
 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/19038  holds various files of this Leiden University 
dissertation. 
 

Author:  Horst, Eelke van der             
Title: Drugs, structures, fragments : substructure-based approaches to GPCR drug 
discovery and design   
Date: 2012-05-31 

https://openaccess.leidenuniv.nl/handle/1887/1�
http://hdl.handle.net/1887/19038


 

25 

 

 

 

 

 

 

 

 

 

Substructure-Based 
Approaches to GPCR Drug 
Discovery and Design 
 

This chapter is based upon:  

van der Horst, E.; IJzerman, A. P. Computational 

Approaches to Fragment and Substructure Discovery 

and Evaluation. In Fragment-Based Drug Discovery: A 

Practical Approach; Zartler, E. R.; Shapiro M. J., Eds.; 

John Wiley & Sons, Ltd: Chichester, West Sussex, U.K., 

2008. 

  C
H

A
P

T
E

R
 2

 



 

 

 



 

27 

2.1 Introduction 

Nowadays, large molecular databases are easily accessible to the research community. 

This is illustrated by the advent of free online resources such as PubChem
1
 and 

eMolecules
2
. These publicly available databases consist of structure and property data 

for millions of small molecules. Both databases are accessible through web-based 

search tools, and are thus an unprecedented source of small molecule data. Outside 

the public domain, a similar progress takes place. Large molecular databases are 

becoming available that include bioactivity data, for example WOMBAT
3
 (WOrld of 

Molecular BioAcTivity). Molecular data from these sources may be used to construct 

predictive models, such as Structure Activity/Property Relationships (SARs/SPRs), or 

classification models. These models can be based on molecular properties, such as 

lipophilicity, solubility, and molar weight, but also on molecular structures per se. In 

silico fragmentation of molecular structures is often used to provide a dataset of 

structural elements of the intact molecule. Analysis of the resulting fragments is useful 

to derive novel classifiers e.g. for predicting activity of new molecules. What is meant 

by the term fragment depends on the context. In the chemical sense, a fragment is a 

small, low-molecular weight substance with weak affinity often used to ‘build’ a higher 

affinity lead compound. This is different from the computational sense. In the 

computational context, the term fragment, or substructure, denotes some structural 

part of the 2D structure of a molecule. It is the result of fragmentation of the molecule 

according to some “breaking rules”. This chapter focuses on the computational 

fragment. We review fragment discovery and evaluation in the context of large 

molecular databases as described in current literature. Definitions, use and 

applications of fragments are addressed as well as fragmentation methods. 

Fragmentation of 3D molecular structures will not be discussed.
4
 In the first part 

(section 2.2), we will discuss the ways in which fragments can be derived. In the 

second part (section 2.3), a few examples of what can be learned from such 

fragmentation methods are presented together with their applications. 
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2.2 Fragmentation Methods 

What is considered a fragment depends on the definition. A ‘ring’ could be a fragment, 

or a particular chain of carbon atoms could be a fragment. The definition follows from 

the breaking rules that are used. To find structural patterns in a database, molecules 

should be broken into manageable parts that are readily analyzed. Graph theory is 

extensively used to this end (see section 2.2.1). There are two approaches to molecule 

fragmentation. The first approach is to find all possible fragments that form some part 

of the molecular structure; the second is to dissect the molecule into fragments 

according to predefined (breaking) rules. The first approach allows a complete analysis 

of the fragments that exist in the set. However, the number of substructures for a 

single structure may then become very large, even for a moderately sized molecule. 

Several methods allow considering all (potential) fragments for analysis without 

generation of the full substructure set. The substructure approach will be the subject 

of sections 2.2.2.1 and 2.2.2.2. The second fragmentation approach generally has a 

lower yield of fragments per molecule. Fragments result from ‘breaking’ the molecular 

structure into non-overlapping, predefined parts. Thus, ‘ring structures’ may be 

defined as well as functional groups. Fragmentation into molecular building blocks 

according to predefined rules follows in sections 2.2.3.1 and 2.2.3.2. 

2.2.1 Graph Representation 

Graph theory plays an important role in fragmentation. The 2D structure of a molecule 

and its fragments are often represented as graphs.
5
 A graph is a mathematical object 

that consists of a set of vertices, or nodes, and a set of edges that connect these 

nodes. The molecular structure conveniently translates into a graph, where vertices 

represent the atoms and edges represent the bonds.
5
 This abstraction enables the use 

of generic methods that are under study in graph theory, such as the discovery of rings 

(cycles). 
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Figure 1. Example structure taken from the PubChem compound database.1 

IUPAC name: 4-[(2S)-2-acetamido-2-[[(2S)-10-carbamoyl-9-

(cyclohexylmethoxy)-2-bicyclo[5.4.0]undeca-7,9,11-trienyl]carbamoyl]ethyl]-2-

formyl-benzoic acid, PubChem CID: 9959891. 

 

To illustrate the representation of molecules as graph, let us consider the sample 

structure in Figure 1 (taken from the PubChem compound database
1
, accession 

number CID9959891). Figure 2 shows the graph representation of the molecule in 

Figure 1. Hydrogen atoms even when connected to heteroatoms are omitted. Note 

that with standard graphs, representation of the molecule is limited to reproducing the 

connection pattern (connectivity) between the atoms. Any other information such as 

atom type or bond order is disregarded. 

 

Figure 2. Graph representation of the example structure in Figure 1. Nodes 

(black dots) represent the atoms and edges (solid lines) represent the bonds. Note 

that standard graph representation disregards any extra information such atom 

type or bond order. 
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2.2.2 Substructure Methods 

2.2.2.1 Frequent Subgraph Mining 

Graph-based data mining aims to find interesting patterns in graph data. It has a 

variety of applications, such as analysis of literature citation networks, weblogs, and 

web searches. Frequent subgraph mining is the process of finding all frequently 

recurring topological patterns in a database. In drug discovery, frequent subgraph 

mining, or fragment mining in the context of molecular databases, can be used to find 

structural patterns that are frequent in one class of compounds and infrequent in the 

other. First, the general procedure of subgraph mining will be described. After that, a 

number of algorithms and tools for molecular fragment mining will be presented. 

To find the frequently occurring fragments in a set of graphs, a typical algorithm would 

enumerate all possible fragments that exist in the set, and find for each fragment the 

graphs in which it occurs. The frequency of a fragment is the number of graphs in 

which it occurs. The process of testing whether a fragment is part of a graph is called 

subgraph isomorphism testing. It searches the graph for a subgraph that is isomorphic 

to the fragment. A typical example is the ethyl fragment (C-C) in n-propane (C-C-C); it 

occurs twice, and the one is ‘isomorphic’ to the other. In terms of computing steps, 

graph/subgraph isomorphism tests are relatively costly. This translates to prolonged 

computing time or memory requirements. It is one of the key issues in graph mining 

since there currently exist no efficient algorithms for isomorphism testing on general 

graphs. In the worst case, the number of computing steps is exponentially proportional 

to graph size, which contributes to the inefficiency of an algorithm. Therefore, most 

algorithms seek ways to avoid graph/subgraph isomorphism tests as much as possible. 

