)
ψ−(r)

)
. (1.1)

Quite often the state of the electron factorizes, i.e. it can be written as
a direct product |ψ〉 ⊗ |χ〉 where |χ〉 is a state vector (two component
spinor) in the two dimensional Hilbert space of the spin. Any operator in
this two dimensional space (i.e. any 2 × 2 matrix5) can be written as a
linear combination of the 2× 2 unit matrix 11 and the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (1.2)

In particular, any vector operator is necessarily proportional to σ = (σ1, σ2, σ3).
What are the consequences of this empirical fact? Suppose our electron

5See also the section 1.2.2 on quaternions.
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is moving with velocity v in an electric field −eE = −∇V . Classically the
magnetic moment does not couple to the electric field. However, taking
into account relativistic effects, the electron sees in its rest frame a mag-
netic field, which to order (v/c)2 (with c the speed of light) is given by
B = −v ×E/c [3]. The interaction of the magnetic moment μs with this
magnetic field leads to a potential energy term

Vμs = −μs ·B = μs ·
v

c
×E =

1
ec

μs · v ×∇V. (1.3)

In an atom, the potential giving rise to the electric field is central V = V (r)
and

Vμs =
1
ecr

dV

dr
μs · v × r = − 1

emcr
μs ·L, (1.4)

with L = r × p the orbital angular momentum and m the electron mass.
Including this term in the quantum description, the conservation of an-
gular momentum seems to be broken (since the components of L do not
commute). To rescue the conservation of angular momentum, the electron
needs to have an intrinsic angular momentum S. In analogy with orbital
moments, we expect the magnetic moment μs to be proportional to the
angular momentum

μs = −
gsμB

�
S. (1.5)

Since S is a vector operator in spin space it is necessarily a multiple of σ.
The interaction term Vμs is thus proportional to σ ·L. The only possible
choice for S such that the full angular momentum J = L+S is conserved
turns out to be [2]

S =
�

2
σ. (1.6)

The magnetic moment becomes μs = −(gs/2)μBσ and since the eigenval-
ues of the Pauli matrices are ±1 we need to take the g factor gs = 2 to
explain the observed quantization of μ.

With a careful consideration of their experiment we have learned a lot
from Stern and Gerlach. We have been able to deduce the existence of the
spin and we have seen how the interaction of the magnetic moment with
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the electric field can alternatively be seen as a spin-orbit coupling

Vμs =
�

2m2c2
1
r

dV

dr
σ ·L, (1.7)

In a noncentral potential this spin-orbit coupling is

Vμs = −
�

2m2c2
σ · p×∇V. (1.8)

This is still not the full story. In addition to the effect just described we
need to take into account a term that has a purely kinematic origin. To be
able to use the above results we need to be in the rest frame of the electron.
Since the electron is accelerating the reference frame is constantly chang-
ing. This amounts to successive Lorentz boosts. However since Lorentz
boosts do not form a subgroup in the group of Lorentz transformations
(which includes boosts and rotations) two successive boosts are in general
not equivalent to another boost but rather to a boost followed by a ro-
tation. There is thus an additional precession, Thomas precession, that
needs to be taken into account. This turns out to give a contribution of
the same form as (1.8) but with opposite sign and half the amplitude [3].
The full spin-orbit coupling term is thus

Vso = −
�

4m2c2
σ · p×∇V. (1.9)

1.1.2 Spin-Orbit Coupling from the Dirac Equation

Last section painted a nice physical picture of the origin of spin-orbit
coupling. The arguments, however, are a bit handwavy and alternate
between being classical, quantum and relativistic. A more satisfactory,
albeit less physically transparent, derivation can be obtained by taking
the nonrelativistic limit of the Dirac equation. This procedure leads to
the Pauli equation. In this section we sketch the derivation following the
more general derivation given by Sakurai [4].

In the standard representation, and in Hamiltonian form, the Dirac
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equation is H |ψ〉 = E |ψ〉 with [4]

H =

(
0 cp · σ

cp · σ 0

)
+

(
mc2 0
0 −mc2

)
. (1.10)

Writing |ψ〉 = (ψA, ψB)T we have two coupled equations for ψA and ψB.
Using the second equation to eliminated ψB we obtain

p · σ c2

E +mc2
p · σψA = (E −mc2)ψA. (1.11)

In the presence of a potential V , we make the substitution E → E − V .
We are interested in the nonrelativistic limit, so we write E = mc2 + ε

with ε� mc2. Further assuming that |V | � mc2 we can expand

c2

E − V +mc2
=

1
2m

(
1− ε− V

2mc2
+ · · ·

)
. (1.12)

Since mv2/2 + V ∼ ε, the second term is seen to be of order (v/c)2. To
zeroth order, using6 (p · σ)(p · σ) = p2, we simply obtain the Schrödinger
equation (

p2

2m
+ V

)
ψ = εψ. (1.13)

The reason this derivation works is that to zeroth order in (v/c), ψB = 0.
In fact, from (1.10) we have to first order in (v/c)2

ψB =
p · σ
2mc

ψA. (1.14)

In other words, in this limit ψA is equivalent to the Schrödinger wave-
function ψ. When going to next order, more care must be taken. The
probabilistic interpretation of Dirac theory requires the normalization∫

(ψ†AψA + ψ†BψB) = 1. (1.15)

6As a special case of the more general formula (σ ·A)(σ ·B) = A ·B + iσ · (A×B).
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To first order, using (1.14), this gives

∫
ψ†A

(
1 +

p2

4m2c2

)
ψA = 1. (1.16)

Apparently, to have a normalized wave function, we should use ψ =
[1 + p2/(8m2c2)]ψA. Substituting this into the Dirac equation, and us-
ing the expansion (1.12), we obtain after some rearrangement [4] the Pauli
equation(

p2

2m
+ V − p4

8m3c2
− �

4m2c2
σ · p×∇V +

�2

8m2c2
∇2V

)
ψ = εψ. (1.17)

All the terms in this equation have a ready made interpretation. The third
term is simply a relativistic correction to the kinetic energy, and the last
term gives a shift in energy. The fourth term is the spin-orbit coupling
term (1.9) we derived heuristically in the last section. It is gratifying to
obtain the same result from the Dirac equation.

1.1.3 Spin and Rotations

Not only does the spin-orbit coupling emerge naturally from the Dirac
equation, the spin itself is buried within the equation. Recall that the
Dirac equation can be obtained with little more then Lorentz invariance.
To discuss how spin arises in the Dirac equation we need to briefly discuss
the theory of rotations. Since we will learn important facts about the
rotations of spins at the same time, it is a worthwhile endeavor.

Infinitesimal rotations in a three dimensional space, of an angle δϕ
about an axis n̂, are given by

UR = 11− i

�
δϕ n̂ · J , (1.18)

with J = (Jx, Jy, Jz) three operators which are called the generators of
infinitesimal rotations. From the properties of rotations one deduces that
the components of J satisfy the commutation relations [2]

[Ji, Jj ] = i�εijkJk, (1.19)
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with εijk the fully antisymmetric tensor, or Levi-Civita symbol7. These
are just the commutation relations of an angular momentum. In partic-
ular, rotations of a spin half particles are given by (1.18) with J = S.
Integrating (1.18) and using the relation (1.6) of S to σ, finite rotations
of spin are given by

Us = exp
(
−iϕ

2
n̂ · σ

)
= cos

ϕ

2
− in̂ · σ sin

ϕ

2
. (1.20)

To obtain the second equality, we used that8 (n̂ · σ)2 = 1. As a conse-
quence, we notice that a rotation of 2π does not bring you back to the
same state, but rather minus the state, i.e. Us(2π) = −1.

On first acquaintance this minus sign is odd. The mathematical expla-
nation, that SU(2) is a twofold covering of SO(3), is only illuminating once
you know what it means. Physicists like to picture the spin as living on
the Bloch sphere. This description, however, does not contain the Berry’s
phase since a rotation of 2π brings you back to the same point on the Bloch
sphere. The reason, of course, is that in constructing the Bloch sphere,
a global phase factor of a general spin state was ignored. For an isolated
spin this global phase factor does not lead to any observable effect, but
there are cases when it is important (see below).

