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4.1 Abstract

G protein-coupled receptors (GPCRs) represent a family of well-characterized drug
targets with significant therapeutic value. Phylogenetic classifications may help to
understand the characteristics of individual GPCRs and their subtypes. Previous
phylogenetic classifications were all based on the sequences of receptors, adding only
minor information about the ligand binding properties of the receptors. In this chapter,
we compare a sequence-based classification of receptors to a ligand-based
classification of the same group of receptors, and evaluate the potential to use
sequence relatedness as a predictor for ligand interactions thus aiding the quest for

ligands of orphan receptors.

We present a classification of GPCRs that is purely based on their ligands,
complementing sequence-based phylogenetic classifications of these receptors.
Targets were hierarchically classified into phylogenetic trees, for both sequence space
and ligand (substructure) space. The overall organization of the sequence-based tree
and substructure-based tree was similar; in particular, the adenosine receptors cluster
together as well as most peptide receptor subtypes (e.g. opioid, somatostatin) and
adrenoceptor subtypes. In ligand space, the prostanoid and cannabinoid receptors are
more distant from the other targets, whereas the tachykinin receptors, the oxytocin
receptor, and serotonin receptors are closer to the other targets, which is indicative
for ligand promiscuity. In 93% of the receptors studied, de-orphanization of a
simulated orphan receptor using the ligands of related receptors performed better
than random (AUC > 0.5) and for 35% of receptors de-orphanization performance was

good (AUC > 0.7).

We constructed a phylogenetic classification of GPCRs that is solely based on the
ligands of these receptors. The similarities and differences with traditional sequence-
based classifications were investigated: our ligand-based classification uncovers

relationships among GPCRs that are not apparent from the sequence-based
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classification. This will shed light on potential cross-reactivity of GPCR ligands and will
aid the design of new ligands with the desired activity profiles. In addition, we linked
the ligand-based classification with a ligand-focused sequence-based classification
described in literature and proved the potential of this method for de-orphanization of

GPCRs.

4.2 Introduction

G protein-coupled receptors (GPCRs) comprise a large family, more than 800 in
human'' of cell surface receptors that consist of seven transmembrane (TM) helices.
These receptors are activated by a variety of external stimuli, including light, ions,
small molecules, lipids, and proteins; moreover, the majority of therapeutic drugs act
on GPCRs.? Because of the limited number of target crystal structures,”® GPCR drug
design relies largely on ligand-based approaches7 such as property-based methods,®
pharmacophore models,” and substructure methods.'® These methods do not require
any knowledge about the target protein; however, combining them with target
information often increases their potential. The resulting so-called ‘chemogenomics’
approaches thus involve both ligand-based and target-based aspects.Ll They do not
focus on a single group of ligands and one individual target, but rather on groups of
ligands against groups of targets. The central idea is that similar targets have similar
Iigands.lz' B Therefore, relationships between targets from the sequence side can be

exploited to search for novel receptor ligands on the chemical structure side.

Traditionally, the GPCR superfamily has been classified based on sequence homology
of the receptors. Kolakowski grouped all seven transmembrane (7-TM) proteins into
classes A to F for receptors proven to bind G-proteins and class O for the other 7-TM
proteins.14 Class A receptors resemble rhodopsin and form the largest cluster. Later,
Fredriksson et al. proposed a more elaborate classification for known and predicted
human GPCRs." Surgand et al. presented a sequence-based phylogenetic classification

of GPCRs viewed from a ligand perspective.15 By selecting residues pointing inwards
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Chemogenomics Analysis of GPCRs

into the generic binding pocket of GPCRs, the authors assembled a set of 30 residues
most likely to be accessible for ligand binding. Based on these residues, phylogenetic
clustering was performed. Although only a subset of residues was used, the
classification was similar to classifications based on the full sequence. Applications of a
grouping such as proposed by Surgand et al. constitute ligand design for related
receptors, as well as de-orphanization of GPCRs.” However, the study by Surgant et al.
is somewhat limited by the scarcity of structural protein data where the identification
of binding site residues was solely based on the structure of bovine rhodopsin. It could
not yet take into account recent advances that yielded three pharmacologically
relevant X-ray crystal structures, namely those of the human B, and turkey B,

3,5,6,16

adrenoceptors, as well as of the human adenosine A, receptor. Building further
on Surgand’s work, Gloriam et al. proposed an extended set of ligand-accessible
residues, derived from visual inspection of the newly available X-ray GPCR crystal
structures, from supporting mutagenesis data and from the evaluation of previously
established residue sets.” The resulting set of 44 residues was then applied to cluster

class A GPCRs into a phylogenetic tree, which reflected similarities in binding site of the

receptors.

