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Chapter 1

Introduction

In the center of Leiden there is a little park alongside a tranquil canal. On
the other side of the canal, facing the park, is a magnificent old building
that radiates history. The first hint towards its nature is the towering
name Kamerlingh Onnes that marks the buildings front face1. This is,
of course, the old physics building of the University of Leiden. Many
great minds have graced this place with their presence and one of them,
Paul Ehrenfest2, has a particularly strong influence on this thesis. This
influence, as we will discuss shortly, is both direct and indirect through
three of his students: Hendrik Anthony Kramers, George Uhlenbeck, and
Samuel Goudsmit (Fig. 1.1).

A few words about the contents of this thesis are, before revealing the
connection to Ehrenfest, in order. The word effects in the title, hints at a
certain diversity in the topics covered. In fact, in later chapters we will be
concerned with a number of seemingly unrelated topics including quantum

1Heike Kamerlingh Onnes received the Nobel Prize in Physics in 1913 “for his in-
vestigations on the properties of matter at low temperatures which led, inter alia, to
the production of liquid helium”. He discovered superconductivity with his student
Holst [1].

2It is fitting that it is Ehrenfest that takes the central stage in this story, for he was
a genuine scientist. Einstein supposedly said that “he was not merely the best teacher
in our profession whom I have ever known; he was also passionately preoccupied with
the development and destiny of men, especially his students. To understand others, to
gain their friendship and trust, to aid anyone embroiled in outer or inner struggles, to
encourage youthful talent – all this was his real element, almost more than his immersion
in scientific problems”.
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Figure 1.1. Left panel: The inventors of spin, George Uhlenbeck (left) and
Samuel Goudsmit (right), with Hendrik Kramers who first noticed a twofold
degeneracy in the solutions to the Schrödinger equation with spin: the Kramers
degeneracy. All three were students of Paul Ehrenfest (right panel) in Leiden.

chaos, electronic shot noise, electron-hole entanglement, spin Hall effect,
and (absence of) Anderson localization. While it certainly would be useful
to have an extensive introduction to all these different topics there simply
is not enough space to do them all justice (a brief introduction is given in
Sec. 1.4). Instead, in this introduction, the focus is on what brings all these
topics together in this thesis, namely spin-orbit coupling. In particular, we
will concentrate on some fundamental aspects of quantum transport in the
presence of spin-orbit coupling, the details of which are assumed known in
the literature but are not always easily found in textbooks.

Before going into details, it is unavoidable in a thesis so involved with
spin, to mention spintronics; if only as a means of motivation. Spintronics
is a large field whose name indicates the wish to do electronics with spins.
There are several technological reasons why one would want to do that,
and initial successes are a testimony to their validity. Let us, however, not
go down that road, but rather view the word spintronics as denoting the
drive towards a fundamental understanding of quantum transport of spins.
With this view it is difficult, for a physicist, not to get excited. The spin
has from its discovery by Uhlenbeck and Goudsmit (under the guidance of
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Ehrenfest3) tickled the imagination of physicists. Being purely quantum
mechanical some of its properties are plain puzzling, but it is the simplicity
of its description coupled with the richness of its physics that excites.

But let us not get too carried away, we were talking about spintronics.
Initially, much of the interest was in systems that combined ferromagnets
with metals or semiconductors. Later, interest grew in purely electronic
systems, in which one talks to the spin degree of freedom through spin-
orbit coupling. In this thesis we will be concerned with the latter type of
systems.

To set the stage we will in this introduction start by giving a general in-
troduction to spin and spin-orbit coupling in Sec. 1.1. Spin-orbit coupling
conserves time reversal symmetry. The consequences of time reversal have
thus to be taken into account. One particularly important consequence
is a degeneracy named after the third of Ehrenfest students, the Kramers
degeneracy. (We have now mentioned all the indirect influences of Ehren-
fest, his direct influence will be encountered in chapter 3 on the effect of
spin-orbit coupling on the Ehrenfest time4.) In Sec. 1.2 we give a detailed
account of time reversal symmetry and its consequences for the spectrum
and symmetries of Hamiltonians and scattering matrices.

In Sec. 1.3 we solve two model Hamiltonians, the Rashba Hamiltonian
and the single valley graphene Dirac Hamiltonian, whose solutions will be
useful in later chapters. Finally, in Sec. 1.4 we give a brief introduction to
each of the chapters of this thesis.

1.1 Spin and Spin-Orbit Coupling

It was after a detailed study of spectroscopic data that Uhlenbeck and
Goudsmit came to suggest that the electron has spin, an intrinsic angular

3Ehrenfest’s contribution, allowing his students to go ahead with a wild idea with the
words “you are both young enough to be able to afford a stupidity”, was crucial. About
the same time, Ralph Kronig had similar ideas, but the response of his supervisor,
Wolfgang Pauli, “it is indeed very clever but of course has nothing to do with reality”,
was in stark contrast to Ehrenfest’s.

4Strictly speaking, the Ehrenfest time does not come directly from Ehrenfest himself.
The Ehrenfest time τE is the time it takes a wavepacket to spread to a size on the order
of the system size. For times smaller then τE the center of the wavepacket and its group
velocity satisfy Ehrenfest’s theorem, thus the name.
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momentum that gives arise to a magnetic moment. Most physicists first
acquaintance with spin, however, is through a recount of the Stern-Gerlach
experiment [2]. Building on this familiarity, we will begin our discussion
by using a combination of the results of the experiment and classical argu-
ments to deduce the presence of the spin and a coupling of this spin to the
orbital motion. The same results are then obtained more rigorously from
the nonrelativistic limit of the Dirac equation. In turn, this leads us to
an analysis of the rotation properties of spin and the accompanying Berry
phase. We demonstrate the importance of this phase by considering its
role in weak (anti) localization. To complete this section, we sketch how
the spin-orbit coupling in semiconductors gives rise to the familiar Rashba
and Dresselhaus terms.

1.1.1 Spin and the Stern-Gerlach Experiment

With their experiment, Stern and Gerlach, established the following em-
pirical fact: The electron has an intrinsic magnetic moment µs which
takes on quantized values ±µB along any axis (µB = e~/2mc is the Bohr
magneton). This suggests the introduction of a quantum number σ = ±
such that the wavefunction of the electron can be represented by a two
component spinor

ψ(r) =

(
ψ+(r)
ψ−(r)

)
. (1.1)

Quite often the state of the electron factorizes, i.e. it can be written as
a direct product |ψ〉 ⊗ |χ〉 where |χ〉 is a state vector (two component
spinor) in the two dimensional Hilbert space of the spin. Any operator in
this two dimensional space (i.e. any 2 × 2 matrix5) can be written as a
linear combination of the 2× 2 unit matrix 11 and the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (1.2)

In particular, any vector operator is necessarily proportional to σ = (σ1, σ2, σ3).
What are the consequences of this empirical fact? Suppose our electron

5See also the section 1.2.2 on quaternions.
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is moving with velocity v in an electric field −eE = −∇V . Classically the
magnetic moment does not couple to the electric field. However, taking
into account relativistic effects, the electron sees in its rest frame a mag-
netic field, which to order (v/c)2 (with c the speed of light) is given by
B = −v ×E/c [3]. The interaction of the magnetic moment µs with this
magnetic field leads to a potential energy term

Vµs = −µs ·B = µs · v
c
×E =

1
ec
µs · v ×∇V. (1.3)

In an atom, the potential giving rise to the electric field is central V = V (r)
and

Vµs =
1
ecr

dV

dr
µs · v × r = − 1

emcr
µs ·L, (1.4)

with L = r × p the orbital angular momentum and m the electron mass.
Including this term in the quantum description, the conservation of an-
gular momentum seems to be broken (since the components of L do not
commute). To rescue the conservation of angular momentum, the electron
needs to have an intrinsic angular momentum S. In analogy with orbital
moments, we expect the magnetic moment µs to be proportional to the
angular momentum

µs = −gsµB
~
S. (1.5)

Since S is a vector operator in spin space it is necessarily a multiple of σ.
The interaction term Vµs is thus proportional to σ ·L. The only possible
choice for S such that the full angular momentum J = L+S is conserved
turns out to be [2]

S =
~
2
σ. (1.6)

The magnetic moment becomes µs = −(gs/2)µBσ and since the eigenval-
ues of the Pauli matrices are ±1 we need to take the g factor gs = 2 to
explain the observed quantization of µ.

With a careful consideration of their experiment we have learned a lot
from Stern and Gerlach. We have been able to deduce the existence of the
spin and we have seen how the interaction of the magnetic moment with
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the electric field can alternatively be seen as a spin-orbit coupling

Vµs =
~

2m2c2
1
r

dV

dr
σ ·L, (1.7)

In a noncentral potential this spin-orbit coupling is

Vµs = − ~
2m2c2

σ · p×∇V. (1.8)

This is still not the full story. In addition to the effect just described we
need to take into account a term that has a purely kinematic origin. To be
able to use the above results we need to be in the rest frame of the electron.
Since the electron is accelerating the reference frame is constantly chang-
ing. This amounts to successive Lorentz boosts. However since Lorentz
boosts do not form a subgroup in the group of Lorentz transformations
(which includes boosts and rotations) two successive boosts are in general
not equivalent to another boost but rather to a boost followed by a ro-
tation. There is thus an additional precession, Thomas precession, that
needs to be taken into account. This turns out to give a contribution of
the same form as (1.8) but with opposite sign and half the amplitude [3].
The full spin-orbit coupling term is thus

Vso = − ~
4m2c2

σ · p×∇V. (1.9)

1.1.2 Spin-Orbit Coupling from the Dirac Equation

Last section painted a nice physical picture of the origin of spin-orbit
coupling. The arguments, however, are a bit handwavy and alternate
between being classical, quantum and relativistic. A more satisfactory,
albeit less physically transparent, derivation can be obtained by taking
the nonrelativistic limit of the Dirac equation. This procedure leads to
the Pauli equation. In this section we sketch the derivation following the
more general derivation given by Sakurai [4].

In the standard representation, and in Hamiltonian form, the Dirac
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equation is H |ψ〉 = E |ψ〉 with [4]

H =

(
0 cp · σ

cp · σ 0

)
+

(
mc2 0

0 −mc2
)
. (1.10)

Writing |ψ〉 = (ψA, ψB)T we have two coupled equations for ψA and ψB.
Using the second equation to eliminated ψB we obtain

p · σ c2

E +mc2
p · σψA = (E −mc2)ψA. (1.11)

In the presence of a potential V , we make the substitution E → E − V .
We are interested in the nonrelativistic limit, so we write E = mc2 + ε

with ε� mc2. Further assuming that |V | � mc2 we can expand

c2

E − V +mc2
=

1
2m

(
1− ε− V

2mc2
+ · · ·

)
. (1.12)

Since mv2/2 + V ∼ ε, the second term is seen to be of order (v/c)2. To
zeroth order, using6 (p · σ)(p · σ) = p2, we simply obtain the Schrödinger
equation (

p2

2m
+ V

)
ψ = εψ. (1.13)

The reason this derivation works is that to zeroth order in (v/c), ψB = 0.
In fact, from (1.10) we have to first order in (v/c)2

ψB =
p · σ
2mc

ψA. (1.14)

In other words, in this limit ψA is equivalent to the Schrödinger wave-
function ψ. When going to next order, more care must be taken. The
probabilistic interpretation of Dirac theory requires the normalization∫

(ψ†AψA + ψ†BψB) = 1. (1.15)

6As a special case of the more general formula (σ ·A)(σ ·B) = A ·B+ iσ · (A×B).
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To first order, using (1.14), this gives∫
ψ†A

(
1 +

p2

4m2c2

)
ψA = 1. (1.16)

Apparently, to have a normalized wave function, we should use ψ =
[1 + p2/(8m2c2)]ψA. Substituting this into the Dirac equation, and us-
ing the expansion (1.12), we obtain after some rearrangement [4] the Pauli
equation(

p2

2m
+ V − p4

8m3c2
− ~

4m2c2
σ · p×∇V +

~2

8m2c2
∇2V

)
ψ = εψ. (1.17)

All the terms in this equation have a ready made interpretation. The third
term is simply a relativistic correction to the kinetic energy, and the last
term gives a shift in energy. The fourth term is the spin-orbit coupling
term (1.9) we derived heuristically in the last section. It is gratifying to
obtain the same result from the Dirac equation.

1.1.3 Spin and Rotations

Not only does the spin-orbit coupling emerge naturally from the Dirac
equation, the spin itself is buried within the equation. Recall that the
Dirac equation can be obtained with little more then Lorentz invariance.
To discuss how spin arises in the Dirac equation we need to briefly discuss
the theory of rotations. Since we will learn important facts about the
rotations of spins at the same time, it is a worthwhile endeavor.

Infinitesimal rotations in a three dimensional space, of an angle δϕ
about an axis n̂, are given by

UR = 11− i

~
δϕ n̂ · J , (1.18)

with J = (Jx, Jy, Jz) three operators which are called the generators of
infinitesimal rotations. From the properties of rotations one deduces that
the components of J satisfy the commutation relations [2]

[Ji, Jj ] = i~εijkJk, (1.19)
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with εijk the fully antisymmetric tensor, or Levi-Civita symbol7. These
are just the commutation relations of an angular momentum. In partic-
ular, rotations of a spin half particles are given by (1.18) with J = S.
Integrating (1.18) and using the relation (1.6) of S to σ, finite rotations
of spin are given by

Us = exp
(
−iϕ

2
n̂ · σ

)
= cos

ϕ

2
− in̂ · σ sin

ϕ

2
. (1.20)

To obtain the second equality, we used that8 (n̂ · σ)2 = 1. As a conse-
quence, we notice that a rotation of 2π does not bring you back to the
same state, but rather minus the state, i.e. Us(2π) = −1.

On first acquaintance this minus sign is odd. The mathematical expla-
nation, that SU(2) is a twofold covering of SO(3), is only illuminating once
you know what it means. Physicists like to picture the spin as living on
the Bloch sphere. This description, however, does not contain the Berry’s
phase since a rotation of 2π brings you back to the same point on the Bloch
sphere. The reason, of course, is that in constructing the Bloch sphere,
a global phase factor of a general spin state was ignored. For an isolated
spin this global phase factor does not lead to any observable effect, but
there are cases when it is important (see below).

One way to picture what is going on, is to introduce a “Möbius-Bloch
sphere”9. To explain what that means, start by picturing the normal
Möbius strip, embedded in three dimensional space. Imagine walking along
the strip with a cap on your head carrying an arrow that points upwards.
Now you walk along the strip and after walking half of the strip, you are
back at the same point in the three dimensional embedding space. In
this space, however, you are on the “other side” of the strip, your arrow
pointing in the opposite direction10 (minus sign). If you were to identify
the point you are on now, with the point that you started from, you would
have a circle and you find you have gone around the full circle. But if you
do not identify the point you find that you need to walk another full circle

7εijk = 1(−1) for an (odd) even permutation of (123) and zero otherwise.
8A consequence of the relation in footnote 6 and |n̂|2 = 1.
9We are not aware of a strict mathematical equivalence between SU(2) and a

“Möbius-Bloch sphere”. It is introduced here for ease of visualization.
10Other side within quotations marks, since the Möbius strip has only one side.
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to come back to your original point of departure. Generalizing this to the
sphere, you imagine any great circle on the sphere to be a Möbius strip,
and the fact that rotation about 2π gives a minus sign can be visualized11.

How does spin come about in the Dirac equation? As already men-
tioned the Dirac equation is constructed to be Lorentz invariant. In de-
manding this invariance, in particular one can consider infinitesimal ro-
tations. One finds that for the Dirac equation to be invariant the Dirac
spinors need to transform in a certain way. Equating this transformation
with general statement (1.18) about angular momentum as generators of
rotation, one can simply read of the angular momentum of the electron. In
addition to the orbital angular momentum L one indeed finds an intrinsic
angular momentum12 given by S = ~/2σ as we had concluded earlier from
the Stern-Gerlach experiment.

We conclude this section with an example of the effect of the (Berry’s)
phase obtained from a rotation of the spin. The effect we consider is the
weak (anti)localization [5], which is a quantum correction to the classical
conductance of a system arising from quantum interference. To understand
the effect, imagine injecting a particle into a scattering region and ask
about the probability for it to return. Let us start with the spinless case.
The probability amplitude of reflection back in the same mode can be
written as a sum over classical paths γ starting and ending at the same
point [6]

r =
∑
γ

Aγ exp
(
i

~
Sγ
)
. (1.21)

Sγ is the action along γ and Aγ is a classical weight. The reflection prob-
ability is

R = rr† =
∑
γ,γ′

AγA∗γ′ei/~(Sγ−Sγ′ ). (1.22)

In the classical limit, ~ → 0, the exponential is quickly oscillating, and

11Incidentally, your shoulder has the same property. Imagine holding a cup filled
with coffee in one hand. Now rotate it by an angle 2π without spilling it. You find that
to obtain that goal you needed to twist your arm which is now inverted (it acquired a
“minus sign”). With some skill you can rotate the cup another 2π in the same direction,
to find yourself in your initial configuration.

12Or more exactly, an angular momentum that in the nonrelativistic limit reduces to
the Pauli equation spin [4].
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Figure 1.2. A schematic representation of a trajectory (red) and it time reverse
(blue). The spin dynamics are assumed adiabatic such that the spin just adjusts
itself to be always in an eigenstate. As the (time reversed) trajectory is followed
the spin is seen to rotate about an angle of π (−π). This rotation of the spin
leads to an extra phase causing a destructive interference between the two paths.

only the paths with Sγ = Sγ′ contribute to the sum. In particular, the
classical reflection probability is obtained by including only the terms with
γ′ = γ,

Rcl =
∑
γ

|Aγ |2. (1.23)

In the presence of time reversal symmetry, the time reversed path γ̃ has
the same action and weight factor as γ. Thus, in addition to the classical
contribution, we have the extra term

Rwl =
∑
γ=γ̃

|Aγ |2 = Rcl. (1.24)

We thus see that the total reflection probability R = Rcl + Rwl = 2Rcl is
enhanced compared to the classical reflection probability. This leads to a
smaller conductance, and the correction term is referred to as weak localiza-
tion. Essentially the path γ and its time reverse γ̃ interfere constructively
to enhance the reflection probability.

When we have spin-orbit coupling there is more to the story. Most of
the time the spin-orbit coupling is weak, so we can ignore the effect it has
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on trajectories. The spin-orbit coupling does however rotate the spin of
the electron as it moves around the classical path. One then finds that
the only modification to the reflection amplitude r, is an introduction of
a spin phase factor [7, 8] Kγ

r =
∑
γ

KγAγ exp
(
i

~
Sγ
)
. (1.25)

The reflection probability becomes

R = rr† =
∑
γ,γ′

Mγ,γ′AγA∗γ′ei/~(Sγ−Sγ′ ). (1.26)

with Mγ,γ′ = KγK
∗
γ′ a spin modulation factor. Kγ is essentially13 just

eiαγ with αγ the phase picked up by rotating the spin as we go along
the path γ. Therefore, Mγ,γ = 1 and the classical contribution to the
reflection amplitude Rcl is the same as in the spinless case. If the spin-
orbit coupling is strong enough the spin will simply adiabatically follow
the path. The contribution of the time reversed pair of paths gets an extra
minus sign Mγ,γ̃ = −1. The reason is that following the path γ the spin
is rotated by π, while for the path γ̃ it is rotated by −π (see Fig. 1.2).
Because of the complex conjugation in Mγ,γ̃ = KγK

∗
γ̃ these two phases

add up to give a total rotation of 2π, leading to a Berry’s phase of −1.
The quantum correction

Rwal =
∑
γ=γ̃

Mγ,γ̃ |Aγ |2 = −Rcl, (1.27)

is referred to as weak antilocalization. The total reflection amplitude R =
Rcl +Rwal = 0 vanishes, leading to a larger conductance.