Starting from an empty fragment, all possible fragment extensions (refinements) are 

generated, a process that will be explained below for the simple amino acid alanine. 

This is done by recursively adding edges and nodes to already generated fragments. In 

case of a ring closure, only an edge is added. Generated fragments are compared 

against the graphs in the database to check whether they occur. New refinements can 
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only appear in those graphs that already hold the original fragment. Accordingly, the 

algorithm keeps appearance lists to restrict isomorphism testing to the graphs in the 

lists only. The support for a fragment is the proportion, or percentage, of graphs in the 

database it occurs in. Obviously, found fragments are more relevant if they occur in at 

least a given minimum number/fraction of molecules. This minimum is called the 

minimum support value. Fragments are discarded if they occur in fewer molecules 

than allowed for the minimum support value, which is related to the significance of the 

found fragments. In general, lower minimum support values will yield higher numbers 

of fragments. Choosing a sufficiently high minimum support value will result in a 

comprehensible number of fragments while mining is completed within a reasonable 

timescale. By definition, the support value of a fragment never exceeds the support 

values of the fragments it contains. This restricts refinement generation further, 

starting only from fragments with sufficient support (cf. Apriori-rule
6
). To focus 

isomorphism testing, fragment-mining algorithms may keep a mapping of the nodes 

and edges of a fragment to the corresponding nodes and edges of the graph in which it 

occurs. This is known as an embedding. 

 

To illustrate the process, let us consider a 

graph mining experiment on a molecule 

database with alanine (Figure 3). For a single 

molecule in the database, such as alanine, a 

search tree can be constructed of all possible 

fragments. Figure 4 shows all these fragments 

for alanine with hydrogen atoms omitted as 

discussed before. On top is an empty fragment and each following fragment is a 

substructure of its descendants below. Fragments on the same level (six in total) have 

the same number of bonds (edges). For instance, the first level contains the elements 

N, O, and C, since these are the constituents of the molecule. The C-C fragment on the 

second level forms the common core for the C-C-N, C-C-C, C-C=O, and C-C-O fragment 

OH

O

NH
2

 

Figure 3. Chemical 

structure of alanine. Implicit 

hydrogens are omitted. 
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on the third level. The arrows indicate the paths leading from an empty fragment to 

the complete structure, yielding one extension at a time. 

 

 

 

Figure 4. The complete lattice of substructures for alanine (bottom). Level 

numbers in the lattice increase with fragment size until the final structure of 

alanine is reached. 

 

0 * 

 
 
 

1 N C O 

 
 

 

2 

 

 

 
 

 
 

 

3 

 

 

   

 

 

 

 

 

 

 

4 

 

 

  
 

 

 
 

 

5 

 

 

 
 

 
 

 

6 

 
 

N

C
C

C

C

O C
O

N

C
C

C
CC

C
C

O

C

O

O
C

C
O

N

C
CC

N

C
C

O

N

C
C

O

C
C

O

C C
CC

O
C

C

O

O

N

C
C

O

C

N

C
CC

O

N

C
C

O

O C
C

O

C

O

N

C
C

O

C

O



   Computational Approaches 

33 

There are two ways to travel the subgraph lattice as the entire scheme in Figure 4 is 

called: breadth-first and depth-first. A breadth-first search considers all refinements at 

the same level before advancing to the next. For Figure 4 this means stepping through 

the lattice one row of fragments at a time. Storage requirements are proportional to 

the maximal number of subgraphs at one level. Depth-first searching requires less 

storage, since a graph is completely searched before advancing to the next. Therefore, 

it is proportional to the size of the biggest graph. Modern graph mining algorithms 

such as the ones described below, work in a depth-first manner. 

There are three problems central to frequent subgraph mining; the difference between 

algorithms lies in how they address these problems. First, as was mentioned, subgraph 

isomorphism tests are expensive in terms of computation steps needed to perform the 

search. Second, the generation of refinements should be restricted. Third, since 

generated duplicates require isomorphism tests, their number should be kept to a 

minimum, e.g. by using a unique graph representation for testing. 

The fragment miner MoFa (Molecule Fragment Miner)
7
 was made especially for the 

purpose of molecule mining. All embeddings are stored and used for isomorphism 

testing and for restriction of fragment extensions to refinements that actually exist in 

the database. To reduce the number of generated refinements, MoFa sorts all nodes 

and edges of a fragment in the order in which they were added. Refinements may only 

occur at the same or newer nodes. Nonetheless, many duplicates are generated, with 

time-consuming isomorphism tests as a consequence. Two extensions exist for MoFa; 

the first treats rings as single units and the other treats chains of arbitrary length as a 

single unit. One of the advantages of treating rings as single units becomes clear when 

fragmenting steroid structures. Normally, MoFa considers more than 300,000 

fragments per steroid, whereas the ring extension generates only 93 fragments. 

Another advantage is that the ambiguity of aromatic bond representations in rings, 

either single or double, is circumvented.  
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In gSpan (graph-based Substructure pattern)
8
, a canonical graph representation is 

used, that is constructed from the concatenation of edge representations in the order 

in which they are visited. To generate unique representations, the algorithm dictates a 

strict, depth-first traversal of the subgraph lattice, hence the name ‘depth-first search’ 

code (dfs-code). Since the string of concatenated edge/vector representations 

resembles the sequence of letters in a word, graph representations are compared in 

the same way, that is, lexicographically. The elements of the string are sequentially 

compared until a mismatch is found or if one string ends. Lower edge/vector labels 

precede higher ones; if all labels match, the shorter string precedes the longer. The 

dfs-code of a fragment determines which nodes can be extended, thereby restricting 

the number of refinements for that fragment. Only those refinements are generated 

that have the smallest dfs-code. Appearance lists are used instead of embeddings; 

hence, subgraph isomorphism tests are still necessary for the graphs in these 

appearance lists.  

FFSM (Fast Frequent Subgraph Mining)
9
 uses a canonical code, the Canonical 

Adjacency Matrix (CAM) code, to identify isomorphic graphs and to restrict refinement 

generation. It is based on a matrix representation of the graph. By concatenating all 

entries of the matrix, a string is formed that is used for lexicographic ordering of the 

graphs. FFSM stores embeddings for the nodes only. In this way, embeddings are 

rapidly created for new fragments made from joining or extension. 