One way to picture what is going on, is to introduce a “Möbius-Bloch
sphere”9. To explain what that means, start by picturing the normal
Möbius strip, embedded in three dimensional space. Imagine walking along
the strip with a cap on your head carrying an arrow that points upwards.
Now you walk along the strip and after walking half of the strip, you are
back at the same point in the three dimensional embedding space. In
this space, however, you are on the “other side” of the strip, your arrow
pointing in the opposite direction10 (minus sign). If you were to identify
the point you are on now, with the point that you started from, you would
have a circle and you find you have gone around the full circle. But if you
do not identify the point you find that you need to walk another full circle

7εijk = 1(−1) for an (odd) even permutation of (123) and zero otherwise.
8A consequence of the relation in footnote 6 and |n̂|2 = 1.
9We are not aware of a strict mathematical equivalence between SU(2) and a

“Möbius-Bloch sphere”. It is introduced here for ease of visualization.
10Other side within quotations marks, since the Möbius strip has only one side.
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to come back to your original point of departure. Generalizing this to the
sphere, you imagine any great circle on the sphere to be a Möbius strip,
and the fact that rotation about 2π gives a minus sign can be visualized11.

How does spin come about in the Dirac equation? As already men-
tioned the Dirac equation is constructed to be Lorentz invariant. In de-
manding this invariance, in particular one can consider infinitesimal ro-
tations. One finds that for the Dirac equation to be invariant the Dirac
spinors need to transform in a certain way. Equating this transformation
with general statement (1.18) about angular momentum as generators of
rotation, one can simply read of the angular momentum of the electron. In
addition to the orbital angular momentum L one indeed finds an intrinsic
angular momentum12 given by S = �/2σ as we had concluded earlier from
the Stern-Gerlach experiment.

We conclude this section with an example of the effect of the (Berry’s)
phase obtained from a rotation of the spin. The effect we consider is the
weak (anti)localization [5], which is a quantum correction to the classical
conductance of a system arising from quantum interference. To understand
the effect, imagine injecting a particle into a scattering region and ask
about the probability for it to return. Let us start with the spinless case.
The probability amplitude of reflection back in the same mode can be
written as a sum over classical paths γ starting and ending at the same
point [6]

r =
∑

γ

Aγ exp
(
i

�
Sγ

)
. (1.21)

Sγ is the action along γ and Aγ is a classical weight. The reflection prob-
ability is

R = rr† =
∑
γ,γ′

AγA∗γ′ei/�(Sγ−Sγ′ ). (1.22)

In the classical limit, � → 0, the exponential is quickly oscillating, and

11Incidentally, your shoulder has the same property. Imagine holding a cup filled
with coffee in one hand. Now rotate it by an angle 2π without spilling it. You find that
to obtain that goal you needed to twist your arm which is now inverted (it acquired a
“minus sign”). With some skill you can rotate the cup another 2π in the same direction,
to find yourself in your initial configuration.

12Or more exactly, an angular momentum that in the nonrelativistic limit reduces to
the Pauli equation spin [4].
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Figure 1.2. A schematic representation of a trajectory (red) and it time reverse
(blue). The spin dynamics are assumed adiabatic such that the spin just adjusts
itself to be always in an eigenstate. As the (time reversed) trajectory is followed
the spin is seen to rotate about an angle of π (−π). This rotation of the spin
leads to an extra phase causing a destructive interference between the two paths.

only the paths with Sγ = Sγ′ contribute to the sum. In particular, the
classical reflection probability is obtained by including only the terms with
γ′ = γ,

Rcl =
∑

γ

|Aγ |2. (1.23)

In the presence of time reversal symmetry, the time reversed path γ̃ has
the same action and weight factor as γ. Thus, in addition to the classical
contribution, we have the extra term

Rwl =
∑
γ=γ̃

|Aγ |2 = Rcl. (1.24)

We thus see that the total reflection probability R = Rcl + Rwl = 2Rcl is
enhanced compared to the classical reflection probability. This leads to a
smaller conductance, and the correction term is referred to as weak localiza-
tion. Essentially the path γ and its time reverse γ̃ interfere constructively
to enhance the reflection probability.

When we have spin-orbit coupling there is more to the story. Most of
the time the spin-orbit coupling is weak, so we can ignore the effect it has
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on trajectories. The spin-orbit coupling does however rotate the spin of
the electron as it moves around the classical path. One then finds that
the only modification to the reflection amplitude r, is an introduction of
a spin phase factor [7, 8] Kγ

r =
∑

γ

KγAγ exp
(
i

�
Sγ

)
. (1.25)

The reflection probability becomes

R = rr† =
∑
γ,γ′

Mγ,γ′AγA∗γ′ei/�(Sγ−Sγ′ ). (1.26)

with Mγ,γ′ = KγK
∗
γ′ a spin modulation factor. Kγ is essentially13 just

eiαγ with αγ the phase picked up by rotating the spin as we go along
the path γ. Therefore, Mγ,γ = 1 and the classical contribution to the
reflection amplitude Rcl is the same as in the spinless case. If the spin-
orbit coupling is strong enough the spin will simply adiabatically follow
the path. The contribution of the time reversed pair of paths gets an extra
minus sign Mγ,γ̃ = −1. The reason is that following the path γ the spin
is rotated by π, while for the path γ̃ it is rotated by −π (see Fig. 1.2).
Because of the complex conjugation in Mγ,γ̃ = KγK

∗
γ̃ these two phases

add up to give a total rotation of 2π, leading to a Berry’s phase of −1.
The quantum correction

Rwal =
∑
γ=γ̃

Mγ,γ̃ |Aγ |2 = −Rcl, (1.27)

is referred to as weak antilocalization. The total reflection amplitude R =
Rcl +Rwal = 0 vanishes, leading to a larger conductance.

Note that there is of course some reflection. What we considered here
was only a part of the full scattering problem, namely we only looked at
reflection back into the same mode.14 This is why in the full problem (when

13We are simplifying things a bit here, Kγ is really matrix elements of a propagator
of spin dynamics, andM is the trace over a product of propagators [7, 8]. The essential
physics is still contained in our presentation.

14Actually, if the incident mode was |n〉 we looked at reflection into its time reverse
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taking into account all modes), the classical contribution is proportional
to the number of modes N , while the weak (anti)localization correction is
of order one.

1.1.4 Spin-Orbit Coupling in Semiconductors

The Pauli equation (1.17) describes an electron moving in vacuum in the
presence of a potential V . In a single particle picture of a solid, essentially
the same equation can be used to obtain effective Hamiltonians describing
the movement of electrons. Usually, we neglect the third and fifth term
and write(

p2

2m
+ V0(r)−

�

4m2c2
σ · p×∇V0 + V (r)

)
ψ = Eψ. (1.28)

Here V0 is the periodic crystal potential, and V is an external applied
potential (e.g. gate voltage). The main contribution to the spin-orbit cou-
pling comes from the crystal potential, so we have neglected V in the third
term.

We are interested in obtaining an effective Hamiltonian describing the
motion of electrons in our semiconductor. There are essentially two ap-
proaches. One is the theory of invariants which is a purely group theo-
retical approach. The second, the Kane model, tries to obtain a solution
with reasonable approximation to Eq. (1.28). It is the second approach
we want to discuss here. A detailed account has been given of the method
and the calculations in Refs. 9 and 10, to which we refer for details. For-
tunately, we only need to introduce a few energy scales to get a flavor of
the derivation and the meaning of its results.