Note that there is of course some reflection. What we considered here
was only a part of the full scattering problem, namely we only looked at
reflection back into the same mode.14 This is why in the full problem (when

13We are simplifying things a bit here, Kγ is really matrix elements of a propagator
of spin dynamics, andM is the trace over a product of propagators [7, 8]. The essential
physics is still contained in our presentation.

14Actually, if the incident mode was |n〉 we looked at reflection into its time reverse
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taking into account all modes), the classical contribution is proportional
to the number of modes N , while the weak (anti)localization correction is
of order one.

1.1.4 Spin-Orbit Coupling in Semiconductors

The Pauli equation (1.17) describes an electron moving in vacuum in the
presence of a potential V . In a single particle picture of a solid, essentially
the same equation can be used to obtain effective Hamiltonians describing
the movement of electrons. Usually, we neglect the third and fifth term
and write(

p2

2m
+ V0(r)− ~

4m2c2
σ · p×∇V0 + V (r)

)
ψ = Eψ. (1.28)

Here V0 is the periodic crystal potential, and V is an external applied
potential (e.g. gate voltage). The main contribution to the spin-orbit cou-
pling comes from the crystal potential, so we have neglected V in the third
term.

We are interested in obtaining an effective Hamiltonian describing the
motion of electrons in our semiconductor. There are essentially two ap-
proaches. One is the theory of invariants which is a purely group theo-
retical approach. The second, the Kane model, tries to obtain a solution
with reasonable approximation to Eq. (1.28). It is the second approach
we want to discuss here. A detailed account has been given of the method
and the calculations in Refs. 9 and 10, to which we refer for details. For-
tunately, we only need to introduce a few energy scales to get a flavor of
the derivation and the meaning of its results.

In the absence of the spin-orbit term and external potentials a solution
of Eq. (1.28) gives us the first approximation to the bandstructure of the
solid. In the semiconductors we have in mind, the part of the bandstructure
we are interested in will consist of a conduction band and a valence band
separated by a band gap E0 at a certain k value. Often (e.g. in GaAs) this
is the Γ point k = 0. One can understand these bands as emerging from

T |n〉. In the spinless case, this is simply reversal of momentum, in the spin case the
direction of the spin is also inverted (cf. Sec. 1.2.5).
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the atomic levels of the constituent atoms of the solid. The conduction
band is derived from s orbitals of the atom (basis states |S〉) and the
valence band from p orbitals (basis states |X〉 , |Y 〉 , |Z〉). The conduction
band is therefore twofold (because of spin) and the valence band sixfold
degenerate at the band edge (Γ point).

When we take into account the spin-orbit coupling, the bands become
mixed and are now characterized by their total angular momentum quan-
tum numbers (j and mj) plus the orbital momentum index l = 0 (l = 1)
characterizing the conduction (valence) bands. The conduction band now
has j = 1/2 andmj = ±1/2 while two of the valence bands (j = 1/2,mj =
±1/2) split off from the other four (j = 3/2,mj = ±1/2,±3/2). In addi-
tion the j = 3/2 bands, while degenerate at the band edge, have a different
curvature (i.e. effective mass) and are referred to as heavy hole (hh) and
light hole (lh) band (cf. Fig. 1.3). The split off energy ∆0 is simply given
by an energy scale obtained from the spin-orbit coupling term

∆0 = − 3i~
4m2c2

〈X|(∇V0 × p) · ŷ|Z〉. (1.29)

The basic idea of the Kane model is that the band edge eigenstates
(eigenstates with a fixed k) constitute a complete basis. To obtain the
eigenstates away from the band edge we simply expand the wavefunction
(in an envelope function approximation) in the band edge states. Bands
that are far away in energy can be neglected. In the original Kane model,
only the bands in Fig. 1.3 where taken into account, leading to an 8 × 8
band Hamiltonian

H =

(
Hcc Hcv

Hvc Hvv

)
. (1.30)

Here Hcc (Hvv) is the block of the conduction (valence) band eigenstates.
The coupling Hcv between the conduction and valence band depends on
the momentum operator matrix element

P0 =
~
m
〈S|px|X〉. (1.31)

Once one has the Hamiltonian (1.30), the final step is to find a unitary
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E0

Γc
6

Γv
8

Γv
7

E

∆0hh

lh

Figure 1.3. A schematic of the band structure of a zinc-blend structure, showing
the twofold conduction band (Γc6) and the six spin-orbit split valence bands (Γv7
and Γv8). The conduction band and the topmost valence bands (heavy hole (hh)
and light hole (lh)) are separated by the energy gap E0. The spin-orbit split off
valence band (Γv7) is separated from the other valence bands by the energy ∆0.

transformation U such that

UHU † =

(
H̃cc 0
0 H̃vv

)
, (1.32)

where H̃cc is now our effective Hamiltonian describing electrons in the
conduction band.

Instead of going through the details, let us simply discuss the results
of such a procedure, focusing on the spin-orbit coupling terms (the leading
order terms will simply be the usual kinetic energy term with an effective
mass). In a perturbation theory around k = 0 we expect the lowest order
terms that couple to the spin to be linear in k. We can write

Hso = −B(k) · σ. (1.33)

Time reversal symmetry requires B(−k) = −B(k). If in addition the
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system has an inversion symmetry B(−k) = B(k) and the only possible
solution is B(k) = 0. Thus for the term (1.33) to be nonzero the inversion
symmetry needs to be broken15.

In heterostructures the confinement potential and the band edge varia-
tions (different materials have different band gaps etc.) break the inversion
symmetry. Taking this into account the procedure described above leads
to the Rashba term

HR = α(kxσy − kyσx) (1.34)

where

α = 〈α(z)〉, (1.35a)

α(z) =
P 2

0

3

[
1

(E0 + ∆0)2
− 1
E2

0

]
dV

dz
, (1.35b)

with 〈 〉 denoting an average over the z subband eigenstate that confines
the electron to form a two dimensional electron gas.

A couple of important features of the Rashba spin-orbit coupling can
be seen from the expression (1.35) for α. First is that it depends on the
external (gate) potential V . We thus see that the size of α can be tuned
by playing with the gate voltages. Second, we observe that the presence
of Rashba spin-orbit coupling relies crucially on the size of the spin-orbit
coupling in the semiconductor (as measured by ∆0). If ∆0 = 0, α = 0
regardless of the strength of the external potential. It is really by traveling
near the nuclei that the electron picks up most of the spin-orbit coupling.

In zinc blend structure, such as GaAs, the inversion symmetry is also
broken in the bulk leading to the Dresselhaus term

HD = β(kxσx − kyσy). (1.36)

To obtain this term one needs to take into account higher conduction
bands so the expression for β is more complicated and contains additional
parameters we have not defined, so we skip writing it down. In addition to

15Or time reversal symmetry which is trivially done by applying a magnetic field. We
are interested in the all electronic setups (no magnetic fields) so we do not consider this
possibility.
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the linear Dresselhaus term (1.36) there is also a cubic (in k) Dresselhaus
term which can be of importance [9].

1.2 Time Reversal and Kramers Degeneracy

In 1930 H. A. Kramers in his study of the Schrödinger equation of an
electron with spin in the absence of a magnetic field, found a mapping
T that given a solution |ψ〉 with energy E gives another solution T |ψ〉
with the same energy [11]. For systems with odd number of spin half
electrons these solutions are orthogonal and therefore lead to a degeneracy
in the spectrum, the Kramers degeneracy. A couple of years later Wigner
pointed out that the mapping Kramers found is simply time reversal and
that the degeneracy is a manifestation of the presence of time reversal
symmetry [12].

Symmetries in quantum mechanics can be represented either by unitary
and linear operators or antiunitary and antilinear operators, according to
a theorem also due to Wigner [13]. We will see that time reversal is nec-
essarily in the latter, somewhat less familiar category. There is a crucial
difference between the two groups in the fact that while unitary symmetries
lead to a conserved quantity (e.g. translation symmetry to conservation of
momentum and rotation symmetry to conservation of angular momentum)
antiunitary symmetries in general do not. The effect of antiunitary sym-
metries (time reversal) is thus more subtle, as reflected in the Kramers
degeneracy, but just as important.

In addition to the Kramers degeneracy of energy eigenvalues, the pres-
ence of time reversal imposes a symmetry on Hamiltonians and scattering
matrices. Furthermore, in scattering, transmission eigenvalues are twofold
degenerate. The exact symmetries of the Hamiltonian are usually given in
terms of quaternions (or Pauli sigma matrices) in which they take a simple
form.

All the above mentioned properties are of importance in any quan-
tum theory of transport. In the literature, these have become a common
knowledge and are used as such. For a newcomer, it can take some time to
dig up definitions and proofs of these important properties, in particular
since topics such as antiunitary operators and quaternions are often not
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included in textbooks. In the case of the Kramers degeneracy of trans-
mission eigenvalues, the proofs that exist in the literature are somewhat
convoluted and not given directly in terms of the scattering matrix. In
this section we therefore represent definitions and proofs in a unified man-
ner, and an alternative proof of the Kramers degeneracy of transmission
eigenvalues.

We start by a review of the mathematical concepts of antiunitary opera-
tors and quaternions. Time reversal is then explained and its consequences
for Hamiltonians and scattering matrices explored.

1.2.1 Antiunitary Operators

An operator T is said to be antilinear, if for any state vectors |ϕ〉, |ψ〉 and
complex numbers α, β, it satisfies

T (α |ϕ〉+ β |ψ〉) = α∗T |ϕ〉+ β∗T |ψ〉 . (1.37)

The asterisk denotes complex conjugation. If in addition T has the prop-
erty

|〈ψ|ϕ〉| = |〈Tψ|Tϕ〉|, (1.38)

it is called antiunitary [13]. The relations (1.37) and (1.38) lead to the
equality16

〈Tψ|Tϕ〉 = 〈ψ|ϕ〉∗, (1.39)

which can equivalently be taken as the definition of antiunitarity [15].

The operator C of complex conjugation (with respect to the (orthogo-
nal) basis {|n〉}) is an antiunitary operator that satisfies

C |n〉 = |n〉 ∀n, and C2 = 1. (1.40)

16Note that the use of Dirac bra-ket notation, developed for linear vector spaces, is a
risky business when dealing with antilinear operators. The safest approach is to let T
first act on a ket, and only then use the dual correspondence to find the corresponding
bra [14].
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The action of C on a general state vector

|ψ〉 =
∑
n

cn |n〉 (1.41)

is completely determined by these properties

C |ψ〉 =
∑
n

c∗n |n〉 . (1.42)

In particular, if
|ϕ〉 =

∑
n

dn |n〉 (1.43)

we can confirm the antiunitary property (1.39)

〈Cψ|Cϕ〉 =
∑
n

cnd
∗
n = 〈ψ|ϕ〉∗. (1.44)

A product of an antiunitary and a unitary operator is again antiu-
nitary, while the product of two antiunitary operators is unitary. Every
antiunitary operator T can therefore be written as a product of a unitary
operator U and the complex conjugation operator C (the form of U will
depend on the basis with respect to which C is defined)

T = UC. (1.45)

In particular, the time reversal operator, our prime example of an antiu-
nitary symmetry (and the reason for using here the symbol T to represent
an antiunitary operator), will always be written in this form.

1.2.2 Quaternions

Sir W. R. Hamilton introduced quaternions as a generalization of complex
numbers. Walking with his wife along the Royal Canal in Dublin, the
defining equations of quaternions

i2 = j2 = k2 = ijk = −1 (1.46)
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came to him in a burst of inspiration. In his excitement he carved them
into stone at the Brougham Bridge [16]. The story does not elaborate on
what his wife was doing meanwhile.

One of the consequences of the defining equation (1.46) is that the basic
quaternions i, j,k do not commute. There are different representations of
the algebraic structure of quaternions, the most common being in terms
of the Pauli matrices (1.2) (see below).

Hamilton spent much of the rest of his life trying to realize the useful-
ness and beauty of complex numbers in his quaternions. There are strong
reasons why that cannot work17, and thus he was not very successful. So
why do we want to use quaternions? For us, the main reason, perhaps,
is bookkeeping. The Hamiltonian in a basis which is a direct product of
a real space state vector and a two dimensional spin state vector, has a
natural decomposition into blocks of 2 × 2 matrices, which can then be
thought of as a single quaternion. Instead of taking the Hamiltonian to be
a 2N × 2N complex matrix, one can consider it to be an N ×N matrix of
quaternions. What does one gain by doing this? Mainly an economic way
of expressing symmetry relations and performing calculations18.

With this motivation in mind we are ready to dive into the mathemat-
ical definitions of quaternions. A quaternion is defined as a linear combi-
nation of the 2× 2 unit matrix 11 and the Pauli spin matrices19 (1.2) [18]

q = q011 + iq · σ, (1.47)

with q = (q1, q2, q3) a vector of complex numbers, and σ = (σ1, σ2, σ3).
The quaternionic complex conjugate20 q̃ and hermitian conjugate q† are

17For example, the concept of an analytical function has no counterpart.
18In random matrix theory calculations, for example, averages over the symplectic

ensemble written in terms of quaternions can be translated into averages over the or-
thogonal ensemble [17].

19To make the connection to Hamiltons defining equation (1.46) we note the connec-
tion i = iσ3, j = iσ2 and k = iσ1.

20This notation is not standard. Most of the time people denote the quaternionic
complex conjugate simply with an asterisk. Since the quaternionic complex conjugate
differs from the normal complex conjugate, and we will mostly use the latter, we adopt
a different notation to avoid confusion.



1.2 Time Reversal and Kramers Degeneracy 21

defined as

q̃ = q∗0 + iq∗ · σ = σ2q
∗σ2, (1.48a)

q† = q∗0 − iq∗σ. (1.48b)

A quaternion is called real if q̃ = q. We define the dual of a quaternion21

with
qR = q0 − iq · σ = σ2q

Tσ2. (1.49)

For completeness, we mention that the trace of a quaternion is tr q = q0
(half the normal trace).

The quaternionic complex (hermitian) conjugate Q̃ (Q†) of a quater-
nionic matrix is the (transpose of the) matrix of the quaternionic complex
(hermitian) conjugates

(Q̃)ij = (̃Qij), (1.50a)

(Q†)ij = (Qji)†. (1.50b)

The dual of a quaternionic matrix QR = (Q̃)†. A matrix which equals its
dual, is called self-dual. For a hermitian matrix, self-dual and quaternionic
real are equivalent. The trace of a quaternionic matrix is

∑
j tr Qjj .

1.2.3 Time Reversal

Having covered some mathematical ground, let us now turn our atten-
tion to time reversal symmetry (which we will sometimes refer to as T -
symmetry). In some sense, it is better to think of time reversal as being
reversal of motion rather than actual reversal of time. The conventional
time reversal of a spinless particle reverses its momentum but the position
is unchanged.

Let us make this a little bit more abstract by considering Fig. 1.4.
We imagine following a path in Hilbert space parameterized by time t.
The evolution from state |ψ(t)〉 to |ψ(t′)〉 is given by the time evolution
operator U(t′, t) = exp[−iH(t′ − t)/~]. The arrows help us remember the

21Sometimes called conjugate quaternion [18].
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|ψ(t)〉

|ψ(t′)〉

a) b)

c)

|ψ〉 T |ψ〉 U(δt)T |ψ〉

|ψ〉 U(−δt)|ψ〉 TU(−δt)|ψ〉

Figure 1.4. Time evolution represented as a flow along a “worldline” in Hilbert
space (a). In time reversal symmetric systems, reversing the motion and evolving
forward in time (b) is equivalent to evolving backwards in time and then reversing
the motion (c). The b (c) panel pictorially represents the left (right) hand side
of Eq. (1.51).

“direction” of motion22. Applying the time reversal operator T at a given
time t0, reverses the motion of the ket. Therefore if we have time reversal
symmetry

U(t0, t0 + δt)T |ψ(t0)〉 = TU(t0, t0 − δt) |ψ(t0)〉 . (1.51)

This equation reads in words: first reversing the motion and then evolving
forwards in time, is equivalent to first evolving backwards in time and then
reversing the motion (cf. Fig. 1.4).

For δt infinitesimal, U(t0, t0 ± δt) = 1 ∓ iHδt/~, and since the time
reversal relation (1.51) has to be valid for all kets |ψ(t0)〉

(1− iHδt/~)T = T (1 + iHδt/~). (1.52)

If T were linear this would mean that HT = −TH, and thus for any
energy eigenvalue E there would be an accompanying energy eigenvalue

22The arrows represent the Hamiltonian flow in Hilbert space, the Hamiltonian being
the generator of time translation. It is perfectly fine, for intuition, to imagine the arrows
being the direction of momentum.
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−E. This is clearly a nonsensical result (take for example free electrons
which have a strictly positive spectrum). Therefore we need to take T to
be antilinear (and antiunitary) and find

[H,T ] = 0. (1.53)

In contrast to a unitary operator that commutes with the Hamiltonian,
relation (1.53) does not lead to a conserved quantity. The reason is that
because T is antilinear TU(t, t′) 6= U(t, t′)T even though (1.53) is satisfied.
Thus, an eigenstate of T does not necessarily remain an eigenstate of T
under time evolution (contrast this with linear and unitary symmetries).

Spinless Systems

In a spinless system, the unitary operator U in T = UC for the conventional
time reversal is simply equal to unity if C is taken to be with respect to
the position basis {|x〉}. To see this consider the action of Cx̂ on a general
state vector |ψ〉

Cx̂ |ψ〉 = C
∫
dxxψ(x) |x〉 =

∫
dxxψ∗(x) |x〉 = x̂ C |ψ〉 . (1.54)

Similarly for the momentum operator p̂ we find

Cp̂ |ψ〉 = C
∫
dx (−i~∂xψ) |x〉 = −

∫
dx (−i~∂xψ∗) |x〉 = −p̂ C |ψ〉 . (1.55)

These relations are valid for all |ψ〉 so the operators have to satisfy

Cx̂ C−1 = x̂, (1.56a)

Cp̂ C−1 = −p̂. (1.56b)

This is indeed what we want from our time reversal operator, and thus
T = C. Note that since C2 = 1 the time reversal operator squares to one
in the spinless case.



24 Chapter 1. Introduction

Spin 1
2 System

With the position operator even under time reversal and the momentum
operator odd, the orbital angular momentum L = x × p is clearly odd.
Any angular momentum, in particular the spin, should therefore also be
odd23. Extending the complex conjugation to be with respect to the tensor
product |x〉⊗|±〉 of position basis and the eigenstates |±〉 of σ3, it becomes
clear that C is not sufficient to represent time reversal. We need to find a
unitary operator U such that TσT−1 = Uσ∗U † = −σ. In components

Uσ1U
† = −σ1, (1.57)

Uσ2U
† = σ2, (1.58)

Uσ3U
† = −σ3. (1.59)

σ2 does the job, but we are free to choose an accompanying phase. In
anticipation of later discussion we will choose the phase such that

T = −iσ2C. (1.60)

In this case T 2 = −1 while in the spinless case T 2 = 1. This generalizes:
Systems with integral spin (even number of spin half particles) have a time
reversal that squares to 1, while for half integral spin systems (odd number
of spin half particles) it squares to −1 [13].