Gaston (GrAph/Sequence/Tree extractiON)
10

 exploits the fact that various types of 

substructures are contained in each other, and that for the simple types more efficient 

algorithms exist. First, only paths are considered in a substructure search. After that, 

paths are transformed to trees and trees are searched. Finally, trees are transformed 

to general graphs with cycles. This type of graph requires the most advanced and time 

consuming algorithms. As stated before, finding subgraph isomorphisms is a laborious 

task compared to other search problems, and therefore time consuming. Therefore, 

they are only used, when they are really needed. Gaston stores all embeddings, in 
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order to restrict generation of fragment refinements to those that actually appear in 

the database, and for isomorphism testing. 

 

Table 1. Comparison of four frequent substructure-mining algorithms in terms of 

performance.
a 
  

 Total runtime (min) 
 Time / fragment 

(sec) 
 

Memory (GB) 

Support 5% 20% 
 

5% 20% 
 

5% 
20
% 

Gaston
10

 7.4 2.5  0.1 0.4  1.3 0.9 

gSpan
8
 19 4.5  0.3 0.8  0.3 0.2 

FFSM
9
 19 8.3  0.3 1.5  1.2 0.9 

MoFa
7
 80 11.8  1.1 2.2  0.6 0.6 

a
 Performance was measured by applying each algorithm to the NCI HIV database (42689 

compounds). Runtime and memory usage are provided for two support thresholds: 5% and 20%. 
The runtime per fragment found is also provided to correct for the runtime overhead due to the 
higher number of fragments at lower support values. Data taken from performance charts from 
Wörlein et al.

11
 

 

The tools have recently been compared and evaluated in the context of molecule 

mining.
11

 Wörlein et al. reimplemented all four methods (same code base, 

programming expertise and optimization effort). Benchmarks were carried out on a 

comprehensive set of graph databases, including molecular databases. The molecular 

databases used were the IC93 (1,283 compounds),
12

 the HIV assays 1999 (42,689 

compounds),
13

 and the NCI (237,771 compounds)
14

.  

The IC93 database served to investigate how the algorithms behaved when the 

number of found fragments and the fragments themselves get large. For example, a 

support value of 4% resulted in 37,727 fragments of which the largest had 22 bonds. 

The HIV database served to measure performance, whereas the NCI was used to test 

how the algorithms scale with increasing database size. For this, molecules were 
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randomly divided into sets of various sizes. Sample measurements are provided for 

illustrating the quantitative comparison of the algorithms.  Table 1 lists the 

performance measurements for the algorithms applied to the HIV data. The runtime of 

the algorithms increases with lower support values. Gaston was the fastest and MoFa 

the slowest algorithm. However, Gaston used the highest amount of memory, whereas 

MoFa needed less. gSpan had the lowest memory requirements. Note that these 

figures may differ for other data sets. Size and contents of the database, the minimum 

support value, as well as implementation details and even the underlying hardware 

architecture may influence performance of the algorithm. The data in Table 1 are 

indicative for the overall outcome of the quantitative comparison. For all algorithms, 

lower support values resulted in an exponential rise in runtime. This is probably due to 

the runtime overhead caused by the exponential rise in found fragments at lower 

support values. The benchmark results permitted a ranking of methods. gSpan needed 

the least memory, since it does not use embedding lists. MoFa, which stores only one 

subgraph embedding per node in the search tree, was also memory efficient. FFSM 

required more memory than gSpan and MoFa, probably because it stores the main 

subgraphs together in a node in the search tree. Gaston needed most memory, since 

with this method embedding lists for new fragments are based on those of ‘parent’ 

fragments. Extensions to the parent’s list are stored with the ‘children’. The size of 

embedding lists also depends on the number of children per fragment. 

In terms of runtime, Gaston was always the faster algorithm, except at lower support 

values on the complete NCI. The gSpan algorithm was faster than FFSM for the large 

datasets, although FFSM was faster than gSpan for the IC93 dataset. Embedding lists 

are not used in gSpan, which, in fact, speed up testing, especially for larger fragments. 

MoFa was always the slowest algorithm. The authors suggested that the slowdown of 

Gaston at lower support values on the complete NCI was due to the large amount of 

bookkeeping related to the vast number of embeddings. This results in a slowdown 

due to memory operations. However, the authors found that this effect varies for 

different systems. Some memory architectures penalize the memory-intensive 
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operations of Gaston. Although MoFa was the slowest in all tests, it offers more 

functionality for molecular databases, e.g. there is an extension for treating rings as 

single entities as mentioned above.
15

 Another extension offers finding fragments with 

carbon chains of varying length. This can be useful for the exploration of biochemical 

reactions where this length is less important.
16

  

Interestingly, the four fragment miners mentioned above have been made available as 

a single package named ParMol (Parallel Molecular Mining)
17

. In addition to uniform 

access to MoFa, gSpan, FFSM, and Gaston, the authors included a 2D viewer for 

molecular structures, parallel (multiprocessor) search, and support for several file 

formats such as SMILES and SDF, and a number of options to customize mining. 

Other algorithms for frequent fragment mining that are more database-centric include 

Molfea
18

 and Warmr
19

. Molfea (Molecular Feature Miner)
18

 is in essence an inductive 

database framework. It finds patterns based on first-order logic. Molecules are 

encoded as basic facts, and queries result in a combination of facts. The fragments that 

can be searched for or result from queries, are linear sequences of non-hydrogen 

atoms and bonds. The fact that Molfea only finds chains of atoms limits its usefulness 

since almost all molecules have rings or branching points. Warmr
19

 is a general-

purpose Inductive Logic Programming (ILP)
*
 data-mining tool for finding frequently 

occurring patters in relational data.
20

 It has been successfully applied to chemical data, 

for instance to find frequent substructures in carcinogenic compounds. First, molecules 

are described in a relational language. Atoms are related to molecules, and to other 

atoms through bonds. Algorithms such as Warmr perform multi-relational data mining, 

                                                                 
 

* ILP (Inductive Logic Programming) is a machine learning technique used for knowledge discovery. The 

purpose of ILP is hypothesis generation, given some background knowledge, and a set of positive and 

negative examples. Examples and background knowledge are encoded as a facts and rules in a relational 

database. From this, possible hypotheses are generated through inductive learning. Logic programming is 

used to represent examples, background knowledge, and hypotheses, in a uniform way.  
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which means they are capable of finding patterns that span across multiple relations. 

Warmr searches the available patterns in a breadth-first manner, starting from the 

most general relations, and gradually increasing the level of complexity, to find 

patterns that are more specific. Candidates that are more specific are generated by 

pruning non-frequent patterns from the next level. Several meaningful relationships 

were reported for application of ILP on toxicity data. Although Warmr should be able 

to produce identical results compared to the fragment miners, it inherits some of the 

drawbacks related to ILP. First, a high level of expertise is required to encode the 

molecules, i.e. the graph and their properties, into relations that can be mined. 

