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4.1 Abstract  

G protein-coupled receptors (GPCRs) represent a family of well-characterized drug 

targets with significant therapeutic value. Phylogenetic classifications may help to 

understand the characteristics of individual GPCRs and their subtypes. Previous 

phylogenetic classifications were all based on the sequences of receptors, adding only 

minor information about the ligand binding properties of the receptors. In this chapter, 

we compare a sequence-based classification of receptors to a ligand-based 

classification of the same group of receptors, and evaluate the potential to use 

sequence relatedness as a predictor for ligand interactions thus aiding the quest for 

ligands of orphan receptors. 

We present a classification of GPCRs that is purely based on their ligands, 

complementing sequence-based phylogenetic classifications of these receptors. 

Targets were hierarchically classified into phylogenetic trees, for both sequence space 

and ligand (substructure) space. The overall organization of the sequence-based tree 

and substructure-based tree was similar; in particular, the adenosine receptors cluster 

together as well as most peptide receptor subtypes (e.g. opioid, somatostatin) and 

adrenoceptor subtypes. In ligand space, the prostanoid and cannabinoid receptors are 

more distant from the other targets, whereas the tachykinin receptors, the oxytocin 

receptor, and serotonin receptors are closer to the other targets, which is indicative 

for ligand promiscuity. In 93% of the receptors studied, de-orphanization of a 

simulated orphan receptor using the ligands of related receptors performed better 

than random (AUC > 0.5) and for 35% of receptors de-orphanization performance was 

good (AUC > 0.7). 

We constructed a phylogenetic classification of GPCRs that is solely based on the 

ligands of these receptors. The similarities and differences with traditional sequence-

based classifications were investigated: our ligand-based classification uncovers 

relationships among GPCRs that are not apparent from the sequence-based 
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classification. This will shed light on potential cross-reactivity of GPCR ligands and will 

aid the design of new ligands with the desired activity profiles. In addition, we linked 

the ligand-based classification with a ligand-focused sequence-based classification 

described in literature and proved the potential of this method for de-orphanization of 

GPCRs. 

4.2 Introduction 

G protein-coupled receptors (GPCRs) comprise a large family, more than 800 in 

human
,1

 of cell surface receptors that consist of seven transmembrane (TM) helices. 

These receptors are activated by a variety of external stimuli, including light, ions, 

small molecules, lipids, and proteins; moreover, the majority of therapeutic drugs act 

on GPCRs.
2
 Because of the limited number of target crystal structures,

3-6
 GPCR drug 

design relies largely on ligand-based approaches
7
 such as property-based methods,

8
 

pharmacophore models,
9
 and substructure methods.

10
 These methods do not require 

any knowledge about the target protein; however, combining them with target 

information often increases their potential. The resulting so-called ‘chemogenomics’ 

approaches thus involve both ligand-based and target-based aspects.
11

 They do not 

focus on a single group of ligands and one individual target, but rather on groups of 

ligands against groups of targets. The central idea is that similar targets have similar 

ligands.
12, 13

 Therefore, relationships between targets from the sequence side can be 

exploited to search for novel receptor ligands on the chemical structure side. 

Traditionally, the GPCR superfamily has been classified based on sequence homology 

of the receptors. Kolakowski grouped all seven transmembrane (7-TM) proteins into 

classes A to F for receptors proven to bind G-proteins and class O for the other 7-TM 

proteins.
14

 Class A receptors resemble rhodopsin and form the largest cluster. Later, 

Fredriksson et al. proposed a more elaborate classification for known and predicted 

human GPCRs.
1
 Surgand et al. presented a sequence-based phylogenetic classification 

of GPCRs viewed from a ligand perspective.
15

 By selecting residues pointing inwards 
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into the generic binding pocket of GPCRs, the authors assembled a set of 30 residues 

most likely to be accessible for ligand binding. Based on these residues, phylogenetic 

clustering was performed. Although only a subset of residues was used, the 

classification was similar to classifications based on the full sequence. Applications of a 

grouping such as proposed by Surgand et al. constitute ligand design for related 

receptors, as well as de-orphanization of GPCRs.
15

 However, the study by Surgant et al. 

is somewhat limited by the scarcity of structural protein data where the identification 

of binding site residues was solely based on the structure of bovine rhodopsin. It could 

not yet take into account recent advances that yielded three pharmacologically 

relevant X-ray crystal structures, namely those of the human β2 and turkey β1 

adrenoceptors, as well as of the human adenosine A2A receptor.
3, 5, 6, 16

 Building further 

on Surgand’s work, Gloriam et al. proposed an extended set of ligand-accessible 

residues, derived from visual inspection of the newly available X-ray GPCR crystal 

structures, from supporting mutagenesis data and from the evaluation of previously 

established residue sets.
17

 The resulting set of 44 residues was then applied to cluster 

class A GPCRs into a phylogenetic tree, which reflected similarities in binding site of the 

receptors. 

