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Gen eral introduction

Parts of this chapter will be published in Clinical Investigation volume 1, Issue 
2 as the paper: Tyrosine kinase inhibitors in differentiated thyroid carcinoma: 

review of the clinical evidence

Hendrieke C. Hoftijzer, Ellen Kapiteijn, Tatiana Schneider, Guido C. Hovens, 
Hans Morreau, Hans Gelderblom, Johannes W.A. Smit
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I. Introduction

Thyroid cancer is the most common endocrine malignancy; however it is still a low 

prevalent disease with an incidence of 2-10/100.000 persons per year. The incidence 

has increased during the last decades, and this trend appears to be continuing (1-3). 

In the Netherlands this represents approximately 320 new patients per year, with a 3 

times higher incidence in women (4). However, the prevalence is higher because of 

a rather good prognosis (4).

Thyroid cancer is a heterogeneous disease which is classifi ed into differentiated 

thyroid carcinoma (DTC), medullary thyroid carcinoma (MTC) and undifferentiated 

(anaplastic) thyroid carcinoma (ATC). Differentiated thyroid carcinoma is most com-

mon (95%) and includes papillary (80%), follicular (10-15%) and subtypes follicular 

variant of papillary thyroid carcinoma and Hürthle cell carcinoma. Mean age at 

diagnosis is between 45 and 50 year (5). The overall 10-year survival rates are about 

90-95% (6). This is because of a combination of favorable biological (i.e. indolent) 

behavior of the tumor as well as the availability of effective therapy consisting of 

near-total thyroidectomy followed by radioactive iodine-131 (RaI) ablative therapy.

Once distant metastases have occurred, the prognosis of DTC becomes worse. 

This is the result of dedifferentiation of thyroid cancer cells. The subsequent loss of 

the ability to accumulate RaI leads to unresponsiveness to the only curative treat-

ment option. Metastases are not immediately life threatening, but may impair quality 

of life considerably. In this situation, only palliative treatment options remain and 

include external beam radiation therapy or resection of symptomatic metastasis (7,8). 

Recently, increasing knowledge in tumor biology has led to the identifi cation of po-

tential targets and novel treatment options with tyrosine kinase inhibitors, including 

sorafenib and sunitinib (9,10). These multikinase inhibitors show promising results in 

patients with progressive metastatic DTC, refractory for RaI.

During routine follow-up for differentiated thyroid carcinoma patients are 

regularly withdrawn from thyroxine therapy to perform TSH stimulated whole body 

RaI scanning and measurement of thyroglobulin, a disease specifi c biomarker. This 

creates a state of controlled hypothyroidism. This and the fact that DTC patients are 

treated with TSH suppressive thyroxine replacement therapy makes DTC patients 

an interesting model to study the metabolic effects of thyroid hormone. There is no 

interference by endogenous thyroid hormone, because patients are treated with total 

thyroidectomy. Moreover there is no interfering effect from thyroid disease, like in 

patients treated with thyroxine for autoimmune thyroid disease.

In this introduction a general overview of DTC, the diagnosis, treatment and 

clinical consequences of therapy will be provided and the questions addressed in this 

thesis will be introduced.
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II. Differentiated thyroid carcinoma

1. Pathogenesis

Human thyroid tumors originate from epithelial follicular cells or from parafollicular 

C-cells. Follicular cell-derived tumors represent benign adenomas, differentiated 

(follicular and papillary) and undifferentiated (anaplastic) carcinomas. Genetic al-

terations are involved in the pathogenesis of thyroid carcinoma. The identifi cation of 

these alterations is important for the diagnosis of DTC and also for the understand-

ing of the pathophysiology of thyroid disorders (11-17). Recent developments have 

provided a detailed map of these genetic alterations (Figure 1).

In DTC, genetic alterations that have been identifi ed, and involve tyrosine kinase 

signaling pathways (12,15,16). In nearly all cases of papillary thyroid carcinoma 

(PTC), genetic defects involving the RET, RAS, and RAF protein kinase signaling 

cascade are identifi ed. The BRAFV600E mutation has been found in 29–69% of PTC 

and has been associated with aggressive features including extrathyroidal extension 

and advanced stage (18). Translocations of RET observed in PTC result in a chimeric 

protein consisting of an activated RET tyrosine kinase domain (12,17,19-30).

Follicular thyroid carcinomas (FTC) frequently harbor mutations in one of the 

three RAS genes. The RET–RAS–RAF pathway is interconnected with the epithelial 

Figure 1
Pathogenesis of differentiated thyroid tumors
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growth factor receptor (EFGR) activated cascade that among others leads to vascular 

endothelial growth factor (VEGF) and VEGF receptor (VEGFR) synthesis. Therefore, 

compounds targeting the activated RET–RAS–RAF pathway and beyond may be 

effective in non-RaI avid DTC. Other genetic alterations in FTC include PAX8-PPAR-

gamma rearrangement. This is a unique combination of genes that traditionally are 

associated with thyroid development (PAX-8) and cell differentiation and metabolism 

(PPAR-gamma) (13, 31). This chimeric protein acts as a dominant negative competitor 

for PPAR-gamma and is associated with more aggressive growth and propensity for 

invasion (31). The follicular variant of PTC (FVPTC) shares some of the molecular 

features of follicular tumors, but less common also BRAF mutations are reported (11). 

Anaplastic carcinomas are frequently associated with mutations of the p-53 tumor 

suppressor gene (32).

The genetic alterations involved in the pathogenesis of DTC result in loss of 

thyroid specifi c gene expression and loss of thyroid specifi c protein expression. Thy-

roid peroxidase (TPO), which liberates iodide for addition onto tyrosine residues on 

thyroglobulin for the production of thyroxine (T4) or triiodothyronine (T3) is thought 

to diminish in an early phase. The Sodium-Iodide-Symporter (NIS) expression is sub-

sequently lost. Herewith, the thyroid cell loses its ability to accumulate iodide, and 

thus becomes refractory for RaI therapy.