Second, the complexity of relations queried, places high demands on computing 

resources 
19

 

2.2.2.2 Common Substructures 

Fragments are also derived by comparing molecular structures. For a pair of molecules, 

a number of substructures/fragments may exist that occur in both structures. A 

“common substructure” is a set of atoms that two molecules have in common. 

Corresponding atoms should have the same atom type and the same topological 

distance to other common atoms, in both molecules. The topological distance is the 

number of bonds that form the shortest path between two atoms. The "maximum 

common substructure" (MCS) is a continuously bonded substructure that has the 

highest number of common atoms.
21

 Note that there may be multiple MCS’s for a pair 

of molecules. Figure 5 shows an example of the MCS of two molecules, of which the 

largest is the molecule from Figure 1. The “highest-scoring common substructure” 

(HSCS)
21

 is similar to the MCS, but also allows discontinuous common substructures. 

Scores are based on the number of common atoms, and are corrected with a penalty 

for discontinuous pieces. In Figure 5, the HSCS and MCS are equal. Common 

substructure methods, such as the MCS and HSCS, are used to detect and visualize 

structural similarities between molecules.
21

 In addition, the HSCS has been applied for 

discovery of common chemical replacements and to find fragments associated with 

multiple biological activities.
22,23

 These applications will be described in section 2.3.3. 
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2.2.3 Building Blocks 

The fragmentation methods described in the previous section all use the “full 

substructure set”. Despite the high level of detail of these approaches, exhaustive 

study of all possible fragments can be costly, however. A more restrictive, still sensible, 

approach may be to focus on chemically meaningful fragments only, instead of 

including every single fragment in a study. 

NH

N
H

O

OH

O

O

O

O

NH
2

O

O

NH O

O

H

 

Figure 5. Maximum Common Substructure of two molecules (MCS, drawn in 

bold). The structure on the left is the example structure from Figure 1. The 

structure on the right is vanillyl-N-nonylamide, IUPAC name: N-[(4-hydroxy-

3-methoxy-phenyl)methyl]nonanamide. PubChem CID: 2998. 

 

2.2.3.1 Molecular Building Blocks 

To accomplish this, compounds are dissected into molecular building blocks. This 

method splits molecules into non-overlapping structural parts according to a 

predefined set of breaking rules. These rules follow from the definition of individual 

building blocks. This approach yields (chemically) more intuitive fragments such as 

rings/ring systems, linkers, side chains, functional groups, etc. Figure 6 illustrates the 
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derivation of building blocks. A typical compound (Figure 6-a) is fragmented into 

molecular parts, according to the method described by Bemis et al.
28

. Three ring 

systems (Figure 6-d) are at the core of this compound, which are connected by two 

linkers (Figure 6-e). Together, ring systems and linkers form the molecular framework 

(Figure 6-c). Attached to this framework are the five side chains (Figure 6-b), yielding 

the complete molecule. There are many variations to this method; most methods 

differ in the precise definition of building blocks. 

 

 

(a) 

N
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O
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O
O
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O
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O
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O

 

 

 

 (d) 
 

(e) 

N BCBC

O

BC

BC

 
     

Figure 6. Molecular building blocks, according to Bemis et al.
28

. (a) The structure 

that will be fragmented (CID9959891, see Figure 1). By removing (b) the side 

chains from this structure, (c) the molecular framework is revealed. The framework 

consists of one or more (d) ring systems connected by (e) linkers. The connection 

point to the framework or rings is indicated by a rectangular label composed of the 

letter B and the atom type that it is connected to. For instance, the BC label means a 

carbon connection point in the framework. 
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2.2.3.2 Virtual Retro-Synthesis 

Another way to split a molecule into smaller parts is by virtual retro-synthesis. This 

method applies a set of breaking rules based on chemical reactions. Bonds that are 

typically formed by one of these reactions, are cleaved, essentially reversing synthesis. 

The resulting fragments are precursors from which the molecule can be synthesized 

using the set of chemical reactions. Although this approach might seem useful from a 

chemical point of view, it is not so appropriate for precise analysis. A different choice 

of synthesis rules may result in a different set of fragments. Besides that, rules may 

conflict or the derived fragments may overlap. Moreover, there are indications that 

actual synthesis may not be reflected very well (e.g. Vinkers et al.).
24

 For a general 

overview of retro-synthesis, the reader is referred to a recent review by Todd.
25

 

Furthermore, a recent application of this synthetic approach was described by Vieth 

and Siegel.
26

 The authors investigated four sets of bioactive molecules, fragmented 

these, and analyzed fragment distribution within a single set, and between the four 

sets. An interesting example is the distribution of the β-lactam framework within 

antibiotics. This framework was prevalent in the older marketed drugs and absent in 

new ones. This may reflect the problem of the developing resistance observed against 

older antibiotics. Another example is the absence of amino acid scaffolds and side 

chains in marketed oral drugs. Likewise, the majority of amino acid scaffolds is 

exclusive to injectable drugs.  

2.3 Learning from Existing Databases 

There is a lot to be learned from existing (drug) compound databases in terms of 

fragments: which fragments exist, how frequent they are, and how the occurrence of 

one fragment is related to the occurrence of another, non-overlapping fragment.
27

 For 

instance, one can find single fragments that occur extremely often (e.g., a phenyl ring), 

or chemical templates some drug classes are based on (e.g., benzodiazepines). 

Fragments which have low abundance might indicate barely explored parts of chemical 
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space,
27

 potentially interesting for designing new compounds. Insight can be obtained 

in preferences regarding chemistry as well as in differences among databases. In the 

next paragraphs, we will further expand on this, discussing analysis and evaluation of 

such databases (sections 2.3.1 and 2.3.2) and applications of the findings thereof 

(sections 2.3.3, 2.3.4 and 2.3.5). 

2.3.1 Analysis of a Single Database 

In an effort to identify the common features present in drug molecules, Bemis et al.
28

 

analyzed the structures of 5,120 drugs extracted from the Comprehensive Medicinal 

Chemistry database (CMC)
29

. Two types of representation were used, in order to 

analyze structures at different levels of detail. At a more general level, properties of 

the molecular graphs were analyzed. Since the same graph may represent multiple 

molecules of similar shape, the common structure classes are revealed. For example, 

benzene, hexane, and pyridine are all represented by the same hexagonal graph. In a 

more detailed analysis, the authors also considered atomic properties such as atom 

type, hybridization, and bond order. The authors defined four non-overlapping 

structural units that form a hierarchical description of the molecule: ring systems, 

linkers, frameworks, and side chains as discussed in section 2.2.3.1.  The authors 

justified their choice of this classification scheme by highlighting its useful features. For 

example, most frequent frameworks are easily identified, which may guide future drug 

design. Moreover, ring systems and linkers can serve as input for combinatorial library 

generation. In addition, the simple building blocks in existing drugs are already useful 

to check the overlap between compound libraries.  