Complementary to these sequence-based classifications are the ligand-based 

classifications of GPCRs. Approaches that use ligand similarity measures for target 

classification have been previously described.
18, 19

 Keiser et al. related targets by pair-

wise comparison of their ligands.
20

 From a set of 65k ligands, a network was 

constructed connecting almost all 246 targets through sequential linkage. From this, 

previously unknown antagonism of methadone on the muscarinic M3 receptor and of 

emetine on the α2-adrenoceptor was identified.  

While sequence-based similarity relies on comparison of the residues at certain 

positions in the sequence, there is no unambiguously defined method to measure 

ligand-based similarity. One way of defining ligand similarity is to consider the overlap 

of substructures in the molecules. Frequent substructure mining is a method for 

finding the most common substructures in a set of molecules [Chapter 3; refs 21-23]. It 
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evaluates all possible substructures, not only discrete fragments that are present in the 

molecules; it is therefore an exhaustive approach, resulting in a more complete view 

on the structural features in the set. 

In this study, we employ frequent substructure mining to determine the similarity 

between groups of ligands in a thorough and unbiased manner. This substructural 

similarity is then used for classification of GPCRs according to relatedness of 

substructure profiles of their ligands. The substructure-based classification of GPCRs 

visualizes relatedness of receptors in the form of a phylogenetic tree, which is then 

compared to the sequence-based phylogenetic classifications of GPCRs. The 

differences in tree organization are examined with methods that visualize changes in 

target position. Taken together, we present a (GPCR) classification from the small 

molecule (ligand) perspective, which facilitates analysis of target similarities and 

differences in ligand-binding behavior. In addition, we explore the potential of our 

ligand-based classification in receptor de-orphanization, i.e. the prediction of new 

ligands for orphan receptors. 

4.3 Results and Discussion 

4.3.1 Sequence-based classification 

Three types of sequence-based phylogenetic trees were built, namely: one tree that 

was based on the full 7-TM sequence, one tree employing 30 residues described by 

Surgand et al.,
15

 and one tree which was based on the set of 44 residues described by 

Gloriam et al..
17

 Note that the three sequence-based trees presented here are 

different from those published in the referenced original work,
1, 15, 17

 since in the 

current study orphan receptors, receptors with a low number of ligands, and singleton 

receptors were left out. Singleton receptors are receptors that are the only (available) 

member in their respective subfamily. Due to the chemogenomic nature of this study, 

we focus on the phylogenetic tree based on the set of Gloriam et al. since it represents 
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the ligand perspective best; this set is referenced as the GSK set.
17

 The two other trees 

are provided for reference purposes in Additional file 1 – Phylogenetic trees based on 

7TM domain and selected residues. The tree that was built based on the multiple 

sequence alignment of the GSK set is shown in Figure 1. The GPCR subtypes in this tree 

are grouped as branches in the tree according to subfamily and target since it 

resembles the sequence-based phylogenetic tree on which GPCR classification is 

based.
1
 For instance, the opioid receptor subtypes δ, κ, μ, and NOP cluster together, as 

well as the α- and β-adrenoceptor subtypes. The fact that clustering follows the 

receptor classification is expected since the classification of GPCRs was based on 

sequence similarity.
24, 25

 Four clusters are clearly defined in the tree: the aminergic 

receptors, the adenosine receptors, the prostanoid receptors, and the peptide-binding 

receptors. 
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Figure 1. Phylogenetic tree of human Class A GPCRs based on sequence 

information (44 residues of the GSK set). Human Class A GPCRs are clustered 

based on the 44 ligand-binding residues as defined in the GSK set. Subfamilies 

are color-coded according to ligand type whereby the broad ligand types applied 

by Gloriam et al.
17

 were used. Legend: red – receptor with aminergic ligands; 

pink – peptide ligands; green – lipid ligands; dark blue – purinergic P2Y  

ligands; light blue – adenosine ligands; brown – melatonin ligands.   
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Figure 2. Phylogenetic tree of human Class A GPCRs based on ligand 

information (frequent substructure mining). Human Class A GPCRs are 

clustered based on the frequent substructure analysis. Subfamilies are color-

coded according to ligand type whereby the broad ligand types applied by 

Gloriam et al.
17

 were used. Legend: red – receptor with aminergic ligands; pink 

– peptide ligands; green – lipid ligands; dark blue – purinergic P2Y ligands; 

light blue – adenosine ligands; brown – melatonin ligands.  
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4.3.2 Ligand-based classification 