1.2.4 Consequences of Time Reversal for Hamiltonians

From now on we will exclusively consider the consequences of time reversal
in spin half systems, or more generally in system were T 2 = −1.

Assume that |En〉 is an eigenstate of H with eigenvalue En and that H
is time reversal symmetric. H and T then commute [cf. Eq. (1.53)], and
T |En〉 is also an eigenstate with eigenvalue En. Furthermore, using the
relation (1.39) and T 2 = −1, these two states are seen to be orthogonal

〈En|TEn〉 = 〈TEn|T 2En〉∗ = −〈En|TEn〉 (1.61)

23This argument can be made more rigorous by considering the transformation of the
total angular momentum J = L+ S [14].
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i.e. 〈En|TEn〉 = 0. Every eigenvalue of the Hamiltonian is thus necessarily
twofold degenerate. This is the Kramers degeneracy (of energy eigenval-
ues) [11, 12].

The arguments used in (1.61) did not rely on |En〉 being an eigenstate
of H, and it thus true that any state |n〉 is orthogonal to its time reverse
T |n〉 = |Tn〉. We can thus generally24 adopt an orthogonal basis set
{|n〉 , |Tn〉} [15]. What is the form of the time reversal operator in this
basis? A general state |ψ〉 can be written

|ψ〉 =
∑
m

(ψm,+ |m〉+ ψm,− |Tm〉). (1.62)

Acting on this state with T (using antilinearity and T 2 = −1)

T |ψ〉 =
∑
m

(ψ∗m,+ |Tm〉 − ψ∗m,− |m〉). (1.63)

We notice that T does not couple states with different m. We can thus
look at a 2 × 2 submatrix (quaternion) of T , spanned by the states |m〉
and |Tm〉. As usual, writing T = UC the complex conjugation operator
takes care of the complex conjugation. Inspection of Eq. (1.63) then leads
us to take

Unm =

(
〈n|U |m〉 〈n|U |Tm〉
〈Tn|U |m〉 〈Tn|U |Tm〉

)
= δnm

(
0 −1
1 0

)
= −iσ2δnm. (1.64)

In the quaternionic notation U = −iσ2 (tensor product with the unit
matrix is implied) and T = −iσ2C. This agrees with the result (1.60) for
the conventional time reversal but is more general.

Writing H in the same basis, time reversal invariance requires the
Hamiltonian to be quaternionic real

H = THT−1 = −iσ2CHCiσ2 = σ2H
∗σ2 = H̃. (1.65)

24It is relatively straightforward to see that this can always be done. Start with |1〉
and |T1〉. Choose |2〉 orthogonal to |1〉 and |T1〉 (for example using the Gram-Schmidt
process). Then antiunitarity of T guarantees that |T2〉 is orthogonal to all the other
basis vectors chosen. Continue this process until you have a full basis.
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a) ST = −S b) σ2S
Tσ2 = S

|n〉 |n〉

T |n〉 iσ2T |n〉

Figure 1.5. A schematic picture of the scattering states used as a basis for
the scattering matrix. On the left the outgoing state is the time reverse of the
incoming state, while on the left the spin is flipped such that the spin state of
the incoming and outgoing states is the same.

Since H is hermitian, this implies that the Hamiltonian is also self-dual
HR = H.

1.2.5 Consequences of Time Reversal for Scattering Ma-
trices

The presence of time reversal has implications also for the symmetry of
the scattering matrix. The exact way this symmetry is reflected in the
scattering matrix depends on the basis chosen. We will here discuss a
couple of cases.

Symmetry of S

We consider a conventional two terminal scattering setup with NL(R)

modes in the left (right) lead. We will label all incoming states on the
left (right) with |n〉 (|m〉). The outgoing modes will then be |Tn〉 (|Tm〉).
A general scattering state |ϕ〉 will then have the following form in the left
lead

|ϕ〉 =
NL∑
n=1

(cin,Ln |n〉+ cout,L
n |Tn〉), (1.66)
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and similar for the right lead (with L → R and n → m). The scattering
matrix connects the vectors of coefficients cin to cout(

cout,L

cout,R

)
= S

(
cin,L

cin,R

)
=

(
r t′

t r′

)(
cin,L

cin,R

)
(1.67)

If we have time reversal symmetry then

T |ϕ〉 =
NL∑
n=1

[(cin,Ln )∗ |Tn〉 − (cout,L
n )∗ |n〉), (1.68)

is also a scattering state with the same energy. That means that(
(cin,L)∗

(cin,R)∗

)
= S

(
−(cout,L)∗

−(cout,R)∗

)
. (1.69)

Multiplying from the left with S†, using unitarity of S and complex con-
jugating (

cout,L

cout,R

)
= −ST

(
cin,L

cin,R

)
. (1.70)

We conclude, by comparison with Eq. (1.67), that S is antisymmetric25

S = −ST . (1.71)

Note that this means that the diagonal elements are zero in agreement
with the qualitative discussion of weak antilocalization in Sec. 1.1.3.

The representation (1.71) is most natural from the point of view of time
reversal, and it is completely general. It is however rarely, if ever, seen in
the literature. To understand why, consider the diagonal elements of the
reflection matrix r (see Fig. 1.5). In our representation these elements

25In a typical calculation |n〉 could for example be a plane wave times a spinor. Often
one would then want to use the same basis state to be an incoming state on the left
and an outgoing state on the right. Thus the scattering state on the left would have the
form (1.66) on the left, but on the right |n〉 and |Tn〉 would change role. With similar

calculation as above, one finds that in this case S = −τzST τz, with τz =

„
1 0
0 −1

«
in

the block structure of the scattering matrix.



28 Chapter 1. Introduction

describe processes where a spin up26 particle is reflected as a spin down
particle. In some cases there is only one band (like single-valley graphene)
and the direction of the spin is completely tied to the momentum direction,
and this is then the only meaningful representation. Quite often though,
we have two degenerate bands (leads without spin-orbit coupling), and the
most common representation is where a spin up particle is reflected as a
spin up particle. We can easily take this into account in our scattering
state, simply by flipping the spin of the outgoing mode (using iσ2), which
then becomes

|ϕ〉 =
NL∑
n=1

∑
σ=±

(cin,Ln,σ |n, σ〉+ cout,L
n,σ iσ2T |n, σ〉), (1.72)

with |n, σ〉 = |n〉 ⊗ |σ〉 and σ2 acts on |σ〉. Going through the same
calculation that lead to Eq. (1.71), we obtain the well known result that
the scattering matrix is self-dual

S = σ2S
Tσ2 = SR. (1.73)

Note that this representation is only possible when we have an even number
of modes.

Kramers Degeneracy of Transmission Eigenvalues

The Kramers degeneracy of energy eigenvalues in time reversal symmetric
systems is intuitively understandable: An electron moving to the left surely
has the same energy as a particle moving to the right. The Kramers
degeneracy of transmission eigenvalues (eigenvalues of the product tt† of
the matrix t of transmission amplitudes) is much less intuitively clear. In
fact, time reversal takes an incoming mode into an outgoing mode, so why
should there be any degeneracy. This lack of an intuitive picture plus
the absence of a simple proof27 for this fact has lead to a certain lack

26The quantization axis with respect to which up is defined depends on the problem
at hand and can even depend on the quantum number n.

27To quote the authors of Ref. 19: “Note that the proof of the Kramers degeneracy of
transmission eigenvalues is by far more complicated than that of the original Kramers
theorem for the degeneracy of energy levels”.
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of appreciation for it, despite it being widely known. In this section we
present a new alternative proof for this Kramers degeneracy, given solely
in terms of the symmetries of the scattering matrix.

We have seen that in the presence of time reversal the scattering ma-
trix is antisymmetric. In particular the reflection matrix r is antisymmetric
rT = −r. A linear algebra theorem [20, 21] states that for any antisym-
metric matrix r there exist a unitary matrix W such that r = W TDW ,
with

D = Σ1 ⊕ Σ2 ⊕ · · · ⊕ Σk ⊕ 0⊕ · · · ⊕ 0, (1.74)

where 2k = rank r, ⊕ denotes the direct sum and

Σj =

(
0 λj
−λj 0

)
, λj > 0, j = 1, · · · , k. (1.75)

In other words, D is block diagonal with k 2 × 2 nonzero blocks Σj and
NL−2k 1×1 zero blocks 0. Clearly if there are odd number of modes (i.e.
the dimension of r is odd) there is at least one zero term in the sum (1.74).
Using this result, we find that

r†r = W †DTDW. (1.76)

But since

ΣT
r Σr =

(
λ2
r 0

0 λ2
r

)
, (1.77)

we have managed to diagonalize r†r and found that its eigenvalues come
in pairs. Due to unitarity of S, 11 − r†r and t†t have the same eigenval-
ues. The transmission eigenvalues are thus twofold degenerate (Kramers
degeneracy), plus (if the number of modes is odd) one eigenvalue equal to
unity (perfect transmission [22]).

1.3 Model Hamiltonians

In order to demonstrate the theory we have been discussing, we will in this
section find the eigenstates and eigenenergies of two model Hamiltonians:
The Rashba Hamiltonian of Sec. 1.1.4 and the single valley graphene Dirac
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Figure 1.6. (a) The energy band structure of the Rashba Hamiltonian with the
definition of the momenta k±. (b) The Fermi surface consists of two concentric
circles of radius k±. The black arrows show the spin direction of the energy
eigenstates.

Hamiltonian. In the latter the spin degree of freedom is not the real
spin but rather the pseudospin corresponding to a sublattice index of the
envelope wavefunction [23–25]. Similarly the time reversal is not the real
time reversal but rather another antiunitary symmetry sometimes called
effective time reversal.

1.3.1 The Rashba Hamiltonian

As a prototypical example of a simple electronic system with spin-orbit
coupling, we consider in this section the Rashba Hamiltonian

HR =
p2

2m
+
α

~
(pyσ1 − pxσ2). (1.78)

Since HR commutes with the momentum operator p the eigenstates can
be taken to be of the form |ψ〉 = |k〉 ⊗ |χ〉 with 〈x|k〉 = exp(ik ·x). |χ〉 is
found by diagonalizing HR for a fixed k = k(cosφ x̂+ sinφ x̂)

HR =
~2k2

2m

(
1 iα̃e−iφ

−iα̃eiφ 1

)
, (1.79)
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where α̃ = 2mα/(~2k). The eigenvalues

ε± =
~k2

2m
± αk, (1.80)

are independent of φ and show a zero (magnetic) field spin-splitting (see
Fig. 1.6). The eigenstates |χ〉 are found to be

|χ±(φ)〉 =
1√
2

(
e−iφ/2

∓ieiφ/2
)
. (1.81)

From these states we find that the direction of the spin,

n̂± = 〈χ±|σ|χ±〉 = (± sinφ,∓ cosφ, 0), (1.82)

is orthogonal to the momentum k̂ · n̂± = 0. This can be summarized in
the equation

n̂± = ±k̂ × ẑ, (1.83)

with ẑ the unit vector in the z direction. We will sometimes refer to a spin
with n̂+ (n̂−) as a plus (minus) spin. For a given energy the Fermi surface
consists of two concentric circles with radii (Fig. 1.6)

k± =
√
k2
so + k2

F ∓ kso, (1.84)

with kso = αm/~ and kF =
√

2mEF /~ the Fermi wavevector. The spin
rotates as we go along the circles such that there is no zero field spin
polarization, consistent with time reversal symmetry.

A neat way of picturing this is to write the Rashba spin-orbit term as
Zeeman splitting with a momentum dependent magnetic field

HR = −B(p) · σ; B(p) = α(−py, px, 0) = −~αk × ẑ. (1.85)

The spin eigenstate
∣∣χ−(+)

〉
is (anti)parallel to the field.

It is instructive to see explicitly that transforming a state with the time
reversal operator T = −iσ2C gives us another eigenstate. In fact

T |χ±(φ)〉 = ± |χ±(φ+ π)〉 , (1.86)
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i.e. time reversal connects states on the same Fermi surface circle.

We gained some insight into the role of time reversal by looking at the
eigenstates of the Hamiltonian. Being diagonal in that basis, the Hamil-
tonian is trivially quaternionic real. Let us get a bit more acquainted with
the abstract theory of the last section by calculating the Hamiltonian in
the states |φ,±〉 where

〈x|φ,+〉 = exp(ik · x)

(
ξφ
0

)
, (1.87a)

〈x|φ,−〉 = exp(ik · x)

(
0
1

)
. (1.87b)

The phase factor

ξφ =

{
+1 0 ≤ φ < π

−1 π ≤ φ < 2π
(1.88)

ensures that
T |φ,±〉 = |φ+ π,∓〉 . (1.89)

A quaternion of the Hamiltonian in this basis ordered like in (1.64) (with
|n〉 = |φ,±〉) thus becomes28

Hφ+,φ′− =

(
〈φ,+|H|φ′,−〉 〈φ,+|H|φ′ + π,+〉
〈φ+ π,−|H|φ′,−〉 〈φ+ π,−|H|φ′ + π,+〉

)
= αk (sinφ11 + cosφ iσ3)δφ,φ′ . (1.90)

The rest of the Hamiltonian quaternions are obtained similarly,

Hφ±,φ′± =
~2k2

2m
δφ,φ′11, (1.91a)

Hφ−,φ′+ = αk (sinφ11− cosφ iσ3)δφ,φ′ = HR
φ+,φ′−. (1.91b)

The Hamiltonian is indeed quaternionic real and self-dual as expected.

28To avoid double counting in the basis ({|φ,±〉 , T |φ,±〉}) we restrict 0 ≤ φ, φ′ < π.
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Figure 1.7. (a) The conical energy dispersion relation of a single valley
graphene, with the two cones touching at the Dirac point. (b) In the conduction
(valence) band the direction of the pseudospin is (anti)parallel to the momentum.

1.3.2 Graphene - the Single Valley Dirac Hamiltonian

In graphene, in the absence of intervalley scattering, the low energy exci-
tations are described by the Dirac Hamiltonian

H = vp · σ (1.92)

with v ≈ c/300 the velocity of the massless excitations. The energy eigen-
states are 〈x|ϕ,±〉 = exp(ik · x) |χ±(ϕ)〉 with k = k(cosϕ x̂ + sinϕ ŷ)
and

|χ±(ϕ)〉 =
e∓iπ/4√

2

(
±e−iϕ/2
eiϕ/2

)
. (1.93)

With the phase factor e∓iπ/4 these states satisfy T |ϕ,±〉 = |ϕ+ π,±〉,
with T = −iσ2C. The spectrum

ε± = ±v~k, (1.94)
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consists of two cones whose apexes meet in a single point called the Dirac
point (see Fig. 1.7). The direction of the pseudospin

n̂± = 〈χ±|σ|χ±〉 = ±(cosϕ, sinϕ, 0) = ±k̂ (1.95)

is always parallel to the group velocity vg± = ±vk̂. Calculating the matrix
elements of the Hamiltonian in the basis (1.87) of eigenstates of σz in
analogous way to the last section, one finds that the Hamiltonian matrix
is quaternionic real and self-dual.

1.4 This Thesis

We end this introduction with a brief introduction to the remaining chap-
ters.

Chapter 2: Stroboscopic Model of Transport Through a Quan-
tum Dot with Spin-Orbit Coupling

In the physicist’s toolbox, simple models that capture the essential physics
and allow for an analytical solution are the best. These are rare. In their
absence simple models that capture the essential physics and allow for an
efficient numerical simulation are invaluable, be it for the sole purpose
of comparing to (often approximate) analytical calculations, or even sim-
ulating experiments that can not be conducted in the lab with current
technology. A numerical experiment, if you like.

The spin kicked rotator is just such a model; It generalizes the open
spinless kicked rotator, which is used to model quantum transport through
ballistic quantum dots, to include spin and spin-orbit coupling. The open
kicked rotator, in turn, is a generalization of the kicked rotator, which
models closed chaotic quantum dots, to model transport. The kicked ro-
tator is a model of a pendulum (or a rotator) that rotates around a fixed
point (in the absence of gravity) and is kicked periodically with an es-
sentially random kicking strength. The time dependence is needed, for
without it energy would be a constant of the motion and the model would
be integrable.
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In chapter 2 we introduce the open spin (symplectic) kicked rotator in
the traditional way. That is, quantize the Hamiltonian and reduce its one
period time evolution operator, the Floquet operator F , to a discrete finite
form by going to parameter values that give what is called a resonance.
To be consistent with prior literature it is important to do it this way.
For physical intuition, however, it is more fruitful to consider the Floquet
operator

F = ΠUXU †Π (1.96)

as the definition of the model. One then considers the matrix X to de-
scribe the free (spin-orbit coupled) motion inside the chaotic cavity. This
free motion is interrupted by boundary scattering which is given in terms
of the matrix Π. (The matrix X is diagonal in θ space, while Π is diagonal
in p-space; U maps between the two spaces. θ and p are conjugate vari-
ables.) With this interpretation, the variable θ becomes the momentum-
like variable, while p becomes a variable for the position on the boundary.
To accommodate the notation it can be useful to think of θ as the angle
describing the direction of the momentum.

How one then goes on to open up the model, i.e. attach leads, is de-
scribed in the chapter. There it is explained how one needs to consider an
alternative time reversal symmetry to the one usually used for the spinless
kicked rotator. With the above interpretation in mind, the reasons for this
are physically clear.

By simply looking at the model, it is by no means clear how to relate
its parameters (kicking strengths and symmetry breaking parameters) to a
real physical system. With some simple assumptions, we calculate analyti-
cally the conductance of the spin kicked rotator, and by varying parameters
we can go from weak localization to weak antilocalization, to the absence
of weak localization (which happens in the presence of magnetic field). By
direct comparison with results from random-matrix theory, one reads off
the connection between the model parameters and the physical parameters
(magnetic field, spin-orbit coupling time etc.). This is a valuable result for
any estimate of physical scales in the model.
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Figure 1.8. A + spin plane wave incident on a hard wall with an incident angle
χ+ (a) is always reflected as two plane waves with reflection angles χ±. A −
spin plane wave (b) can, on the other hand, for large enough incident angles be
reflected as a single plane wave .

Chapter 3: How Spin-Orbit Coupling Can Cause Electronic Shot
Noise

In the absence of spin-orbit coupling, a plane wave incident on a hard wall
is reflected as a single plane wave with an angle of reflection equal to the
angle of incidence. In the presence of spin-orbit coupling this is no longer
true; the plane wave can be reflected as two plane waves.

This can be understood pictorially as shown in Fig. 1.8, were we con-
sider the case that the Fermi surface consists of two concentric circles (as
in the Rashba case in Sec. 1.3.1). Assuming that the hard wall is parallel
to the y-axis, the y component ky of the momentum is conserved. If the
incoming way belongs to the inner circle (+ spin plane wave) there are two
possibilities for the outgoing wave. An incoming wave on the outer circle
(− spin) also has two possible outgoing waves, unless the angle of incident
χ− is larger then the critical angle χc = arcsin(k+/k−) with k+(k−) the
radius of the inner (outer) Fermi circle [cf. Eq. (1.84)]. When there are
two outgoing waves, we talk of trajectory splitting [26].