2. Diagnosis

Most differentiated thyroid carcinomas present as asymptomatic thyroid nodules. 

Carcinoma should be suspected if a hard irregular thyroid nodule is found, ipsilateral 

lymph nodes are enlarged and/or there is a history of progressive increase of the size 

of the nodule (5). Despite increasing standards of imaging techniques like ultrasound, 

fi ne needle aspiration (FNA) is still the procedure of choice in patients presenting 

with a thyroid nodule (33). The sensitivity of FNA for DTC is 90-95%. The specifi city 

is lower (60-80%) when all patients with a non-benign FNA are referred for surgery 

(34). It is diffi cult to make the distinction between benign and malignant follicular tu-

mors by FNA, since the essential criterion for FTC is capsular invasion, which cannot 

be determined by cytology. In addition, the distinction between a follicular adenoma 

and a follicular variant of a papillary thyroid carcinoma (FVPTC) is also diffi cult, 

because the crucial criterion here is the aspect of the nuclei. The consequence is that 

70-80% of the patients with suspicious results from FNA, who undergo a hemithy-

roidectomy, have a benign tumor (35). The use of molecular markers (e.g. BRAF, 

RAS, RET/PTC, PAX8-PPARgamma or galectin-3) may be considered for patients with 

indeterminate cytology on FNA to help guide management (35-42).
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After hemithyroidectomy the microscopical distinction between benign and 

malignant neoplastic thyroid nodules by conventional histology remains diffi cult 

as these lesions may share overlapping histological characteristics. Therefore, it 

is important to identify new markers to distinguish benign from malignant thyroid 

tumors. In recent years, several immunohistochemical markers have been studied to 

improve the differential diagnosis of thyroid lesions, using both candidate markers 

and unbiased approaches (43-54).

The expression of retinoid receptors may be interesting for the differentiation 

between benign and malignant thyroid tissues. Retinoids are important for growth, 

differentiation, and morphogenesis in vertebrates (55). Retinoids are derivatives of 

vitamin A (i.e. retinol). Retinoid receptors belong to the family of nuclear receptors 

and can be distinguished in retinoic acid receptors (RAR) and retinoid X receptors 

(RXR). According to the literature, retinoid receptors appear to be differentially ex-

pressed in benign and malignant thyroid tissues, the general picture being decreased 

expression of retinoid receptor subtypes in thyroid cancer (56-62), which may also 

have therapeutic implications (7,57,61,63-65) (Chapter 2).

After primary diagnosis, the Tumor-Node-Metastases classifi cation system (Table 

1 and Table 2) is used for staging of the disease. This system is based on pathologic 

fi ndings and divides patients into four stages (Table 3 and Table 4), with progressively 

poorer diagnosis and survival with increasing stage.

In studies in this thesis, the 5th edition of the TNM classifi cation system is used. 

Recently, the 6th edition has become available (66). The most important difference with 

the 5th edition is the fact that the dimension of T1 has been extended to 2 cm and that 

tumors with limited extrathyroidal extension are designated T3 instead of T4, which 

Table 1: TNM Classifi cation system 5th edition

T0 No evidence of primary tumor

T1 Tumor 1 cm or less in greatest dimension limited to the thyroid

T2 Tumor > 1 cm, but not more than 4 cm in greatest dimension, limited to the thyroid

T3 Tumor more than 4 cm in greatest dimension limited to the thyroid

T4 Tumor of any size extending beyond the thyroid capsule

Nx Regional lymph nodes cannot be assessed

N0 No regional lymph node metastases

N1 Regional lymph node metastases

N1a Metastasis in ipsilateral cervical lymph node(s)

N1b Metastasis in bilateral, midline, or contralateral cervical or mediastinal lymph node(s)

Mx Distant metastasis cannot be assessed

M0 No distant metastasis

M1 Distant metastasis
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has implications for the prognosis (67). Also the classifi cation of regional lymph node 

metastases has changed. Some experts propagate to continue the use of the 5th edition.

3. Initial therapy

a. Surgery

Recent guidelines of the European Thyroid Association (ETA) and the American 

Thyroid Association (ATA) give an up-to-date overview of the treatment strategies 

Table 2: TNM classifi cation 6th edition

T0 No evidence of primary tumor

T1a Tumor 1 cm or less

T1b Tumor more than 1 cm but not more than 2 cm

T2 Tumor > 2 cm, but not more than 4 cm, in greatest dimension limited to the thyroid

T3 Tumor > 4 cm in greatest dimension limited to the thyroid or any tumor with minimal 
extrathyroidal extension

T4a Tumor of any size extending beyond the thyroid capsule to invade subcutaneous soft 
tissues, larynx, trachea, esophagus, or recurrent laryngeal nerve

T4b Tumor invades prevertebral fascia or encases carotid artery or mediastinal vessels. All 
anaplastic carcinomas are considered T4 tumors

Nx Regional lymph nodes cannot be assessed

N0 No regional lymph node metastases

N1 Regional lymph node metastases

N1a Metastasis to Level VI (pretracheal, paratracheal, and prelaryngeal/Delphian lymph 
nodes)

N1b Metastasis to unilateral, bilateral, or contralateral cervical or superior mediastinal lymph 
nodes

Mx Distant metastasis cannot be assessed

M0 No distant metastasis

M1 Distant metastasis

Table 3: TNM staging system 5th edition 

Under 45 years

 Stage I Any T Any N M0

 Stage II Any T Any N M1

45 years and older

 Stage I T1 N0 M0

 Stage II T2 N0 M0

T3 N0 M0

 Stage III T4 N0 M0

Any T N1 M0

 Stage IV Any T Any N M1
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for DTC (33,68). Initial therapy consists of near-total thyroidectomy, followed by RaI 

ablative therapy of thyroid remnants. Although there is still some controversy about 

the extent of thyroid surgery, there are strong arguments in favor of total or near-total 

thyroidectomy in all patients (69), this to permit accurate long-term surveillance for 

disease recurrence. Only very low risk patients (PTC, T1N0M0, unifocal, intrathyroi-

dal) may be treated with hemithyroidectomy. In tumor stages of T2 and higher a total 

thyroidectomy is indicated (70-72). In these patients near-total thyroidectomy results 

in lower recurrence rates because many papillary tumors are multifocal and bilateral 