The ligand-based receptor classification, which we will compare to the sequence-based 

classification, is provided in Figure 2. Subfamilies in this tree are more scattered; 

however, most subfamilies cluster together. For instance, except for the two 

purinergic receptors (P2Y1 and P2Y12) and the two glycoprotein hormone receptors 

(FSH and LH), all other receptors represented by only two subtypes, such as the 

melatonin or the leukotriene B4 receptors, are clustered together. The adenosine 

receptors A1 (ADORA1), A2A (ADORA2A), A2B (ADORA2B), and A3 (ADORA3) group 

together, indicating overlap in ligand profiles. This may imply that ligands for these 

receptor subtypes are non-selective, such as the adenosine receptor antagonists 

caffeine and theophylline. Additionally, receptor selectivity may vary with relatively 

small changes in ligand structure: an 8-cycloalkyl substituent on theophylline confers 

A1 receptor selectivity, whereas a phenylstyryl substituent on the same position in 

caffeine renders these compounds selective for the A2A receptor. The purinergic 

receptor P2Y12 is found near the adenosine receptors owing to the purine core typical 

for ligands of both these subfamilies. In agreement with the ligand selectivity reported 

for the α1-, α2-, and β-adrenoceptor subfamilies, these receptors form three distinct 

clusters;
26

 furthermore, the α1B and α1D receptors are the closest in the distance 

matrix. The muscarinic acetylcholine receptors M1, M3, M4, and M5 (CHRM1/3/4/5, in 

Figure 2) cluster together as one group, supporting the low subtype selectivity of 

muscarinic antagonists.
27

 However, the acetylcholine receptor M2 is found more 

distant from this cluster. This indicates the presence of distinct chemical classes in the 

ligand set of the M2 receptor, which may be the result of inclusion of allosteric ligands. 

For instance, gallamine is an allosteric modulator of the muscarinic M2 receptor
28

 that 

is also present in the GLIDA database,
29

 classified as an M2 antagonist. In general, the 

remaining aminergic receptors (serotonergic, dopaminergic, histaminergic and 

cholinergic) are more scattered throughout the substructure tree. This means that 

targets share ligands or ligand substructures among subfamilies/subtypes, which is in 

line with the high level of polypharmacology observed for these aminergic GPCRs.
30

 For 
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instance, the serotonin receptor 5-HT1A clusters together with the D2 dopamine 

receptor, which fits with reports on antipsychotic compounds combining dopamine D2 

receptor antagonism and serotonin 5-HT1A receptor agonism.
31, 32

 Structurally similar 

ligands may act on diverse targets, for instance, when ligands have a GPCR-privileged 

structure at their core.
33, 34

 The grouping of the eight prostanoid receptors (Figure 2) 

indicates similarity in substructure profiles of the ligands. This is based on the fact that 

most prostanoid receptor ligands are direct derivatives of the endogenous ligands,
35, 36

 

the so-called eicosanoids. These ligands are highly similar, all consisting of large 

aliphatic, lipophilic alkyl chains. The presence of the leukotriene and cannabinoid 

receptors in this lipid cluster may seem strange at first. Leukotrienes are however also 

eicosanoids, which clarifies the position of the leukotriene B4 and cysteinyl-leukotriene 

receptors in this cluster.
37, 38

 In addition, arachidonic acid is the common precursor for 

eicosanoids and two derivatives of arachidonic acid, anandamide and 2-

arachidonylglycerol, both of which are endogenous ligands (‘endocannabinoids’) of the 

cannabinoid receptors.  

The relationship between target clustering in the substructure tree (Figure 2) and 

ligand promiscuity suggests that the substructure tree may be used to identify possible 

side effects on receptors that are close neighbors in this tree. For instance, off-target 

activity of ligands can be identified. If inspection reveals a ligand to bind to receptor(s) 

that are phylogenetically related to the target of interest, a more detailed 

experimental follow-up with respect to receptor selectivity would be worthwhile.  

4.3.3 Tree comparison 

Visual comparison of the sequence tree (Figure 1) with the substructure tree (Figure 2) 

reveals that the overall phylogenetic organization is similar. For instance, with the 

exclusion of the glycoprotein, P2Y, angiotensin, and bradykinin receptors, all other 

receptors represented by two subtypes occur in pairs in both the ligand tree and the 

sequence tree. This is also true for receptors with three subtypes present in the 

dataset, e.g. the three members of the α1, the α2, and the β1 adrenoceptors, as well as 
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the bombesin receptors. Exceptions to this rule are the neuropeptide Y and 

vasopressin receptors. In addition, the prostanoid receptors largely group together in 

both trees, as do most of the aminergic receptors.  