Can this trajectory splitting be a source of (shot) noise in a ballistic
quantum dot? That is the question considered in chapter 3. The answer
is yes, but to observe it one needs to suppress any other sources of shot
noise, in particular the shot noise that arises by the simple fact that the
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electron is a wave. Imagine an electron trying to impinge on a lead. If
the electron wavepacket is spread over a length scale large then the lead
opening, it is going to be partially reflected, causing shot noise. To get
rid of this source of noise one needs simply to make the lead very large,
such that the spread of the wavepacket is negligible. In this chapter, this
condition is given in terms of the Ehrenfest time τE , which essentially is
the time it takes a wavepacket to spread to the size of the leads. If the
dwell time τdwell, the time the electron spends inside the quantum dot, is
smaller then the Ehrenfest time, quantum mechanical wave noise does not
play any role.

We establish that in this limit there is a parameter regime were the
trajectory splitting is the dominant source of shot noise. To check our
theory, we have compared to a numerical simulation of classical particles
in a stadium billiard. The trajectory splitting is calculated quantum me-
chanically, and added to the classical equations of motions to determine
what happens as the classical particles are reflected of the boundaries of
the billiard. The numerical results are found to be in agreement with our
theory.

Chapter 4: Degradation of Electron-Hole Entanglement by Spin-
Orbit Coupling

Take a tunnel junction connecting two metals and apply a voltage across it.
Every now and then, and electron will tunnel from one side, leaving a hole
behind on the other. The electron-hole pair move in opposite directions,
creating a current that you can measure; the tunneling current. There is
more to this simple process. Namely, the electron and the hole turn out
to be entangled [27].

In chapter 4 we consider how the presence of spin-orbit coupling affects
this electron-hole entanglement. In order to do so we begin by generalizing
an earlier result to include many modes. The reason for this is that the
degradation of the entanglement arises because of mode mixing by the
spin-orbit coupling.

To quantify the entanglement we use the concurrence. The concurrence
depends essentially on two parameters: the number of modesN in the leads
connecting the tunnel barrier to the reservoirs, and the ratio τdwell/τso of
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Figure 1.9. A schematic of a scattering of spin up (with respect to z axis)
particles by a massive spinless particle (black dot in center). Dashed lines show
the symmetric trajectories of electrons with impact parameters b and −b, realized
when the spin-orbit coupling is neglected. Spin-orbit coupling makes the potential
of the scatterer more (less) attractive for particles passing on the right (left),
causing a left-right asymmetry in the scattering (solid trajectories).

the time the electron-hole pairs spends in the leads τdwell and the spin-
orbit coupling time τso. The dependence of the concurrence on both these
parameters can be understood intuitively. The more modes there are, the
bigger the possibility of mode mixing and the smaller the concurrence.
The longer time the modes have to mix, the smaller the concurrence, with
τso setting the time scale on which it goes to zero.

We confirm these expectations numerically, and find in addition that
for large number of modes the concurrence is independent of the number of
modes. This allows us to make a simplifying assumption (about the form of
the spin density matrix) in order to analytically calculate the dependence
of the concurrence on the ratio τdwell/τso. We find good agreement between
our analytical calculation and our numerics.
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Chapter 5: Mesoscopic Spin Hall Effect

Let us consider scattering of a spin-half particle by a massive spinless par-
ticle [28]. According to our discussion in Sec. 1.1.1 [in particular Eq. (1.7)]
the scattering potential the spin-half particle sees will be of the form

Vsc = V0 + Vs(r)σ ·L. (1.97)

Imagine sending in a beam of spin up (with respect to the z-axis) par-
ticles with a random impact parameter b. Neglecting the spin-orbit cou-
pling, electrons with impact parameter b and −b will scatter symmetri-
cally (dashed lines in Fig. 1.9). When taking into account the spin-orbit
coupling, the electrons passing on the right (left) of the scatterer have
an angular momentum parallel (antiparallel) to the spin, and thus feel a
stronger (weaker) potential. When averaging over all b we find that spin
up electrons have a net tendency to scatter to the left [28]. Spin down elec-
trons on the other hand have a net tendency to scatter to the right. An
unpolarized incident beam in the x direction will thus, due to spin-orbit
coupling, generate a pure spin current (i.e. not accompanied by a charge
current) flowing in the y direction (polarized in the z direction). This, in
essence, is the spin Hall effect [29, 30].

The above mechanism is extrinsic, coming e.g. from impurities. The
intrinsic mechanisms for spin-orbit coupling, like the Rashba term, also
give arise to a spin Hall effect. To understand this, we recall the repre-
sentation (1.85) of the Rashba term as a momentum dependent magnetic
field. In equilibrium the spin eigenstates are (anti)parallel to this magnetic
field, but applying an electric field Ex accelerates the electrons, changing
the momentum and in turn the Rashba magnetic field the spin sees. This
leads to a precession of the spin out of plane, leading to a spin current js,y
(in the z direction) in analogy to the case discussed above. Referring to
Fig. 1.6, the two states at each momentum give a contribution that cancel
out. It is thus only the states in the annulus k+ < k < k− that contribute,
giving a spin Hall conductance [31]

σsH = −js,y
Ex

=
e

8π
. (1.98)
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In the presence of disorder, however, this spin Hall conductance averages
to zero [32]. Essentially, the diffusive scattering scrambles the momentum
and the Rashba field such that the precession of the spin averages to zero.

In chapter 5 we consider the spin Hall effect in a mesoscopic four termi-
nal chaotic cavity with spin-orbit coupling. The voltages on the terminals
are adjusted such that a charge current flows between two longitudinal
leads, while no charge current flows in the two transverse leads. In anal-
ogy to the two cases discussed above, the spin-orbit coupling gives arise
to spin currents in the transverse leads, but the chaotic dynamics (like
diffusion) scrambles the momentum such that on average this spin current
is zero.

Even though the average spin current is zero, the variance does not
need to be. In fact, one expects different cavities to contribute differently
to the mean. By changing the chaotic dynamics (e.g. by changing the
shape of the cavity) one thus expects spin current fluctuations, very much
in analogy to conductance fluctuations. In this chapter we calculate this
spin current fluctuations using random-matrix theory, and show that it
is universal (in the same sense as universal conductance fluctuations are
universal). In order to check our analytical predictions we compare with
numerical simulations using the spin kicked rotator of chapter 2.

Chapter 6: One-Parameter Scaling at the Dirac Point in Graphene

Suppose you have a chunk of disordered material of volume Ld with d its di-
mension. Imagine doubling all the lengths such that the volume becomes
(2L)d, made up of 2d pieces of the original size. Is there a relationship
between the conductance of the larger chunk and the conductance of its
constituent smaller chunks? According to the scaling theory of localiza-
tion [33, 34] there is and in fact the rate of change of the dimensionless
conductance g = G/(e2/h) can be written in terms of the beta function

β(g) =
d ln g
d lnL

(1.99)

which depends only on the single parameter g.
In the Drude theory of metals the conductivity σ is a constant and the

conductance G = σLd−2. For large conductance (g � 1) we expect the
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Figure 1.10. (a) A schematic of the beta function of the scaling theory of local-
ization in different dimensions. (b) In two dimension how the beta function ap-
proaches zero becomes critical. This is determined by the weak (anti)localization
(WL/WAL) correction to the conductivity. In the presence of spin-orbit coupling
the beta function approaches zero from above.

Drude theory to be accurate, and thus in this limit

lim
g→∞

β(g) = d− 2. (1.100)

On the other hand, if the disorder is large enough, the electron wavefunc-
tion localizes and the conductance is exponentially small g ∝ exp(−L/ξ)
with ξ the localization length. Thus

lim
g→0

β(g) = ln g. (1.101)

Assuming that these two limits are connected in a continuous and monot-
onous manner [33], we obtain the beta functions sketched in Fig. 1.10.

In the two dimensional case, the beta function goes to zero in the limit
of large conductance. It therefore is important to know how this limit is
approached. This one can do by a perturbation theory around the perfect
metal assuming weak disorder. The result is the phenomena of weak (anti)
localization discussed in Sec. 1.1.3, but in disordered systems it takes the
form [35]

σ = σ0 − 2− β
β

e2

h

2
π

lnL/`, (1.102)
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with ` the mean free path, and β = 1(4) in the absence (presence) of spin-
orbit coupling (see also Sec. 2.3). We thus observe that in the presence
(absence) of spin-orbit coupling the beta function approaches zero from
above (below) as β(g) ∼ +1/πg (β(g) ∼ −2/πg).

In graphene, intervalley scattering leads to localization [36, 37]. This
means that for system sizes L much larger then the intervalley scattering
length Liv graphene becomes an insulator. Intervalley scattering requires
that the scattering potential has a Fourier component at a−1 with a the
lattice spacing. In other words, scattering potential smooth on the scale
of lattice spacing does not couple the two valleys of graphene. It turns out
the intervalley scattering length in graphene is very large and thus it is of
considerable interest to consider what happens in its absence. This is the
topic of chapter 6.

Single valley graphene has the same symmetries as a metal with spin-
orbit coupling. One might be tempted to conclude that the beta function
of these two systems should thus be the same. However, there are sev-
eral arguments that hint that something completely different is realized.
Firstly, consider conductivity at the Dirac point. In the absence of dis-
order the density of states at the Dirac point is zero and conductance
is through evanescent modes. Introduction of disorder will locally change
the chemical potential and introduce propagating modes, or in other words
disorder will induce a nonzero density of states. Disorder will thus initially
increase conductivity. (Another way to think about the same thing is to
consider the conductivity enhancement to be due to impurity assisted tun-
neling [38].) A consequence of this phenomena is that for conductances
around the ballistic value the beta function is positive.

Secondly, in Refs. 39 and 40 it was shown that the low energy field
theory of single valley graphene in the presence of smooth scalar disorder
is given in terms of a non-linear sigma model with a topological term.
For large conductances the topological term can be neglected and the field
theory is the same as for the spin-orbit coupled metal. One thus expects
the beta function to approach the limit 1/πg for g � 1. We thus have the
situation that we have two limits in which the beta function is positive
and no theory of how to interpolate between the two limits. One could use
the arguments used above expecting the beta function to be monotonous
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(which is not always the case, see Fig 1.10) and thus strictly positive. The
authors of Ref. 39 gave arguments for a different nonmonotonic scenario
in which there is a stable fixed point (as explained in chapter. 6).

In the absence of any analytical tool capable of deciding which beta
function is realized, we have developed a numerical method to obtain some
evidence for one scenario over the other. In chapter 6 we explain our
method and present the results of the numerical simulations. From our
results we conclude that the beta function of single valley graphene is
strictly positive in contrast to Ref. 39.
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Chapter 2

Stroboscopic Model of
Transport Through a
Quantum Dot with Spin-Orbit
Coupling

2.1 Introduction

Electrical conduction in semiconductor heterostructures is affected by the
spin degree of freedom through spin-orbit coupling. In quantum dots
with chaotic scattering a statistical approach is appropriate. The spin-
orbit Hamiltonian (of either Rashba or Dresselhaus form) has a special
structure, that of a non-Abelian vector potential. By a gauge transfor-
mation Aleiner and Fal’ko identified all possible symmetry classes and
described the crossovers between them by means of random-matrix theory
(RMT) [41]. This RMT has been extended by Brouwer et al. to the case
that the spin-orbit coupling is nonuniform and thus the gauge transforma-
tion cannot be made [42, 43]. Experiments are in good agreement with
the predictions of the theory [44, 45]. Recently a semiclassical theory of
quantum dots with spin-orbit coupling has been developed [7, 8]. Exact
quantum mechanical calculations of such “Rashba billiards” have also been
reported [46]. In this chapter we will focus on the regime of strong chaos,
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where RMT and semiclassics agree.

We present a fully quantum mechanical computer simulation to test
the theory. In the case of spinless chaotic quantum dots, the stroboscopic
model known as the quantum kicked rotator has been proven to be quite
successful [47–53]. This model exploits the fact that, although the phase
space of the open quantum dot is four-dimensional, the dynamics can be
described, on time scales greater than the time of flight across the dot, as a
mapping between points on a two-dimensional Poincaré surface of section.
The kicked rotator gives a map on a two-dimensional phase space that has
the same phenomenology as open quantum dots.

In this chapter we extend the model of the open kicked rotator to
include spin-orbit coupling in a perpendicular magnetic field. We begin
by describing the known model for a closed chaotic quantum dot [54] with
spin-orbit coupling in Sec. 2.2.1, before discussing the opening up of the
model in Sec. 2.2.2. The relation of the model to RMT is given in Sec. 2.3.
This relation will give us a mapping between the model parameters and
the microscopic parameters of a chaotic quantum dot. Numerical results
for the weak (anti)-localization peak and its dependence on magnetic field
and spin-orbit coupling strength are presented in Sec. 2.4 and compared
with the analytical predictions from Sec. 2.3.

2.2 Description of the Model

2.2.1 Closed System

The symplectic kicked rotator has been introduced by Scharf [54] and
studied extensively in Refs. 55–57. We summarize this known model of the
closed system before proceeding to the open system in the next subsection.

The symplectic kicked rotator describes an electron moving along a
circle with moment of inertia I0, kicked periodically at time intervals τ0
with a kicking strength that is a function of position and spin. We choose
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units such that τ0 ≡ 1 and ~ ≡ 1. The Hamiltonian H is given by [54, 55]

H =
1
2

(p+ p0)2 + V (θ)
∞∑

n=−∞
δs(t− n), (2.1a)

V (θ) = K cos(θ + θ0) +Kso(σ1 sin 2θ + σ3 sin θ). (2.1b)

We have introduced the symmetrized delta function δs(t) = [δ(t + ε) +
δ(t− ε)]/2, with ε an infinitesimal. The dimensionless angular momentum
operator p = −i~eff∂/∂θ, with ~eff = ~τ0/I0 the effective Planck constant,
is canonically conjugate to the angle θ ∈ [0, 2π). The kicking potential
V (θ) contains the Pauli spin matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (2.2)

Potential scattering is parameterized by the kicking strength K and spin-
orbit coupling by Kso. We choose smoothly varying functions of θ, cor-
responding to a smooth potential. Disorder can be added via a rapidly
varying function of θ, cf. Ref. 58.

Spin rotation symmetry is broken if Kso 6= 0. The generalized time-
reversal symmetry [54]

T : θ 7→ −θ, p 7→ p, σi 7→ −σi, t 7→ −t, (2.3)

is preserved if θ0 = 0 and is broken if θ0 ∈ (0, π). A nonzero p0 ensures
that the Hamiltonian has no other unitary or antiunitary symmetries [54].

Notice that the roles of p and θ are interchanged in T compared to the
conventional time-reversal symmetry of the Rashba Hamiltonian and the
spinless kicked rotator, which reads

T ′ : θ 7→ θ, p 7→ −p, σi 7→ −σi, t 7→ −t. (2.4)

For this reason time-reversal symmetry in the symplectic kicked rotator is
broken by a displacement of θ, rather than by a displacement of p as in
the spinless kicked rotator [59].

The stroboscopic time evolution of a wave function is governed by the
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Floquet operator

F = T exp
[
− i

~eff

∫ t0+1

t0

H(t)dt
]
, (2.5)

where T denotes time ordering of the exponential. In the range [−1/2, 1/2)
only t0 = 0 and t0 = −1/2 preserve T -symmetry for θ0 = 0. We will find
it convenient to choose t0 = −1/2 for numerical calculations and t0 = 0
for analytical work.

For p0 = 0 the reduction of the Floquet operator to a discrete finite
form is obtained for special values of ~eff, known as resonances [59]. For
~eff = 4π/M , with M an integer, the Floquet operator is represented
by an M × M matrix of quaternions (cf. Sec. 1.2.2). For this value of
~eff the momentum is restricted to p ∈ [0, 4π), i.e. one can think of the
Floquet operator as describing a map on a torus. For t0 = −1/2 the matrix
elements in the p-representation are given by

Fll′ = (ΠUXU †Π)ll′ , l, l′ = 0, 1, . . . ,M − 1, (2.6a)

Πll′ = δll′e
−iπl2/M11, (2.6b)

Ull′ = M−1/2e−i2πll
′/M11, (2.6c)

Xll′ = δll′e
−i(M/4π)V (2πl/M). (2.6d)

For t0 = 0 one has instead

F = UX1/2U †Π2UX1/2U †. (2.7)

These maps (2.6) and (2.7) are equivalent to the Hamiltonian (2.1)
with p0 = 0. A nonzero p0 may be introduced into the map by replacing
Π with [59]

Πll′ = δll′e
−iπ(l+l0)2/M11, l0 =

p0M

4π
. (2.8)

This map is not rigorously equivalent to the Hamiltonian (2.1), but it has
the same classical limit (for Kso = 0) [51].

The generalized time-reversal symmetry (2.3) is expressed by the iden-
tity

F = FR, if θ0 = 0. (2.9)
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The superscriptR denotes the dual of a quaternionic matrix (as in Sec. 1.2.2),

FR ≡ σ2FTσ2.

Here T denotes the transpose in the basis of eigenstates of p (p-representa-
tion). To verify Eq. (2.9) note that σ2σ

T
i σ2 = −σi and that the transpose

in p-representation takes θ to −θ.

2.2.2 Open System

To describe electrical conduction we open up the kicked rotator, following
the general scheme of Refs. 47–50. We model a pair of N -mode ballis-
tic point contacts that couple the quantum dot to electron reservoirs, by
imposing open boundary conditions in a subspace of Hilbert space repre-
sented by the indices l(µ)

k . The subscript k = 1, 2, . . . N , with N = N1+N2,
labels the modes (both spin directions), and the superscript µ = 1, 2 labels
the point contacts. The N ×M quaternionic projection matrix P is given
by

Pkk′ =

{
11 if k′ = l

(µ)
k ,

0 otherwise.
(2.10)

The matrices P and F together determine the scattering matrix

S(ε) = P (e−iε −FQTQ)−1FP T , (2.11)

where ε ∈ [0, 2π) is the quasi-energy and QTQ = 1 − P TP . One readily
verifies that S is unitary.

We need to ensure that the introduction of the point contacts does not
break the T -symmetry

S(ε) = SR(ε), if θ0 = 0, (2.12)

or for non-zero θ0 the more general duality relation

S(θ0) = SR(−θ0). (2.13)

This is assured by choosing the absorbing boundary conditions in a strip
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0
2π0

2π
p

θ

0
2π0

p

θ

4π

Figure 2.1. Location of the absorbing boundary conditions (grey rectangles) in
the classical phase space of the open kicked rotator. To ensure that the openings
do not break the time reversal symmetry they are oriented parallel to the p-axis in
the spinless kicked rotator (left panel) and parallel to the θ-axis in the symplectic
kicked rotator (right panel).

parallel to the θ-axis, rather than parallel to the p-axis as in the spinless
kicked rotator (cf. Fig. 2.1). The difference is due to the exchange of
the roles of p and θ in the time-reversal symmetry operation, compare
Eqs. (2.3) and (2.4).

By grouping together the Nµ indices belonging to the same point con-
tact, theN×N quaternionic matrix S can be decomposed into 4 sub-blocks
containing the quaternionic transmission and reflection matrices,

S =

(
r t′

t r′

)
. (2.14)

The value of ε is arbitrary; we will take ε = 0 in the analytical calculations
and average over ε in the numerics. The T -symmetry (2.12) requires that
r = σ2r

Tσ2, r′ = σ2r
′Tσ2, and t′ = σ2t

Tσ2.