The graph theoretical approach as outlined in section 2.2 and in Figure 2, identified a 

set of 1,179 different frameworks, of which the six-membered ring was the most 

common one found. Of all these frameworks, 783 (66%) were unique, i.e. they 

occurred only once in the database. However, a small set of only 32 frameworks 

accounted for 50% of the drug molecules in the database. Analysis that also 

considered atomic properties logically resulted in a more diverse set of frameworks. 
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There were 2,506 different frameworks, of which 1,908 (76%) were unique. Not 

surprisingly, a small set of 41 frameworks accounted for 1,235 drug molecules (24%) in 

the database. Benzene was the most common framework found (8.5%). When we 

think of molecules as a common framework decorated with side chains, phenyl and 

other small rings may be considered side chains just as well, as in peptides. In this 

study, however, they were not; the few rings present in a small molecule are needed 

to derive a reasonable framework. In a continuation to this work, Bemis et al. focused 

on the various side chains found in drugs.
30

 Additional information was included in the 

side chain description, i.e. the connection point and type of framework atom that the 

side chain was bonded to. Side chains consisting of a single (heavy) atom other than 

hydrogen, e.g. chlorine, were also considered. The set of molecules extracted from the 

CMC database was slightly smaller now, 5,090 molecules in size. From this set, 4,689 

had side chains. The total number of side chains was 18,664, on average four side 

chains per scaffold. The average length of a side chain was two atoms. Side chains of 

one heavy atom in length were found most (66%). Since oxygen atoms double-bonded 

to a ring system have a profound effect on the ring’s electronic properties, it may be 

reasonable to consider these as part of the ring. In this case, the number of side chains 

was reduced to 57%. 

Lameijer et al. explored the possibility of gaining new insights solely from the 

structures that exist in the database.
27

 For this, the NCI database
14

 was mined. The 

authors reasoned that the substructures and the combinations they occur in, provide 

insight into synthetic feasibility and “chemical habits”. These habits emerge from an 

analysis of compound types that are made frequently or substructures that are often 

found together. The most frequently occurring fragments and fragment combinations 

were denoted as “chemical clichés”. Graph splitting was used to break the molecules 

into parts suitable for mining. For this, the method described by Bemis et al.
28

 was 

adopted, with the extension that frameworks were further split into ring systems and 

linkers. Another difference was that only side chains connected to a ring counted as 
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side chain. Side chains attached to a linker were part of the linker. Figure 7 shows an 

example of a molecule split into molecular parts according to Lameijer et al.
27
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Figure 7. Example structure (see also Figure 1) split into ring systems, linkers, and 

side chains according to the algorithm of Lameijer et al.
27

 In contrast to Figure 6, 

side chains in this figure stem from rings only. Side chains connected to a linker are 

considered part of the linker. Again, boxed ‘B & atom type’ labels are used to 

indicate a connection point to a ring. 

 

By fragmenting 250,251 compounds from the NCI database, they found 65,612 

fragments of the three different types of ring systems, side chains, and linkers. This 

already yielded useful information, for instance which ring systems occur, and which 

do not, i.e. finding an N6-ring to be nonexistent may complement some chemical 

commonsense. In total, 13,509 ring systems were found, 18,015 side chains, 9,675 

linkers with two ring systems, 2,531 linkers with three ring systems, and 2,280 linkers 

with four or more ring systems (up till 18 ring systems). In general, larger ring systems 

or branches occurred less frequently. Almost 70% of the three types of fragments 

occurred only once in the database. Branches with a higher number of attachment 

points seemed to have lower abundance. An exception to this rule was formed by 

linkers with six, or multiples of six, attachment points. These linkers occurred much 
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more frequent than their neighbors did. Inspection revealed these linkers were 

symmetrical. 

The co-occurrence of fragments was also analyzed, to see whether the occurrence of 

one fragment in a molecule is related to the occurrence of another. This type of 

analysis can be compared to studying the contents of a shopping basket in a 

supermarket, a so-called Market Basket Analysis. Wine and olives may be frequently 

brought together as are beer and potato chips, where beer and olives might be rarely 

observed together. Market Basket Analysis is a data-mining tool for finding regularities 

in shopping behavior of customers of supermarkets, online shops, etc. A stochastic 

experiment was conducted first since for frequently occurring fragments the chance is 

higher that a relationship is found, even if there is none. A new “NCI” database was 

simulated using fragments that occurred in 20 or more molecules. Each fragment was 

used as many times as it occurred in molecules of the real NCI. Fragments were 

randomly divided over virtual molecules in the new database and each combination 

was counted. This process was repeated a thousand times, after which the expected 

occurrence of each fragment pair was calculated, together with the standard deviation 

of the occurrence. The expected occurrences were compared to actual co-occurrences 

in the NCI. A significant difference between the simulated/expected and the real co-

occurrence implies that the fragments are correlated. Z-values were calculated and 

compared to detect that correlation. 
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Table 2. Some fragment pairs that occurred much more and much less often 

together than expected. The first row, consisting of the tetrahydrofuran and the –

CH2OH group would be expected to occur 122 times together, but the pair 

appears in 2292 molecules leading to a multiple of 19 (see also text; data taken 

from Lameijer et al.
27

). 

z-value Fragment 1 Fragment 2 

Occurrence  

Expected  Real  Multiple 

206 

O

 

OH(C)
 

122 2292 19 

117 

 

(C)

 

2.3 206 88 

      

-19 
C

CH
3

(C)
 

C

CF
3

(C)
 

544 139 0.26 

-67 

 

O

 

2653 270 0.10 

 

 

Table 2 presents some examples of fragment pairs that occur in the same molecule 

much more or much less frequently than expected. In the first row of Table 2 

tetrahydrofuran and a CH2OH group are together; they were expected to occur 122 

times together, but do so much more frequently in 2292 molecules. This is 19 

(2292/122) times more than expected, and very significantly different (z value of 206) 

from the simulated database. The explanation is that the combination is found in 

(substituted) nucleosides that have been tested for anti-tumor activity. The second 

row presents another example of frequently co-occurring fragments that present a 

single structure class, viz. dihydrocholesterol analogues. 
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Interestingly, the situation is opposite for the combination of a tetrahydrofuran and a 

phenyl group expected to occur in 2653 molecules. However, in the NCI there are only 

270 of such instances, a factor of approx. 0.10 (270/2653). Apparently, this 

combination is underrepresented. A possible explanation for this effect might be that 

the ‘avoiding’ fragments belong to different compound classes with little overlap. 