Complementary to these sequence-based classifications are the ligand-based
classifications of GPCRs. Approaches that use ligand similarity measures for target
classification have been previously described."® *° Keiser et al. related targets by pair-
wise comparison of their Iigands.20 From a set of 65k ligands, a network was
constructed connecting almost all 246 targets through sequential linkage. From this,
previously unknown antagonism of methadone on the muscarinic M; receptor and of

emetine on the a,-adrenoceptor was identified.

While sequence-based similarity relies on comparison of the residues at certain
positions in the sequence, there is no unambiguously defined method to measure
ligand-based similarity. One way of defining ligand similarity is to consider the overlap
of substructures in the molecules. Frequent substructure mining is a method for

finding the most common substructures in a set of molecules [Chapter 3; refs 21-23]. It
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evaluates all possible substructures, not only discrete fragments that are present in the
molecules; it is therefore an exhaustive approach, resulting in a more complete view

on the structural features in the set.

In this study, we employ frequent substructure mining to determine the similarity
between groups of ligands in a thorough and unbiased manner. This substructural
similarity is then used for classification of GPCRs according to relatedness of
substructure profiles of their ligands. The substructure-based classification of GPCRs
visualizes relatedness of receptors in the form of a phylogenetic tree, which is then
compared to the sequence-based phylogenetic classifications of GPCRs. The
differences in tree organization are examined with methods that visualize changes in
target position. Taken together, we present a (GPCR) classification from the small
molecule (ligand) perspective, which facilitates analysis of target similarities and
differences in ligand-binding behavior. In addition, we explore the potential of our
ligand-based classification in receptor de-orphanization, i.e. the prediction of new

ligands for orphan receptors.

4.3 Results and Discussion

4.3.1 Sequence-based classification

Three types of sequence-based phylogenetic trees were built, namely: one tree that
was based on the full 7-TM sequence, one tree employing 30 residues described by
Surgand et al.,”® and one tree which was based on the set of 44 residues described by

17

Gloriam et al..”" Note that the three sequence-based trees presented here are

1, 15, 17 . .
since in the

different from those published in the referenced original work,
current study orphan receptors, receptors with a low number of ligands, and singleton
receptors were left out. Singleton receptors are receptors that are the only (available)
member in their respective subfamily. Due to the chemogenomic nature of this study,

we focus on the phylogenetic tree based on the set of Gloriam et al. since it represents
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the ligand perspective best; this set is referenced as the GSK set."” The two other trees
are provided for reference purposes in Additional file 1 — Phylogenetic trees based on
7TM domain and selected residues. The tree that was built based on the multiple
sequence alighment of the GSK set is shown in Figure 1. The GPCR subtypes in this tree
are grouped as branches in the tree according to subfamily and target since it
resembles the sequence-based phylogenetic tree on which GPCR classification is
based.” For instance, the opioid receptor subtypes §, K, i, and NOP cluster together, as
well as the a- and B-adrenoceptor subtypes. The fact that clustering follows the
receptor classification is expected since the classification of GPCRs was based on
sequence simiIarity.24' > Four clusters are clearly defined in the tree: the aminergic
receptors, the adenosine receptors, the prostanoid receptors, and the peptide-binding

receptors.

119



Chapter 4

I3%:c o
=
EEEES,
COCoFrLru
000g I Fd g w
...§$ S‘@QQ}
ol £ & o
o T K& F
o &.& .,
o & v
[ JRs &
o 50
oy, o &
8 ® & o
C"’@( [ ] 0@'0
» A
Or, oo ar®
A6 ?;?Gé .. PD;:G. P:\O
Opﬂf. s oA
O'DF\’}(? ® .P‘P‘DRN&B
OPRD] : .. M)RP"ZP'
OPR1 ® ° ADRA2C
SSTR4 HTR6
.ﬁ [ ]
SSTR1 @ i m @ HTR28B
SSTRS @ @ HTR2C
SSTR3 @ ® HTR2A
gsTR2 @ ® DRD5
e | So
AL TRq
- _‘SR’L. ."‘D_A?Ba
@ 8.5
Wie ® o, R4
N““.\R P‘. DQ@Q
W
W Q\@‘?"
oY
]
OO
? O."”o
e, %
® 7~ 2
LA N
® O C‘/_ P
& O & 0% %™
ESe 00 | I N
SO X o ... ..._\'2\)‘%“’
FFVE o, 900000, 55354 %
S AN Foe nc A3 FE R R
$e85ez2233589%%°0
T OF g T O MmM>D % B P
= > oD
< Ll