The clear distinction between the two dopamine receptor types, i.e. D1 and D5 (D1-like) 

versus D2, D3, and D4 (D2-like), exists both in the sequence-based classification and 

ligand-based classification. This is in agreement with a previous study
39

 and also known 

from drugs on the market such as the benzazepines that favor D1–like over D2-like 

dopamine receptors. Similarly, antipsychotics such as chlorpromazine have a higher 

affinity for the D2-like subtypes than D1-like receptors.
40

 

The fact that many clusters arise in both trees indicates that the receptors in these 

clusters have similar sequences and similar ligands, that is, ligands with substantially 

overlapping substructure sets. However, there are also receptor targets for which this 

is clearly not the case. The (qualitative) similarities and differences among sequence 

and substructure trees are discussed in the following. A delta-delta plot was 

constructed to compare how pairs of receptors change. This plot, provided in Figure 3 

(and described in detail in the Materials and Methods section), visualizes how receptor 

distances deviate between the sequence-based tree and the ligand-based classification 

of receptors. In sequence space, receptor distances indicate the (dis)similarly between 

protein sequences, while in ligand space, receptor distances reflect the overlap in 

structural features found in ligands for these receptors. For each receptor, the mean 

distance to all other receptors is plotted. From the delta-delta plot, it becomes 

apparent that the prostanoid receptors and P2Y1 receptor are on average the most 

distant receptors from the rest of the classes. The distances of the purine P2Y1 

receptor, the prostanoid FP receptor, and leukotriene receptor CysLT2  towards the 

other classes are all larger in substructure space than in sequence space, implicating 

that overall their ligands show little resemblance with ligands of the other GPCRs. In 

contrast, for most aminergic receptors, e.g. for the α2B-adrenoceptors and the 5-HT2B 

serotonin receptor in Figure 3, distances are smaller in substructure space compared 

to sequence space. This, again, corresponds with the high polypharmacology found for 
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aminergic ligands, such as for most atypical antipsychotics,
41

 with clozapine as a 

prominent example.
42

 With the exception of a few targets (FSH, LH), the distribution of 

targets in the delta-delta plot is more scattered along the x-axis (substructure space) 

than the y-axis (sequence space). This may be a reflection of the evolutionary 

relationship between sequences, which results in coverage of a small region of the 

overall sequence space. The ligands for these targets do not have such a direct 

relationship and thus cover a broader range in overall substructure space. 

The difference between ligand-based and target-based classifications may be due to 

convergent evolution.
43

 Functional convergence denotes how proteins that differ in 

sequence may fulfill the same protein function. The protein sequence of GPCR 

subtypes will be similar in parts that are involved in the endogenous ligand recognition 

but may be different in other parts, for instance those parts that play a role in 

recognition of other, exogenous, ligands (e.g. synthetic drugs). These may therefore 

have a different selectivity profile compared to the endogenous ligand. 
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Figure 3. Delta-delta plot visualization of receptor distances in sequence and 

substructure space. The delta-delta plot visualizes how target distances differ 

between sequence-based classification (GSK set, y-axis) and substructure-based 

classification (x-axis). The average distance towards the other targets is plotted for 

sequence and substructure space. A few targets are highlighted in the plot to serve 

as examples. These are marked by a black dot and a label that denotes the gene 

symbol. Targets that are, on average, more distant from the rest are plotted further 

away from the origin; targets plotted above the diagonal are more distant in 

sequence space, while targets plotted below the diagonal are more distant in 

substructure space. For example, the FSH receptor (FSHR) is positioned relatively 

far from the origin and above the diagonal. This indicates that this receptor is, in 

general, more distant from the other receptors, most prominent in sequence space. 
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Figure 4. Examples of plotted scores for the leave-one-out validation. Example 

plots expressing the performance of the simulated receptor de-orphanization. 

Performance plots for the following receptors are provided (from left to right 

and from top to bottom):  CHRM1 - muscarinic acetylcholine receptor M1 (first 

category); AGTR1 - angiotensin receptor AT1 (second category); P2RY1 - 

P2Y1 purinoceptor (third category); BRS3 - bombesin receptor BB3 (fourth 

category). These examples are discussed in the text. The full set of plotted 

scores is provided in Additional file 2 – Plotted scores for the leave-one-out 

validation. For each plot, receptors are ordered along the x-axis (labeled 

“Number of included receptors”) in order of increasing distance in sequence 

space to the receptor under study. On the y-axis (labeled “Ligands identified”), 

the cumulative number of retrieved ligands is depicted, normalized linearly to 

the interval [0;1]. The red curve indicates the number of active ligands that are 

retrieved when including all (closest) receptors that are listed along the x-axis 

up to that point. For example, the plot of the muscarinic acetylcholine receptor 

M1 (CHRM1) displays a steeply rising curve near the origin, indicating that 

many of its ligands are retrieved using a small number of closest receptors. The 

blue diagonal illustrates recovery of ligands when performance is equal to 

random prediction. The relative area under the curve (AUC) of the red curve is 

stated at the bottom of each plot. An AUC above 0.5 indicates good 

performance, while poor performance is indicated by an AUC of 0.5 or below. 
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4.3.4 Validation 

