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Abstract  

Here, we examine the effects of the cannabinoids ∆
9
-THC,  (R)-(+)-[2,3-

Dihydro-5-methyl- 3-(4-morpholinylmethyl)pyrrolo [1,2,3-de]-1,4-benzoxazin-

6-yl]- 1-napthalenylmethanone (WIN 55,212-2) and 2-[(1R,2R,5R)-5-hydroxy-

2-(3-hydroxypropyl) cyclohexyl]-5-(2-methyloctan-2-yl)phenol (CP 55,940), 

and the cannabinoid antagonist (AM251). Exposures were either acute (1-12 h 

exposure at 108 hour post fertilization [hpf]); or chronic (96 h exposure starting 

at 24 hpf). Geometric range-finding was used to determine the experimental 

concentrations.  LC50 was determined based on mortality at 5 days post 

fertilisation (dpf). At day 5, behavioural analysis (visual motor response test ) 

was carried out in which movement of individual larvae was analysed using 

automated video-tracking. With acute exposure, embryos showed a biphasic 

response to the dark challenge with all three cannabinoids tested. This response 

consisted of stimulation of locomotor activity at low concentrations, 

suppression at high doses. With chronic exposure, embryos habituated to the 

effects of all three cannabinoids when assayed with the dark challenge phase. 

Furthermore, the excitation was ameliorated when the antagonist AM251 was 

co-administered with the cannabinoid. When AM251 was administered on its 

own (chronically or acutely), the locomotor activity was suppressed at high 

concentrations. We examined the embryos for a range of malformations after 

chronic exposure to cannabinoid. Only ∆
9
-THC was associated with a 

significant increase in malformations at 5d (yolk sac and pericardial oedema, 

bent tail). We conclude that cannabinoids have behavioural effects in zebrafish 

that are comparable to some of those reported in the literature for mammals. In 

particular, the acute exposure response resembles behavioural effects reported 

for adult rodents. Our data are consistent with these behavioural effects being 

mediated, at least in part, by the CB1 receptor.  



Developmental effects of cannabinoids on zebrafish larvae 

91 

 

Introduction  

Zebrafish embryos have great promise for use in high-throughput screening of 

new drug candidates (Bull and Levin 2000, Lieschke and Currie 2007, Ali et al. 

2011,  Ali et al. 2011a, Ali et al. 2011b, Ali  et al. 2011c). The zebrafish model 

is not an alternative to rodent models in drug screening, but is complementary to 

them (Ali et al. 2011). It could be helpful in studies demanding rapid, high-

throughput and low-cost assays, such as in the early (pre-regulatory) stages of 

drug testing (Teraoka et al. 2003, Redfern et al. 2008) and also for behavioral 

testing (Best et al. 2008, Champagne et al. 2010, Rihel et al. 2010, Ali et al. 

2011a). Many basic cellular and molecular pathways regulated by different 

compounds, and by stress stimuli, are similar between the zebrafish and 

mammals (Voelker et al. 2007, Schaaf et al. 2008).  

Purification and structural elucidation of ∆
9
-THC (Gaoni  and Mechoulam  

1964) has led to the discovery of many pharmacological properties of 

cannabinoids.  ∆
9
-THC and its derivatives are being studied for their 

psychotropic properties and other pharmacological activities, including their 

possible actions as anticonvulsants, antidepressants, hypotensives, 

bronchodilators, analgesics and the ability to lower intraocular pressure 

(Holdcroft et al. 2006). Cannabinoids have also been examined for suitability in 

the symptomatic treatment of multiple sclerosis (Zajicek  et al. 2005, Baker et 

al. 2007). Unfortunately, cannabinoids may have serious, undesirable effects 

such as dependency, a possible causative association with psychotic illness, and 

cognitive impairment including deleterious effects on memory (Niyuhire et al. 

2007, Hoffman et al. 2007, Morgan et al. 2009, Cooper and Haney 2009, 

Justinova et al. 2009).  

Rodent models have been used to explore the teratological, toxicological and 

behavioural effects of cannabinoids and their receptor agonists (Sulcova et al. 
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1998, Norwood et al. 2003, Drews et al. 2005, Wiley et al. 2007). Cannabinoid 

receptor type 1 (CB1) (Lolait et al. 1990), and Cannabinoid receptor type 2 

(CB2) (Munro et al. 1993) are G-protein-coupled receptors (Pertwee 2008). 

Extensive work has been done to understand their role (Rodriguez-Martin et al. 

2007, Braida et al. 2007, Migliarini and Carnevali 2009). Several previous 

studies showed that the behavioral effect of ∆
9
-THC is mediated by the central 

CB1 receptor in rats (Tseng and Craft 2004). CB1 (Lam  et al. 2006) and CB2 

(Rodriguez-Martin et al. 2007) receptors have also been reported in zebrafish. 