Figure 1. Phylogenetic tree of human Class A GPCRs based on sequence
information (44 residues of the GSK set). Human Class A GPCRs are clustered
based on the 44 ligand-binding residues as defined in the GSK set. Subfamilies
are color-coded according to ligand type whereby the broad ligand types applied
by Gloriam et al.'” were used. Legend: red — receptor with aminergic ligands;
pink — peptide ligands; green — lipid ligands; dark blue — purinergic P2Y
ligands; light blue — adenosine ligands; brown — melatonin ligands.
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Figure 2. Phylogenetic tree of human Class A GPCRs based on ligand
information (frequent substructure mining). Human Class A GPCRs are
clustered based on the frequent substructure analysis. Subfamilies are color-
coded according to ligand type whereby the broad ligand types applied by
Gloriam et al.” were used. Legend: red — receptor with aminergic ligands; pink
— peptide ligands; green — lipid ligands; dark blue — purinergic P2Y ligands;
light blue — adenosine ligands; brown — melatonin ligands.
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4.3.2 Ligand-based classification

The ligand-based receptor classification, which we will compare to the sequence-based
classification, is provided in Figure 2. Subfamilies in this tree are more scattered;
however, most subfamilies cluster together. For instance, except for the two
purinergic receptors (P2Y,; and P2Yy,) and the two glycoprotein hormone receptors
(FSH and LH), all other receptors represented by only two subtypes, such as the
melatonin or the leukotriene B, receptors, are clustered together. The adenosine
receptors A; (ADORA1), A,» (ADORA2A), A,; (ADORA2B), and A; (ADORA3) group
together, indicating overlap in ligand profiles. This may imply that ligands for these
receptor subtypes are non-selective, such as the adenosine receptor antagonists
caffeine and theophylline. Additionally, receptor selectivity may vary with relatively
small changes in ligand structure: an 8-cycloalkyl substituent on theophylline confers
A; receptor selectivity, whereas a phenylstyryl substituent on the same position in
caffeine renders these compounds selective for the A,, receptor. The purinergic
receptor P2Y,, is found near the adenosine receptors owing to the purine core typical
for ligands of both these subfamilies. In agreement with the ligand selectivity reported
for the a;-, a,-, and B-adrenoceptor subfamilies, these receptors form three distinct
cIusters;26 furthermore, the a,3 and a;p receptors are the closest in the distance
matrix. The muscarinic acetylcholine receptors M;, M3, M,, and M5 (CHRM1/3/4/5, in
Figure 2) cluster together as one group, supporting the low subtype selectivity of
muscarinic antagonists.27 However, the acetylcholine receptor M, is found more
distant from this cluster. This indicates the presence of distinct chemical classes in the
ligand set of the M, receptor, which may be the result of inclusion of allosteric ligands.
For instance, gallamine is an allosteric modulator of the muscarinic M, receptor28 that
is also present in the GLIDA database,” classified as an M, antagonist. In general, the
remaining aminergic receptors (serotonergic, dopaminergic, histaminergic and
cholinergic) are more scattered throughout the substructure tree. This means that
targets share ligands or ligand substructures among subfamilies/subtypes, which is in

line with the high level of polypharmacology observed for these aminergic GPCRs.* For
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instance, the serotonin receptor 5-HTis clusters together with the D, dopamine
receptor, which fits with reports on antipsychotic compounds combining dopamine D,
receptor antagonism and serotonin 5-HT,, receptor agonism.sl’ 32 Structurally similar
ligands may act on diverse targets, for instance, when ligands have a GPCR-privileged

33,34

structure at their core. The grouping of the eight prostanoid receptors (Figure 2)

indicates similarity in substructure profiles of the ligands. This is based on the fact that
most prostanoid receptor ligands are direct derivatives of the endogenous Iigands,gs’ 3
the so-called eicosanoids. These ligands are highly similar, all consisting of large
aliphatic, lipophilic alkyl chains. The presence of the leukotriene and cannabinoid
receptors in this lipid cluster may seem strange at first. Leukotrienes are however also
eicosanoids, which clarifies the position of the leukotriene B, and cysteinyl-leukotriene
receptors in this cluster.””*® In addition, arachidonic acid is the common precursor for
eicosanoids and two derivatives of arachidonic acid, anandamide and 2-

arachidonylglycerol, both of which are endogenous ligands (‘endocannabinoids’) of the

cannabinoid receptors.