Typical members from one class will be abundant in that class and scarce in others, 

adding to an overall reduction in co-occurrence frequency. Similarly, typical members 

from the same class are prone to be found together. Tetrahydrofuran-containing 

compounds generally differ in origin from phenyl-containing compounds. The 

tetrahydrofuran ring is often stemming from the ribose moiety of nucleosides, either 

natural or chemically modified, whereas the phenyl ring is often found in industrial 

chemicals.  

The authors suggest that the derived fragment and co-occurrence lists are useful in 

creating new chemistry. For instance, these listings provide insight into the most 

popular and therefore most commonly used side chains and ring systems for synthesis. 

Rarer fragments also come forward through these lists, indicating less explored parts 

of chemical space. Finally, by looking at the fragments that do not occur together, new 

chemical space can be explored. The co-occurrences may be used to find a 

replacement for a structural feature. Examples of fragment pairs that are 

replacements of one another are chlorine and bromine, or naphthalene and 

benzene.
27

 These fragment pairs rarely occur together,
27

 possibly because of their 

comparable physicochemical properties. 

2.3.2 Analysis of Multiple Databases 

To facilitate the design of libraries for high throughput screening, Xue et al. extracted 

scaffolds and side chains and analyzed the distributions.
31

 A “scaffold” was defined as a 

molecular fragment without side chains, essentially identical to the definition of 

frameworks (Figure 6). A “side chain” was defined as any acyclic chain or functional 

group with a single connection point to the rest of the molecule. As a source, the 
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authors used Optiverse (OV)
32

, a combinatorial screening library designed for diversity, 

and the Maybridge collection (MB)
33

, a library of compounds used in medicinal 

chemistry. Acyclic structures were removed prior to screening (1,214 from OV and 

1,060 from MB). The remaining sets were 116,762 (OV) and 58,239 (MB) compounds in 

size. To isolate scaffolds and side chains, ring structures were detected first. Starting 

from these rings, all connected fragments were inspected. Acyclic fragments were 

removed from the structure and stored as side chains. The remaining structure was 

stored as a scaffold. Using this algorithm, the authors extracted 52,529 unique 

scaffolds and 4,486 side chains from OV, and 15,690 scaffolds and 2,851 side chains 

from MB. Only a minor overlap was observed: 2,945 scaffolds and 407 side chains 

occurred in both sets.  

The ratios between the number of unique scaffolds and database size, suggest that on 

average one scaffold is found in 2.2 (OV) and 3.7 (MB) molecules, respectively. 

However, the authors observed an unequal distribution of scaffolds: 8% (OV) and 7% 

(MB) of scaffolds occurred in 50% of the molecules. Moreover, more than 90% of the 

scaffolds occurred only once or twice. Aromatic structures and heterocycles were 

found most. The distribution of side chains was similarly imbalanced. The ten most 

frequent side chains accounted for almost 75% occurrences, whereas the majority 

occurred only once. Among the top-ten were classic substitutions as halogens, the 

nitro group, the hydroxy group, and organic functional groups such as the methoxy 

group. The methyl group accounted for 25% (OV) and 20% (MB) of occurrences, 

respectively.  

Xu
34

 derived molecular scaffolds to evaluate chemical compound libraries in terms of 

diversity, distribution in chemical space, and differences/similarities with respect to 

existing drugs. The author used a Scaffold-based Classification Approach (SCA) that 

groups compounds into the same class if they share the same topological scaffold or 

so-called class center. The rationale behind this approach was that medicinal chemists 

intuitively group compounds based on scaffolds and functional groups, and not so 

much on structural descriptors that most classification algorithms use. Scaffolds were 
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derived similar to Xue et al.
31

 and Bemis et al.
28

 However, unsaturated bonds 

connected to a ring were considered part of the scaffold, since they change the 

chemical behavior of the ring system. Normally, scaffold analysis overlooks aliphatic 

compounds, since scaffolds are defined to consist of at least one ring. To overcome 

this, an extended definition of scaffold was adopted that also covered the aliphatic 

compounds. Double and triple bonds of acyclic compounds were treated as ring bonds, 

so part of the scaffold. For saturated acyclic compounds, the scaffold consisted of the 

heteroatoms and carbon atoms that connect them. In all other cases, the carbon 

backbone formed the scaffold. Although the purpose of this extended definition is to 

extract scaffolds from all possible compound classes, some compounds from the same 

class may appear unrelated. For instance, amino acids that possess a cyclic side chain 

are separated from those with an aliphatic chain. The structural scaffold derived will 

be the ring system in the first case and the characteristic amino/carboxyl group core in 

the second case. 

First, a list of unique scaffolds was derived and sorted by complexity. The complexity 

was calculated from four structural descriptors, namely number of rings in the smallest 

set of smallest rings, number of heavy atoms, number of bonds, and the sum of heavy 

atomic numbers in the scaffold. Each scaffold, or class center, in the list was assigned 

an ID that corresponded to its position in the list. How much a molecule resembled its 

class center was determined by the amount of side chains attached to the scaffold. 

Fewer side chains will give a closer resemblance to the class center. The similarity of a 

drug with the class center was reflected in the membership value. The membership 

value was based on the sum of heavy atomic numbers, the number of rotating bonds, 

the number of one and two nodes, and the number of double and triple bonds in a 

molecule compared to its scaffold. Since the membership value indicated the 

contribution of rings in the class center for a certain molecule, this term was called 

cyclicity. The four databases ACD
35

, NCI
14

, CMC
29

, and MDDR
36

, were analyzed 

according to this scaffold-based classification approach. Only the orally available drugs 

of CMC and MDDR were used. A diversity map was constructed that mapped 
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complexity values against cyclicity values for each compound. Libraries that are more 

diverse have a wider spread on this map. An interesting outcome was the ranking of 

the four libraries according to chemical diversity. The ACD was most diverse, followed 

by the NCI, then the CMC, and finally the MDDR. Two factors contribute to the low 

diversity of the MDDR: the majority of compounds are analogs, and all compounds 

comply with the ‘drug-likeness’ property values. Molecules contributing to the high 

diversity of the ACD included RNAs/DNAs and fullerene C60. Another interesting 

finding was that the orally active drugs from the CMC and MDDR were distributed in a 

narrower region than the other libraries. 