In the absence of the spin-orbit term and external potentials a solution
of Eq. (1.28) gives us the first approximation to the bandstructure of the
solid. In the semiconductors we have in mind, the part of the bandstructure
we are interested in will consist of a conduction band and a valence band
separated by a band gap E0 at a certain k value. Often (e.g. in GaAs) this
is the Γ point k = 0. One can understand these bands as emerging from

T |n〉. In the spinless case, this is simply reversal of momentum, in the spin case the
direction of the spin is also inverted (cf. Sec. 1.2.5).
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the atomic levels of the constituent atoms of the solid. The conduction
band is derived from s orbitals of the atom (basis states |S〉) and the
valence band from p orbitals (basis states |X〉 , |Y 〉 , |Z〉). The conduction
band is therefore twofold (because of spin) and the valence band sixfold
degenerate at the band edge (Γ point).

When we take into account the spin-orbit coupling, the bands become
mixed and are now characterized by their total angular momentum quan-
tum numbers (j and mj) plus the orbital momentum index l = 0 (l = 1)
characterizing the conduction (valence) bands. The conduction band now
has j = 1/2 andmj = ±1/2 while two of the valence bands (j = 1/2,mj =
±1/2) split off from the other four (j = 3/2,mj = ±1/2,±3/2). In addi-
tion the j = 3/2 bands, while degenerate at the band edge, have a different
curvature (i.e. effective mass) and are referred to as heavy hole (hh) and
light hole (lh) band (cf. Fig. 1.3). The split off energy Δ0 is simply given
by an energy scale obtained from the spin-orbit coupling term

Δ0 = −
3i�

4m2c2
〈X|(∇V0 × p) · ŷ|Z〉. (1.29)

The basic idea of the Kane model is that the band edge eigenstates
(eigenstates with a fixed k) constitute a complete basis. To obtain the
eigenstates away from the band edge we simply expand the wavefunction
(in an envelope function approximation) in the band edge states. Bands
that are far away in energy can be neglected. In the original Kane model,
only the bands in Fig. 1.3 where taken into account, leading to an 8 × 8
band Hamiltonian

H =

(
Hcc Hcv

Hvc Hvv

)
. (1.30)

Here Hcc (Hvv) is the block of the conduction (valence) band eigenstates.
The coupling Hcv between the conduction and valence band depends on
the momentum operator matrix element

P0 =
�

m
〈S|px|X〉. (1.31)

Once one has the Hamiltonian (1.30), the final step is to find a unitary
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E0

Γc
6

Γv
8

Γv
7

E

Δ0hh

lh

Figure 1.3. A schematic of the band structure of a zinc-blend structure, showing
the twofold conduction band (Γc

6) and the six spin-orbit split valence bands (Γv
7

and Γv
8). The conduction band and the topmost valence bands (heavy hole (hh)

and light hole (lh)) are separated by the energy gap E0. The spin-orbit split off
valence band (Γv

7) is separated from the other valence bands by the energy Δ0.

transformation U such that

UHU † =

(
H̃cc 0
0 H̃vv

)
, (1.32)

where H̃cc is now our effective Hamiltonian describing electrons in the
conduction band.

Instead of going through the details, let us simply discuss the results
of such a procedure, focusing on the spin-orbit coupling terms (the leading
order terms will simply be the usual kinetic energy term with an effective
mass). In a perturbation theory around k = 0 we expect the lowest order
terms that couple to the spin to be linear in k. We can write

Hso = −B(k) · σ. (1.33)

Time reversal symmetry requires B(−k) = −B(k). If in addition the
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system has an inversion symmetry B(−k) = B(k) and the only possible
solution is B(k) = 0. Thus for the term (1.33) to be nonzero the inversion
symmetry needs to be broken15.

In heterostructures the confinement potential and the band edge varia-
tions (different materials have different band gaps etc.) break the inversion
symmetry. Taking this into account the procedure described above leads
to the Rashba term

HR = α(kxσy − kyσx) (1.34)

where

α = 〈α(z)〉, (1.35a)

α(z) =
P 2

0

3

[
1

(E0 +Δ0)2
− 1
E2

0

]
dV

dz
, (1.35b)

with 〈 〉 denoting an average over the z subband eigenstate that confines
the electron to form a two dimensional electron gas.

A couple of important features of the Rashba spin-orbit coupling can
be seen from the expression (1.35) for α. First is that it depends on the
external (gate) potential V . We thus see that the size of α can be tuned
by playing with the gate voltages. Second, we observe that the presence
of Rashba spin-orbit coupling relies crucially on the size of the spin-orbit
coupling in the semiconductor (as measured by Δ0). If Δ0 = 0, α = 0
regardless of the strength of the external potential. It is really by traveling
near the nuclei that the electron picks up most of the spin-orbit coupling.

In zinc blend structure, such as GaAs, the inversion symmetry is also
broken in the bulk leading to the Dresselhaus term

HD = β(kxσx − kyσy). (1.36)

To obtain this term one needs to take into account higher conduction
bands so the expression for β is more complicated and contains additional
parameters we have not defined, so we skip writing it down. In addition to

15Or time reversal symmetry which is trivially done by applying a magnetic field. We
are interested in the all electronic setups (no magnetic fields) so we do not consider this
possibility.
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the linear Dresselhaus term (1.36) there is also a cubic (in k) Dresselhaus
term which can be of importance [9].

1.2 Time Reversal and Kramers Degeneracy

In 1930 H. A. Kramers in his study of the Schrödinger equation of an
electron with spin in the absence of a magnetic field, found a mapping
T that given a solution |ψ〉 with energy E gives another solution T |ψ〉
with the same energy [11]. For systems with odd number of spin half
electrons these solutions are orthogonal and therefore lead to a degeneracy
in the spectrum, the Kramers degeneracy. A couple of years later Wigner
pointed out that the mapping Kramers found is simply time reversal and
that the degeneracy is a manifestation of the presence of time reversal
symmetry [12].

Symmetries in quantum mechanics can be represented either by unitary
and linear operators or antiunitary and antilinear operators, according to
a theorem also due to Wigner [13]. We will see that time reversal is nec-
essarily in the latter, somewhat less familiar category. There is a crucial
difference between the two groups in the fact that while unitary symmetries
lead to a conserved quantity (e.g. translation symmetry to conservation of
momentum and rotation symmetry to conservation of angular momentum)
antiunitary symmetries in general do not. The effect of antiunitary sym-
metries (time reversal) is thus more subtle, as reflected in the Kramers
degeneracy, but just as important.

In addition to the Kramers degeneracy of energy eigenvalues, the pres-
ence of time reversal imposes a symmetry on Hamiltonians and scattering
matrices. Furthermore, in scattering, transmission eigenvalues are twofold
degenerate. The exact symmetries of the Hamiltonian are usually given in
terms of quaternions (or Pauli sigma matrices) in which they take a simple
form.

All the above mentioned properties are of importance in any quan-
tum theory of transport. In the literature, these have become a common
knowledge and are used as such. For a newcomer, it can take some time to
dig up definitions and proofs of these important properties, in particular
since topics such as antiunitary operators and quaternions are often not
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included in textbooks. In the case of the Kramers degeneracy of trans-
mission eigenvalues, the proofs that exist in the literature are somewhat
convoluted and not given directly in terms of the scattering matrix. In
this section we therefore represent definitions and proofs in a unified man-
ner, and an alternative proof of the Kramers degeneracy of transmission
eigenvalues.

We start by a review of the mathematical concepts of antiunitary opera-
tors and quaternions. Time reversal is then explained and its consequences
for Hamiltonians and scattering matrices explored.

1.2.1 Antiunitary Operators

An operator T is said to be antilinear, if for any state vectors |ϕ〉, |ψ〉 and
complex numbers α, β, it satisfies

T (α |ϕ〉+ β |ψ〉) = α∗T |ϕ〉+ β∗T |ψ〉 . (1.37)

The asterisk denotes complex conjugation. If in addition T has the prop-
erty

|〈ψ|ϕ〉| = |〈Tψ|Tϕ〉|, (1.38)

it is called antiunitary [13]. The relations (1.37) and (1.38) lead to the
equality16

〈Tψ|Tϕ〉 = 〈ψ|ϕ〉∗, (1.39)

which can equivalently be taken as the definition of antiunitarity [15].