The relationship between target clustering in the substructure tree (Figure 2) and
ligand promiscuity suggests that the substructure tree may be used to identify possible
side effects on receptors that are close neighbors in this tree. For instance, off-target
activity of ligands can be identified. If inspection reveals a ligand to bind to receptor(s)
that are phylogenetically related to the target of interest, a more detailed

experimental follow-up with respect to receptor selectivity would be worthwhile.
4.3.3 Tree comparison

Visual comparison of the sequence tree (Figure 1) with the substructure tree (Figure 2)
reveals that the overall phylogenetic organization is similar. For instance, with the
exclusion of the glycoprotein, P2Y, angiotensin, and bradykinin receptors, all other
receptors represented by two subtypes occur in pairs in both the ligand tree and the
sequence tree. This is also true for receptors with three subtypes present in the

dataset, e.g. the three members of the a,, the a,, and the B, adrenoceptors, as well as
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the bombesin receptors. Exceptions to this rule are the neuropeptide Y and
vasopressin receptors. In addition, the prostanoid receptors largely group together in

both trees, as do most of the aminergic receptors.

The clear distinction between the two dopamine receptor types, i.e. D; and Ds (D;-like)
versus D,, D3, and D, (D,-like), exists both in the sequence-based classification and
ligand-based classification. This is in agreement with a previous study™ and also known
from drugs on the market such as the benzazepines that favor D;—like over D,-like
dopamine receptors. Similarly, antipsychotics such as chlorpromazine have a higher

affinity for the D,-like subtypes than D;-like receptors.40

The fact that many clusters arise in both trees indicates that the receptors in these
clusters have similar sequences and similar ligands, that is, ligands with substantially
overlapping substructure sets. However, there are also receptor targets for which this
is clearly not the case. The (qualitative) similarities and differences among sequence
and substructure trees are discussed in the following. A delta-delta plot was
constructed to compare how pairs of receptors change. This plot, provided in Figure 3
(and described in detail in the Materials and Methods section), visualizes how receptor
distances deviate between the sequence-based tree and the ligand-based classification
of receptors. In sequence space, receptor distances indicate the (dis)similarly between
protein sequences, while in ligand space, receptor distances reflect the overlap in
structural features found in ligands for these receptors. For each receptor, the mean
distance to all other receptors is plotted. From the delta-delta plot, it becomes
apparent that the prostanoid receptors and P2Y, receptor are on average the most
distant receptors from the rest of the classes. The distances of the purine P2Y;
receptor, the prostanoid FP receptor, and leukotriene receptor CysLT, towards the
other classes are all larger in substructure space than in sequence space, implicating
that overall their ligands show little resemblance with ligands of the other GPCRs. In
contrast, for most aminergic receptors, e.g. for the a,z-adrenoceptors and the 5-HT,z
serotonin receptor in Figure 3, distances are smaller in substructure space compared

to sequence space. This, again, corresponds with the high polypharmacology found for
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aminergic ligands, such as for most atypical antipsychotics,41 with clozapine as a
prominent example.42 With the exception of a few targets (FSH, LH), the distribution of
targets in the delta-delta plot is more scattered along the x-axis (substructure space)
than the y-axis (sequence space). This may be a reflection of the evolutionary
relationship between sequences, which results in coverage of a small region of the
overall sequence space. The ligands for these targets do not have such a direct

relationship and thus cover a broader range in overall substructure space.

The difference between ligand-based and target-based classifications may be due to
convergent evolution.”® Functional convergence denotes how proteins that differ in
sequence may fulfill the same protein function. The protein sequence of GPCR
subtypes will be similar in parts that are involved in the endogenous ligand recognition
but may be different in other parts, for instance those parts that play a role in
recognition of other, exogenous, ligands (e.g. synthetic drugs). These may therefore