To validate how well our method performed as a chemogenomics method, i.e. how 

well it connects sequence space with small molecule space and how applicable the 

relationship is in practice, we conducted a ‘virtual de-orphanization exercise’. For each 

receptor in the dataset, we pretended not to know any of its ligands by excluding them 

from the datasets (we ‘orphanized’ the receptor in this particular run of the protocol). 

We next predicted its ligands by considering a model derived from the closest 

neighbors of the receptor in sequence space (we attempted to ‘de-orphanize’ the 

receptor whose ligands we omitted from the study in the previous step). For this 

calculation, the distance matrix for the GSK residue set was used. The cumulative 

number of correctly identified ligands of every receptor is plotted against the number 

of closest neighbors (sequences) included to find these ligands. The (relative) area 

under the curve (AUC) and shape of the curve are measures of the performance of our 

method. In 93% of the studied receptors, de-orphanization of the pretended orphan 

receptor using the ligands of related receptors performed better than random (AUC > 

0.5) and for 35% of receptors de-orphanization performance was good (AUC > 0.7). All 

AUC plots could be divided into four categories according to curve shape and AUC (the 

complete set of plotted scores is available as additional material in Additional file 2 – 

Plotted scores for the leave-one-out validation). Typical examples of the four 

categories are given in Figure 4. The first category is most abundant and consists of 

curves with a convex shape and an AUC above 0.5, marking good performance. An 

example of this category is the muscarinic acetylcholine receptor M1 (CHRM1 in Figure 

4) with an AUC of 0.7990. Curves of the second category display a gradual rise that is 

approximately equal to the diagonal of the plot. These plots have an AUC near 0.5, 

indicating performance that is equal to random prediction. An example is the plot of 

the angiotensin receptor AT1 (AGTR1 in Figure 4) with an AUC of 0.5120. Curves of the 

third category perform worse than random and are characterized by a concave shape 

and an AUC below 0.5. Clearly the worst example is the P2Y1 purinoceptor with an AUC 

value of 0.0857 (P2RY1 in Figure 4). In contrast to the first three categories, curves of 
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the fourth category do not have a clear AUC range. This category consists of curves 

that are divided into several discrete parts of alternating rises and plateaus, as shown 

in the plot of bombesin receptor BB3 (BRS3 in Figure 4), with an AUC of 0.8145. 

Performance varies from good (BRS3) to worse than random, depending on the value 

of the AUC. An example of such a plot with an AUC value below 0.5 is the FSH receptor 

(not shown, see: Additional file 2 – Plotted scores for the leave-one-out validation) 

with an AUC of 0.4428. The steep rises are caused by a few receptors identifying the 

majority of ligands. Some of these curves are steeply rising at the start, which suggests 

that part of its ligand set could be readily identified even though this is not reflected in 

the AUC. The poor performance concerning the P2Y1 receptor is probably due to the 

nature of its ligands: this set consists of a small number of highly similar ligands that all 

possess a phosphate group, a feature not found in other ligands in the database. The 

number of features (substructures) shared with ligands of this receptor and other 

receptors is therefore small. Interestingly, the adenosine A1 and A3 receptors, which 

are also purinergic, identify most (28 out of 42) of the P2Y1 ligands. However, in 

sequence space these receptors are at great distance (at positions 91 and 92, 

respectively).  

Overall, our method proves useful for receptor de-orphanization, since for 93% of 

receptors studied de-ophanization performed better than random selection (AUC > 

0.5) and for 35% of receptors de-orphanization performed well (AUC > 0.7). 

4.3.5 Limitations of the work 

In the present study, some targets were excluded due to insufficient availability of 

ligand data in the source databases. The absence of a receptor may influence the order 

of other receptors in the trees. Scarcity of ligand data is reflected in the substructure 

profiles, thereby influencing the correlations among receptors. The issue of data (in) 

completeness and its effect on interaction networks was recently discussed by Mestres 

et al.
44

 Using three datasets of increasing complexity (more connections) that linked 

ligands to targets based on full chemical identity, the authors showed that an increase 
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in the number of connections rapidly leads to shifts in connection patterns. However, 

our study linked targets based on overlap in substructures; as a consequence sharing 

of substructures rather than of ligands is sufficient for targets to be identified as 

related. Bender et al. and Keiser et al. already showed that overlapping ligands are not 

necessary to predict whether targets are close in ligand space.
19, 20

 In addition, our 

method employs an exhaustive approach to analyze the structural features of ligands. 