2.3.3 Biological Activity 

Sheridan
22

 used common substructures to find fragment replacements in (drug-like) 

molecules. For this, 98,445 drug-like molecules from the MDL Drug Data Report 

(MDDR)
36

 database were clustered according to similar biological activity, resulting in 

556 clusters. Compounds from the same cluster were compared to find the “highest-

scoring common substructure” (HSCS).
21

 Only compounds with an HSCS significantly 

larger than two randomly selected molecules of the same size were used to extract the 

fragments pairs that differed. Two different methods were used to extract 

replacement fragment pairs. The first method used atom-wise comparison of 

fragments, i.e. based on element and hybridization of atoms. The second method also 

considered possible rings the atoms were in and adjacent functional groups, such as -

NO2, -CO, -SO2, or -PO3. Many of the classical replacements in medicinal chemistry 

were found.
22

 With atom type, substitution of C with N in an aromatic ring (e.g. phenyl 

vs. pyridine) was the most common. The next most common was replacement of  -O-  

with -S- in both rings and chains, followed by -N- with -O- in rings, chains, and esters 

vs. amides. Another interesting commonly found replacement was the change 

between a five- a six-membered ring. Also considering the context of atoms in the 

comparison, e.g. a ring or functional group yielded a qualitatively similar fragment list. 

For a more complete list of replacements, the reader is referred to Sheridan
22

. 
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In a subsequent study, Sheridan et al. utilized the HSCS to identify fragments
23

 that are 

associated with multiple biological activities. The authors considered activity in the 

widest sense, ranging from in vivo biological effects (e.g. anti-hypertensive) to in vitro 

measures (e.g. affinity for a receptor). Since high specificity is very much desired for 

new drugs, knowledge about multi-activity fragments may be useful to avoid chemical 

classes likely to have unwanted side effects. On the other hand, scaffolds that are 

active on a variety of receptors may form an attractive starting point in combinatorial 

library design. Pairs of molecules with similar structure and dissimilar activity were 

identified first. For each pair, the highest scoring common substructure (HSCS) was 

derived.
21

 Again, only those HSCS’s were kept that were significantly larger than would 

be expected for two randomly selected molecules. A “consensus substructure” was 

generated from each molecule and its HSCS. It consists of atoms that are considered to 

be “conserved”, i.e. atoms that appeared relatively often in the set of HSCS’s for that 

molecule. The most interesting consensus substructures are those that are found in 

many molecules and have many unique activities. Therefore, the generated consensus 

substructures were ranked according to both frequency of occurrence and number of 

unique activities. In case of structurally similar consensus substructures, only the 

highest in rank was kept. The steroid skeleton was found as a fine example of a multi-

activity structure due to the many physiological processes steroid hormones are 

involved in. Similarly highly ranked were tricyclic structures as in imipramine and 

doxepine. They bind to many G protein-coupled receptors and transport proteins.  
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Table 3. Pairwise comparison of bicyclic rings (taken from Kho et al.
37

). The 

number is the logarithm of the odds ratio, and indicates the preference in terms 

of mutagenic potential of one ring system relative to the other. For instance, a 

value of -1.0182 (second row, second column from the right) means that the left 

ring system has higher odds of being found in Ames positive compounds, so the 

top ring system is preferred. The arrow points to the fragment that is more likely 

to be found in the Ames-negative class. Many more ring systems were 

considered, indicated by the (empty) third column. 
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2.3.4 Predictive Models 

In an attempt to organize available data in mutagenicity databases, Kho et al. 

described an automated approach to extract and organize ring systems occurring in a 

mutagenicity dataset.
37

 The authors suggested this method can be applied to any other 

set of molecules classified by some property, e.g. biological activity. A common assay 

for mutagenicity prediction is the Ames test, in which Ames-positive compounds are 

suspected to have mutagenic characteristics, whereas Ames-negatives are not. The 

database
38

 was searched for the occurrence of ring types and their frequency in the 

Ames-positive and -negative categories. Emphasis was not so much on the 

development of predictive algorithms, but more on organizing the available data for 

use by chemists. Simple scaffolds were identified using a program that finds scaffolds 

by comparing all molecules in a set.
39

 The results were presented as a hierarchy 

according to complexity. In this approach, simple rings are placed at the highest level 

and more complex ring systems that contain the parent rings, as descendants. An 

example hierarchy is presented in Figure 8. Note that the tetrahydronaphtalene 

branch (first child), having equal odds of being found in either set, leads to an Ames-

positive and an Ames-negative scaffold. A selection of the bicyclic rings found is 

presented in Table 3. Such a two-way entry table may be useful for selection of 

(bio)isosteric replacements with higher odds in the Ames-negative set. Similar tables 

can be constructed for other properties. A general finding from these data was that an 

increase in aromaticity or extension of conjugation enhances the odds for mutagenic 

compounds. An increase in the aliphatic character of rings decreases the mutagenic 

potential. To evaluate the usefulness of the mutagenicity dataset (with a total of 6,039 

compounds), the authors compiled a reference dataset consisting of 3,882 

commercially available drugs. Analysis revealed that the chemical diversity within the 

mutagenicity dataset was significantly less than the diversity of the marketed drugs. 

For the smaller drug set, 750 ring systems were found in contrast to the 427 ring 

systems found in the Ames-test dataset. The two sets had 199 ring systems in 

common. 
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Figure 8. Scaffold (cyclohexene) hierarchy derived from mutagenicity data
38

. 

The proportion of Ames negative to Ames positive counts is qualitatively 

indicated below each scaffold. The confidence interval of the proportions is 

shown on the right of the scaffolds. Data taken from Kho et al.
37

.  
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Instead of studying a limited set of structural features such as ring systems,
37

 others 

have taken a more exhaustive approach. In such a scenario, all possible fragments are 

examined to find those discriminative for a certain property, e.g. toxicity. Kazius et al. 

used frequent fragment mining in order to derive toxicophores.
40

 Similar to Kho et 

al.
37

, structural elements were arranged according to mutagenic potential, thereby 

forming a decision list. Most substructure mining methods use only part of the 

chemical information in a molecule, viz. connectivity of the molecular graph (Figure 2), 

atom type labels, and bond order (sometimes including aromaticity). To increase the 

level of chemical detail that is considered, Kazius et al. used an extended chemical 

representation.
40

 Figure 9 shows a typical compound in standard chemical notation 

and two types of elaborate chemical representation. Elaborate chemical 

representation uses atomic hierarchies in addition to atom type labels, thereby 

including both general and more specific information. Atomic hierarchies are tree-like 

structures that consist of a root of a general atom label representing an atomic 

property, and branches of more atom-specific labels (specifiers). Aliphatic nitrogen and 

oxygen atoms were labeled as “small hetero atom” with specifiers for the atom type 

and number of connected hydrogens, as shown in Figure 9. Aliphatic sulfur and 

phosphorus atoms were labeled “large hetero atom” with an additional specifier for 

the atom type. Chlorine, bromine, and iodine atoms were labeled “halogen” with atom 

type specifiers (Figure 9). For rings, two types of elaborate chemical representation 

were used. The “aromatic” setting used a special atom label and bond type to 

represent aromatic atoms and bonds, and attached a type specifier to aromatic 

heteroatom. Examples of aromatic atoms and bonds are shown in chemical 

representation I in Figure 9. The “planar” setting used a special atom label and bond 

type for atoms and bonds in aliphatic five- and six-membered rings or aromatic rings, 

including atom type specifiers. Planar atoms and bonds are shown in chemical 

representation II in Figure 9. All other atoms were labeled with the atom type. An 

additional atom specifier for the atom type was connected to heteroatoms and 

halogens, and a specifier for implicit hydrogens was connected to heteroatom. 