(73,74). During follow-up both measurement of serum Tg as a tumor marker and RaI 

whole body scanning are explicitly affected by residual thyroid disease and warrant 

near-total or total thyroidectomy (33). The argument against total thyroidectomy is 

that it increases the risk of surgical complications such as recurrent laryngeal nerve 

injury (2%) and hypoparathyroidism. The latter occurs in 1/3 of the patients after 

total thyroidectomy, but persists only longer than 3 months in 2% of the patients 

(68). The experience of the surgeon plays an important role in determining the risk of 

complications (75-77).

b. Radioiodine-131 ablation therapy

Controversy also exists about the routine use of RaI ablative therapy for thyroid rem-

nants. There are three reasons for post-surgical RaI therapy. First, as already stated 

above, ablative therapy destroys remaining normal thyroid tissue, which increases 

the specifi city of detectable serum Tg and whole body scanning (72,78). Second, the 

use of high dose RaI permits post ablative scanning to detect persistent carcinoma 

or metastatic disease (79,80). The third reason is that RaI may destroy microscopic 

metastasis and carcinomas, thereby decreasing the risk of recurrence (72,81,82).

Table 4: TNM staging system 6th edition 

Under 45 years

 Stage I Any T Any N M0

 Stage II Any T Any N M1

45 years and older

 Stage I T1 N0 M0

 Stage II T2 N0 M0

 Stage III T3 N0 M0

T1, T2, T3 N1a M0

 Stage IVA T1, T2, T3 N1b M0  

T4a N0, N1 M0

 Stage IVB T4b Any N M0

 Stage IVC Any T Any N M1
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A number of large, retrospective studies show a signifi cant reduction in the 

rates of disease recurrence and cause specifi c-mortality after RaI ablative therapy 

(71,83,84-86). However, other studies show no benefi t, especially not in patients 

with small (<1.5 cm), intrathyroidal tumors (6,71,87-90). The benefi cial effect is 

probably only present in patients with high risk or irradical surgery (91). Moreover, 

various papers reported a relation between RaI therapy and non-thyroidal carcinoma, 

so the use of it should be applied carefully (92-97). Thus RaI ablation is not indicated 

in T1N0M0 disease, but still the treatment of choice in patients with high risk of 

recurrence/mortality, gross extrathyroidal extension of the tumor, documented lymph 

node metastases, incomplete tumor resection and distance metastases as proposed by 

recent ATA and ETA guidelines (33,68).

The effi cacy of RaI therapy depends on the radiation dose delivered to the thy-

roid remnant tumor or metastases and these are based on responsiveness of DTC to 

TSH. Therefore high TSH levels have to be established by either thyroid hormone 

withdrawal or by therapy with recombinant human TSH (rhTSH) (98,99). In addition, 

RaI uptake is increased by depletion of plasma inorganic iodide before RaI therapy 

through a low iodide diet (100-102). 

In addition, effi cacy of RaI ablative therapy of thyroid remnants is comparable 

between rhTSH and thyroxine withdrawal (68,103,104). In recent American Thyroid 

Association guidelines for the treatment of thyroid cancer it is recommended that 

ablation can be performed following either thyroxine withdrawal or rhTSH (33), and 

rhTSH is especially advised for patients unable to tolerate hypothyroidism.

c. TSH suppressive therapy

After initial therapy, all patients with DTC are treated with high doses of thyroxine 

aiming at suppressed TSH levels. The rationale for this approach is based on the 

potential harmful effects of TSH on tumor recurrence (83,105,106). Thyroid cancer 

cells express the TSH receptor on the cell membrane and respond to TSH stimulation 

by increasing the expression of thyroid cancer specifi c proteins and by increasing 

the rate of cell growth (107). A recent analysis by our institution indeed showed 

that TSH levels are positively associated with thyroid cancer associated death and 

relapse (108). Long-term TSH suppression however, may be associated with harmful 

effects on various systems including bone metabolism (109-111), glucose metabo-

lism (112,113), cardiac function including higher risk of ischemic heart disease and 

increased risk of atrial fi brillation (114,115) and quality of life (116-118).

The European Consensus on thyroid cancer (119,120) recommends that not all 

patients with DTC should be indiscriminately treated with TSH suppressive therapy, 

because of these negative effects of subclinical hyperthyroidism. Recent ATA thyroid 

cancer guidelines recommend initial TSH suppression below 0.1 mU/L for high risk 
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and intermediate risk thyroid cancer, while maintenance of TSH at or slightly below 

the lower limit of normal (0.1-0.5 mU/L) is appropriate for low-risk patients (33). In 

the future, TSH suppression may be achieved with thyroid hormone analogues that 

suppress pituitary TSH secretion with less effect on the cardiovascular system and the 

bone (121-123).

4. Follow-up

The purpose of follow-up protocols in DTC is the early detection of tumor recurrence 

or metastatic disease in order to optimize additional treatment. Most patients during 

follow-up have been cured defi nitely and have a low pre-test probability for recurrent 

disease. Therefore, the sensitivity of the diagnostic tests must be adequate to detect 

the few patients with evident remnant carcinoma whereas specifi city must also be 

high to avoid unnecessary treatment in patients without recurrent disease. Recur-

rence is usually detected during the early years of follow-up, but may be detected 

later. Therefore, in our center thyroid carcinoma patients are followed-up for 15 years 

after initial diagnosis, with tighter screening during the fi rst years.

a. Thyroglobulin

Thyroglobulin (Tg) is a glycoprotein that is produced only by normal or neoplastic 

thyroid follicular cells and is stimulated by TSH. In patients treated with total thy-

roidectomy and RaI ablative therapy, Tg should be undetectable. The type of analysis 

(RIA or immunometric assay) affects the interpretation of serum Tg values (124). The 

clinical interpretation of Tg is hampered by analytical problems. First, there is lack 

of universal standardization, leading to signifi cant inter-assay variability and a high 

intra-assay variability. Second, “hook” effects which primarily affect the immunomet-

ric assay method can lead to inappropriately low-or normal range Tg values (125). Di-

lution of the serum can detect this problem. Third, the presence of Tg auto-antibodies 

can lead to under- or overestimation of the serum total Tg concentration (126-129).