The conductance G follows from the Landauer formula

G =
e2

h
Tr tt†, (2.15)

where the trace Tr is over channel indices as well as spin indices. Unitarity
of S ensures that Tr tt† = Tr t′t′†. For θ0 = 0 the eigenvalues of tt†

are doubly degenerate due to the T -symmetry (Kramers degeneracy, cf.
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Sec. 1.2.5). It will prove useful to write the Landauer formula in the
form [42, 43]

G =
2e2

h

N1N2

N
− e2

h
TrSΛS†Λ ≡ G0 + δG, (2.16)

with Λ a diagonal matrix having diagonal elements

Λjj =

{
N2/N j = 1, . . . , N1,

−N1/N j = N1 + 1, . . . , N.
(2.17)

The term G0 = (2e2/h)N1N2/N is the classical conductance and the term
δG, of order e2/h, is the quantum correction from the weak localization
effect.

2.3 Relation to Random-Matrix Theory

Random-matrix theory (RMT) gives universal predictions for the quantum
correction δG in Eq. (2.16). We calculate this quantity for the symplec-
tic kicked rotator and compare with RMT. This will give us the relation
between the parameters of the stroboscopic model and the microscopic
parameters of the quantum dot.

The three universality classes of RMT are labeled by β = 1, 2, 4,
with [60]

δGRMT =
β − 2

2β
e2

h
. (2.18)

In the absence of T -symmetry one has β = 2. In the presence of T -
symmetry one has β = 1 (4) in the presence (absence) of spin rotation
symmetry. We will investigate the three symmetry breaking transitions
β = 1→ 2, β = 1→ 4, and β = 4→ 2 in separate subsections.

2.3.1 β = 1 → 2 Transition

The β = 1→ 2 transition takes place in the absence of spin-orbit coupling
(Kso = 0). This transition was studied in Ref. 51 for the case that the
symmetry T ′ rather than T is broken. To fully characterize the model we
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need to reconsider this transition for the case of T -symmetry breaking.

For small θ0, cos(θ+θ0) ≈ cos θ−θ0 sin θ and the Floquet matrix (2.7)
takes the form

F(Kso = 0, θ0 → 0) = eθ0WF0e
θ0W , (2.19a)

W = UY U †, Yll′ = δll′i(KM/8π) sin(2πl/M). (2.19b)

Here F0 = F(Kso = 0, θ0 = 0) is unitary symmetric and W is real anti-
symmetric. The scattering matrix (2.11) (at ε = 0) becomes

S = T (1−F0R)−1F0T
′, (2.20a)

T = Peθ0W , (2.20b)

T ′ = eθ0WP T , (2.20c)

R = eθ0WQTQeθ0W . (2.20d)

Substitution of S into Eq. (2.16) gives the conductance G.

To make contact with RMT we assume that F0 is a random matrix
from the circular orthogonal ensemble (COE), expand the expression for G
in powers of F0 and average F0 over the COE. In the regime 1� N �M ,
we can perform the average over the unitary group with the help of the
diagrammatic technique of Ref. 17. Since Tr Λ = 0 only the maximally
crossed diagrams contribute to leading order in N . The result for the
average quantum correction becomes

〈δG〉 = −2e2

h
tr T †ΛT (T ′ΛT ′†)T

1
M − tr R†RT

. (2.21)

The factor of 2 comes from the spin degeneracy and the trace tr is over
channel indices only. The two remaining traces are evaluated in the limit
N,M →∞ at fixed N/M . We find

M−1tr T †ΛT (T ′ΛT ′†)T =
N1N2

N2

N

M
, (2.22)

M−1tr R†RT = 1−N/M − θ2
0(KM/4π)2(1−N/M). (2.23)
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Substitution into Eq. (2.21) gives the average quantum correction

〈δG〉 = −e
2

h

2N1N2

N2

1
1 + (θ0/θc)2

, (2.24a)

θc =
4π
√
N

KM3/2
. (2.24b)

The RMT result has the same Lorentzian profile [61, 60]

δGRMT = −e
2

h

2N1N2

N2

1
1 + (B/Bc)2

, (2.25a)

Bc = C
h

eL2

(
NL∆
~vF

)1/2

, (2.25b)

with C a numerical constant of order unity, L =
√
A the size of the dot,

A the area of the dot, ∆ = 2π~2/mA the mean spacing of the Kramers
degenerate levels, and vF the Fermi velocity. Comparison of Eqs. (2.24)
and (2.25) allows us to identify

θ0/θc = B/Bc. (2.26)

2.3.2 β = 1 → 4 Transition

The β = 1 → 4 transition is realized by turning on spin-orbit coupling
(Kso) in the absence of a magnetic field (θ0 = 0). In this transition the
quaternionic structure of the Floquet matrix plays a role. The Floquet
matrix (2.7) has the form

F(Kso, θ0 = 0) = eKsoAF0e
KsoA, (2.27a)

A = U(σ1Y1 + σ3Y3)U †, (2.27b)

(Y1)ll′ = −δll′i(M/8π) sin(4πl/M), (2.27c)

(Y3)ll′ = −δll′i(M/8π) sin(2πl/M). (2.27d)

The matrix A is real antisymmetric and thus Ã = −A, where the tilde
denotes quaternion complex conjugation (cf. Sec. 1.2.2). The scattering
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matrix takes the same form (2.20a), but now with

T = PeKsoA, (2.28a)

T ′ = eKsoAP T , (2.28b)

R = eKsoAQTQeKsoA. (2.28c)

The average of F0 over the ensemble of unitary symmetric matrices
only involves the channel indices and not the spin indices. To keep the
quaternions in the correct order we adopt the tensor product notation of
Brouwer et al. [42, 43]. The average of δG over F0 gives, to leading order
in N ,

〈δG〉 =
e2

h

∑
µν

[
τ

tr E ⊗ Ẽ′
M11⊗ 11− tr R⊗ R̃τ

]
µν;µν

, (2.29)

where τ = 1 ⊗ σ2, E = T †ΛT , and E′ = T ′ΛT ′†. The tensor product has
a backward multiplication in the second argument,

(a⊗ b)(c⊗ d) ≡ ac⊗ db, (2.30)

and the indices µ and ν are the spin indices.
The two traces are calculated in the limit Kso → 0, N,M → ∞ at

fixed N/M , leading to

M−1tr E ⊗ Ẽ′ = N1N2

N2

N

M
11⊗ 11, (2.31a)

M−1tr R⊗ R̃ = (1−N/M)(1− 4K2
so(M/8π)2)11⊗ 11

+ 2K2
so(M/8π)2(1−N/M)(σ1 ⊗ σ1 + σ3 ⊗ σ3). (2.31b)

After substitution into Eq. (2.29) there remains a matrix structure that
can be inverted, resulting in

〈δG〉 =
e2

h

N1N2

N2

(
1− 2

1 + 2a2
− 1

1 + 4a2

)
, (2.32a)

a = Kso/Kc, Kc =
4π
√

2N
M3/2

. (2.32b)

The RMT result has the same functional form [42], with a2 = 2π~/Nτso∆.
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Here τso is the spin-orbit coupling time. Thus we identify

Kso/Kc = (2π~/Nτso∆)1/2. (2.33)

2.3.3 β = 4 → 2 Transition

In the presence of strong spin-orbit coupling (Kso � Kc) the Floquet
matrix takes for small θ0 the same form as in Eq. (2.19a) for Kso = 0, but
now F0 = F(Kso � Kc, θ0 = 0) is a unitary self-dual matrix rather than
a unitary symmetric matrix. We can repeat exactly the same steps as we
did for Kso = 0 but with F0 a random matrix in the circular symplectic
ensemble (CSE). We then average F0 over the CSE. This leads to

〈δG〉 =
e2

h

N1N2

N2

1
1 + (θ0/θc)2

, (2.34)

with θc as in Eq. (2.24b). The width of the Lorentzian is therefore the
same in the β = 1 → 2 and β = 4 → 2 transitions, in agreement with
RMT [60].

2.4 Numerical Results

The numerical technique we use is the same as has been used before for the
spinless kicked rotator [50, 51]. A combination of an iterative procedure
for matrix inversion and the fast-Fourier-transform algorithm allows for an
efficient calculation of the scattering matrix from the Floquet matrix.

The average conductance 〈G〉 was calculated with the Landauer for-
mula (2.15) by averaging over 60 different uniformly distributed quasi-en-
ergies and 40 randomly chosen lead positions. The quantum correction
〈δG〉 is obtained by subtracting the classical conductance G0. The numer-
ical data is shown in Figs. 2.2 and 2.3. The magnetic field parameter θ0 is
given in units of θc from Eq. (2.24b) and the spin-orbit coupling strength
parameter Kso is given in units of Kc from Eq. (2.32b). The solid lines
are the analytical predictions (2.24), (2.32), and (2.34) without any fitting
parameter.

The small difference between the data and the predictions can be at-
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Figure 2.2. Average quantum correction 〈δG〉 to the conductance as a function
of the T -symmetry breaking parameter θ0. The data points are for the symplectic
kicked rotator characterized by K = 41, M = 500, N1 = N2 = 10, l0 = 0.2.
The solid lines are the analytical predictions (2.24) and (2.34) in the absence
and presence of spin-orbit coupling. The dotted lines are the solid lines with a
vertical offset, to account for a difference between the predicted and actual value
of the classical conductance G0.

tributed to an uncertainty in the value G0 of the classical conductance.
A small vertical offset (corresponding to a change in G0 of about 0.1%)
can correct for this (dotted lines in Fig. 2.2). The strongly non-Lorentzian
lineshape seen by Rahav and Brouwer [52, 53] in the spinless kicked rotator
is not observed here.

2.5 Conclusion

We have presented a numerically highly efficient model of transport through
a chaotic ballistic quantum dot with spin-orbit coupling, extending the ear-
lier work on the spinless kicked rotator. Through a simple assumption of



2.5 Conclusion 57

-0.5

-0.25

 0

 0.25

 0  2  4  6

〈 δ
 G

 〉 
h 

/ e
2

Kso / Kc

θ0 = 0

Figure 2.3. Average quantum correction 〈δG〉 to the conductance as a function
of spin-orbit coupling strength Kso at zero magnetic field. Other parameters are
the same as in Fig. 2.2. The solid line is the analytical prediction (2.32) for the
crossover from weak localization to weak anti-localization.

a random Floquet matrix we have derived analytical predictions for the
conductance of the model as a function of spin-orbit coupling strength
and magnetic field. The functional form of the conductance coincides with
random-matrix theory (RMT) and through this correspondence we obtain
a mapping from microscopic parameters to model parameters. Numerical
calculations are in good agreement with the analytical predictions.

In this chapter we have applied the model in a parameter regime where
the transport properties of the system are analytically known through
RMT, in order to test the validity of the model. In future work this
model may provide a starting point for studies of transport properties in
parameter regimes where RMT is known to break down. In certain cases,
for example in the study of the effect of a finite Ehrenfest time on weak
anti-localization, very large system sizes are required (cf. Refs. 52 and 53).
An efficient dynamical model, as the one presented in this chapter, is then
a valuable tool.
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Chapter 3

How Spin-Orbit Coupling can
Cause Electronic Shot Noise

3.1 Introduction

Electrical conduction is not much affected typically by the presence or
absence of spin-orbit coupling. A familiar example [5, 42, 44, 7], the
crossover from weak localization to weak anti-localization with increasing
spin-orbit coupling strength, amounts to a relatively small correction to
the classical conductance, of the order of the conductance quantum e2/h.
The relative smallness reflects the fact that the spin-orbit coupling energy
Eso is much smaller than the Fermi energy EF , basically because Eso is a
relativistic correction (cf. Ch. 1).

In this chapter we identify an effect of spin-orbit coupling on the
electrical current that has a quantum mechanical origin (like weak anti-
localization), but which is an order-of-magnitude effect rather than a cor-
rection. The effect is the appearance of shot noise in a ballistic chaotic
quantum dot with a large number N of modes in the point contacts.
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3.2 The Effect of Spin-Orbit Coupling on the Ehren-
fest Time

According to recent theory [62–65] and experiment [66], the shot noise
without spin-orbit coupling is suppressed exponentially ∝ exp(−τE/τdwell)
when the Ehrenfest time τE ' λ−1

L lnN becomes greater than the mean
dwell time τdwell of an electron in the quantum dot. (The coefficient λL is
the Lyapunov exponent of the classical chaotic dynamics.) The suppression
occurs because electrons follow classical deterministic trajectories up to τE
(in accord with Ehrenfest’s theorem, hence the name “Ehrenfest time”). If
τE > τdwell an electron wave packet entering the quantum dot is either
fully transmitted or fully reflected, so no shot noise appears [67].

The electron spin of ±1
2~ remains quantum mechanical in the limit

N → ∞. In the presence of spin-orbit coupling the quantum mechanical
uncertainty in the spin of the electron is transferred to the position, causing
a breakdown of the deterministic classical dynamics and hence causing shot
noise. The mechanism for the spin-orbit-coupling-induced shot noise is
illustrated in Fig. 3.1 (cf. also Sec. 1.4). The key ingredient is the splitting
of a trajectory upon reflection with a hard boundary [26].

Whether a boundary is “hard” or “soft” depends on the relative mag-
nitude of the penetration depth ξ into the boundary and the spin-orbit
precession length lso = hvF /Eso ' λFEF /Eso. A soft boundary has
ξ � lso, so the spin evolves adiabatically during the reflection process
[26, 68] and the electron remains in the same spin band, without splitting
of the trajectory. In the opposite regime ξ � lso of a hard boundary the
spin is scattered into the two spin bands by the reflection process. The
energy splitting Eso of the spin bands at the Fermi level amounts to a dif-
ference δp⊥ ' Eso/vF of the component of the momentum perpendicular
to the boundary, and hence to a splitting of the trajectories by an angle
δφso ' δp⊥/pF ' λF /lso. (A precise calculation of the splitting, which
depends on the angle of incidence, will be given later.)

Because of the chaotic dynamics, the angular opening δφso(t) ' (λF /lso)
×eλLt of a pair of split trajectories increases exponentially with time t —
until they leave the dot through one of the two point contacts after a time
T . The splitting will not prevent the trajectories to exit together through
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Figure 3.1. Splitting of trajectories by spin-orbit coupling in an electron billiard.
(The dotted arrows indicate the spin bands, with± spins.) The splitting produces
shot noise if not all trajectories can exit through the same opening.

the same point contact if δφso(T ) < W/L, with W the width of the point
contact and L the diameter of the (two-dimensional) quantum dot. The
time

Tso = λ−1
L ln(Wlso/LλF ) (3.1)

at which δφso(Tso) = W/L is an upper bound for deterministic noiseless
dynamics due to spin-orbit coupling.

Dwell times shorter than Tso may yet contribute to the shot noise as
a result of diffraction at the point contact, which introduces an angular
spread δφpc ' 1/N ' λF /W in the scattering states. The time

Tpc = λ−1
L ln(WN/L) (3.2)

at which this angular spread has expanded to W/L is an upper bound for
deterministic noiseless dynamics due to diffraction at the point contact
[63]. The smallest of the two times Tso and Tpc is the Ehrenfest time of
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this problem,
τE = λ−1

L ln
[
(W/L) min(N, lso/λF )

]
, (3.3)

separating deterministic noiseless dynamics from stochastic noisy dynam-
ics. (By definition, τE ≡ 0 if the argument of the logarithm is < 1.)
Since the distribution of dwell times P (T ) ∝ exp(−T/τdwell) is exponen-
tial, a fraction

∫∞
τE
P (T ) dt = exp(−τE/τdwell) of the electrons entering the

quantum dot contributes to the shot noise.
Following this line of argument we estimate the Fano factor F (ratio

of noise power and mean current) as [62] F = 1
4 exp(−τE/τdwell), hence

F =
1
4

(
λFL

lsoW

)1/λLτdwell

if
λFL

W
, ξ < lso < W. (3.4)

The upper bound on lso indicates when diffraction at the point contact
takes over as the dominant source of shot noise, while the two lower bounds
indicate when full shot noise has been reached (Fano factor 1/4) and when
the softness of the boundary (penetration depth ξ) prevents trajectory
splitting by spin-orbit coupling.

Eq. (3.4) should be contrasted with the known result in the absence of
spin-orbit coupling [62, 63]:

F =
1
4

(
L

NW

)1/λLτdwell

if
λFL

W
< W < lso. (3.5)

Clearly, the role of the channel number N in determining the shot noise is
taken over by the ratio lso/λF once lso becomes smaller than W .

3.3 Numerical Simulation in a Stadium Billiard

We support our central result (3.4) with computer simulations, based on
the semiclassical theory of Refs. 69–71. In the limit λF → 0 at fixed
lso, L,W a description of the electron dynamics in terms of classical tra-
jectories is appropriate. For the spin-orbit coupling term we take the
Rashba Hamiltonian,

HRashba = (Eso/2pF )(pyσ1 − pxσ2), (3.6)
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Figure 3.2. (a) Dependence of the Fano factor on the spin-orbit coupling
strength for different widths of the opening in the billiard. The data points
are calculated from Eq. (3.10). The linear fits in the log-log plot (dashed lines)
confirm the predicted scaling log10 F ∝ log10(λF /lso). (b) Filled circles: slope
γ = d log10 F/d log10(λF /lso) extracted from Fig. 3.2a. The empty circles are the
theoretical prediction γ = 1/λLτdwell.
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with Pauli matrices σ1 and σ2. The two spin bands correspond to eigen-
states of the spin component perpendicular to the direction of motion p̂ in
the x− y plane (dotted arrows in Fig. 3.1). The spin direction n̂± of a ±
spin is defined by n̂± × p̂ = ±ẑ (cf. Eq. (1.83)). The corresponding wave
vectors are

k± =
√
k2
F + k2

so ∓ kso, (3.7)

with kso = Eso/2vF~ = π/lso.

We consider the stadium-shaped billiard shown in Fig. 3.1 with hard-
wall confinement (ξ → 0). Since λF � L we can neglect the curvature
of the boundary when calculating the splitting of the trajectories by spin-
orbit coupling [26]. The two reflection angles χ± ∈ (0, π/2) of the split
trajectory, measured relative to the inward pointing normal, are related
by conservation of the momentum component parallel to the boundary,

k+ sinχ+ = k− sinχ−. (3.8)

An incident trajectory of with a − spin is not split near grazing incidence,
if χ− > arcsin(k+/k−) ≈ π/2 − 2

√
kso/kF. Away from grazing incidence

the probability Rσσ′ = |rσσ′ |2 for an electron incident with σ′ spin at an
angle χσ′ to be reflected with with σ spin at an angle χσ is determined by
the 2× 2 unitary reflection matrix

r =

(
r++ r+−
r−+ r−−

)
, (3.9a)

r++ =
eiχ+ − e−iχ−
e−iχ+ + e−iχ−

, r−− =
eiχ− − e−iχ+

e−iχ+ + e−iχ−
, (3.9b)

r+− = −2√cosχ+ cosχ−
e−iχ+ + e−iχ−

= r−+. (3.9c)

The reflection matrix refers to a basis of incident and reflected plane waves
that carry unit flux perpendicular to the boundary, calculated using the
proper spin-dependent velocity operator [72].