The operator C of complex conjugation (with respect to the (orthogo-
nal) basis {|n〉}) is an antiunitary operator that satisfies

C |n〉 = |n〉 ∀n, and C2 = 1. (1.40)

16Note that the use of Dirac bra-ket notation, developed for linear vector spaces, is a
risky business when dealing with antilinear operators. The safest approach is to let T
first act on a ket, and only then use the dual correspondence to find the corresponding
bra [14].
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The action of C on a general state vector

|ψ〉 =
∑

n

cn |n〉 (1.41)

is completely determined by these properties

C |ψ〉 =
∑

n

c∗n |n〉 . (1.42)

In particular, if
|ϕ〉 =

∑
n

dn |n〉 (1.43)

we can confirm the antiunitary property (1.39)

〈Cψ|Cϕ〉 =
∑

n

cnd
∗
n = 〈ψ|ϕ〉∗. (1.44)

A product of an antiunitary and a unitary operator is again antiu-
nitary, while the product of two antiunitary operators is unitary. Every
antiunitary operator T can therefore be written as a product of a unitary
operator U and the complex conjugation operator C (the form of U will
depend on the basis with respect to which C is defined)

T = UC. (1.45)

In particular, the time reversal operator, our prime example of an antiu-
nitary symmetry (and the reason for using here the symbol T to represent
an antiunitary operator), will always be written in this form.

1.2.2 Quaternions

Sir W. R. Hamilton introduced quaternions as a generalization of complex
numbers. Walking with his wife along the Royal Canal in Dublin, the
defining equations of quaternions

i2 = j2 = k2 = ijk = −1 (1.46)
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came to him in a burst of inspiration. In his excitement he carved them
into stone at the Brougham Bridge [16]. The story does not elaborate on
what his wife was doing meanwhile.

One of the consequences of the defining equation (1.46) is that the basic
quaternions i, j,k do not commute. There are different representations of
the algebraic structure of quaternions, the most common being in terms
of the Pauli matrices (1.2) (see below).

Hamilton spent much of the rest of his life trying to realize the useful-
ness and beauty of complex numbers in his quaternions. There are strong
reasons why that cannot work17, and thus he was not very successful. So
why do we want to use quaternions? For us, the main reason, perhaps,
is bookkeeping. The Hamiltonian in a basis which is a direct product of
a real space state vector and a two dimensional spin state vector, has a
natural decomposition into blocks of 2 × 2 matrices, which can then be
thought of as a single quaternion. Instead of taking the Hamiltonian to be
a 2N × 2N complex matrix, one can consider it to be an N ×N matrix of
quaternions. What does one gain by doing this? Mainly an economic way
of expressing symmetry relations and performing calculations18.

With this motivation in mind we are ready to dive into the mathemat-
ical definitions of quaternions. A quaternion is defined as a linear combi-
nation of the 2× 2 unit matrix 11 and the Pauli spin matrices19 (1.2) [18]

q = q011+ iq · σ, (1.47)

with q = (q1, q2, q3) a vector of complex numbers, and σ = (σ1, σ2, σ3).
The quaternionic complex conjugate20 q̃ and hermitian conjugate q† are

17For example, the concept of an analytical function has no counterpart.
18In random matrix theory calculations, for example, averages over the symplectic

ensemble written in terms of quaternions can be translated into averages over the or-
thogonal ensemble [17].

19To make the connection to Hamiltons defining equation (1.46) we note the connec-
tion i = iσ3, j = iσ2 and k = iσ1.

20This notation is not standard. Most of the time people denote the quaternionic
complex conjugate simply with an asterisk. Since the quaternionic complex conjugate
differs from the normal complex conjugate, and we will mostly use the latter, we adopt
a different notation to avoid confusion.
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defined as

q̃ = q∗0 + iq∗ · σ = σ2q
∗σ2, (1.48a)

q† = q∗0 − iq∗σ. (1.48b)

A quaternion is called real if q̃ = q. We define the dual of a quaternion21

with
qR = q0 − iq · σ = σ2q

Tσ2. (1.49)

For completeness, we mention that the trace of a quaternion is tr q = q0
(half the normal trace).

The quaternionic complex (hermitian) conjugate Q̃ (Q†) of a quater-
nionic matrix is the (transpose of the) matrix of the quaternionic complex
(hermitian) conjugates

(Q̃)ij = (̃Qij), (1.50a)

(Q†)ij = (Qji)†. (1.50b)

The dual of a quaternionic matrix QR = (Q̃)†. A matrix which equals its
dual, is called self-dual. For a hermitian matrix, self-dual and quaternionic
real are equivalent. The trace of a quaternionic matrix is

∑
j tr Qjj .

1.2.3 Time Reversal

Having covered some mathematical ground, let us now turn our atten-
tion to time reversal symmetry (which we will sometimes refer to as T -
symmetry). In some sense, it is better to think of time reversal as being
reversal of motion rather than actual reversal of time. The conventional
time reversal of a spinless particle reverses its momentum but the position
is unchanged.

Let us make this a little bit more abstract by considering Fig. 1.4.
We imagine following a path in Hilbert space parameterized by time t.
The evolution from state |ψ(t)〉 to |ψ(t′)〉 is given by the time evolution
operator U(t′, t) = exp[−iH(t′ − t)/�]. The arrows help us remember the

21Sometimes called conjugate quaternion [18].
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|ψ(t)〉

|ψ(t′)〉

a) b)

c)

|ψ〉 T |ψ〉 U(δt)T |ψ〉

|ψ〉 U(−δt)|ψ〉 TU(−δt)|ψ〉

Figure 1.4. Time evolution represented as a flow along a “worldline” in Hilbert
space (a). In time reversal symmetric systems, reversing the motion and evolving
forward in time (b) is equivalent to evolving backwards in time and then reversing
the motion (c). The b (c) panel pictorially represents the left (right) hand side
of Eq. (1.51).

“direction” of motion22. Applying the time reversal operator T at a given
time t0, reverses the motion of the ket. Therefore if we have time reversal
symmetry

U(t0, t0 + δt)T |ψ(t0)〉 = TU(t0, t0 − δt) |ψ(t0)〉 . (1.51)

This equation reads in words: first reversing the motion and then evolving
forwards in time, is equivalent to first evolving backwards in time and then
reversing the motion (cf. Fig. 1.4).

For δt infinitesimal, U(t0, t0 ± δt) = 1 ∓ iHδt/�, and since the time
reversal relation (1.51) has to be valid for all kets |ψ(t0)〉

(1− iHδt/�)T = T (1 + iHδt/�). (1.52)

If T were linear this would mean that HT = −TH, and thus for any
energy eigenvalue E there would be an accompanying energy eigenvalue

22The arrows represent the Hamiltonian flow in Hilbert space, the Hamiltonian being
the generator of time translation. It is perfectly fine, for intuition, to imagine the arrows
being the direction of momentum.
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−E. This is clearly a nonsensical result (take for example free electrons
which have a strictly positive spectrum). Therefore we need to take T to
be antilinear (and antiunitary) and find

[H,T ] = 0. (1.53)

In contrast to a unitary operator that commutes with the Hamiltonian,
relation (1.53) does not lead to a conserved quantity. The reason is that
because T is antilinear TU(t, t′) �= U(t, t′)T even though (1.53) is satisfied.
Thus, an eigenstate of T does not necessarily remain an eigenstate of T
under time evolution (contrast this with linear and unitary symmetries).