have a different selectivity profile compared to the endogenous ligand.
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Figure 3. Delta-delta plot visualization of receptor distances in sequence and
substructure space. The delta-delta plot visualizes how target distances differ
between sequence-based classification (GSK set, y-axis) and substructure-based
classification (x-axis). The average distance towards the other targets is plotted for
sequence and substructure space. A few targets are highlighted in the plot to serve
as examples. These are marked by a black dot and a label that denotes the gene
symbol. Targets that are, on average, more distant from the rest are plotted further
away from the origin; targets plotted above the diagonal are more distant in
sequence space, while targets plotted below the diagonal are more distant in
substructure space. For example, the FSH receptor (FSHR) is positioned relatively
far from the origin and above the diagonal. This indicates that this receptor is, in
general, more distant from the other receptors, most prominent in sequence space.
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Figure 4. Examples of plotted scores for the leave-one-out validation. Example
plots expressing the performance of the simulated receptor de-orphanization.
Performance plots for the following receptors are provided (from left to right
and from top to bottom): CHRML1 - muscarinic acetylcholine receptor M, (first
category); AGTR1 - angiotensin receptor AT, (second category); P2RY1 -
P2Y, purinoceptor (third category); BRS3 - bombesin receptor BB; (fourth
category). These examples are discussed in the text. The full set of plotted
scores is provided in Additional file 2 — Plotted scores for the leave-one-out
validation. For each plot, receptors are ordered along the x-axis (labeled
“Number of included receptors™) in order of increasing distance in sequence
space to the receptor under study. On the y-axis (labeled “Ligands identified”),
the cumulative number of retrieved ligands is depicted, normalized linearly to
the interval [0;1]. The red curve indicates the number of active ligands that are
retrieved when including all (closest) receptors that are listed along the x-axis
up to that point. For example, the plot of the muscarinic acetylcholine receptor
M; (CHRML1) displays a steeply rising curve near the origin, indicating that
many of its ligands are retrieved using a small number of closest receptors. The
blue diagonal illustrates recovery of ligands when performance is equal to
random prediction. The relative area under the curve (AUC) of the red curve is
stated at the bottom of each plot. An AUC above 0.5 indicates good
performance, while poor performance is indicated by an AUC of 0.5 or below.

127



Chapter 4

4.3.4 Validation

To validate how well our method performed as a chemogenomics method, i.e. how
well it connects sequence space with small molecule space and how applicable the
relationship is in practice, we conducted a ‘virtual de-orphanization exercise’. For each
receptor in the dataset, we pretended not to know any of its ligands by excluding them
from the datasets (we ‘orphanized’ the receptor in this particular run of the protocol).
We next predicted its ligands by considering a model derived from the closest
neighbors of the receptor in sequence space (we attempted to ‘de-orphanize’ the
receptor whose ligands we omitted from the study in the previous step). For this
calculation, the distance matrix for the GSK residue set was used. The cumulative
number of correctly identified ligands of every receptor is plotted against the number
of closest neighbors (sequences) included to find these ligands. The (relative) area
under the curve (AUC) and shape of the curve are measures of the performance of our
method. In 93% of the studied receptors, de-orphanization of the pretended orphan
receptor using the ligands of related receptors performed better than random (AUC >
0.5) and for 35% of receptors de-orphanization performance was good (AUC > 0.7). All
AUC plots could be divided into four categories according to curve shape and AUC (the
complete set of plotted scores is available as additional material in Additional file 2 —
Plotted scores for the leave-one-out validation). Typical examples of the four
categories are given in Figure 4. The first category is most abundant and consists of
curves with a convex shape and an AUC above 0.5, marking good performance. An
example of this category is the muscarinic acetylcholine receptor M; (CHRM1 in Figure
4) with an AUC of 0.7990. Curves of the second category display a gradual rise that is
approximately equal to the diagonal of the plot. These plots have an AUC near 0.5,
indicating performance that is equal to random prediction. An example is the plot of
the angiotensin receptor AT, (AGTR1 in Figure 4) with an AUC of 0.5120. Curves of the
third category perform worse than random and are characterized by a concave shape
and an AUC below 0.5. Clearly the worst example is the P2Y, purinoceptor with an AUC

value of 0.0857 (P2RY1 in Figure 4). In contrast to the first three categories, curves of
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the fourth category do not have a clear AUC range. This category consists of curves
that are divided into several discrete parts of alternating rises and plateaus, as shown
in the plot of bombesin receptor BB; (BRS3 in Figure 4), with an AUC of 0.8145.
Performance varies from good (BRS3) to worse than random, depending on the value
of the AUC. An example of such a plot with an AUC value below 0.5 is the FSH receptor
(not shown, see: Additional file 2 — Plotted scores for the leave-one-out validation)
with an AUC of 0.4428. The steep rises are caused by a few receptors identifying the
majority of ligands. Some of these curves are steeply rising at the start, which suggests
that part of its ligand set could be readily identified even though this is not reflected in
the AUC. The poor performance concerning the P2Y, receptor is probably due to the
nature of its ligands: this set consists of a small number of highly similar ligands that all
possess a phosphate group, a feature not found in other ligands in the database. The
number of features (substructures) shared with ligands of this receptor and other
receptors is therefore small. Interestingly, the adenosine A; and A; receptors, which
are also purinergic, identify most (28 out of 42) of the P2Y, ligands. However, in
sequence space these receptors are at great distance (at positions 91 and 92,

respectively).