Standard and elaborate chemical representations were used to extract substructures 
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from mutagenicity data, both with and without considering non-linear fragments. The 

dataset consisted of 4,069 compounds from the Chemical Carcinogenesis Research 

Information System database
41

. Compounds were categorized as non-mutagens if all 

mutagenicity tests had a negative outcome. This resulted in 2,294 compounds 

classified as mutagens. 
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Figure 9. A typical compound (PubChem
1
 CID78776) in standard chemical 

notation (0), and two types of elaborate chemical representation, viz. the 

“aromatic” setting (I) and the “planar” setting (II). Bonds are either single, 

double, aromatic (grey double bonds in I) or planar (grey single bonds in II). 

Additional information is attached using the dashed bonds. Atom labels are 

carbon (C), nitrogen (N), oxygen (O), small heteroatom ([N,O]), halogen (X), 

chorine (Cl), aromatic atom (A), planar atom (Pl), and number of implicit 

hydrogens (H1). 
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Fragments from all methods were used together to find nonredundant substructures 

that are discriminative for mutagenicity. Only those substructures that occurred in 

more than 70 mutagens were considered. A decision list was constructed (Figure 10) 

by using the fragment with lowest p-value to split the set into two subsets (one that 

contained the fragment and one that did not). The p-value of a fragment was defined 

as the probability to find a statistical association with mutagenicity based on chance 

alone. It was calculated from the amount of mutagens versus non-mutagens that are 

detected using that fragment. For the subset that did not contain the fragment, p-

values were recomputed and the next most mutagenic fragment was used to split this 

set. In case of multiple fragments with the lowest p-value, the largest fragment was 

used. The process was repeated as long as the new set had more than 60% mutagenic 

compounds. If the best-selected fragment had a p-value of more than 10
-20

, no further 

splits were made. From all methods, the use of elaborate chemical representation 

combined with detection of nonlinear fragments proved best: mutagens were 

detected with a sensitivity of 84%. The resulting decision list (Figure 10) consisted of 

six non-redundant discriminating substructures, starting with a polycyclic planar 

system that described at least three rings, and consisted of 11 planar atoms connected 

by planar bonds. The next most discriminating fragment was a nitrogen atom double-

bonded to a nitrogen or oxygen, followed by a 3-membered heterocycle (aliphatic 

epoxides and aziridines), and then an aliphatic halogen (chlorine, bromine, and iodine). 

The second-last fragment was an aromatic primary amine and the list ended with a 

heteroatom-bonded to a heteroatom fragment. Some of these substructures proved 

to be very similar to the general toxicophores derived previously by the authors in a 

laborious approach.
42

 These results emphasize the benefit of elaborate chemical 

representation. For instance, the most discriminative fragment for mutagenicity would 

not have been detected by other methods, since the planar atom notation proved 

essential. Moreover, the importance of wildcards is underlined by their presence in all 

six substructures. Since the list contained two branched and one cyclic substructure, all 

possible graphs must be considered in substructure mining. 
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Figure 10. Decision list derived from mutagenicity data.
40

 Arrows indicate the 

direction to follow if a substructure is (Y) or is not (N) present in a compound. 

The number of mutagens, the total number of compounds, and the percentage of 

mutagens is indicated for each subset (right). 
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2.3.5 Ligand Design 

The ring-linker frameworks approach described by Bemis et al.
28

 was used to design 

new scaffold classes based on experimental structural information, and to guide the 

optimization of modestly active ligands.
43

 A set of 119 kinase inhibitors for at least 18 

different targets, was fragmented into ring systems and linkers, and frequencies of 

occurrence were analyzed. Since bi- and tricyclic ring systems were relatively rare in 

the fragmented set, only monocyclic rings were considered. The authors found that 

the four rings benzene, pyridine, pyrimidine, and pyrrole, comprise almost 90% of 

monocyclic ring occurrences in the fragmented data set. In addition, eight of the most 

abundant linkers were responsible for 90% of all linker occurrences in the set. From 

the four rings and eight linkers, a virtual library of kinase inhibitor scaffolds was 

constructed. Fragments known to form a critical interaction with the binding site of a 

kinase, served as a starting anchor. New scaffolds were generated by linking one of the 

rings to the anchor fragment, using one of the linkers. This was repeated for all ring-

linker combinations, and for each attachment point on the rings and anchor fragment. 

The newly designed scaffolds were docked against their targets, using the placement 

of the anchor fragment as constraint. A fit-based score was calculated, and the highest 

scoring scaffolds were clustered according to the connection point at the anchor 

fragment. Using this method, the authors were able to reproduce the predominant 

structural motifs for known kinase inhibitors. In addition, they were able to suggest a 

number of alternative variations for these ligand cores. 

Lameijer developed a software tool to design drug-like molecules, the “Molecule 

Evoluator”.
44

 In this tool both atom- and fragment-based evolutionary approaches 

were implemented. Fragments were taken from the analysis of the NCI database (ref. 

27 and reviewed in section 2.3.1). Through interactive evolution, a new principle in 

which the user acts as a fitness function, the authors suggested a number of simple yet 

novel molecules, eight of which were subsequently synthesized. Four compounds 

showed affinity for biogenic amine targets (receptor, ion channel, and transport 

protein).
45
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2.4 Conclusion 

In this review, we have compiled a number of computational strategies to dissect 

molecules into sets of constituting atoms, leading to fragments of different nature. 

Such fragments may also consist of elaborate atom representations, including wild 

cards. The reason for doing these, often computationally intensive, operations is found 

in the wealth of information that can be gleaned from such analyses. Virtual and real-

world compound libraries can be mined for their diversity and/or similarity. In 

addition, the ‘synthetic habits’ of medicinal chemists can be explored. Furthermore, 

occurrence and co-occurrence of fragments may suggest new directions into chemical 

space. Fragments that appear linked to side effects, via either multiple activities or 

straight toxicity, have been identified. This may help the medicinal chemist in 

designing safer or more selective lead compounds. Conversely, desired activities can 

be linked to fragments, and such information may be a decisive factor in a successful 

medicinal chemistry program. With both the large number of HTS campaigns being 

performed and the resulting data increasingly being made available in the public 

domain, it is anticipated that steadily more dedicated datasets will become available 

for fragment mining. Rule- and knowledge-based design efforts will certainly benefit 

from this. 
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