Frequent substructure mining considers all possible substructures that occur in the 

ligands and is therefore unbiased, i.e. all possible substructures were evaluated, not 

only those intuitive to chemists, such as functional groups, ring systems (e.g. a phenyl 

ring), and linkers.
45

 However, in the present study less ‘obvious’ substructures such as 

ethyl or isobutyl are also considered [Chapter 3; ref 21]. For a complete discussion on 

substructure generation and evaluation, see chapter 2 or ref. 46. Our method is not 

limited to GPCRs alone; it is easily extended to other protein families for analysis of the 

differences between subfamily phylogenies, given that sufficient ligand information is 

available. For instance, it can be applied to the realm of enzymes to complement other 

chemogenomics analyses.
47

 

4.4 Conclusions  

In this chapter, we presented a ligand-based phylogenetic classification that 

complements the well-established sequence-based classification of proteins, and 

applied our method to classification of GPCRs. This alternate view may contribute to 

our understanding of GPCR classification since it reveals relationships that are 

unnoticed with conventional phylogeny. Targets were analyzed based on the 

substructure profiles of their ligands using an unbiased approach. The overall 

organization of the sequence tree and the substructure tree was similar; however, 

substantial differences were also discovered. In the substructure tree, several clusters 

of subtypes were identified. For instance, it was found that the adenosine receptors 

group together, and that certain GPCR subfamilies that do not share sequence 
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homology cluster because of ligand similarity. Thus, receptor similarities that signal for 

potential off-target effects, such as for the serotonergic receptors, are readily 

identified. In addition, combined with sequence-based classification, the ligand-based 

classification presented has proven potential (93% of receptors with AUC > 0.5 and 

35% with AUC > 0.7) for de-orphanization of receptors. 

4.5 Methods 

4.5.1 Datasets 

4.5.1.1 Ligands 

Ligands for human GPCRs were collected from three publicly available data sources: 

the StARLITe database, as made available by ChEBI (EMBL-EBI) as part of the ChEMBL 

database,
48

 GLIDA,
29

 and KiDB.
49

 ChEMBL consists of a collection of more than 500,000 

small molecules annotated with activity. Here, only activity values measured directly 

from binding studies were included. Compounds with Ki, IC50, or EC values below 10 

μM were considered active. GLIDA provides biological information on GPCRs 

(sequences) and chemical information about ligand structures. It has links to several 

external databases, GPCRDB,
25

 UniProt,
50

 PubChem,
51

 and DrugBank.
52

 A reported 

affinity in one of these source databases classifies a compound as active, independent 

of the reported binding affinity. Ligands are annotated with an activity type, namely: 

full agonist, partial agonist, agonist, antagonist or inverse agonist. In the present study, 

we focused only on binding affinity and not on the activity type. This allowed us to 

merge the set with the rest of the data. KiDB provides information on drugs and 

molecular compounds that interact with GPCRs, ion channels, transporters, and 

enzymes. The entries in KiDB are annotated with ligand, Ki value, radiolabeled ligand, 

receptor name, source & tissue, species, and PubMed link to the publication(s). Our 

dataset consisted of ligands from all three sources, by selecting human GPCR ligands 

with a molecular weight between 50 and 700 Da. Only targets that had 20 or more 

ligands listed were used. In this study, we focused on class A (rhodopsin-like) GPCRs 
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since the majority of targets are from class A and only a minor part from class C; 

combining both classes would have negatively affected homogeneity of the 

phylogenetic trees, thereby hampering comparison. For the same reason, we removed 

two singleton targets (targets that are the only member in a subfamily), the 

gonadotrophin-releasing hormone receptor and the ghrelin receptor. The final set 

consisted of 102 targets (provided in Table 1 of Additional file 3 – List of GPCRs used in 

this study) with 37350 unique ligands in total. 

4.5.1.2 Sequences 

The multiple sequence alignment of (specific residues of) the 7-TM domain was 

obtained from GPCRDB.
25, 53 

Only human receptors that were non-olfactory and not 

orphan were used.  