Spinless Systems

In a spinless system, the unitary operator U in T = UC for the conventional
time reversal is simply equal to unity if C is taken to be with respect to
the position basis {|x〉}. To see this consider the action of Cx̂ on a general
state vector |ψ〉

Cx̂ |ψ〉 = C
∫
dxxψ(x) |x〉 =

∫
dxxψ∗(x) |x〉 = x̂ C |ψ〉 . (1.54)

Similarly for the momentum operator p̂ we find

Cp̂ |ψ〉 = C
∫
dx (−i�∂xψ) |x〉 = −

∫
dx (−i�∂xψ

∗) |x〉 = −p̂ C |ψ〉 . (1.55)

These relations are valid for all |ψ〉 so the operators have to satisfy

Cx̂ C−1 = x̂, (1.56a)

Cp̂ C−1 = −p̂. (1.56b)

This is indeed what we want from our time reversal operator, and thus
T = C. Note that since C2 = 1 the time reversal operator squares to one
in the spinless case.
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Spin 1
2 System

With the position operator even under time reversal and the momentum
operator odd, the orbital angular momentum L = x × p is clearly odd.
Any angular momentum, in particular the spin, should therefore also be
odd23. Extending the complex conjugation to be with respect to the tensor
product |x〉⊗|±〉 of position basis and the eigenstates |±〉 of σ3, it becomes
clear that C is not sufficient to represent time reversal. We need to find a
unitary operator U such that TσT−1 = Uσ∗U † = −σ. In components

Uσ1U
† = −σ1, (1.57)

Uσ2U
† = σ2, (1.58)

Uσ3U
† = −σ3. (1.59)

σ2 does the job, but we are free to choose an accompanying phase. In
anticipation of later discussion we will choose the phase such that

T = −iσ2C. (1.60)

In this case T 2 = −1 while in the spinless case T 2 = 1. This generalizes:
Systems with integral spin (even number of spin half particles) have a time
reversal that squares to 1, while for half integral spin systems (odd number
of spin half particles) it squares to −1 [13].

1.2.4 Consequences of Time Reversal for Hamiltonians

From now on we will exclusively consider the consequences of time reversal
in spin half systems, or more generally in system were T 2 = −1.

Assume that |En〉 is an eigenstate of H with eigenvalue En and that H
is time reversal symmetric. H and T then commute [cf. Eq. (1.53)], and
T |En〉 is also an eigenstate with eigenvalue En. Furthermore, using the
relation (1.39) and T 2 = −1, these two states are seen to be orthogonal

〈En|TEn〉 = 〈TEn|T 2En〉∗ = −〈En|TEn〉 (1.61)

23This argument can be made more rigorous by considering the transformation of the
total angular momentum J = L + S [14].
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i.e. 〈En|TEn〉 = 0. Every eigenvalue of the Hamiltonian is thus necessarily
twofold degenerate. This is the Kramers degeneracy (of energy eigenval-
ues) [11, 12].

The arguments used in (1.61) did not rely on |En〉 being an eigenstate
of H, and it thus true that any state |n〉 is orthogonal to its time reverse
T |n〉 = |Tn〉. We can thus generally24 adopt an orthogonal basis set
{|n〉 , |Tn〉} [15]. What is the form of the time reversal operator in this
basis? A general state |ψ〉 can be written

|ψ〉 =
∑
m

(ψm,+ |m〉+ ψm,− |Tm〉). (1.62)

Acting on this state with T (using antilinearity and T 2 = −1)

T |ψ〉 =
∑
m

(ψ∗m,+ |Tm〉 − ψ∗m,− |m〉). (1.63)

We notice that T does not couple states with different m. We can thus
look at a 2 × 2 submatrix (quaternion) of T , spanned by the states |m〉
and |Tm〉. As usual, writing T = UC the complex conjugation operator
takes care of the complex conjugation. Inspection of Eq. (1.63) then leads
us to take

Unm =

(
〈n|U |m〉 〈n|U |Tm〉
〈Tn|U |m〉 〈Tn|U |Tm〉

)
= δnm

(
0 −1
1 0

)
= −iσ2δnm. (1.64)

In the quaternionic notation U = −iσ2 (tensor product with the unit
matrix is implied) and T = −iσ2C. This agrees with the result (1.60) for
the conventional time reversal but is more general.

Writing H in the same basis, time reversal invariance requires the
Hamiltonian to be quaternionic real

H = THT−1 = −iσ2CHCiσ2 = σ2H
∗σ2 = H̃. (1.65)

24It is relatively straightforward to see that this can always be done. Start with |1〉
and |T1〉. Choose |2〉 orthogonal to |1〉 and |T1〉 (for example using the Gram-Schmidt
process). Then antiunitarity of T guarantees that |T2〉 is orthogonal to all the other
basis vectors chosen. Continue this process until you have a full basis.
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a) ST = −S b) σ2S
Tσ2 = S

|n〉 |n〉

T |n〉 iσ2T |n〉

Figure 1.5. A schematic picture of the scattering states used as a basis for
the scattering matrix. On the left the outgoing state is the time reverse of the
incoming state, while on the left the spin is flipped such that the spin state of
the incoming and outgoing states is the same.

Since H is hermitian, this implies that the Hamiltonian is also self-dual
HR = H.

1.2.5 Consequences of Time Reversal for Scattering Ma-
trices

The presence of time reversal has implications also for the symmetry of
the scattering matrix. The exact way this symmetry is reflected in the
scattering matrix depends on the basis chosen. We will here discuss a
couple of cases.

Symmetry of S

We consider a conventional two terminal scattering setup with NL(R)

modes in the left (right) lead. We will label all incoming states on the
left (right) with |n〉 (|m〉). The outgoing modes will then be |Tn〉 (|Tm〉).
A general scattering state |ϕ〉 will then have the following form in the left
lead

|ϕ〉 =
NL∑
n=1

(cin,L
n |n〉+ cout,L

n |Tn〉), (1.66)
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and similar for the right lead (with L → R and n → m). The scattering
matrix connects the vectors of coefficients cin to cout

(
cout,L

cout,R

)
= S

(
cin,L

cin,R

)
=

(
r t′

t r′

)(
cin,L

cin,R

)
(1.67)

If we have time reversal symmetry then

T |ϕ〉 =
NL∑
n=1

[(cin,L
n )∗ |Tn〉 − (cout,L

n )∗ |n〉), (1.68)

is also a scattering state with the same energy. That means that(
(cin,L)∗

(cin,R)∗

)
= S

(
−(cout,L)∗

−(cout,R)∗

)
. (1.69)

Multiplying from the left with S†, using unitarity of S and complex con-
jugating (

cout,L

cout,R

)
= −ST

(
cin,L

cin,R

)
. (1.70)

We conclude, by comparison with Eq. (1.67), that S is antisymmetric25

S = −ST . (1.71)

Note that this means that the diagonal elements are zero in agreement
with the qualitative discussion of weak antilocalization in Sec. 1.1.3.

The representation (1.71) is most natural from the point of view of time
reversal, and it is completely general. It is however rarely, if ever, seen in
the literature. To understand why, consider the diagonal elements of the
reflection matrix r (see Fig. 1.5). In our representation these elements

25In a typical calculation |n〉 could for example be a plane wave times a spinor. Often
one would then want to use the same basis state to be an incoming state on the left
and an outgoing state on the right. Thus the scattering state on the left would have the
form (1.66) on the left, but on the right |n〉 and |Tn〉 would change role. With similar

calculation as above, one finds that in this case S = −τzST τz, with τz =

„
1 0
0 −1

«
in

the block structure of the scattering matrix.
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describe processes where a spin up26 particle is reflected as a spin down
particle. In some cases there is only one band (like single-valley graphene)
and the direction of the spin is completely tied to the momentum direction,
and this is then the only meaningful representation. Quite often though,
we have two degenerate bands (leads without spin-orbit coupling), and the
most common representation is where a spin up particle is reflected as a
spin up particle. We can easily take this into account in our scattering
state, simply by flipping the spin of the outgoing mode (using iσ2), which
then becomes

|ϕ〉 =
NL∑
n=1

∑
σ=±

(cin,L
n,σ |n, σ〉+ cout,L

n,σ iσ2T |n, σ〉), (1.72)

with |n, σ〉 = |n〉 ⊗ |σ〉 and σ2 acts on |σ〉. Going through the same
calculation that lead to Eq. (1.71), we obtain the well known result that
the scattering matrix is self-dual

S = σ2S
Tσ2 = SR. (1.73)

Note that this representation is only possible when we have an even number
of modes.