Overall, our method proves useful for receptor de-orphanization, since for 93% of
receptors studied de-ophanization performed better than random selection (AUC >

0.5) and for 35% of receptors de-orphanization performed well (AUC > 0.7).
4.3.5 Limitations of the work

In the present study, some targets were excluded due to insufficient availability of
ligand data in the source databases. The absence of a receptor may influence the order
of other receptors in the trees. Scarcity of ligand data is reflected in the substructure
profiles, thereby influencing the correlations among receptors. The issue of data (in)
completeness and its effect on interaction networks was recently discussed by Mestres
et al.” Using three datasets of increasing complexity (more connections) that linked

ligands to targets based on full chemical identity, the authors showed that an increase
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in the number of connections rapidly leads to shifts in connection patterns. However,
our study linked targets based on overlap in substructures; as a consequence sharing
of substructures rather than of ligands is sufficient for targets to be identified as
related. Bender et al. and Keiser et al. already showed that overlapping ligands are not

19, 20 e
*“" In addition, our

necessary to predict whether targets are close in ligand space.
method employs an exhaustive approach to analyze the structural features of ligands.
Frequent substructure mining considers all possible substructures that occur in the
ligands and is therefore unbiased, i.e. all possible substructures were evaluated, not
only those intuitive to chemists, such as functional groups, ring systems (e.g. a phenyl
ring), and linkers.”> However, in the present study less ‘obvious’ substructures such as
ethyl or isobutyl are also considered [Chapter 3; ref 21]. For a complete discussion on
substructure generation and evaluation, see chapter 2 or ref. 46. Our method is not
limited to GPCRs alone; it is easily extended to other protein families for analysis of the
differences between subfamily phylogenies, given that sufficient ligand information is

available. For instance, it can be applied to the realm of enzymes to complement other

. 47
chemogenomics analyses.

4.4 Conclusions

In this chapter, we presented a ligand-based phylogenetic classification that
complements the well-established sequence-based classification of proteins, and
applied our method to classification of GPCRs. This alternate view may contribute to
our understanding of GPCR classification since it reveals relationships that are
unnoticed with conventional phylogeny. Targets were analyzed based on the
substructure profiles of their ligands using an unbiased approach. The overall
organization of the sequence tree and the substructure tree was similar; however,
substantial differences were also discovered. In the substructure tree, several clusters
of subtypes were identified. For instance, it was found that the adenosine receptors

group together, and that certain GPCR subfamilies that do not share sequence
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homology cluster because of ligand similarity. Thus, receptor similarities that signal for
potential off-target effects, such as for the serotonergic receptors, are readily
identified. In addition, combined with sequence-based classification, the ligand-based
classification presented has proven potential (93% of receptors with AUC > 0.5 and

35% with AUC > 0.7) for de-orphanization of receptors.

4.5 Methods

4.5.1 Datasets

45.1.1 Ligands

Ligands for human GPCRs were collected from three publicly available data sources:
the StARLITe database, as made available by ChEBI (EMBL-EBI) as part of the ChEMBL
database,48 GLIDA,29 and KiDB.* ChEMBL consists of a collection of more than 500,000
small molecules annotated with activity. Here, only activity values measured directly
from binding studies were included. Compounds with K;, 1Cso, or EC values below 10
UM were considered active. GLIDA provides biological information on GPCRs
(sequences) and chemical information about ligand structures. It has links to several
external databases, GPCRDB,25 UniPro’c,50 PubChem,51 and DrugBank.52 A reported
affinity in one of these source databases classifies a compound as active, independent
of the reported binding affinity. Ligands are annotated with an activity type, namely:
full agonist, partial agonist, agonist, antagonist or inverse agonist. In the present study,
we focused only on binding affinity and not on the activity type. This allowed us to
merge the set with the rest of the data. KiDB provides information on drugs and
molecular compounds that interact with GPCRs, ion channels, transporters, and
enzymes. The entries in KiDB are annotated with ligand, K; value, radiolabeled ligand,
receptor name, source & tissue, species, and PubMed link to the publication(s). Our
dataset consisted of ligands from all three sources, by selecting human GPCR ligands
with a molecular weight between 50 and 700 Da. Only targets that had 20 or more

ligands listed were used. In this study, we focused on class A (rhodopsin-like) GPCRs
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since the majority of targets are from class A and only a minor part from class C;
combining both classes would have negatively affected homogeneity of the
phylogenetic trees, thereby hampering comparison. For the same reason, we removed
two singleton targets (targets that are the only member in a subfamily), the
gonadotrophin-releasing hormone receptor and the ghrelin receptor. The final set
consisted of 102 targets (provided in Table 1 of Additional file 3 — List of GPCRs used in
this study) with 37350 unique ligands in total.