4.5.2 Tree generation 

4.5.2.1 Frequent Substructure Mining 

For the ligands of each receptor, the most frequently occurring substructures were 

determined. This was accomplished by using the frequent subgraph-mining 

algorithm,
54

 which finds all frequent substructures in a set of molecular graphs.
23

 For a 

description and a quantitative comparison of recent substructure mining algorithms, 

see.
55

 Briefly, starting from the smallest substructure, namely the single atoms, the 

algorithm finds the number of molecules in which the substructure occurs. If this 

occurrence is above a user-defined minimum, the minimum support value, the 

substructure is stored. Stored substructures are stepwise extended, and tested in a 

systematic manner, with the aim of testing all possible substructures that have at least 

one of the stored substructures as their basis. The algorithm seeks ways to test only 

those substructures that actually occur in the set, and that have a frequency above the 

set minimum. An important concept of frequent substructure mining is the a priori 

principle, originating from frequent item set mining.
56

 Algorithms based on the a priori 

principle exploit that the frequency of a substructure will be equal or lower than the 

frequency of the substructures it contains. Therefore, whenever the occurrence of a 
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substructure is below the minimum support, all extensions of that substructure are 

discarded.  

Structures were represented as labeled graphs with a special type for aromatic bonds. 

In this study, the minimum support value was set to 30% of the number of ligands in 

each activity set. At this value, the algorithm provided a large group of substructures 

while still being computationally feasible to work with. In addition, molecular 

structures were sorted in ascending order according to the number of bonds. This 

allowed the algorithm to prune scarce, complicated substructures that consisted of a 

large number of bonds, thereby reducing memory requirements. If the set of 

generated substructures is disproportionately large (more than 1000 times larger) 

compared to the majority of the other classes, the generated substructures are 

discarded except for those that also occur in other classes. This step was performed in 

order to prevent single targets from dominating the analysis. Since in practice most 

classes generated sets of less than 1000 substructures, a cut-off of 1M substructures 

was used. Substructures with molecular weight below 50 Dalton were discarded. The 

frequent substructures of all classes were merged into one set, removing any 

duplicates. For all substructures in this set, the frequency in each subfamily was 

determined. To calculate the correlation between two targets, we used the 

substructure frequencies as features for that target. A correlation matrix was 

constructed by calculating the Pearson correlation coefficient for each pair of targets. 

Finally, a distance matrix was constructed by subtracting the values of the correlation 

matrix from unity and normalizing the results linearly to the interval [0;1].  

4.5.2.2 Phylogenetic Trees 

To study receptor organization, receptors were clustered into a phylogenetic tree 

using the Neighbor-Joining (NJ) method (Neighbor from the PHYLIP package
57

). This 

method infers phylogenies from the pair-wise distances between receptors. 

Phylogenetic trees built from distance matrices facilitate tree comparison across 

domains. In addition, NJ clusters each domain equally well since it does not involve an 

‘evolutionary clock’, a concept rooted in evolutionary biology. Two distance matrices 
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represented the similarities of the receptors: according to the frequent substructures 

of their ligands and the 7-TM domain sequence alignment, both were visualized as a 

phylogenetic tree, with receptors as leaves of the tree. The number of branches 

between two leaves in the tree grows with dissimilarity of these two leaves.  

The protein distances between the aligned sequences were calculated with Protdist 

from the PHYLIP package version 3.6 using the Jones-Taylor-Thornton matrix 

(default).
57

 Both the sequence-based and ligand-based phylogenetic trees were 

constructed using the neighbor.exe program from the PHYLIP package. Tree 

construction might be influenced by the order in which targets are provided to the tree 

constructor. To minimize the influence on the resulting phylogenetic tree, target input 

order was randomized 10 times and 10 new trees were generated. From these, a 

consensus tree was built. MEGA4
58

 was used for editing the layout of the trees and for 

visualization. Trees were rooted on the mid-points, that is, a root is placed at the mid-

point of the longest distance between two taxa of the unrooted tree. Taxa were 

arranged for balanced shape and trees were visualized as circular trees showing only 

topology, i.e. branch lengths do not reflect evolutionary distance in a quantitative 

manner. 

4.5.3 Tree comparison 

For the comparison of trees, several methods and visualizations are available; 

however, there is not a single definitive measure for tree difference. To visualize how 

the receptor positions change between two trees we employed a delta-delta plot. 

4.5.3.1 Delta-Delta plots 

The delta-delta plot reveals how receptor locations behave globally with respect to the 

median of all receptors. It was used to visualize the differences in location of each 

receptor in sequence space and in substructure space. This plot is an adaptation from 

the delta-delta plot in Garr et al..
59

 It is a new way of tree comparison, which visualizes 

the differences among trees graphically, as opposed to the sole calculation of a 
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numerical distance between two trees which is not trivial to interpret. For each 

receptor, the mean distance of that receptor to all other receptors was calculated. This 

value was plotted in a scatter plot, with each axis representing the mean distance of 

the respective node in one of the trees. The interpretation of this plot is as follows. 