Kramers Degeneracy of Transmission Eigenvalues

The Kramers degeneracy of energy eigenvalues in time reversal symmetric
systems is intuitively understandable: An electron moving to the left surely
has the same energy as a particle moving to the right. The Kramers
degeneracy of transmission eigenvalues (eigenvalues of the product tt† of
the matrix t of transmission amplitudes) is much less intuitively clear. In
fact, time reversal takes an incoming mode into an outgoing mode, so why
should there be any degeneracy. This lack of an intuitive picture plus
the absence of a simple proof27 for this fact has lead to a certain lack

26The quantization axis with respect to which up is defined depends on the problem
at hand and can even depend on the quantum number n.

27To quote the authors of Ref. 19: “Note that the proof of the Kramers degeneracy of
transmission eigenvalues is by far more complicated than that of the original Kramers
theorem for the degeneracy of energy levels”.
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of appreciation for it, despite it being widely known. In this section we
present a new alternative proof for this Kramers degeneracy, given solely
in terms of the symmetries of the scattering matrix.

We have seen that in the presence of time reversal the scattering ma-
trix is antisymmetric. In particular the reflection matrix r is antisymmetric
rT = −r. A linear algebra theorem [20, 21] states that for any antisym-
metric matrix r there exist a unitary matrix W such that r = W TDW ,
with

D = Σ1 ⊕ Σ2 ⊕ · · · ⊕ Σk ⊕ 0⊕ · · · ⊕ 0, (1.74)

where 2k = rank r, ⊕ denotes the direct sum and

Σj =

(
0 λj

−λj 0

)
, λj > 0, j = 1, · · · , k. (1.75)

In other words, D is block diagonal with k 2 × 2 nonzero blocks Σj and
NL−2k 1×1 zero blocks 0. Clearly if there are odd number of modes (i.e.
the dimension of r is odd) there is at least one zero term in the sum (1.74).
Using this result, we find that

r†r =W †DTDW. (1.76)

But since

ΣT
r Σr =

(
λ2

r 0
0 λ2

r

)
, (1.77)

we have managed to diagonalize r†r and found that its eigenvalues come
in pairs. Due to unitarity of S, 11 − r†r and t†t have the same eigenval-
ues. The transmission eigenvalues are thus twofold degenerate (Kramers
degeneracy), plus (if the number of modes is odd) one eigenvalue equal to
unity (perfect transmission [22]).

1.3 Model Hamiltonians

In order to demonstrate the theory we have been discussing, we will in this
section find the eigenstates and eigenenergies of two model Hamiltonians:
The Rashba Hamiltonian of Sec. 1.1.4 and the single valley graphene Dirac



30 Chapter 1. Introduction

a)

kx

ky

EF

− E

k

++ −
b)

k+ k−

Figure 1.6. (a) The energy band structure of the Rashba Hamiltonian with the
definition of the momenta k±. (b) The Fermi surface consists of two concentric
circles of radius k±. The black arrows show the spin direction of the energy
eigenstates.

Hamiltonian. In the latter the spin degree of freedom is not the real
spin but rather the pseudospin corresponding to a sublattice index of the
envelope wavefunction [23–25]. Similarly the time reversal is not the real
time reversal but rather another antiunitary symmetry sometimes called
effective time reversal.

1.3.1 The Rashba Hamiltonian

As a prototypical example of a simple electronic system with spin-orbit
coupling, we consider in this section the Rashba Hamiltonian

HR =
p2

2m
+
α

�
(pyσ1 − pxσ2). (1.78)

Since HR commutes with the momentum operator p the eigenstates can
be taken to be of the form |ψ〉 = |k〉 ⊗ |χ〉 with 〈x|k〉 = exp(ik ·x). |χ〉 is
found by diagonalizing HR for a fixed k = k(cosφ x̂+ sinφ x̂)

HR =
�2k2

2m

(
1 iα̃e−iφ

−iα̃eiφ 1

)
, (1.79)
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where α̃ = 2mα/(�2k). The eigenvalues

ε± =
�k2

2m
± αk, (1.80)

are independent of φ and show a zero (magnetic) field spin-splitting (see
Fig. 1.6). The eigenstates |χ〉 are found to be

|χ±(φ)〉 =
1√
2

(
e−iφ/2

∓ieiφ/2

)
. (1.81)

From these states we find that the direction of the spin,

n̂± = 〈χ±|σ|χ±〉 = (± sinφ,∓ cosφ, 0), (1.82)

is orthogonal to the momentum k̂ · n̂± = 0. This can be summarized in
the equation

n̂± = ±k̂ × ẑ, (1.83)

with ẑ the unit vector in the z direction. We will sometimes refer to a spin
with n̂+ (n̂−) as a plus (minus) spin. For a given energy the Fermi surface
consists of two concentric circles with radii (Fig. 1.6)

k± =
√
k2

so + k2
F ∓ kso, (1.84)

with kso = αm/� and kF =
√
2mEF /� the Fermi wavevector. The spin

rotates as we go along the circles such that there is no zero field spin
polarization, consistent with time reversal symmetry.

A neat way of picturing this is to write the Rashba spin-orbit term as
Zeeman splitting with a momentum dependent magnetic field

HR = −B(p) · σ; B(p) = α(−py, px, 0) = −�αk × ẑ. (1.85)

The spin eigenstate
∣∣χ−(+)

〉
is (anti)parallel to the field.

It is instructive to see explicitly that transforming a state with the time
reversal operator T = −iσ2C gives us another eigenstate. In fact

T |χ±(φ)〉 = ± |χ±(φ+ π)〉 , (1.86)
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i.e. time reversal connects states on the same Fermi surface circle.

We gained some insight into the role of time reversal by looking at the
eigenstates of the Hamiltonian. Being diagonal in that basis, the Hamil-
tonian is trivially quaternionic real. Let us get a bit more acquainted with
the abstract theory of the last section by calculating the Hamiltonian in
the states |φ,±〉 where

〈x|φ,+〉 = exp(ik · x)
(
ξφ
0

)
, (1.87a)

〈x|φ,−〉 = exp(ik · x)
(
0
1

)
. (1.87b)

The phase factor

ξφ =

{
+1 0 ≤ φ < π

−1 π ≤ φ < 2π
(1.88)

ensures that
T |φ,±〉 = |φ+ π,∓〉 . (1.89)

A quaternion of the Hamiltonian in this basis ordered like in (1.64) (with
|n〉 = |φ,±〉) thus becomes28

Hφ+,φ′− =

(
〈φ,+|H|φ′,−〉 〈φ,+|H|φ′ + π,+〉

〈φ+ π,−|H|φ′,−〉 〈φ+ π,−|H|φ′ + π,+〉

)

= αk (sinφ11+ cosφ iσ3)δφ,φ′ . (1.90)

The rest of the Hamiltonian quaternions are obtained similarly,

Hφ±,φ′± =
�2k2

2m
δφ,φ′11, (1.91a)

Hφ−,φ′+ = αk (sinφ11− cosφ iσ3)δφ,φ′ = HR
φ+,φ′−. (1.91b)

The Hamiltonian is indeed quaternionic real and self-dual as expected.

28To avoid double counting in the basis ({|φ,±〉 , T |φ,±〉}) we restrict 0 ≤ φ, φ′ < π.
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Figure 1.7. (a) The conical energy dispersion relation of a single valley
graphene, with the two cones touching at the Dirac point. (b) In the conduction
(valence) band the direction of the pseudospin is (anti)parallel to the momentum.