The Tg auto-antibody interference is the most serious diagnostic problem affect-

ing serum Tg measurements. The incidence of serum Tg auto-antibodies in DTC is 

approximately 15-30%. Despite these analytical problems, Tg measurements are still 

the basis in the follow-up in DTC, because in the absence of antibody interference, 

serum Tg has a high degree of sensitivity and specifi city to detect thyroid cancer, with 

highest degrees following thyroxine withdrawal or rhTSH stimulation (100). A single 

TSH stimulated serum Tg <0.5 ng/mL has an approximate 98-99.5% likelihood for 

the identifi cation of patients completely free of tumor (130,131).

Several studies have been performed to determine the diagnostic value of Tg 

measurements. The application of receiver operator (ROC) curves is essential, since 
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a chosen cut-off level is a subjective choice based on the balance between a desired 

percentage of missed recurrences versus unnecessary therapies. Therefore, in the 

European Consensus paper, it was recommended to defi ne institutional Tg cut-off 

levels (119). High sensitive Tg assays lead to a higher sensitivity at the cost of a lower 

specifi city (132). It is generally believed that high sensitive Tg assays cannot replace 

the need for TSH stimulated Tg measurements.

b. RaI whole body scanning, ultrasound and FDG-PET

The result of iodine-131 whole body scanning (WBS) depends upon the presence 

and the ability of thyroid-cancer tissue to take up iodine-131 in the presence of 

a high serum TSH, which is achieved by withdrawal of thyroxine supplementation 

for 4 weeks or by recombinant human TSH stimulation. WBS is most useful during 

follow-up when there is little or no remaining normal thyroid tissue. It may be of 

value in high or intermediate risk patients, but has no use in low-risk patients with an 

undetectable Tg and a negative ultrasound (120,133,134). Diagnostic RaI WBS has 

a much lower sensitivity than ultrasound and Tg measurement. Therefore the routine 

use of RaI scintigraphy in the diagnostic follow-up of low-risk DTC patients is no 

longer recommended (33,135). 

Ultrasound combined with FNA has the highest sensitivity (94%) for local recur-

rence and lymph node metastases (134,136) and thus, ultrasound has an important 

role in the follow-up of DTC.

Fluorodeoxyglucose-positron emission tomography (FDG-PET) may be indicated 

in patients with elevated serum Tg levels, in whom no RaI uptake is observed after 

diagnostic or therapeutic whole body scanning, especially in patients with invasive or 

metastatic Hürthle cell carcinoma (137-139). ATA guidelines recommend FDG-PET 

as a prognostic tool for staging in high risk patients with metastatic disease or at risk 

for rapid disease progression (33).

 The sensitivity of FDG-PET may be marginally increased with TSH stimulation, 

but the clinical benefi t of identifying additional small foci is yet to be proven (138). 

However, high FDG-PET uptake in large tumor masses may have an unfavorable 

prognostic signifi cance (140).

c. Thyroxine withdrawal and recombinant human TSH

Serum Tg measurements, RaI ablation and RaI diagnostic whole body scanning are 

based on the responsiveness of DTC to TSH. TSH stimulated Tg measurements have 

superior diagnostic value in DTC compared to Tg measurements on thyroxine re-

placement therapy (100). High serum TSH levels can be achieved either by thyroxine 

withdrawal or intramuscular injection of rhTSH. In the fi rst option, 4 weeks thyroxine 

withdrawal results in a controlled state of profound hypothyroidism with low FT4 and 
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high TSH. This is poorly tolerated by patients and has negative effects on multiple 

organs and systems: it exacerbates neuropsychiatric illness and cardiovascular dis-

ease, negatively infl uences lipid metabolism, increases atherosclerotic risks and thus 

negatively infl uences quality of life (141). There is also a theoretical disadvantage 

in thyroxine withdrawal, which states that high TSH levels may be unfavorable with 

respect to enhancement of tumor proliferation (105). High TSH level as a result of 

injections of rhTSH has less impact on quality of life (142). RhTSH is an adequate 

method to detect recurrence or metastases (98,99,143). Tg measurements during 

rhTSH have comparable accuracy with thyroxine withdrawal (144). The sensitivity 

and negative predictive value of Tg after rhTSH injections combined with ultrasound 

are 96.3% and 99.5% respectively (135). Also whole body scans performed after 

rhTSH injections have a similar sensitivity and negative predictive value compared to 

thyroxine withdrawal (98,99,143).

5. Therapeutic strategies for metastatic disease

a. Conventional treatment options

Distant metastases, usually in the bones and lungs, occur in approximately 10-15% 

of patients with DTC. Lung metastases are most frequent in young patients with papil-

lary carcinomas. In general, bone metastases are more common in older patients 

and in those with follicular carcinomas. Metastatic thyroid cancer that has become 

inoperable or refractory to RaI therapy is associated with a poor 10 year survival of 

5-10%. Because of the indolent character of DTC, metastases are not immediately life 

threatening, but may impair quality of life considerably (145).

In case of residual disease or metastases, surgery can be attempted when the 

lesion is accessible. In other cases high dose RaI therapy will be given in patients 

that accumulate RaI. The remission rate in pulmonary metastases treated with RaI 

is ~50%, varying from 90% in patients with microscopic metastases to only 10% 

in macronodular disease. The remission rates of bone metastases are worse, varying 

between 7 and 20% (5,146). The major problem in this category of patients is the 

dedifferentiation of thyroid cancer and with that the diminished or lost ability to 

accumulate RaI. Only palliative treatment options remain. These include external 

beam radiation therapy and chemotherapy, which have limited success (147).