By following the classical trajectories in the stadium billiard, and split-
ting them upon reflection with probabilities Rσσ′ , we calculate the prob-
ability f(x, y, p̂) that an electron at position x, y with direction p̂ of its
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Figure 3.3. Dependence of the Fano factor on W/L for different fixed val-
ues of λF /lso. The data points follow closely the predicted scaling log10 F ∝
(W/L) log10(λFL/lsoW ).

momentum originated from the upper left opening1. The Fano factor is
then given by [69–71]

F =
∫
dΩ f(1− f)
2
∫
dΩ f

, (3.10)

where dΩ = dx dy dp̂.
The results of the simulations are presented in Figs. 3.2 and 3.3. We

first varied λF /lso at fixed W/L to test the scaling F ∝ (λF /lso)1/λLτdwell

predicted by Eq. (3.4). We kept λF /lso � 1, to ensure that the classical
Lyapunov exponent λL = 0.86 vF /L [73] and mean dwell time τdwell ∝
L2/vFW (calculated numerically) are not affected significantly by the spin-
orbit coupling. The log-log plot in Fig. 3.2a confirms the scaling log10 F ∝
log10(λF /lso). The slope γ, plotted in Fig. 3.2b as a function ofW/L (filled
circles), is close to the predicted theoretical value γ = 1/λLτdwell (empty

1It is equivalent and computationally more efficient to use Birkhoff coordinates s, p‖,
with s the position along the boundary and p‖ the component of the momentum parallel
to the boundary. Then Eq. (3.10) holds with dΩ = ds dp‖.
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circles) if the ratioW/L becomes sufficiently small. There is no adjustable
parameter in this comparison of theory and simulation. We then tested the
scaling F ∝ (L/W )1/λLτdwell at fixed λF /lso. The data points in Fig. 3.3
all fall approximately on a straight line, confirming the predicted scaling
law log10 F ∝ (W/L) log10(λFL/lsoW ).

This completes our test of the scaling (3.4) in the regime lso � W .
The scaling (3.5), in the opposite regime lso �W , was verified in Ref. 50
using the quantum kicked rotator. We have tried to observe the crossover
from the scaling (3.4) to (3.5) in that model, but were not successful —
presumably because we could not reach sufficiently large system size.

3.4 Conclusion

In conclusion, we have identified and analyzed a mechanism by which spin-
orbit coupling in a ballistic system can produce electronic shot noise. The
origin of the current fluctuations is a quantum mechanical effect, the split-
ting of trajectories, which persists in the limit of classical orbital dynamics.
Since the strength of the Rashba spin-orbit coupling can be varied by a
gate voltage in a two-dimensional electron gas [74], the most natural way
to search for the effect would be to measure the shot noise as a function
of the spin-orbit precession length lso. One would then see an increase
in the Fano factor with decreasing lso, starting when lso drops below the
point contact widthW . Since the splitting of trajectories requires lso to be
larger than the boundary penetration depth ξ, the noise would go down
again when lso drops below ξ (assuming ξ � W ). This non-monotonic
dependence of the noise on the spin-orbit coupling strength would be an
unambiguous signature to search for in an experiment. In order to observe
the effect an experimental system should be sufficiently clean to guaran-
tee that the noise induced by quantum short-range disorder [71] is weak
enough.



Chapter 4

Degradation of Electron-Hole
Entanglement by Spin-Orbit
Coupling

4.1 Introduction

Spin-orbit coupling is one of the sources of degradation of spin entangle-
ment that has been extensively investigated for electron pairs confined to
two quantum dots [75]. In that context the spin-orbit coupling induces
dephasing by coupling the electron spins via the orbital motion to fluctu-
ating electric fields in the environment (due to lattice vibrations or gate
voltage fluctuations). The coupling of the spins to the environment is
needed for entanglement degradation because the spin-orbit coupling by
itself amounts to a local unitary transformation of the electron states in
the two quantum dots, which cannot change the degree of entanglement.

The characteristic feature of these quantum dots is that they are single-
channel conductors with a conductance G that is small compared to the
conductance quantum e2/h. This implies in particular that the width of
the energy levels is much smaller than the mean level spacing. At low
voltages and temperatures there is then only a single accessible orbital
mode. This is the main reason that spin-orbit coupling by itself cannot
degrade the spin entanglement.
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V

Figure 4.1. Multi-channel conductor containing a tunnel barrier. The applied
voltage creates electron-hole pairs (solid and open circles) at opposite side of the
barrier, whose spin state is maximally entangled. As the pair moves through the
leads, the spin and orbital degrees of freedom become entangled by the spin-orbit
coupling, degrading the spin entanglement upon tracing out the orbital degrees
of freedom.

In a multi-channel conductor the situation is altogether different. Fly-
ing qubits in a multi-channel conductor can lose their entanglement as a
result of spin-orbit coupling even in the absence of electric field fluctu-
ations, because the large number of orbital degrees of freedom can play
the role of an environment. This mechanism is the electronic analog of
the loss of polarization entanglement by polarization-dependent scattering
in quantum optics [76–78]. Fully-phase-coherent spin-orbit coupling can
degrade the spin entanglement by reducing the pure spin state to a mixed
spin density matrix — which typically has less entanglement than the pure
state. Here we investigate this mechanism in the context of electron-hole
entanglement in the Fermi sea [27]. Apart from the practical significance
for the observability of the entanglement, this study provides a test for
a theory of entanglement transfer based on the “isotropy approximation”
that the spin state has no preferential quantization axis.

The system we consider, a multi-channel conductor containing a tunnel
barrier, is schematically depicted in Fig. 4.1. The applied voltage V cre-
ates, at each tunnel event, a maximally entangled electron-hole pair [79].
Spin-orbit coupling in the leads entangles the spin and orbital degrees of
freedom. The spin state (obtained by tracing out the orbital degrees of
freedom) is degraded from a pure state to a mixed state. The degree of en-
tanglement of the spin state decreases and can vanish for strong spin-orbit
coupling. We consider two cases. In the first case the leads are diffusive
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wires while in the second case we model the leads as two chaotic cavities.
Although the first case is our primary interest, we include the second case
in order to test our approximate analytical calculations against an exact
numerical simulation of the spin kicked rotator (cf. chapter 2).

The outline of this chapter is as follows. In Sec. 4.2 we calculate the
density matrix of the electron-hole pairs in the regime where the tunnel
conductance Gtunnel is � e2/h. This is the regime in which the electron-
hole pairs form well separated current pulses, so that their entanglement
can be measured easily [27]. (For Gtunnel & e2/h different electron-hole
pairs overlap in time, complicating the detection of the entanglement.)
From the density matrix we seek, in Sec. 4.3, the degree of entanglement
as measured by the concurrence [80]. For our analytical treatment we
approximate the density matrix by the spin-isotropic Werner state [81].
The absence of a preferential basis in spin space is a natural assumption
for a disordered or chaotic system, but it needs to be tested. For that
purpose we use the spin kicked rotator, which as explained in Ch. 2 is a
stroboscopic model of a chaotic cavity. We conclude in Sec. 4.4.

4.2 Calculation of the Electron-Hole State

4.2.1 Incoming and Outgoing States

Since the scattering of both orbital and spin degrees of freedom is elastic,
we may consider separately each energy E in the range (EF, EF+eV ). For
ease of notation we will omit the energy arguments in what follows. We
assume zero temperature, so the incoming state is

|Ψin〉 =
2N∏
ν=1

a†L,ν |0〉 . (4.1)

The creation operators a†L,ν , ν = 1, . . . , 2N (acting on the true vacuum |0〉)
occupy the ν-th channel incoming from the left. The index ν labels both
the N orbital and two spin degrees of freedom. The 2N channels incom-
ing from the right (creation operators a†R,ν) are unoccupied in the energy
range (EF, EF + eV ). We collect the creation and annihilation operators
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in vectors aL = (aL,1, aL,2, . . . , aL,2N ), aR = (aR,1, aR,2, . . . , aR,2N ).

The annihilation operators bL,ν and bR,ν of the outgoing channels are
related to those of the incoming channels by the scattering matrix(

bL
bR

)
= S

(
aL
aR

)
=

(
r t′

t r′

)(
aL
aR

)
. (4.2)

The 4N × 4N unitary scattering matrix S is decomposed into 2N ×
2N transmission and reflection matrices t, t′, r, and r′. Substitution into
Eq. (4.1) gives the outgoing state

|Ψout〉 =
2N∏
ν=1

(
2N∑
ν′=1

[
b†L,ν′rν′ν + b†R,ν′tν′ν

])
|0〉 . (4.3)

4.2.2 Tunneling Regime

We expand the outgoing state (4.3) in the small parameter ε = (h/e2)Gtunnel,
neglecting terms of order ε and higher. Since t, t′ are O(ε1/2) while r, r′

are O(ε0), we keep only terms linear in t and t′. The result is

|Ψout〉 = |0F〉+
∑
ν,µ

(tr†)νµb
†
R,νbL,µ |0F〉+O(ε), (4.4)

where |0F〉 is the unperturbed Fermi sea,

|0F〉 = det(r)
2N∏
ν=1

b†L,ν |0〉 . (4.5)

Since rr† = 11 − O(ε), we may assume that r is a unitary matrix to the
order in ε considered. The determinant det(r) is therefore simply a phase.
The state (4.4) is a superposition of the unperturbed Fermi sea and a single
electron-hole excitation, consisting of an electron in channel ν at the right
and a hole in channel µ at the left.

As a check, we verify that the multi-channel result (4.4) reduces for
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N = 1 to the single-channel result∣∣ΨN=1
out

〉
= |0F〉+

1
det(r)

∑
ν,µ

(tσ2r
Tσ2)νµb

†
R,νbL,µ |0F〉+O(ε)

of Ref. 79. We use the identity [82]

σ2r
Tσ2 = det(r)r†, (4.6)

which holds for any 2 × 2 unitary matrix r (with σ2 a Pauli matrix).
Hence tσ2r

Tσ2 = det(r)tr† + O(ε). Substitution into the single-channel
result (4.6) indeed gives the multi-channel result (4.4) for N = 1.

4.2.3 Spin State of the Electron-Hole Pair

The spin state of the electron-hole pair is obtained from |Ψout〉 by project-
ing out the vacuum contribution and then tracing out the orbital degrees
of freedom. This results in the 4× 4 density matrix

ραβ,γδ =
1
w

N∑
n,m=1

(tr†)nα,mβ(tr†)∗nγ,mδ, (4.7)

with w = tr(t†tr†r). Here n and m label the orbital degrees of freedom
and α, β, γ, and δ label the spin degrees of freedom.

We assume that the tunnel resistance is much larger than the resistance
of the conductors at the left and right of the tunnel barrier. The trans-
mission eigenvalues Tn (eigenvalues of tt†) are then determined mainly by
the tunnel barrier and will depend only weakly on the mode index n. We
neglect this dependence entirely, so that Tn = T for all n, the tunneling
conductance being given by Gtunnel = (2e2/h)NT .

To obtain a simpler form for the density matrix we use the polar de-
composition of the scattering matrix

S =

(
r t′

t r′

)
=

(
u 0
0 v

)(√
1− T √T√T −√1− T

)(
u′ 0
0 v′

)
, (4.8)

where u, u′, v, and v′ are unitary matrices and T = diag(T1, T2, . . . , T2N ).



72 Chapter 4. Degradation of Electron-Hole Entanglement . . .

For mode independent Tn’s the matrix T equals T times the unit matrix.
Hence

tr† =
√

(1− T )T U (4.9)

is proportional to the 2N ×2N unitary matrix U = vu†. Substitution into
the expression (4.7) for the density matrix gives

ραβ,γδ =
1

2N

N∑
n,m=1

Unα,mβU
∗
nγ,mδ. (4.10)

If there is no spin-orbit coupling, the matrix U is diagonal in the spin
indices: Unα,mβ = Ũnmδαβ with Ũ an N ×N unitary matrix. The density
matrix then represents the maximally entangled Bell state |ψBell〉,

(ρBell)αβ,γδ =
1
2
δαβδγδ = |ψBell〉 〈ψBell| , (4.11)

|ψBell〉 =
1√
2

(|↑〉e |↑〉h + |↓〉e |↓〉h) , (4.12)

with |σ〉e,h an electron (e) or hole (h) spin pointing up (σ =↑) or down
(σ =↓). The state (4.11) is a pure state (ρ2

Bell = ρBell). Spin-orbit coupling
will in general degrade ρ to a mixed state, with less entanglement.

4.3 Entanglement of the Electron-Hole Pair

We quantify the degree of entanglement of the mixed electron-hole state (4.7)
by means of the concurrence C (which is in one-to-one correspondence with
the entanglement of formation and varies from 0 for a nonentangled state
to 1 for a maximally entangled state). Following Wootters [80] the con-
currence is given by

C = max
{

0,
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4

}
, (4.13)

where the λi’s are the eigenvalues, in decreasing order, of the matrix prod-
uct ρ(σ2 ⊗ σ2)ρ∗(σ2 ⊗ σ2).

In the next two subsections we calculate the concurrence numerically
for a chaotic cavity using Eq. (4.7) and analytically with an isotropy ap-



4.3 Entanglement of the Electron-Hole Pair 73

proximation for the density matrix.

4.3.1 Numerical Simulation

We calculate the concurrence C numerically for the case that the scattering
at the left and at the right of the tunnel barrier is chaotic. (The more
experimentally relevant case of diffusive scattering will be considered in
the next subsection.)

The total scattering matrix S of the system (shown in Fig. 4.2) is
constructed from the scattering matrix of the tunnel barrier,

ST =

(√
1− T 11N

√
T 11N√

T 11N −√1− T 11N

)
, (4.14)

and the scattering matrices S1 and S2 of the cavity on each side of the
tunnel barrier. (We denote by 11N the N ×N unit matrix.) We expand S
in the small parameter T and keep terms up to order O(T 1/2) = O(ε1/2),
consistent with the expansion of the outgoing state (4.4). This results in

r = r1 + t′1
1

1− r′1
t1 +O(T ), (4.15a)

t = t2
1

1 + r2

√
T

1
1− r′1

t1 +O(T 3/2), (4.15b)

and similar expressions for r′ and t′ which we do not need.
The scattering matrices S1 and S2 of the chaotic cavities are con-

structed from two spin kicked rotators. We briefly explain in Appendix 4.A
how we use the results of chapter 2 to make a connection with the work
in this chapter.

The resulting ensemble-averaged concurrence as a function of the ratio
τdwell/τ

′
so of the mean dwell time τdwell and spin-orbit coupling time τ ′so

is shown in Fig. 4.3. The dwell time τdwell is the average time between a
tunnel event and the escape of the particle into the left or right reservoir.
The time τ ′so is the exponential relaxation time of the spin-up and spin-
down densities towards the equilibrium distribution1. (Both time scales

1In chapter 2 we calculate the spin relaxation time for spin amplitudes τso = 2τ ′so.



74 Chapter 4. Degradation of Electron-Hole Entanglement . . .

Figure 4.2. Two chaotic cavities with scattering matrices S1 and S2 connected
by a tunnel barrier with scattering matrix ST . The chaotic cavities are modeled
by two spin kicked rotators.

are calculated in Appendixes 4.A and 4.B.) For a single channel, N = 1,
the concurrence is unity independent of spin-orbit coupling strength since
the trace over the orbital degrees of freedom leaves ρ unchanged. From
Fig. 4.3 (bottom panel) we see that for small N the concurrence saturates
at a nonzero value for large τdwell/τ ′so:

lim
τdwell/τ ′so→∞

〈C〉 =


1, N = 1,

0.15, N = 2,

0.01, N = 3.

(4.16)

The limiting value for N = 2 is close to that obtained in Ref. 83 in a
single chaotic cavity. For N & 5 the ensemble-averaged concurrence is
negligible for large τdwell/τ ′so. The dependence of 〈C〉 on τdwell/τ ′so becomes
N independent for N & 15.

4.3.2 Isotropy Approximation

To obtain an analytical expression for the entanglement degradation we
approximate the density matrix by the spin-isotropic Werner state [81].
The absence of a preferential basis in spin space means that the density
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Figure 4.3. Ensemble averaged concurrence of the electron-hole pair scattered
by two chaotic cavities, as a function of the spin-orbit coupling rate 1/τ ′so for
different number of modes, N , in the leads. The data points are calculated from
the spin kicked rotator; the lines are guides to the eye. The upper right panel
shows that the results become N -independent for large N while the bottom panel
shows that for small N the concurrence saturates at a finite value.

matrix ρ for an electron-hole pair is invariant under the transformation

(V ⊗ V ∗)ρ(V † ⊗ V T ) = ρ (4.17)

for all 2×2 unitary matrices V . This transformation rotates the spin basis
of the electron (acted on by V ) and the hole (acted on by V ∗) by the same
rotation angle. The isotropy relation (4.17) constrains the density matrix
to be of the Werner form

ρW =
1
4

(1− ξ)114 + ξ |ψBell〉 〈ψBell| , −1
3
≤ ξ ≤ 1, (4.18)
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with |ψBell〉 the Bell state defined in Eq. (4.12). The concurrence of the
electron-hole Werner state is given by

C(ρW) =
3
2

max
(

0, ξ − 1
3

)
. (4.19)

The parameter ξ characterizing the Werner state can be calculated
from

ξ = tr [(σ3 ⊗ σ3)ρ] = ρ11 − ρ22 − ρ33 + ρ44. (4.20)

Only diagonal elements of the density matrix appear in the expression (4.20)
for ξ. These can be calculated semiclassically in the N -independent limit
N � 1 (see Appendix 4.B), leading to the following expressions for the
concurrence:

〈C〉diffusive =

{
3
2 [
∑∞

n=0 ξn]2 − 1
2 , 1.5 τdwell < τ ′so,

0, 0 < τ ′so < 1.5 τdwell,

ξn =
4π(−1)n(2n+ 1)

π2(2n+ 1)2 + 8τdwell/τ ′so
, (4.21a)

〈C〉chaotic =


3
2(1 + τdwell/τ

′
so)
−2 − 1

2 ,
τdwell√

3−1
< τ ′so,

0, 0 ≤ τ ′so ≤ τdwell√
3−1

.
(4.21b)

In Fig. 4.4 we plot the analytical result (4.21) for the concurrence. The
two cases of diffusive and chaotic scattering differ only slightly. The initial
slopes are the same,

〈C〉diffusive = 〈C〉chaotic (4.22)

= 1− 3τdwell/τ ′so +O(τdwell/τ ′so)
2.

The critical spin-orbit coupling strengths, beyond which the concurrence
vanishes, are different: τ criticalso = 1.5 τdwell for diffusive scattering and
τ criticalso = τdwell/(

√
3− 1) = 1.37 τdwell for chaotic scattering.

We also compare in Fig. 4.4 the analytical results in the chaotic case
from this section with the numerical results from the previous section. The
agreement is quite good for large N , where the semiclassical analytics is
expected to hold.
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Figure 4.4. Ensemble averaged concurrence as a function of spin-orbit coupling
rate 1/τ ′so. The solid and dashed curves are the analytical results (4.21) in the
case of diffusive wires and chaotic cavities, respectively, on each side of the tun-
nel barrier. These analytical curves use the isotropy approximation. The data
points are from the numerical simulation in the chaotic case without the isotropy
approximation (spin kicked rotator of Fig. 4.3, with N = 30).

4.4 Conclusion

Figure 4.4 summarizes our main findings: The effect of spin-orbit coupling
on the degree of spin-entanglement of the electron-hole pairs produced at
a tunnel barrier depends strongly on the ratio of the dwell time τdwell and
spin-orbit coupling time τ ′so. Even though τdwell and τ ′so each depend sensi-
tively on the nature of the dynamics (diffusive or chaotic) the dependence
of the concurrence on the ratio τdwell/τ

′
so is insensitive to the nature of the

dynamics. The initial decay (4.22) is the same and the critical spin-orbit
coupling strength (beyond which the entanglement vanishes) differs by less
than 10%. This has the useful experimental implication that a single pa-
rameter suffices to quantify the amount of entanglement degradation by
spin-orbit coupling.