1.3.2 Graphene - the Single Valley Dirac Hamiltonian

In graphene, in the absence of intervalley scattering, the low energy exci-
tations are described by the Dirac Hamiltonian

H = vp · σ (1.92)

with v ≈ c/300 the velocity of the massless excitations. The energy eigen-
states are 〈x|ϕ,±〉 = exp(ik · x) |χ±(ϕ)〉 with k = k(cosϕ x̂ + sinϕ ŷ)
and

|χ±(ϕ)〉 =
e∓iπ/4

√
2

(
±e−iϕ/2

eiϕ/2

)
. (1.93)

With the phase factor e∓iπ/4 these states satisfy T |ϕ,±〉 = |ϕ+ π,±〉,
with T = −iσ2C. The spectrum

ε± = ±v�k, (1.94)
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consists of two cones whose apexes meet in a single point called the Dirac
point (see Fig. 1.7). The direction of the pseudospin

n̂± = 〈χ±|σ|χ±〉 = ±(cosϕ, sinϕ, 0) = ±k̂ (1.95)

is always parallel to the group velocity vg± = ±vk̂. Calculating the matrix
elements of the Hamiltonian in the basis (1.87) of eigenstates of σz in
analogous way to the last section, one finds that the Hamiltonian matrix
is quaternionic real and self-dual.

1.4 This Thesis

We end this introduction with a brief introduction to the remaining chap-
ters.

Chapter 2: Stroboscopic Model of Transport Through a Quan-
tum Dot with Spin-Orbit Coupling

In the physicist’s toolbox, simple models that capture the essential physics
and allow for an analytical solution are the best. These are rare. In their
absence simple models that capture the essential physics and allow for an
efficient numerical simulation are invaluable, be it for the sole purpose
of comparing to (often approximate) analytical calculations, or even sim-
ulating experiments that can not be conducted in the lab with current
technology. A numerical experiment, if you like.

The spin kicked rotator is just such a model; It generalizes the open
spinless kicked rotator, which is used to model quantum transport through
ballistic quantum dots, to include spin and spin-orbit coupling. The open
kicked rotator, in turn, is a generalization of the kicked rotator, which
models closed chaotic quantum dots, to model transport. The kicked ro-
tator is a model of a pendulum (or a rotator) that rotates around a fixed
point (in the absence of gravity) and is kicked periodically with an es-
sentially random kicking strength. The time dependence is needed, for
without it energy would be a constant of the motion and the model would
be integrable.
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In chapter 2 we introduce the open spin (symplectic) kicked rotator in
the traditional way. That is, quantize the Hamiltonian and reduce its one
period time evolution operator, the Floquet operator F , to a discrete finite
form by going to parameter values that give what is called a resonance.
To be consistent with prior literature it is important to do it this way.
For physical intuition, however, it is more fruitful to consider the Floquet
operator

F = ΠUXU †Π (1.96)

as the definition of the model. One then considers the matrix X to de-
scribe the free (spin-orbit coupled) motion inside the chaotic cavity. This
free motion is interrupted by boundary scattering which is given in terms
of the matrix Π. (The matrix X is diagonal in θ space, while Π is diagonal
in p-space; U maps between the two spaces. θ and p are conjugate vari-
ables.) With this interpretation, the variable θ becomes the momentum-
like variable, while p becomes a variable for the position on the boundary.
To accommodate the notation it can be useful to think of θ as the angle
describing the direction of the momentum.

How one then goes on to open up the model, i.e. attach leads, is de-
scribed in the chapter. There it is explained how one needs to consider an
alternative time reversal symmetry to the one usually used for the spinless
kicked rotator. With the above interpretation in mind, the reasons for this
are physically clear.

By simply looking at the model, it is by no means clear how to relate
its parameters (kicking strengths and symmetry breaking parameters) to a
real physical system. With some simple assumptions, we calculate analyti-
cally the conductance of the spin kicked rotator, and by varying parameters
we can go from weak localization to weak antilocalization, to the absence
of weak localization (which happens in the presence of magnetic field). By
direct comparison with results from random-matrix theory, one reads off
the connection between the model parameters and the physical parameters
(magnetic field, spin-orbit coupling time etc.). This is a valuable result for
any estimate of physical scales in the model.
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Figure 1.8. A + spin plane wave incident on a hard wall with an incident angle
χ+ (a) is always reflected as two plane waves with reflection angles χ±. A −
spin plane wave (b) can, on the other hand, for large enough incident angles be
reflected as a single plane wave .

Chapter 3: How Spin-Orbit Coupling Can Cause Electronic Shot
Noise

In the absence of spin-orbit coupling, a plane wave incident on a hard wall
is reflected as a single plane wave with an angle of reflection equal to the
angle of incidence. In the presence of spin-orbit coupling this is no longer
true; the plane wave can be reflected as two plane waves.

This can be understood pictorially as shown in Fig. 1.8, were we con-
sider the case that the Fermi surface consists of two concentric circles (as
in the Rashba case in Sec. 1.3.1). Assuming that the hard wall is parallel
to the y-axis, the y component ky of the momentum is conserved. If the
incoming way belongs to the inner circle (+ spin plane wave) there are two
possibilities for the outgoing wave. An incoming wave on the outer circle
(− spin) also has two possible outgoing waves, unless the angle of incident
χ− is larger then the critical angle χc = arcsin(k+/k−) with k+(k−) the
radius of the inner (outer) Fermi circle [cf. Eq. (1.84)]. When there are
two outgoing waves, we talk of trajectory splitting [26].

Can this trajectory splitting be a source of (shot) noise in a ballistic
quantum dot? That is the question considered in chapter 3. The answer
is yes, but to observe it one needs to suppress any other sources of shot
noise, in particular the shot noise that arises by the simple fact that the
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electron is a wave. Imagine an electron trying to impinge on a lead. If
the electron wavepacket is spread over a length scale large then the lead
opening, it is going to be partially reflected, causing shot noise. To get
rid of this source of noise one needs simply to make the lead very large,
such that the spread of the wavepacket is negligible. In this chapter, this
condition is given in terms of the Ehrenfest time τE , which essentially is
the time it takes a wavepacket to spread to the size of the leads. If the
dwell time τdwell, the time the electron spends inside the quantum dot, is
smaller then the Ehrenfest time, quantum mechanical wave noise does not
play any role.

We establish that in this limit there is a parameter regime were the
trajectory splitting is the dominant source of shot noise. To check our
theory, we have compared to a numerical simulation of classical particles
in a stadium billiard. The trajectory splitting is calculated quantum me-
chanically, and added to the classical equations of motions to determine
what happens as the classical particles are reflected of the boundaries of
the billiard. The numerical results are found to be in agreement with our
theory.

Chapter 4: Degradation of Electron-Hole Entanglement by Spin-
Orbit Coupling

Take a tunnel junction connecting two metals and apply a voltage across it.
Every now and then, and electron will tunnel from one side, leaving a hole
behind on the other. The electron-hole pair move in opposite directions,
creating a current that you can measure; the tunneling current. There is
more to this simple process. Namely, the electron and the hole turn out
to be entangled [27].

In chapter 4 we consider how the presence of spin-orbit coupling affects
this electron-hole entanglement. In order to do so we begin by generalizing
an earlier result to include many modes. The reason for this is that the
degradation of the entanglement arises because of mode mixing by the
spin-orbit coupling.

To quantify the entanglement we use the concurrence. The concurrence
depends essentially on two parameters: the number of modesN in the leads
connecting the tunnel barrier to the reservoirs, and the ratio τdwell/τso of
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Figure 1.9. A schematic of a scattering of spin up (with respect to z axis)
particles by a massive spinless particle (black dot in center). Dashed lines show
the symmetric trajectories of electrons with impact parameters b and −b, realized
when the spin-orbit coupling is neglected. Spin-orbit coupling makes the potential
of the scatterer more (less) attractive for particles passing on the right (left),
causing a left-right asymmetry in the scattering (solid trajectories).

the time the electron-hole pairs spends in the leads τdwell and the spin-
orbit coupling time τso. The dependence of the concurrence on both these
parameters can be understood intuitively. The more modes there are, the
bigger the possibility of mode mixing and the smaller the concurrence.
The longer time the modes have to mix, the smaller the concurrence, with
τso setting the time scale on which it goes to zero.