Along both axes, receptors plotted far from the origin are, on average, more distant 

from the rest of the group, while receptors plotted close to the origin were closer to 

the rest of receptors. Receptors plotted near the diagonal do not change much in their 

mean distance to other receptors when going from one tree to the other (since they 

are close to the X=Y diagonal). Receptors plotted above or below the diagonal have 

different average distance to the other receptors between trees. For instance, consider 

a delta-delta plot that plots a substructure tree along the x-axis and a sequence tree 

along the y-axis. If a receptor is plotted above the diagonal, the mean distance of that 

receptor to the other receptors is larger in the sequence tree than the substructure 

tree; for receptors plotted below the diagonal, the opposite is true.  

4.5.4 Validation 

4.5.4.1 Leave-one-out validation 

This experiment is repeated for every receptor (the ‘orphan receptor’) by temporarily 

removing ligands of this receptor from the dataset and predicting the position of 

molecules of this class in the substructure tree. A molecule from the left-out class is a 

hit when it is predicted to belong to one of the closest classes in sequence space. The 

closest classes in sequence space are found using the distance matrix from the 

multiple sequence alignment. Prediction of the class of a molecule is based on the 

Euclidean distance in substructure space. This distance is calculated as follows: for 

each substructure, the square of the difference between the relative frequency in a 

class and the molecule is calculated. The relative frequency of a substructure in a 

molecule is either 0 for absence, or 1 for presence of the substructure. The square root 

of the sum of all squared differences is the Euclidean distance between a molecule and 

a class. The area under the curve (AUC) of the receiver operating characteristic (ROC) 

plot served as a quality measure of the predictions for a class.  
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Instead of repeating the substructure mining for every left-out class, a lookup table of 

substructure occurrence was used. This table related all generated substructures with 

all molecules in which they occurred. Substructures that had a frequency just above 

the support threshold in the left-out class were not considered when analysis was 

performed for molecules of this class. 
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4.8 Additional files 

Additional files are available free of charge at: http://www.biomedcentral.com. 

4.8.1 Additional file 1 – Phylogenetic trees based on 7TM domain and 

selected residues 

File name: phytree_residues.pdf 

Title: Phylogenetic trees based on 7TM domain and selected residues. 

Description: Two sequence-based phylogenetic trees for the set of Class A GPCRs used 

in this study: the phylogenetic tree based on the multiple sequence alignment of the 

7TM domain and the phylogenetic tree based on 30 selected residues described in 

Surgand et al..
15

 Subfamilies are color-coded according to ligand type whereby the 

broad ligand types applied by in Gloriam et al.
17

 were used. Legend: red – receptor 

with aminergic ligands; pink – peptide ligands; green – lipid ligands; dark blue – 

purinergic P2Y ligands; light blue – adenosine ligands; brown – melatonin ligands. 

 

4.8.2 Additional file 2 – Plotted scores for the leave-one-out validation 

File name: validationplots.pdf 

Title: Plotted scores for the leave-one-out validation. 

Description: The complete set of plotted scores of identified ligands per number of 

closest neighbors (sequences). For each plot, receptors are ordered along the x-axis 

(labeled “Number of included receptors”) in order of increasing distance in sequence 

space to the receptor under study. The y-axis (labeled “Ligands identified”) indicates 

the cumulative number of retrieved ligands, normalized linearly to the interval [0;1]. 

The red curve indicates the number of active ligands that are retrieved when including 

all (closest) receptors that are listed along the x-axis up to that point. More specifically, 
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the number of correctly predicted ligands is plotted against the number of closely 

related receptors on which the prediction was based. For example, the plot of the 

muscarinic acetylcholine receptor M1 (CHRM1, third row, third plot from the left) 

displays a steeply rising curve near the origin, indicating that many of its ligands are 

retrieved using a small number of closest receptors. The blue diagonal illustrates 

recovery of ligands when performance is equal to random prediction. The relative area 

under the curve (AUC) of the red curve is stated at the bottom of each plot. An AUC 

above 0.5 indicates good performance, while poor performance is indicated by an AUC 

of 0.5 or below. The plots are sorted according to decreasing (relative) AUC. 

 

4.8.3 Additional file 3 – List of GPCRs used in this study 

File name: receptorlist.pdf 

Title: List of GPCRs used in this study. 

Description: The list of GPCRs used in this study (Class A, excluding singletons). Only 

receptors that are human, non-olfactory, and not orphan, were used. For each 

receptor, the respective (sub) family, gene symbol, official IUPHAR name, and number 

of ligands are provided. 

 

 