We have tested our analytical theory using a computer simulation for
the case of chaotic dynamics. (The close similarity to the diffusive results
suggests that this test is representative.) Analytics and numerics are in
good agreement, differing by less than 10% in the regime N � 1 of large
conductance G where the semiclassical analytics applies. While the semi-
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classical approximation is controlled by the small parameter 1/N (or, more
generally, h/e2G), the isotropy approximation has no small parameter that
controls the error. Its use is justified by the reasonable expectation that
an ensemble of disordered or chaotic systems should have no preferential
quantization axis for the electron and hole spins. It is gratifying to see
that the numerics supports this expectation.

The standard method of experimentally verifying the presence of en-
tanglement is by demonstrating violation of Bell inequalities. In optics this
is achieved by measuring coincidence rates of photons by photodetectors
(i.e. by counting photons) in different polarization bases. In the solid state
one cannot simply count electrons, but rather needs to formulate the Bell
inequalities in terms of correlators of spin currents (= spin noise) [84–86].
This has so far not been accomplished experimentally. Thus, the isotropy
approximation that has been used here as a way to simplify the calculation
of the concurrence, also has an experimental implication [87]: By relying
on spin isotropy the concurrence can be obtained directly from correlators
of time averaged spin currents. Our demonstration of the accuracy of the
isotropy approximation may motivate experimentalists to try this “poor
man’s method” of entanglement detection — since average spin currents
have been measured [88] while spin noise has not.

Appendix 4.A A Few Words on the Use of the
Spin Kicked Rotator

In this chapter we have compared numerical simulations with the spin
kicked rotator to analytical calculations. In order to do so, we need to
know the time scales τ ′so and τdwell in the spin kicked rotator. This was
implicit in our comparison with random-matrix theory in section 2.3. In
this appendix we give this relation a little more explicitly.

In chapter 2 we considered Eqs. (2.32) and (2.33) as giving the relation
between the model parameters of the spin kicked rotator to the physical
time scale τso = 2τ ′so. One can also take these equations to define τso for
the model. In the spin kicked rotator ~ = 1 and ∆ = 2π/M . Inserting
into Eq. (2.33) and using the expression for Kc from (2.32) we find the
spin-orbit coupling time τso (in units of the stroboscopic period) in the
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model to be determined by the parameter Kso through

τso = 2τ ′so =
32π2

K2
soM

2
. (4.23)

The mean dwell time τdwell (in units of the stroboscopic period) is
similarly given by

τdwell =
M

N
=

2π
N∆

, (4.24)

where we have taken into account the fact that N of the 2N channels are
closed by the tunnel barrier (cf. Fig. 4.2). Notice that the mean dwell time
is a classical quantity, while N and ∆ separately are quantum mechanical
quantities.

We now use the spin kicked rotator to generate two sets scattering
matrices (in our simulations we choose K = 41 (fully chaotic), M = 640,
and l0 = 0.2). From the reflection and transmission matrices (4.15) the
density matrix (4.7) is obtained, from which the concurrence (4.13) fol-
lows. The concurrence is averaged over 20 different quasienergies ε, ε′ and
over 20 different lead positions P , P ′ in the two cavities (assumed to be
independent scatterers). Results are shown in Fig. 4.3.

Appendix 4.B Calculation of Spin Correlators

The diagonal elements of the density matrix appearing in the expres-
sion (4.20) for the Werner parameter ξ represent spin correlators,

ρ11 = P↑↑, ρ22 = P↑↓, ρ33 = P↓↑, ρ44 = P↓↓. (4.25)

Here Pσσ′ is the probability that the outgoing electron has spin σ and the
outgoing hole has spin σ′. To calculate these correlators, it is convenient to
first consider only those electrons that exit after a time t and those holes
that exit after a time t′. The time-resolved correlator Pσσ′(t, t′) gives the
desired Pσσ′ after integration over time,

Pσσ′ =
∫ ∞

0
dt

∫ ∞
0

dt′Pσσ′(t, t′)Pdwell(t)Pdwell(t′), (4.26)
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weighted by the dwell time distribution Pdwell (we assume that the dwell
times at the left and right of the tunnel barrier are independent and iden-
tically distributed).

As initial condition we take

Pσσ′(0, 0) =
1
2
δσσ′ , (4.27)

corresponding to the spin state immediately after the tunnel event. Spin-
orbit coupling randomizes the spin with a rate 1/τ ′so, so that Pσσ′(t, t′)
decreases in time according to the rate equations

d

dt
Pσσ′(t, t′) =

1
2τ ′so

∑
σ′′

[Pσ′′σ′(t, t′)− Pσσ′(t, t′)], (4.28a)

d

dt′
Pσσ′(t, t′) =

1
2τ ′so

∑
σ′′

[Pσσ′′(t, t′)− Pσσ′(t, t′)]. (4.28b)

The solution of the rate equations (4.28) with the initial condition (4.27)
is

P↑↑(t, t′) = P↓↓(t, t′) =
1
4

+
1
4
e−(t+t′)/τ ′so , (4.29a)

P↑↓(t, t′) = P↓↑(t, t′) =
1
4
− 1

4
e−(t+t′)/τ ′so . (4.29b)

To complete the calculation we need the dwell time distribution. For
a chaotic cavity this has the well known exponential form [89]

Pdwell,chaotic =
1

τdwell
e−t/τdwell , (4.30)

with
τdwell =

2π~
N∆

(4.31)

inversely proportional to the mean level spacing ∆ of Kramers degenerate
levels in the cavity.

For the diffusive wire (diffusion constant D) we determine Pdwell by



4.B Calculation of Spin Correlators 81

 0

 0.25

 0.5

 0.75

 1

 0  1  2  3

P
d
w

e
ll
τ d

w
e
ll

t/τdwell

Figure 4.5. Dwell time distribution in a diffusive wire (solid line) and chaotic
cavity (dashed line).

solving the one-dimensional diffusion equation(
∂

∂t
−D ∂2

∂x2

)
p(x, t) = 0, 0 < x < L, (4.32)

with initial and boundary conditions

∂p

∂x
(0, t) = 0, p(L, t) = 0, p(x, 0) = δ(x). (4.33)

Here p(x, t) is the classical probability of finding a particle at point x at
time t. The boundary conditions represent reflection by the high tunnel
barrier at x = 0 and absorption by the reservoir at x = L.

The probability that the particle is still in the wire at time t is given
by

N(t) =
∫ L

0
p(x, t)dx, (4.34)

and therefore the dwell time distribution is

Pdwell = −dN(t)
dt

. (4.35)

Solution of the diffusion equation by expansion in eigenstates gives the
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result in the form

Pdwell, diffusive =
π

2τdwell

∞∑
n=0

(−1)n(2n+ 1)e−(2n+1)2 π
2

8
t

τdwell . (4.36)

The mean dwell time is

τdwell =
L2

2D
. (4.37)

The dwell time distributions for the chaotic and diffusive dynamics are
compared in Fig. 4.5.

Collecting results we arrive at the expressions (4.21) for the concurrence
given in the main text.



Chapter 5

Mesoscopic Spin Hall Effect

5.1 Introduction

The novel and rapidly expanding field of spintronics is interested in the cre-
ation, manipulation, and detection of polarized or pure spin currents [90].
The conventional methods of doing spintronics are to use magnetic fields
and/or ferromagnets as parts of the creation-manipulation-detection cycle,
and to use the Zeeman coupling and the ferromagnetic-exchange interac-
tions to induce the spin dependency of transport. More recently, ways
to generate spin accumulations and spin currents based on the coupling
of spin and orbital degrees of freedom have been explored. Among these
proposals, much attention has been focused on the spin Hall effect (SHE),
where pure spin currents are generated by applied electric currents on
spin-orbit (SO) coupled systems. Originally proposed by Dyakonov and
Perel [29, 91], the idea was resurrected by Hirsch [30] and extended to crys-
tal SO field (the intrinsic SHE) by Sinova et al. [31] and Murakami [92].
The current agreement is that the SHE vanishes for bulk, k-linear SO cou-
pling for diffusive two-dimensional electrons [32, 93, 94]. This result is
however specific to these systems [95], and the SHE does not vanish for
impurity-generated SO coupling, two-dimensional hole systems with either
Rashba or Dresselhaus SO coupling, and for finite-sized electronic sys-
tems [93, 95]. These predictions have been, to some extent, confirmed by
experimental observations of edge spin accumulations in electron [96, 97]
and hole [98] systems, and electrical detection of spin currents via ferro-
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magnetic leads [99–101].
Most investigations of the SHE to date focused on disordered con-

ductors with spin-orbit interaction, where the disorder-averaged spin Hall
conductivity was calculated using either the Kubo formalism or a diffusion
equation approach [30, 31, 94, 102, 32, 93, 103, 92, 95]. Few numerical
works alternatively used the scattering approach to transport [104] to cal-
culate the average spin Hall conductance of explicitly finite-sized samples
connected to external electrodes. These investigations were however re-
stricted to tight-binding Hamiltonians with no or weak disorder in simple
geometries [105–107]. The data of Ref. 108 in particular suggest that diffu-
sive samples with large enough SO coupling exhibit universal fluctuations
of the spin Hall conductanceGsH with rms[GsH] ≈ 0.18e/4π. These numer-
ical investigations call for an analytical theory of the SHE in mesoscopic
systems, which we provide here.

We analytically investigate the DC spin Hall effect in mesoscopic cav-
ities with SO coupling. We calculate both the ensemble-average and
the fluctuations of the transverse spin current generated by a longitu-
dinal charge current. Our approach is based on random matrix theory
(RMT) [60], and is valid for ballistic chaotic and mesoscopic diffusive sys-
tems at low temperature, in the limit when the spin-orbit coupling time
is much shorter than the mean dwell time of the electrons in the cavity,
τso � τdwell. We show that while the transverse spin current is generically
nonzero for a typical sample, its sign and amplitude fluctuate universally,
from sample to sample or upon variation of the chemical potential with
a vanishing average. We find that for a typical ballistic chaotic quantum
dot, the transverse spin current corresponds to slightly less than one excess
open channel for one of the two spin species. These analytical results are
confirmed by numerical simulations for a stroboscopic model of a ballistic
chaotic cavity.

In the ballistic regime, contributions to the SO coupling arise from the
crystal field and confinement potentials. In analogy with diffusive sys-
tems, the SHE originating from the crystal field as well as the asymmetry
of the confinement potential in the out of plane direction (i.e. the Rashba
term) can be thought of as the intrinsic effect, while in plane confinement
potentials generate extrinsic contributions to the SHE. Although the bal-
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Figure 5.1. Ballistic quantum dot connected to four electrodes. The longitudi-
nal bias V induces a charge current through terminals 1 and 2, while the voltages
V3,4 are adjusted such that no charge current flows through the transverse leads
3 and 4. Spin-orbit coupling is active only in the gray region.

ance between the two effects modifies nonuniversal properties such as the
spin-orbit time, it does not affect the universal features described in this
Letter.

5.2 Scattering Approach

We consider a ballistic chaotic quantum dot coupled to four external elec-
trodes via ideal point contacts, each with Ni open channels (i = 1, . . . 4).
The geometry is sketched in Fig. 5.1. Spin-orbit coupling exists only in-
side the dot, and the electrochemical potentials in the electrodes are spin-
independent. A bias voltage V is applied between the longitudinal elec-
trodes labeled 1 and 2. The voltages V3 and V4 are set such that no net
charge current flows through the transverse electrodes 3 and 4. We will
focus on the magnitude of the spin current through electrodes 3 and 4, in
the limit when the openings to the electrodes are small enough, and the
spin-orbit coupling strong enough that τso � τdwell.

We write the spin-resolved current through the i-th electrode as [104]

Iσi =
e2

h

∑
j,σ′

T σ,σ
′

ij (Vi − Vj). (5.1)
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The spin-dependent transmission coefficients are obtained by summing
over electrode channels

T σ,σ
′

i,j =
∑
m∈i

∑
n∈j
|tm,σ;n,σ′ |2, (5.2)

i.e. tm,σ;n,σ′ is the transmission amplitude for an electron initially in a
spin state σ′ in channel n of electrode j to a spin state σ in channel m
of electrode i. The transmission amplitudes t are the elements of the
2NT × 2NT scattering matrix S, with NT =

∑4
i=1Ni.

We are interested in the transverse spin currents I(z)
i = I↑i −I↓i , i = 3, 4,

under the two constraints that (i) charge current vanishes in the transverse
leads, I↑i + I↓i = 0, i = 3, 4 and (ii) the charge current is conserved,
I1 = −I2 = I. From Eq. (5.1), transport through the system is then
described by the following equation 2J

J
(z)
3

J
(z)
4

 = G

1/2
Ṽ3

Ṽ4

 , (5.3)

where

G =

2N1 − T (0)
11 + 2N2 − T (0)

22 + T (0)
12 + T (0)

21 T (0)
23 − T (0)

13 T (0)
24 − T (0)

14

T (z)
32 − T (z)

31 −T (z)
33 −T (z)

34

T (z)
42 − T (z)

41 −T (z)
43 −T (z)

44


(5.4)

and the transverse voltages (in units of V ) read

Ṽ3 =
1
2
T (0)

34 (T (0)
42 − T (0)

41 ) + (2N4 − T (0)
44 )(T (0)

32 − T (0)
31 )

T (0)
34 T (0)

43 − (2N3 − T (0)
33 )(2N4 − T (0)

34 )
, (5.5a)

Ṽ4 =
1
2
T (0)

43 (T (0)
32 − T (0)

31 ) + (2N3 − T (0)
33 )(T (0)

42 − T (0)
41 )

T (0)
34 T (0)

43 − (2N3 − T (0)
33 )(2N4 − T (0)

34 )
, (5.5b)

and we defined the dimensionless currents I = e2V J/h. We introduced
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generalized transmission probabilities

T (µ)
ij =

∑
m∈i,n∈j

Tr[(tmn)†σ(µ)tmn], µ = 0, x, y, z, (5.6)

where σ(µ) are Pauli matrices (σ(0) is the identity matrix) and one traces
over the spin degree of freedom.

5.3 Random Matrix Theory

We calculate the average and fluctuations of the transverse spin currents
J

(µ)
i , µ = x, y, z within the framework of RMT. Accordingly, we replace

the scattering matrix S by a random unitary matrix, which, in our case
of a system with time reversal symmetry (absence of magnetic field) and
totally broken spin rotational symmetry (strong spin-orbit coupling), has
to be taken from the circular symplectic ensemble1 (CSE) [60, 41]. We
rewrite the generalized transmission probabilities T (µ)

ij as a trace over S

T (µ)
ij = Tr [Q(µ)

i SQ
(0)
j S†], (5.7)

[Q(µ)
i ]mα,nβ =

{
δmn σ

(µ)
αβ ,

∑i−1
j=1Nj < m ≤∑i

j=1Nj ,

0, otherwise.

Here, m and n are channel indices, while α and β are spin indices. The
trace is taken over both set of indices.

Averages, variances, and covariances of the generalized transmission
probabilities (5.7) over the CSE can be calculated using the method of
Ref. 17. For the average transmission probabilities, we find

〈T (µ)
ij 〉 =

2δµ0

NT − 1/2

(
NiNj − 1

2
Niδij

)
, (5.8)

1We assume that the SO coupling parameters are sufficiently nonuniform, so that
SO cannot be removed from the Hamiltonian by a gauge transformation, see Ref. 41.
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while variances and covariances are given by

〈δT (µ)
ij δT (ν)

kl 〉 =
4δµν

NT (2NT − 1)2(2NT − 3)

{
NiNj(NT − 1)(2NT − 1)(δikδjl + δilδjkδµ0)

+ (NiNkδijδkl − 2NiNkNlδij − 2NiNjNkδkl + 4NiNjNkNl)δµ0 (5.9)

−NiNT (2NT − 1)δijkl + (2NT − 1)
[
NiNlδijk +NiNkδijlδµ0

+NiNj(δikl + δjklδµ0)−NiNjNl(δik + δjkδµ0)−NiNjNkδµ0(δil + δjl)
]}
,

where δT (µ)
ij = T (µ)

ij − 〈T (µ)
ij 〉.

Because the transverse potentials Ṽ3,4 are spin-independent, they are
not correlated with T (µ)

ij . Additionally taking Eq. (5.8) into account, one
concludes that the average transverse spin current vanishes (i = 3, 4),

〈J (µ)
i 〉 =

1
2
〈T (µ)
i2 − T (µ)

i1 〉 −
∑
j=3,4

〈T (µ)
ij 〉〈Ṽj〉 = 0. (5.10)

However, for a given sample at a fixed chemical potential J (µ)
i will in

general be finite. We thus calculate var [J (µ)
i ]. We first note that 〈Ṽ3,4〉 =

(N1−N2)/2(N1 +N2), and that var [Ṽ3,4] vanishes to leading order in the
inverse number of channels. One thus has

var [J (µ)
i ] =

1
4

∑
j=1,2

var[T (µ)
ij ]− 1

2
covar[T (µ)

i1 , T (µ)
i2 ] (5.11)

+
∑
j=3,4

{
var[T (µ)

ij ]〈Ṽj〉2 + covar[T (µ)
i1 − T (µ)

i2 , T (µ)
ij ]〈Ṽj〉

}
+ 2 covar[T (µ)

i3 , T (µ)
i4 ]〈Ṽ3〉〈Ṽ4〉.

From Eqs. (5.9) and (5.11) it follows that

var [J (µ)
i ] =

4NiN1N2(NT − 1)
NT (2NT − 1)(2NT − 3)(N1 +N2)

. (5.12)

Eqs. (5.10) and (5.12) are our main results. They show that, while the
average transverse spin current vanishes, it exhibits universal sample-to-
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sample fluctuations. The origin of this universality is the same as for
charge transport [60], and relies on the fact expressed in Eq. (5.9) that to
leading order, spin-dependent transmission correlators do not scale with
the number of channels. The spin current carried by a single typical sample
is given by rms[J (µ)

i ] × e2V/h, and is thus of order e2V/h in the limit of
large number of channels. In other words, for a given sample, one spin
species has of order one more open transport channel than the other one.
For a fully symmetric configuration, Ni ≡ N , the spin current fluctuates
universally for large N , with rms[Iz3 ] ' (e2V/h)/

√
32. This translates into

universal fluctuations of the transverse spin conductance with rms[GsH] =
(e/4π

√
32) ≈ 0.18(e/4π) in agreement with Ref. 108.

5.4 Numerical Simulation

In the setup of Ref. 108 the universal regime is not very large and thus
it is difficult to unambiguously identify it. Moreover, in the same setup
all four sides of a square lattice are completely connected to the external
leads (see inset to Fig. 1 in Ref. 108). Because of this geometry, there are
paths connecting longitudinal to transverse leads that are much shorter
than the elastic mean free path. It is well known that such paths con-
tribute nonuniversally to the average conductance. We therefore present
numerical simulations in chaotic cavities to further illustrate our analytical
predictions (5.10) and (5.12).

We model the electronic dynamics inside a chaotic ballistic cavity by
the spin kicked rotator of chapter 2. Averages were performed over 35
values of K in the range 41 < K < 48, 25 values of ε uniformly distributed
in 0 < ε < 2π, and 10 different lead positions l(k). We set the strength of
Kso such that τso = τdwell/1250, and fixed values ofM = 640 and l0 = 0.2.