We confirm these expectations numerically, and find in addition that
for large number of modes the concurrence is independent of the number of
modes. This allows us to make a simplifying assumption (about the form of
the spin density matrix) in order to analytically calculate the dependence
of the concurrence on the ratio τdwell/τso. We find good agreement between
our analytical calculation and our numerics.
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Chapter 5: Mesoscopic Spin Hall Effect

Let us consider scattering of a spin-half particle by a massive spinless par-
ticle [28]. According to our discussion in Sec. 1.1.1 [in particular Eq. (1.7)]
the scattering potential the spin-half particle sees will be of the form

Vsc = V0 + Vs(r)σ ·L. (1.97)

Imagine sending in a beam of spin up (with respect to the z-axis) par-
ticles with a random impact parameter b. Neglecting the spin-orbit cou-
pling, electrons with impact parameter b and −b will scatter symmetri-
cally (dashed lines in Fig. 1.9). When taking into account the spin-orbit
coupling, the electrons passing on the right (left) of the scatterer have
an angular momentum parallel (antiparallel) to the spin, and thus feel a
stronger (weaker) potential. When averaging over all b we find that spin
up electrons have a net tendency to scatter to the left [28]. Spin down elec-
trons on the other hand have a net tendency to scatter to the right. An
unpolarized incident beam in the x direction will thus, due to spin-orbit
coupling, generate a pure spin current (i.e. not accompanied by a charge
current) flowing in the y direction (polarized in the z direction). This, in
essence, is the spin Hall effect [29, 30].

The above mechanism is extrinsic, coming e.g. from impurities. The
intrinsic mechanisms for spin-orbit coupling, like the Rashba term, also
give arise to a spin Hall effect. To understand this, we recall the repre-
sentation (1.85) of the Rashba term as a momentum dependent magnetic
field. In equilibrium the spin eigenstates are (anti)parallel to this magnetic
field, but applying an electric field Ex accelerates the electrons, changing
the momentum and in turn the Rashba magnetic field the spin sees. This
leads to a precession of the spin out of plane, leading to a spin current js,y
(in the z direction) in analogy to the case discussed above. Referring to
Fig. 1.6, the two states at each momentum give a contribution that cancel
out. It is thus only the states in the annulus k+ < k < k− that contribute,
giving a spin Hall conductance [31]

σsH = −js,y
Ex

=
e

8π
. (1.98)
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In the presence of disorder, however, this spin Hall conductance averages
to zero [32]. Essentially, the diffusive scattering scrambles the momentum
and the Rashba field such that the precession of the spin averages to zero.

In chapter 5 we consider the spin Hall effect in a mesoscopic four termi-
nal chaotic cavity with spin-orbit coupling. The voltages on the terminals
are adjusted such that a charge current flows between two longitudinal
leads, while no charge current flows in the two transverse leads. In anal-
ogy to the two cases discussed above, the spin-orbit coupling gives arise
to spin currents in the transverse leads, but the chaotic dynamics (like
diffusion) scrambles the momentum such that on average this spin current
is zero.

Even though the average spin current is zero, the variance does not
need to be. In fact, one expects different cavities to contribute differently
to the mean. By changing the chaotic dynamics (e.g. by changing the
shape of the cavity) one thus expects spin current fluctuations, very much
in analogy to conductance fluctuations. In this chapter we calculate this
spin current fluctuations using random-matrix theory, and show that it
is universal (in the same sense as universal conductance fluctuations are
universal). In order to check our analytical predictions we compare with
numerical simulations using the spin kicked rotator of chapter 2.

Chapter 6: One-Parameter Scaling at the Dirac Point in Graphene

Suppose you have a chunk of disordered material of volume Ld with d its di-
mension. Imagine doubling all the lengths such that the volume becomes
(2L)d, made up of 2d pieces of the original size. Is there a relationship
between the conductance of the larger chunk and the conductance of its
constituent smaller chunks? According to the scaling theory of localiza-
tion [33, 34] there is and in fact the rate of change of the dimensionless
conductance g = G/(e2/h) can be written in terms of the beta function

β(g) =
d ln g
d lnL

(1.99)

which depends only on the single parameter g.
In the Drude theory of metals the conductivity σ is a constant and the

conductance G = σLd−2. For large conductance (g � 1) we expect the
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Figure 1.10. (a) A schematic of the beta function of the scaling theory of local-
ization in different dimensions. (b) In two dimension how the beta function ap-
proaches zero becomes critical. This is determined by the weak (anti)localization
(WL/WAL) correction to the conductivity. In the presence of spin-orbit coupling
the beta function approaches zero from above.

Drude theory to be accurate, and thus in this limit

lim
g→∞β(g) = d− 2. (1.100)

On the other hand, if the disorder is large enough, the electron wavefunc-
tion localizes and the conductance is exponentially small g ∝ exp(−L/ξ)
with ξ the localization length. Thus

lim
g→0

β(g) = ln g. (1.101)

Assuming that these two limits are connected in a continuous and monot-
onous manner [33], we obtain the beta functions sketched in Fig. 1.10.

In the two dimensional case, the beta function goes to zero in the limit
of large conductance. It therefore is important to know how this limit is
approached. This one can do by a perturbation theory around the perfect
metal assuming weak disorder. The result is the phenomena of weak (anti)
localization discussed in Sec. 1.1.3, but in disordered systems it takes the
form [35]

σ = σ0 −
2− β
β

e2

h

2
π
lnL/�, (1.102)
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with � the mean free path, and β = 1(4) in the absence (presence) of spin-
orbit coupling (see also Sec. 2.3). We thus observe that in the presence
(absence) of spin-orbit coupling the beta function approaches zero from
above (below) as β(g) ∼ +1/πg (β(g) ∼ −2/πg).

In graphene, intervalley scattering leads to localization [36, 37]. This
means that for system sizes L much larger then the intervalley scattering
length Liv graphene becomes an insulator. Intervalley scattering requires
that the scattering potential has a Fourier component at a−1 with a the
lattice spacing. In other words, scattering potential smooth on the scale
of lattice spacing does not couple the two valleys of graphene. It turns out
the intervalley scattering length in graphene is very large and thus it is of
considerable interest to consider what happens in its absence. This is the
topic of chapter 6.

Single valley graphene has the same symmetries as a metal with spin-
orbit coupling. One might be tempted to conclude that the beta function
of these two systems should thus be the same. However, there are sev-
eral arguments that hint that something completely different is realized.
Firstly, consider conductivity at the Dirac point. In the absence of dis-
order the density of states at the Dirac point is zero and conductance
is through evanescent modes. Introduction of disorder will locally change
the chemical potential and introduce propagating modes, or in other words
disorder will induce a nonzero density of states. Disorder will thus initially
increase conductivity. (Another way to think about the same thing is to
consider the conductivity enhancement to be due to impurity assisted tun-
neling [38].) A consequence of this phenomena is that for conductances
around the ballistic value the beta function is positive.

Secondly, in Refs. 39 and 40 it was shown that the low energy field
theory of single valley graphene in the presence of smooth scalar disorder
is given in terms of a non-linear sigma model with a topological term.
For large conductances the topological term can be neglected and the field
theory is the same as for the spin-orbit coupled metal. One thus expects
the beta function to approach the limit 1/πg for g � 1. We thus have the
situation that we have two limits in which the beta function is positive
and no theory of how to interpolate between the two limits. One could use
the arguments used above expecting the beta function to be monotonous
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(which is not always the case, see Fig 1.10) and thus strictly positive. The
authors of Ref. 39 gave arguments for a different nonmonotonic scenario
in which there is a stable fixed point (as explained in chapter. 6).

In the absence of any analytical tool capable of deciding which beta
function is realized, we have developed a numerical method to obtain some
evidence for one scenario over the other. In chapter 6 we explain our
method and present the results of the numerical simulations. From our
results we conclude that the beta function of single valley graphene is
strictly positive in contrast to Ref. 39.
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