External beam radiation can be used as palliative therapy in locally advanced 

disease and can reduce pain of bone metastases or dyspnea in case of airway obstruc-

tion. Many conventional chemotherapeutic protocols have been tried in progressive 

thyroid carcinoma, with overall disappointing results. The most frequently tested 

agent is doxorubicin. Doxorubicin alone or in combination with cisplatin and bleo-

mycin may induce temporary remissions or stationary disease in about 30-50% of the 
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patients (147,148). Furthermore, responses are typically short-lived and associated 

with a high degree of toxicity (149,150).

b. Experimental additional treatments

Lithium has been associated with increased trapping of iodine by the thyroid gland, 

without impairing iodine uptake, thus enhancing RaI retention. However, despite an 

increase in RaI uptake in tumor deposits, there are no data that demonstrate a better 

outcome of patients treated with lithium as an adjunct to RaI therapy (151-152).

PPAR-gamma agonists have been introduced as anti-diabetic agents. Their 

proposed mechanism is the differentiation of pre-adipocytes, thereby increasing the 

fatty-acid storing capacity of adipose tissue. Altered expression of PPAR-gamma and 

in-vitro benefi cial effects of PPAR-gamma agonists have been described in a number 

of malignancies. Although PPAR-gamma agonists showed promising results in pre-

clinical models for thyroid cancer, they do not result in clinically benifi cial response 

(153).

Retinoids are derivates of vitamin A, and are important for growth, differentia-

tion and morphogenesis in vertebrates (55). Benefi cial effects of retinoids have been 

reported in-vitro in thyroid carcinoma (63,154-156) including increased NIS mRNA 

expression and iodine uptake in some thyroid cancer cell lines (154). Interestingly, 

the promoter of the NIS gene has a retinoic acid responsive element (157). A limited 

number of human studies have been performed on the effects of retinoids on RaI-131 

uptake and reported variable results (64,65,158,159). The main conclusion however 

is that unfortunately retinoids are not able to restore susceptibility to RaI therapy (7).

c. Future treatment options

As a result of the increasing knowledge of the biologic mechanisms of thyroid cancer 

pathogenesis and progression, therapeutic agents that could target these mechanisms 

have been identifi ed. Table 5 gives an overview of the literature addressing the results 

of studies on tyrosine kinase inhibitors and DTC.

The anti-EGFR compound gefi tinib was not successful in 27 patients with DTC, 

medullary and anaplastic thyroid carcinoma (160). In a phase II study in 60 thyroid 

carcinoma patients with various histologies, the VEGFR inhibitor axitinib showed a 

partial response of 30% (median progression free survival (PFS) 18 months) (161). 

Recently, 3 phase II studies have been published, using multi-kinase inhibitors 

(9,10,162). Motesanib diphosphate induced a partial response in 14% of 93 DTC pa-

tients (median PFS 40 weeks) (162). Sunitinib, an inhibitor of RET, VEGFR and PDGFR 

induced a response rate of 13% and 32 % in DTC and MTC patients (163, 164).

Two studies have been published using sorafenib. Sorafenib (BAY 43-9006) is an 

inhibitor of RET, C-RAF, wild-type and mutant (V600E) BRAF, VEGFR1, -2, -3, Flt3, and 
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c-KIT. In the fi rst study, including DTC, anaplastic and medullary thyroid carcinoma 

patients, sorafenib induced a partial response in 23% (median PFS 79 weeks) (9). In 

the second study, including patients with DTC and anaplastic thyroid carcinoma, 

a partial response was observed in 11% (median PFS 4.5–16 weeks) (10). As bone 

metastases of DTC are poorly responsive to RaI, the response of bone metastases to 

the above-mentioned therapies is of interest. However, there are no separate analyses 

for patients with bone metastases in the above-mentioned studies. 

In DTC, a relationship has been identifi ed between genetic alterations in the RET, 

RAS, RAF cascade and loss of NIS expression (165,166). Interestingly, in an in-vitro 

study, sunitinib was able to reinduce NIS expression in RET/PTC transformed thyroid 

cells (168). In addition, sunitinib also increased RaI uptake in FRTL-5 cells. We there-

fore hypothesized that treatment with a multiple kinase inhibitor not only reduces 

tumor progression, but may also restore RaI uptake in non-RaI avid DTC. Therefore, 

we performed a single arm phase II trial to determine the effi cacy of sorafenib in 

patients with iodine refractory metastatic DTC, focusing on the reinduction of RaI 

uptake and the effi cacy in bone metastases (Chapter 3). 

Therapy with tyrosine kinase inhibitors is associated with alterations in thyroid 

hormone parameters. Sunitinib has been associated with hypothyroidism in 14–85% 

of the patients (169-174) and in some patients it induced hyperthyroidism (174-176). 

Both sunitinib induced hypothyroidism and hyperthyroidism may be caused by 

destructive thyroiditis, but other mechanisms, such as interference of sunitinib with 

thyroid peroxidase (177) or inhibition of thyroidal vascularization leading to thyroid 

Table 5: Literature on tyrosine kinase inhibitors in DTC

Drug Target Tumor 
type

Number 
of 
patients

Response 
Rate (%)

Stable 
Disease (%)

Progression 
free survival

Reference

Gefi tinib EGFR-RET DTC + 
MTC

18 + 4 0% 24% 
(>24 weeks)

16 weeks Pennell et al. 
(160) 

Axitinib VEGFR DTC 45 31 % 42 % 18 months Cohen et al. 
(161) 

Motesanib RET- PDGF 
-VEGFR-KIT

DTC 93 14 % 35% 
(>24 weeks)

40 weeks Sherman et al. 
(162) 

Sunitinib RET, VEGFR, 
PDGFR

DTC

DTC + 
MTC

37

26 + 7

13 %

32 % 
(7 CR)

68 %

-

-

-

Cohen et al. 
(163) 
Carr et al. 
(164) 

Pazopanib VEGFR, PDGFR DTC 26 32% 65 % 12 months Bible et al. 
(167) 

Sorafenib RET-RAS-RAF- 
VEGF-VEGFR- 
PDGF-cKIT

DTC 41

30

15 %

23 %

56% 
(>24 weeks)
53 %

15 months

79 weeks

Kloos et al. 
(10) 
Gupta et al. 
(9) 
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atrophy (178,179), have been proposed. Likewise, sorafenib was associated with TSH 

elevation in 18% of patients with metastatic renal cell carcinoma (180). 