4512  Sequences
The multiple sequence alignment of (specific residues of) the 7-TM domain was

25, 53

obtained from GPCRDB. Only human receptors that were non-olfactory and not

orphan were used.
4.5.2 Tree generation

45.2.1  Frequent Substructure Mining

For the ligands of each receptor, the most frequently occurring substructures were
determined. This was accomplished by using the frequent subgraph-mining
algorithm,54 which finds all frequent substructures in a set of molecular graphs.23 For a
description and a quantitative comparison of recent substructure mining algorithms,
see.” Briefly, starting from the smallest substructure, namely the single atoms, the
algorithm finds the number of molecules in which the substructure occurs. If this
occurrence is above a user-defined minimum, the minimum support value, the
substructure is stored. Stored substructures are stepwise extended, and tested in a
systematic manner, with the aim of testing all possible substructures that have at least
one of the stored substructures as their basis. The algorithm seeks ways to test only
those substructures that actually occur in the set, and that have a frequency above the
set minimum. An important concept of frequent substructure mining is the a priori
principle, originating from frequent item set mining.56 Algorithms based on the a priori
principle exploit that the frequency of a substructure will be equal or lower than the

frequency of the substructures it contains. Therefore, whenever the occurrence of a
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substructure is below the minimum support, all extensions of that substructure are

discarded.

Structures were represented as labeled graphs with a special type for aromatic bonds.
In this study, the minimum support value was set to 30% of the number of ligands in
each activity set. At this value, the algorithm provided a large group of substructures
while still being computationally feasible to work with. In addition, molecular
structures were sorted in ascending order according to the number of bonds. This
allowed the algorithm to prune scarce, complicated substructures that consisted of a
large number of bonds, thereby reducing memory requirements. If the set of
generated substructures is disproportionately large (more than 1000 times larger)
compared to the majority of the other classes, the generated substructures are
discarded except for those that also occur in other classes. This step was performed in
order to prevent single targets from dominating the analysis. Since in practice most
classes generated sets of less than 1000 substructures, a cut-off of 1M substructures
was used. Substructures with molecular weight below 50 Dalton were discarded. The
frequent substructures of all classes were merged into one set, removing any
duplicates. For all substructures in this set, the frequency in each subfamily was
determined. To calculate the correlation between two targets, we used the
substructure frequencies as features for that target. A correlation matrix was
constructed by calculating the Pearson correlation coefficient for each pair of targets.
Finally, a distance matrix was constructed by subtracting the values of the correlation

matrix from unity and normalizing the results linearly to the interval [0;1].

45.2.2 Phylogenetic Trees

To study receptor organization, receptors were clustered into a phylogenetic tree
using the Neighbor-Joining (NJ) method (Neighbor from the PHYLIP package®’). This
method infers phylogenies from the pair-wise distances between receptors.
Phylogenetic trees built from distance matrices facilitate tree comparison across
domains. In addition, NJ clusters each domain equally well since it does not involve an

‘evolutionary clock’, a concept rooted in evolutionary biology. Two distance matrices
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represented the similarities of the receptors: according to the frequent substructures
of their ligands and the 7-TM domain sequence alignment, both were visualized as a
phylogenetic tree, with receptors as leaves of the tree. The number of branches

between two leaves in the tree grows with dissimilarity of these two leaves.

The protein distances between the aligned sequences were calculated with Protdist
from the PHYLIP package version 3.6 using the Jones-Taylor-Thornton matrix
(default).57 Both the sequence-based and ligand-based phylogenetic trees were
constructed using the neighbor.exe program from the PHYLIP package. Tree
construction might be influenced by the order in which targets are provided to the tree
constructor. To minimize the influence on the resulting phylogenetic tree, target input
order was randomized 10 times and 10 new trees were generated. From these, a
consensus tree was built. MEGA4>® was used for editing the layout of the trees and for
visualization. Trees were rooted on the mid-points, that is, a root is placed at the mid-
point of the longest distance between two taxa of the unrooted tree. Taxa were
arranged for balanced shape and trees were visualized as circular trees showing only
topology, i.e. branch lengths do not reflect evolutionary distance in a quantitative

manner.
4.5.3 Tree comparison

For the comparison of trees, several methods and visualizations are available;
however, there is not a single definitive measure for tree difference. To visualize how

the receptor positions change between two trees we employed a delta-delta plot.