Our numerical results are presented in Fig. 5.2. Two cases were consid-
ered, the longitudinally symmetric (N1 = N2) and asymmetric (N1 6= N2)
configurations. In both cases, the numerical data fully confirm our pre-
dictions that the average spin current vanishes and that the variance of
the transverse spin current is universal, i.e. it does not depend on N for
large enough value of N . In the asymmetric case N4 = 2N3, the variance
of the spin current in lead 4 is twice as big as in lead 3, giving further
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Figure 5.2. Average and variance of the transverse spin current vs. the number
of modes. Left panel: longitudinally symmetric configuration with N1 = N2 =
2N3 = 2N4 = 2N ; right panel: longitudinally asymmetric configuration with
N2 = N4 = 2N1 = 2N3 = 2N . In both cases the total number of modes
NT = 6N . The solid (dashed) lines give the analytical prediction (5.10) [(5.12)]
for the mean (variance) of the spin currents. Empty diamonds correspond to
〈J (µ)
i 〉, circles to var [J (µ)

3 ] and triangles to var [J (µ)
4 ].

confirmation to Eq. (5.12).

5.5 Conclusion

We have calculated the average and mesoscopic fluctuations of the trans-
verse spin current generated by a charge current through a chaotic quan-
tum dot with SO coupling. We find that, from sample to sample, the spin
current fluctuates universally around zero average. In particular, for a fully
symmetric configurationNi ≡ N , this translates into universal fluctuations
of the spin conductance with rms[GsH] = (e/4π

√
32) ≈ 0.18(e/4π). This

universal value is in agreement with the universality observed in the recent
simulations in the diffusive regime [108].



Chapter 6

One-Parameter Scaling at the
Dirac Point in Graphene

6.1 Introduction

Graphene provides a new regime for two-dimensional quantum transport
[23–25], governed by the absence of backscattering of Dirac fermions [22].
A counterintuitive consequence is that adding disorder to a sheet of un-
doped graphene initially increases its conductivity [38, 109]. Interval-
ley scattering at stronger disorder strengths enables backscattering [110],
eventually leading to localization and to a vanishing conductivity in the
thermodynamic limit [36, 37]. Intervalley scattering becomes less and less
important if the disorder is more and more smooth on the scale of the lat-
tice constant a. The fundamental question of the new quantum transport
regime is how the conductivity σ scales with increasing system size L if
intervalley scattering is suppressed.

In usual disordered electronic systems, the hypothesis of one-parameter
scaling plays a central role in our conceptual understanding of the metal-
insulator transition [34, 111]. According to this hypothesis, the logarithmic
derivative d lnσ/d lnL = β(σ) is a function only of σ itself1 — irrespective

1We define the β-function in terms of the ensemble averaged conductivity σ, mea-
sured in units of 4e2/h (with the factor of four accounting for twofold spin and valley
degeneracies). This is the appropriate definition for our system. For a more general
definition of one-parameter scaling, one needs to scale a distribution function of con-
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of the sample size or degree of disorder. A positive β-function means that
the system scales towards a metal with increasing system size, while a
negative β-function means that it scales towards an insulator. The metal-
insulator transition is at β = 0, β′ > 0. In a two-dimensional system with
symplectic symmetry, such as graphene, one would expect a monotonically
increasing β-function with a metal-insulator transition at [112] σS ≈ 1.4
(see Fig. 6.1, green dashed curve).

Recent papers have argued that graphene might deviate in an interest-
ing way from this simple expectation. Nomura and MacDonald [113] have
emphasized that the very existence of a β-function in undoped graphene is
not obvious, in view of the diverging Fermi wave length at the Dirac point.
Assuming that one-parameter scaling does hold, Ostrovsky, Gornyi, and
Mirlin [39] have proposed the scaling flow of Fig. 6.1 (black solid curve).
Their β-function implies that σ approaches a universal, scale invariant
value σ∗ in the large-L limit, being the hypothetical quantum critical point
of a certain field theory. This field theory differs from the symplectic sigma
model by a topological term [39, 40]. The quantum critical point could
not be derived from the weak-coupling theory of Ref. 39, but its existence
was rather concluded from the analogy to the effect of a topological term
in the field theory of the quantum Hall effect [111, 114]. The precise value
of σ∗ is therefore unknown, but it is well constrained [39]: From below by
the ballistic limit2 σ0 = 1/π [115, 116] and from above by the unstable
fixed point σS ≈ 1.4.

In this chapter we present a numerical test firstly, of the existence
of one-parameter scaling, and secondly of the scaling prediction of Ref. 39
against an alternative scaling flow, a positive β without a fixed point (green
dotted curve in Fig. 6.1). For such a test it is crucial to avoid the finite-a
effects of intervalley scattering that might drive the system to an insulator
before it can reach the predicted scale invariant regime. We accomplish
this by starting from the Dirac equation, being the a → 0 limit of the
tight-binding model on a honeycomb lattice. We have developed an effi-

ductances [111].
2 We call σ0 the ballistic limit because it is reached in the absence of disorder, but

we emphasize that it is a conductivity — not a conductance. This is a unique property
(called “pseudodiffusive”) of graphene at the Dirac point, that its conductance scales
∝ 1/L like in a diffusive system even in the absence of disorder.
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Figure 6.1. Two scenarios for the scaling of the conductivity σ with sample
size L at the Dirac point in the absence of intervalley scattering. The black solid
curve with two fixed points is proposed in Ref. 39, the green dotted curve without
a fixed point is an alternative scaling supported by the numerical data presented
in this chapter. For comparison, we include as a red dashed curve the scaling
flow in the symplectic symmetry class, which has a metal-insulator transition at
σS ≈ 1.4 [112].

cient transfer operator method to solve this equation, which we describe
in Sec. 6.2 before proceeding to the results in Sec. 6.3.

6.2 Transfer Matrix Approach

The single-valley Dirac Hamiltonian reads

H = vp · σ + V (x) + U(x, y). (6.1)

The vector of Pauli matrices σ acts on the sublattice index of the spinor
Ψ, p = −i~∂/∂r is the momentum operator, and v is the velocity of the
massless excitations. The disorder potential U(r) varies randomly in the
strip 0 < x < L, 0 < y < W (with zero average, 〈U〉 = 0). This disordered
strip is connected to highly doped ballistic leads, according to the doping
profile V (x) = 0 for 0 < x < L, V (x)→ −∞ for x < 0 and x > L. We set
the Fermi energy at zero (the Dirac point), so that the disordered strip is
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undoped. The disorder strength is quantified by the correlator

K0 =
1

(~v)2

∫
dr′ 〈U(r)U(r′)〉. (6.2)

Following Refs. 38 and 117, we work with a transfer operator repre-
sentation of the Dirac equation HΨ = 0 at zero energy. We discretize
x at the N points x1, x2, . . . xN and represent the impurity potential by
U(r) =

∑
n Un(y)δ(x−xn). Upon multiplication by iσx the Dirac equation

in the interval 0 < x < L takes the form

~v
∂

∂x
Ψx(y) =

[
vpyσz − iσx

∑
n

Un(y)δ(x− xn)
]
Ψx(y). (6.3)

The transfer operatorM, defined by ΨL =MΨ0, is given by the operator
product

M = PL,xNKNPxN ,xN−1 · · · K2Px2,x1K1Px1,0, (6.4)

Px,x′ = exp[(1/~)(x− x′)pyσz], (6.5)

Kn = exp[−(i/~v)Unσx]. (6.6)

The operator P gives the decay of evanescent waves between two scattering
events, described by the operators Kn. For later use we note the current
conservation relation

M−1 = σxM†σx. (6.7)

We assume periodic boundary conditions in the y-direction, so that we
can represent the operators in the basis

ψ±k =
1√
W
eiqky|±〉, qk =

2πk
W

, k = 0,±1,±2 . . . . (6.8)

The spinors |+〉 = 2−1/2
(
1
1

)
, |−〉 = 2−1/2

(
1
−1

)
are eigenvectors of σx.

In this basis, (py)kk′ = ~qkδkk′ is a diagonal operator, while (Un)kk′ =
W−1

∫
dy Un(y) × exp[i(qk′ − qk)y] is nondiagonal. We work with finite-

dimensional transfer matrices by truncating the transverse momenta qk at
|k| = M .

The transmission and reflection matrices t, r are determined as in
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Ref. 116, by matching the amplitudes of incoming, reflected, and trans-
mitted modes in the heavily doped graphene leads to states in the undoped
strip at x = 0 and x = L. This leads to the set of linear equations∑

k

[
δkk′ψ

+
k (y) + rkk′ψ

−
k (y)

]
= Ψ0(y), (6.9a)∑

k

tkk′ψ
+
k (y) = ΨL(y) =MΨ0(y). (6.9b)

Using the current conservation relation (6.7) we can solve Eq. (6.9) for the
transmission matrix,(

1− r
1 + r

)
=M†

(
t

t

)
⇒ t−1 = 〈+|M†|+〉. (6.10)

The transmission matrix determines the conductance G = (4e2/h) Tr tt†,
and hence the dimensionless conductivity σ = (h/4e2)(L/W )G. The aver-
age conductivity 〈σ〉 is obtained by sampling some 102 − 103 realizations
of the impurity potential.

Because the transfer matrix P has both exponentially small and expo-
nentially large eigenvalues, the matrix multiplication (6.4) is numerically
unstable. As in Ref. 118, we stabilize the product of transfer matrices by
transforming it into a composition of unitary scattering matrices, involving
only eigenvalues of unit absolute value.

We model the disorder potential U(r) =
∑N

n=1 γnδ(x − xn)δ(y − yn)
by a collection of N isolated impurities distributed uniformly over a strip
0 < x < L, 0 < y < W . (An alternative model of a continuous Gaussian
random potential is discussed at the end of the chapter.) The strengths
γn of the scatterers are uniform in the interval [−γ0, γ0]. The number
N sets the average separation d = (WL/N)1/2 of the scatterers. The
cut-off |k| ≤ M imposed on the transverse momenta qk limits the spatial
resolution ξ ≡W/(2M + 1) of plane waves ∝ eiqky±qkx at the Dirac point.
The resulting finite correlation lengths of the scattering potential in the x-
and y-directions scale with ξ, but they are not determined more precisely.
The disorder strength (6.2) evaluates to K0 = 1

3γ
2
0(~vd)−2, independent of

the correlation lengths. We scale towards an infinite system by increasing
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Figure 6.2. Disorder strength dependence of the average conductivity for a
fixed system size (W = 4L = 40 d) and four values of the scattering range.

M ∝ L at fixed disorder strength K0, scattering range ξ/d, and aspect
ratio W/L. This completes the description of our numerical method.

6.3 Numerical Results

We now turn to the results. In Fig. 6.2 we first show the dependence of the
average conductivity on K0 for a fixed system size. As in the tight-binding
model of Ref. 109, disorder increases the conductivity above the ballistic
value. This impurity assisted tunneling [38] saturates in an oscillatory
fashion for K0 � 1 (unitary limit [119, 120]). In the tight-binding model
[109] the initial increase of σ was followed by a rapid decay of the conduc-
tivity for K0 & 1, presumably due to Anderson localization. The present
model avoids localization by eliminating intervalley scattering from the
outset.

The system size dependence of the average conductivity is shown in
Fig. 6.3, for various combinations of disorder strength and scattering range.
We take W/L sufficiently large that we have reached an aspect-ratio in-
dependent scaling flow and L/d large enough that the momentum cut-off
M > 25. The top panel shows the data sets as a function of L/d. The in-
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Figure 6.3. System size dependence of the average conductivity, for W/L = 4
(black and green solid symbols) and W/L = 1.5 (all other symbols) and various
combinations of K0 and ξ/d. The top panel shows the raw data. In the bot-
tom panel the data sets have been given a horizontal offset, to demonstrate the
existence of one-parameter scaling. The inset shows the resulting β-function.

crease of σ with L is approximately logarithmic, 〈σ〉 = constant+0.25 lnL,
much slower than the

√
L increase obtained in Ref. 38 in the absence of

mode mixing.

If one-parameter scaling holds, then it should be possible to rescale
the length L∗ ≡ f(K0, ξ/d)L such that the data sets collapse onto a single
smooth curve when plotted as a function of L∗/d. (The function f ≡ d/l∗
determines the effective mean free path l∗, so that L∗/d ≡ L/l∗.) The
bottom panel in Fig. 6.3 demonstrates that, indeed, this data collapse
occurs. The resulting β-function is plotted in the inset. Starting from
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the ballistic limit (cf. footnote 2) at σ0 = 1/π, the β-function first rises
until σ ≈ 0.6, and then decays to zero without becoming negative. For
σ > σS ≈ 1.4 the decay ∝ 1/σ is as expected for a diffusive system
in the symplectic symmetry class. The positive β-function in the interval
(σ0, σS) precludes the flow towards a scale-invariant conductivity predicted
in Ref. 39.

The model of isolated impurities considered so far is used in much of
the theoretical literature, whereas experimentally a continuous random po-
tential is more realistic [113]. We have therefore also performed numerical
simulations for a random potential landscape with Gaussian correlations3,

〈U(r)U(r′)〉 = K0
(~v)2

2πξ2
e−|r−r′|2/2ξ2 . (6.11)

The discrete points x1, x2 . . . xN in the operator product (6.4) are taken

3The Dirac equation with a delta-function correlated random potential has a diver-
gent scattering rate, see, e.g., Ref. 121. Hence the need to regularize the continuous
potential model by means of a finite correlation length ξ.
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equidistant with spacing δx = L/N , and

Un(y) =
∫ xn+δx/2

xn−δx/2
dxU(x, y). (6.12)

We take M , N , and W/L large enough that the resulting conductivity
no longer depends on these parameters. We then scale towards larger
system sizes by increasing L/ξ and W/ξ at fixed K0. No saturation of
σ with increasing K0 is observed for the continuous random potential (as
expected, since the unitary limit is specific for isolated scatterers [119,
120]). Fig. 6.4 shows the size dependence of the conductivity — both
the raw data as a function of L (inset) as well as the rescaled data as a
function of L∗ ≡ g(K0)L. Single-parameter scaling applies for L & 5 ξ,
where 〈σ〉 = constant + 0.32 lnL. The prefactor of the logarithm is about
25% larger than in the model of isolated impurities (Fig. 6.3), which is
within the numerical uncertainty.

6.4 Conclusion

In conclusion, we have demonstrated that the central hypothesis of the
scaling theory of quantum transport, the existence of one-parameter scal-
ing, holds in graphene. The scaling flow which we find (green dotted curve
in Fig. 6.1) is qualitatively different both from what would be expected for
conventional electronic systems (red dashed curve) and also from what has
been predicted [120] for graphene (black solid curve). Our scaling flow has
no fixed point, meaning that the conductivity of undoped graphene keeps
increasing with increasing disorder in the absence of intervalley scatter-
ing. The fundamental question “what is the limiting conductivity σ∞ of
an infinitely large undoped carbon monolayer” has therefore three different
answers: σ∞ = 1/π in the absence of any disorder [115, 116], σ∞ = ∞
with disorder that does not mix the valleys (this chapter), and σ∞ = 0
with intervalley scattering [36, 37].

After the work described in this chapter was finished similar conclusions
have been reported by Nomura, Koshino, and Ryu [122].
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Samenvatting

Iedereen heeft wel enige notie van het begrip spin, al zal het niet altijd on-
der die naam zijn. Magneten zijn niets anders dan een grote verzameling
spins. Door te spelen met magneten krijgt men gevoel voor de mogeli-
jke sterkte van de magnetische wisselwerking; een spin reageert op een
magnetisch veld (bijvoorbeeld een dat wordt veroorzaakt door een andere
magneet). Wanneer er geen magnetische velden zijn doet een spin niets,
onberoerd als hij is door de omgeving en afwijzend ten opzichte van wis-
selwerking met elektrische velden. Dat is zo tot de spin begint te bewegen.
Zodra de spin beweegt, gaat de relativiteitstheorie een rol spelen. Deze
vertelt ons dat het elektrische veld dat we produceren als een magnetisch
veld wordt gezien in het ruststelsel van het elektron; daardoor gaan de
spin en het elektrische veld een gesprek aan. Vanwege het relativistische
karakter van dit effect is deze wisselwerking in het algemeen nogal zwak.
De wisselwerking gaat onder de naam spin-baan-koppeling.

Dit proefschrift behandelt de effecten van deze spin-baan-koppeling op
quantum transport. Het woord quantum betekent hier dat we het elektron
als fase-coherent beschouwen over de hele grootte van het sample, ofwel:
gedurende de tijd die nodig is om van een kant van het sample naar de
andere kant te geraken. Deze quantum coherentie is belangrijk, omdat
in veel gevallen de aanwezigheid van de spin-baan-koppeling wordt gede-
tecteerd via de kleine (quantum) correcties op klassieke grootheden. In
het bijzonder is dit het geval voor zwakke (anti) localisatie, een quantum-
correctie op de geleidbaarheid, veroorzaakt door verhoogde (verminderde)
terugverstrooiing ten gevolge van quantum interferentie.

In het derde hoofdstuk, dat volgt op een inleiding in het eerste hoofd-
stuk en de definitie van het numerieke model dat in de daaropvolgende
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analyse wordt gebruikt in het tweede hoofdstuk, beschouwen we het geval
dat het quantum-effect dat door de spin-baan-koppeling wordt veroorza-
akt een term van eerste orde is. De grootheid die bestudeerd wordt is
zogenaamde hagelruis; de “klassieke” bijdrage wordt uitgeschakeld door
de klassieke limiet van een zeer groot systeem te nemen. Dit is een
voorbeeld waarin de spin-baan-koppeling nieuwe verschijnselen veroorza-
akt. Het doel van de spintronica, electronica met spins, is om dit soort
verschijnselen onder controle te krijgen en ze tot ons nut te gebruiken.
Soms heeft de spin-baan-koppeling echter onwelkome effecten. Een voor-
beeld hiervan wordt gegeven in hoofdstuk vier, waar we bediscussiëren
hoe spin-baan-koppeling de elektron-gat-verstrengeling veroorzaakt door
een tunnel-barrière afbreekt. Dit gebeurt wanneer de tunnel-barrière zo-
genaamde multi-mode draden verbindt en de spin-baan-koppeling de ver-
schillende modes mengt, leidend tot verminderde spin-verstrengeling.

Een van de doelen van spintronica is om stromen van spin te creëren en
die te meten. Door het spin Hall effect kan een longitudinale ladingsstroom
een puur transversale spin-stroom veroorzaken. Op dezelfde manier als
waarop wanorde deze spin-stroom uiteindelijk vernietigt zal chaotische dy-
namica ook de spin-stroom doen verdwijnen, zoals we in hoofdstuk vijf
laten zien. Deze bewering slaat op de (ensemble-)gemiddelde stroom. De
spin-stroom in een gegeven sample hoeft niet nul te zijn en het blijkt in feite
zo te zijn dat de variantie van de spin-stroom ongelijk nul en universeel is.

Het laatste hoofdstuk steekt enigszins af ten opzichte van de eerderen,
aangezien het niet handelt over spin. Het onderwerp is het materiaal
grafeen. De effectieve beschrijving bij lage energie van grafeen gebeurt
echter via een Dirac Hamiltoniaan, die gezien kan worden als bevattende
een spin-baan-koppeling term. In tegenstelling tot de voorgaande gevallen
is de spin-baan-koppeling nu de dominante term en géén kleine correctie.
We beschouwen de effecten van wanorde op de geleidbaarheid. We vinden
dat gelijkmatige wanorde, enigszins tegen de intuïtie in, de geleidbaarheid,
die logaritmisch groeit met de systeemgrootte, verhoogt.
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