All these studies are performed in patients with intact thyroid function. However, 

thyroid function abnormalities have also been observed during therapy with imatinib 

(181,182), motesanib (162), and sorafenib (9) in athyreotic patients treated for medul-

lary thyroid carcinoma and non-medullary thyroid carcinoma. Because an increased 

need of thyroxine is observed in athyreotic patients who are treated with tyrosine ki-

nase inhibitors, the mechanisms of hypothyroidism may include alterations in thyroid 

hormone metabolism. Stepwise deiodination is the major route of thyroid hormone 

degradation and is mediated by iodothyronine deiodinases (D1, D2, and D3) (183) 

and by hepatic conjugating enzymes (184). To address this subject, we studied the 

effect of sorafenib on peripheral thyroid hormone metabolism in athyreotic humans 

(Chapter 4).

III. Consequences of treatment of thyroid carcinoma

Patients with DTC who are treated with total thyroidectomy and RaI ablative therapy 

become completely dependent on exogenous thyroid replacement therapy. Because 

of the favorable effects on tumor recurrence, patients used to be treated with TSH 

suppressive doses of thyroxine (see TSH suppressive therapy) for approximately 15 

years. Whereas this long-term TSH suppression is associated with an overall better 

prognosis (108,185), this subclinical hyperthyroid state is associated with deleterious 

effects on the cardiovascular system (114,115,186,187), carbohydrate metabolism 

(112,188) and psychological well-being (116,118,189,190). 

During follow-up, DTC patients are regularly withdrawn from thyroxine therapy 

to evaluate recurrence and disease state with TSH stimulated whole body scintigra-

phy and Tg measurement. This creates a state of controlled hypothyroidism, which 

can exacerbate neuropsychiatric illness and cardiovascular disease, negatively infl u-

ences lipid metabolism, and increases atherosclerotic risks and also has an impact 

on quality of life. The long-term subclinical hyperthyroidism combined with episodes 

of short-term hypothyroidism make DTC patients an interesting model to study the 

metabolic effects of thyroid hormone. Also, there is no interference by endogenous 

thyroid hormone, because patients are treated with total thyroidectomy. Moreover 

there is no inference from thyroid disease, like in patients treated with thyroxine for 

autoimmune thyroid disease. 
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1. Thyroid physiology

The production of thyroid hormones is regulated by the hypothalamus-pituitary-

thyroid axis (Figure 2). Thyrotropin releasing hormone (TRH), which is produced 

by the hypothalamus, stimulates the secretion of thyrotropin (TSH) by the anterior 

pituitary. TSH promotes the thyroid to synthesize the prohormone thyroxine (T4). 

Iodine is actively taken up by the thyroid gland by the sodium-iodide-symporter 

NIS. The expression and activity of NIS is controlled by TSH. Thyroglobulin, which 

is synthesized by the follicular cells, is then iodinated with one or two iodides to 

form monoiodotyrosine (MIT) or diiodotyrosine (DIT). This process is catalyzed by the 

enzyme thyroid peroxidase (TPO). Two DIT molecules are then coupled to form T4 

and one DIT and one MIT are coupled to form T3. The thyroid secretes 90% T4 and 

10% T3. T3 is the active form of thyroid hormone. The majority of T3 is formed after 

conversion of T4 in T3 in peripheral tissues like liver, kidney and muscle. T4 and T3 

have a negative feedback mechanism on TRH secretion by the hypothalamus and the 

TSH production by the pituitary.

Peripheral thyroid metabolism is mainly regulated by the iodothyronin deiodin-

ases D1, D2, and D3 (183,191) (Figure 2). D1 is present in the thyroid, liver and 

kidneys. It converts T4 to T3, and is involved in the serum T3 production. In addition, 

it plays a role in the breakdown of rT3 (192,193). D2 catalyzes local T3 production 

Figure 2 
Thyroid hormone production and homeostasis in thyroidectomized patients
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in various tissues. It is present in brain, skeletal muscle, thyroid, pituitary, brown 

adipose tissue, aortic smooth muscle cells, osteoblasts and the heart (194-196). In 

the brain, D2 is expressed mainly in astrocytes in the cerebral cortex, hippocampus 

and amygdala (197). D2 in skeletal muscle may also contribute to plasma T3 produc-

tion. D3 inactivates T3 and T4 and thus regulates the clearance of T3 and T4. It is 

present in the brain, skin, placenta and fetal tissues. It is thought that it contributes 

to thyroid hormone metabolism by protecting tissues from excess thyroid hormone. 

The deiodinases adjust the thyroid hormone levels of individual tissues in response 

to various conditions.

Several polymorphisms in D1 and D2 have been described, of which some are 

associated with circulating levels of T4, T3 and TSH (198-200), with most studies 

investigating the consequences of the D2-Thr92Ala polymorphism (rs225014). 

Two polymorphisms in the D1 gene, D1-C785T (rs11206244) and D1-A1814G 

(rs12095080), have been associated with changes in the balance of thyroid hormones 

in the serum, with raised T3, low T4 and low rT3 levels, but these changes have not 

been associated with differences in TSH. This implies that the net effect is perceived 

by the hypothalamus and pituitary as “neutral” (192,201,220). 