45.3.1 Delta-Delta plots

The delta-delta plot reveals how receptor locations behave globally with respect to the
median of all receptors. It was used to visualize the differences in location of each
receptor in sequence space and in substructure space. This plot is an adaptation from
the delta-delta plot in Garr et al.” Itis a new way of tree comparison, which visualizes

the differences among trees graphically, as opposed to the sole calculation of a
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numerical distance between two trees which is not trivial to interpret. For each
receptor, the mean distance of that receptor to all other receptors was calculated. This
value was plotted in a scatter plot, with each axis representing the mean distance of
the respective node in one of the trees. The interpretation of this plot is as follows.
Along both axes, receptors plotted far from the origin are, on average, more distant
from the rest of the group, while receptors plotted close to the origin were closer to
the rest of receptors. Receptors plotted near the diagonal do not change much in their
mean distance to other receptors when going from one tree to the other (since they
are close to the X=Y diagonal). Receptors plotted above or below the diagonal have
different average distance to the other receptors between trees. For instance, consider
a delta-delta plot that plots a substructure tree along the x-axis and a sequence tree
along the y-axis. If a receptor is plotted above the diagonal, the mean distance of that
receptor to the other receptors is larger in the sequence tree than the substructure

tree; for receptors plotted below the diagonal, the opposite is true.

4.5.4 Validation

45.4.1  Leave-one-out validation

This experiment is repeated for every receptor (the ‘orphan receptor’) by temporarily
removing ligands of this receptor from the dataset and predicting the position of
molecules of this class in the substructure tree. A molecule from the left-out class is a
hit when it is predicted to belong to one of the closest classes in sequence space. The
closest classes in sequence space are found using the distance matrix from the
multiple sequence alighment. Prediction of the class of a molecule is based on the
Euclidean distance in substructure space. This distance is calculated as follows: for
each substructure, the square of the difference between the relative frequency in a
class and the molecule is calculated. The relative frequency of a substructure in a
molecule is either 0 for absence, or 1 for presence of the substructure. The square root
of the sum of all squared differences is the Euclidean distance between a molecule and
a class. The area under the curve (AUC) of the receiver operating characteristic (ROC)

plot served as a quality measure of the predictions for a class.
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Instead of repeating the substructure mining for every left-out class, a lookup table of
substructure occurrence was used. This table related all generated substructures with
all molecules in which they occurred. Substructures that had a frequency just above
the support threshold in the left-out class were not considered when analysis was

performed for molecules of this class.
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4.8 Additional files

Additional files are available free of charge at: http://www.biomedcentral.com.

4.8.1 Additional file 1 - Phylogenetic trees based on 7TM domain and

selected residues
File name: phytree_residues.pdf
Title: Phylogenetic trees based on 7TM domain and selected residues.

Description: Two sequence-based phylogenetic trees for the set of Class A GPCRs used
in this study: the phylogenetic tree based on the multiple sequence alignment of the
7TM domain and the phylogenetic tree based on 30 selected residues described in
Surgand et al.."”> Subfamilies are color-coded according to ligand type whereby the
broad ligand types applied by in Gloriam et al.”” were used. Legend: red — receptor
with aminergic ligands; pink — peptide ligands; green — lipid ligands; dark blue —

purinergic P2Y ligands; light blue — adenosine ligands; brown — melatonin ligands.

4.8.2 Additional file 2 - Plotted scores for the leave-one-out validation
File name: validationplots.pdf
Title: Plotted scores for the leave-one-out validation.

Description: The complete set of plotted scores of identified ligands per number of
closest neighbors (sequences). For each plot, receptors are ordered along the x-axis
(labeled “Number of included receptors”) in order of increasing distance in sequence
space to the receptor under study. The y-axis (labeled “Ligands identified”) indicates
the cumulative number of retrieved ligands, normalized linearly to the interval [0;1].
The red curve indicates the number of active ligands that are retrieved when including

all (closest) receptors that are listed along the x-axis up to that point. More specifically,
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the number of correctly predicted ligands is plotted against the number of closely
related receptors on which the prediction was based. For example, the plot of the
muscarinic acetylcholine receptor M; (CHRM1, third row, third plot from the left)
displays a steeply rising curve near the origin, indicating that many of its ligands are
retrieved using a small number of closest receptors. The blue diagonal illustrates
recovery of ligands when performance is equal to random prediction. The relative area
under the curve (AUC) of the red curve is stated at the bottom of each plot. An AUC
above 0.5 indicates good performance, while poor performance is indicated by an AUC

of 0.5 or below. The plots are sorted according to decreasing (relative) AUC.

4.8.3 Additional file 3 - List of GPCRs used in this study

File name: receptorlist.pdf

Title: List of GPCRs used in this study.

Description: The list of GPCRs used in this study (Class A, excluding singletons). Only
receptors that are human, non-olfactory, and not orphan, were used. For each
receptor, the respective (sub) family, gene symbol, official IUPHAR name, and number

of ligands are provided.
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