Controversy exists about the functional implications of the D2-Thr92Ala poly-

morphism, which has been associated with a decreased D2 activity in some in-vitro 

experiments (198) but not in others (199,200). So far no associations are found be-

tween the D2-Thr92Ala polymorphism and serum thyroid hormone levels in studies 

in healthy subjects (192,198-200). 

Torlontano et al. reported in thyroidectomized differentiated thyroid carcinoma 

patients that homozygous carriers of the D2-Ala92 allele need higher dosages of 

T4 (202). This difference was most prominently observed in the group with near-

suppressed TSH (TSH values between 0.1 and 0.5 mU/l). This study has various 

limitations, because actual values of serum TSH levels for wild type and homozygous 

groups within the near-suppressed TSH group are not given. It is, therefore unclear 

whether TSH levels in both groups are indeed identical, which would be a key fi nding 

to ascribe the slight differences in thyroxine dose to the polymorphism. We therefore 

performed a study to reconfi rm the fi ndings of Torlontano et al. We studied the as-

sociation between the D2-Thr92Ala polymorphism and thyroid hormone levels and 

T4 dosage in 154 patients treated for DTC and 141 patients substituted with T4 for 

Hashimoto thyroiditis (Chapter 5). 

In healthy blood donors the D2-ORFa-Asp variant (rs12885300) was associated 

with lower levels of serum T4, fT4 and rT3, but not with plasma T3 and TSH levels 

(203). This suggests that the D2-ORFa-Asp polymorphism leads to higher activity of 

D2 at the pituitary level. However, this association was not seen in elderly men (203). 
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Intraindividual variation in serum T4, T3 and TSH is narrow; however there is a 

considerable interindividual variability (204). A large body of evidence suggests that 

every individual has a unique thyroid function setpoint, compatible with a genetic 

infl uence on the regulation of the pituitary-thyroid axis (204-206). We hypothesized 

that polymorphisms in D1 and D2 could infl uence the setpoint of the hypothalamus-

pituitary-thyroid axis. We tested this hypothesis in 151 patients treated for differenti-

ated thyroid carcinoma (DTC). During follow-up of DTC, patients are treated with 

thyroxine substitution therapy in a dose intended to suppress TSH level, which results 

in a constant and precisely measurable supply of T4. During this period they regularly 

come for routine measurements of TSH and FT4, moreover they are regularly with-

drawn from thyroxine to perform TSH stimulated radioactive iodine-131 whole body 

imaging, which leads to a wide individual range of combined measurements of TSH 

and FT4. These patients are therefore an ideal group to assess the relationship between 

polymorphisms in deiodinases and the setpoint of the hypothalamus-pituitary-thyroid 

axis (Chapter 6). 

2. Bone metabolism

The involvement of thyroid hormone in bone metabolism has been well documented 

clinically, ranging from decreased skeletal development in childhood hypothyroidism 

(207-209), accelerated growth in childhood hyperthyroidism (210) to an increased 

risk for osteoporosis in overt and subclinical hyperthyroidism (109,211-213). 

Although clinical observations suggest a clear involvement of thyroid hormone 

in bone metabolism, the molecular mechanisms by which thyroid hormone acts on 

bone is so far only been partially uncovered. T3 promotes osteoblastic proliferation, 

differentiation and apoptosis and, by induction of interleukin 6 (IL-6), prostaglandins, 

and RANKL, probably also promotes osteoclast formation and activation. This sug-

gests that osteoblasts are the primary target cells for T3 in the regulation of bone 

remodeling (208,209,213-217). A functional role of TSH on skeletal development 

and metabolism has been proposed on the basis of data obtained in animal studies 

(218-220) and in humans as well (221). This was however disputed by data obtained 

in thyroid hormone receptor (TR) defi cient mice, which indicated that bone remod-

eling was predominantly mediated by T3 via TRalpha (222,223). It has also been 

reported recently that in humans there is a signifi cant association between bone min-

eral density (BMD) and serum thyroid hormone concentrations rather than TSH (224). 

Designing a study to address the potential role of deiodinases, including D2 on 

skeletal metabolism is diffi cult in humans. The study of the effects of functional D2 

polymorphisms on BMD and bone turnover in humans may shed light on this role. 

Interestingly, a study by Canani et al. reported (198) that the maximal velocity of D2 
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was decreased by 3 to 10-fold in thyroid and skeletal muscle of carriers of the D2-

Thr92Ala polymorphism. This effect was observed in the absence of differences in D2 

mRNA level or in the biochemical protein properties of the 92Ala allele. Therefore, 

it was suggested that either a functionally relevant single nucleotide polymorphism 

occurs in linkage disequilibrium with the Thr92Ala polymorphism or the 92Ala allele 

affects protein translation or stability. 

We therefore performed a study in an attempt to elucidate a potential role for 

D2 in skeletal metabolism and BMD by evaluating the relationship between the D2 

Thr92Ala polymorphism, BMD and bone turnover markers in cured thyroidectomized 

differentiated thyroid carcinoma patients receiving thyroid hormone substitution. This 

human model has the advantage of having strictly regulated serum thyroid hormone 

levels which are kept in a relatively narrow range (Chapter 7).

We have also designed a study in an attempt to discriminate between potential 

effects mediated by decreased thyroid hormone levels from those mediated by in-

creased TSH levels in a human model in which the reciprocal relationship between 

thyroid hormones and TSH was interrupted. To this effect, we studied parameters of 

bone metabolism after parenteral administration of recombinant human TSH (rhTSH) 

resulting in exogenously increased TSH levels while preserving normal thyroid hor-

mone levels by uninterrupted thyroid hormone substitution in athyroid differentiated 

thyroid carcinoma (DTC) patients. We studied the same parameters in age-, gender- 

and BMI matched athyroid DTC patients during short-term thyroxine withdrawal, 

resulting in decreased thyroid hormone levels and endogenously increased TSH 

levels, and after reestablishment of thyroid hormone substitution (Chapter 8).

3. Cardiac function 

Thyroid hormone has profound effects on the cardiovascular system. Hyperthyroidism 

induces cardiac arrhythmias, left ventricular (LV) hypertrophy and diastolic dysfunc-

tion, and enhances systolic function (225-227). Subclinical hyperthyroidism resulting 

from TSH suppressive thyroxine therapy, is associated with increased heart rate and 

supraventricular arrhythmias, including atrial fi brillation, increased LV mass (LVM) 

with a slightly enhanced systolic function, and diastolic dysfunction. Diastolic dys-

function is at least partly reversible after restoration of euthyroidism and is associated 

with an increase in mortality (114,228-230). Conversely, hypothyroidism is associated 

with bradycardia, mild hypertension, increased peripheral cardiovascular resistance, 

heart failure (225,227,231), decreased cardiac output and diastolic dysfunction 

(225,227,232-234). Long-standing hypothyroidism can even result in asymmetrical 

septal hypertrophy (235) and pericardial effusion (230). Hypothyroidism is also 

associated with coronary artery disease, presumably because of associated hyper-

Dieke Hoftijzer BW.indd   25Dieke Hoftijzer BW.indd   25 23-02-11   15:1923-02-11   15:19



26 Chapter 1

cholesterolaemia, hypertriglyceridaemia and hypertension (225,227,236). Thyroxine 

substitution reverses most cardiovascular alterations associated with hypothyroidism 

(227,230,231,237). 

The consequences of acute hypothyroidism during thyroxine withdrawal on cardiac 

function have been investigated in only a few studies. The results of those studies have 

been inconclusive, varying from mainly decreased diastolic function to mainly altered 

systolic function (238-246). In these studies, without control groups, these parameters 

are measured by different techniques (echocardiography, radionuclide imaging), 

without blinding the observers with regards to treatment modalities. Therefore, we 

performed a prospective study in a homogeneous group of athyreotic DTC patients to 

assess the impact of overt hypothyroidism induced by short-term thyroxine withdrawal 

on cardiac function measured by a new sophisticated echocardiography technique: 

tissue Doppler imaging (TDI). Cardiac parameters of the patients are compared to a 

matched group of controls without cardiovascular co-morbidities (Chapter 9).

4. Quality of life

Differentiated thyroid carcinoma is associated with an excellent medical prognosis, 

with 10-year survival rates reaching 90-95 %. The excellent prognosis and the mod-

erate invasiveness of the initial therapy may implicate that quality of life in cured 

DTC patients may be relatively normal. On the other hand, the awareness of having 

a malignant disease and the TSH suppressive thyroxine replacement therapy may 

lead to a decreased quality of life (114,228,247). Only a few studies have evaluated 

quality of life in cured DTC patients (117,118,189,190,248). These studies are limited 

by small patient numbers (118,189), a limited number of quality of life parameters 

(117,248), and/or the absence of a healthy control group (117,189,190). Studies 

that focused on the relation between the level of TSH suppression and quality of 

life in DTC patients are inconclusive because of small patient numbers, selection 

of patients with symptoms of hyperthyroidism or selection of patients with a long 

duration of cure (100,228). For that reason, we investigated quality of life in a large 

cohort of cured DTC patients, compared to healthy controls matched for age, gender 

and socioeconomic status. In addition, determinants of quality of life, including TSH 

level were investigated (Chapter 10).

IV. Outline of this thesis

In Chapter 2 we evaluate the diagnostic value of the expression of retinoic acid re-

ceptors (RAR) and retinoid X receptors (RXR) expression for the differential diagnosis 
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of thyroid neoplasms. To improve especially the differentiation between benign and 

malignant thyroid tissues we defi ned optimal semi quantitative cut-off levels using 

ROC analysis and hierarchical cluster analysis.

In Chapter 3 we describe a single arm phase II trial to determine the effi cacy of 

sorafenib treatment in patients with iodine refractory metastatic DTC, focusing on the 

reinduction of RaI uptake and the effi cacy in bone metastases.

Chapter 4 focuses on the observation of changes in thyroid hormone levels during 

treatment with sorafenib (described in chapter 3). We did this, in order to elucidate 

the mechanism behind the tyrosine kinase induced thyroid function alterations.

The remainder of this thesis describes the clinical consequences of exogenous 

subclinical hyperthyroidism during TSH suppressive therapy and of short term hy-

pothyroidism during thyroxine withdrawal in order to study the metabolic effects of 

thyroid hormone.

Deiodinase type 2 catalyzes local T3 production in various tissues. Controversy ex-

ists about the functional implications of the D2-Thr92Ala polymorphism. In Chapter 

5, we studied the association between the D2-Thr92Ala polymorphism and thyroid 

hormone levels and thyroxine dose in 154 patients treated for DTC and 141 patients 

substituted with T4 for Hashimoto thyroiditis.

It is suggested that every individual has a unique thyroid function setpoint, compat-

ible with a genetic infl uence on the regulation of the pituitary-thyroid axis. Chapter 

6 studies the infl uence of polymorphisms in D1 and D2 on the setpoint of the 

hypothalamus-pituitary-thyroid axis. 

Chapter 7 investigates the relationship between the D2-Thr92Ala polymorphism and 

bone mineral density and bone turnover parameters. 

Controversy exists about whether high TSH or low FT4 infl uences bone metabolism 

in hypothyroidism. In Chapter 8, we describe a prospective study which investigates 

the effects of high TSH levels, either achieved by hypothyroidism or by recombinant 

human TSH on bone metabolism. Therefore we will be able to discriminate between 

potential effects mediated by decreased thyroid hormone levels versus those medi-

ated by increased TSH.

In Chapter 9, we show the effects of short term overt hypothyroidism, 4 weeks after 

thyroxine withdrawal on cardiac function.

Chapter 10 describes quality of life in a large cohort of cured DTC patients compared 

to age, gender and socioeconomic status. 
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