CB1 receptor antagonist (rimonabant) has been reported to attenuate the 

salvinorin A inducing stimulation (swimming activity) of adult zebrafish 

(Braida et al. 2007). The zebrafish, CB1 receptor appeared in the preoptic area 

at 24 hour post fertilization (hpf) (Lam et al. 2006).  

The cannabinoids used in this study (∆
9
-THC, WIN 55,212-2 and CP 55,940) 

are CB1 and CB2 agonists (Schatz et al. 1997, Pertwee 2008). A pronounced 

chronic and acute behavioral effect of cannabinoids has been observed in 

pubertal rats, which postulate that an immature brain could be more vulnerable 

to the externally exposed cannabinoid than an adult organism (Schneider et al. 

2008). The aim of this study is to determine the teratology, toxicology and 

behavioural effects of ∆
9
-THC, CP 55,940 and WIN 55,212-2 in zebrafish 

embryos. 

Material and methods  

Ethics statement 

All animal experimental procedures were conducted in accordance with local 

and international regulations. The local regulation is the Wet op de dierproeven 

(Article 9) of Dutch Law (National) and the same law administered by the 

Bureau of Animal Experiment Licensing, Leiden University (Local). This local 

regulation serves as the implementation of Guidelines on the protection of 
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experimental animals by the Council of Europe, Directive 86/609/EEC, which 

allows zebrafish embryos to be used up to the moment of free-living 

(approximately 5-7 days after fertilization). Because embryos used here were no 

more than 5 days old, no license is required by Council of Europe (1986), 

Directive 86/609/EEC or the Leiden University ethics committee. 

Animals 

Male and female adult zebrafish (Danio rerio) of AB wild type were purchased 

from Selecta Aquarium Speciaalzaak (Leiden, the Netherlands) who obtain 

stock from Europet Bernina International BV (Gemert-Bakel, the Netherlands). 

The AB strain is a wild type strain (see www.zfin.org) and shows high genetic 

diversity, increasing the likelihood that we will detect idiosyncratic responses to 

the toxins.  Fish were kept at a maximum density of 100 individuals in glass 

recirculation aquaria (L 80 cm; H 50 cm; W 46 cm) on a 14 h light: 10 h dark 

cycle (lights on at 08.00). Water and air were temperature controlled (25±0.5 
°
C 

and 23 
°
C, respectively). The fish were fed twice daily with ‘Sprirulina’ brand 

flake food (O.S.L. Marine Lab., Inc., Burlingame, USA) and twice a week with 

frozen food (artemias; Dutch Select Food, Aquadistri BV, the Netherlands). 

Defined embryo buffer 

To produce a defined and standardized control and vehicle for these 

experiments, we used 10% Hank’s balanced salt solution (made from cell-

culture tested, powdered Hank’s salts, without sodium bicarbonate, Cat. No 

H6136-10X1L, Sigma-Aldrich, St Louis, MO) at a concentration 0.98 g/L in 

Milli-Q water (resistivity = 18.2 MΩ·cm), with the addition of sodium 

bicarbonate at 0.035 g/L (Cell culture tested, Sigma Cat S5761), and adjusted to 

pH 7.46. A similar medium has been used previously in other studies (Ali et al. 

2011, Ali et al. 2011a, Ali et al. 2011b, Wielhouwer  et al. 2011). 
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Embryo preparation 

Embryo preparation was done according to Ali et al. 2011. Briefly, all 

incubations of embryos were carried out in an incubator with orbital shaking (50 

rpm) under a light cycle of 14 h light: 10 h dark (lights on at 8.00 in the 

morning). The embryos were gently transferred at 24 hours post fertilization 

(hpf) using a sterile plastic Pasteur pipette into 96-well microtitre plates (Costar 

3599, Corning Inc., NY). A single embryo was plated per well, so that embryos 

subsequently dying would not affect others; and also to allow individual 

embryos to be tracked for the whole duration of the experiment, including for 

behavioral recording.  

Cannabinoid treatment 

A significant proportion of zebrafish eggs cultured under laboratory conditions 

are either unfertilised or die within a few hours (Ali et al. 2011).  For this 

reason, we began administration of cannabinoids at 24 hpf. Purification of Δ
9
-

tetrahydrocannabinol was done by using centrifugal partition chromatography 

(Hazekamp et al. 2004). The final concentration of dimethlysulphoxide 

(DMSO) in the water was 0.01%. All pipetting was done manually, with an 8-

channel pipetter. 

Preliminary range-finding 

To determine a suitable range of concentrations for testing, we performed 

range-finding. The concentrations were in a geometric series  in which each was 

50% greater than the next lowest value (United States Environmental Protection 

Agency ,1996, Ali et al. 2011).  We used 0.0, 12.5 25.0 50.0 and 100 mg/L of 

cannabinoids. A static replacement regime was used. Thus, there was no 

refreshment of buffer after the addition of compound. Each well contained 250 

µL of either test compound or control (buffer only) or vehicle (0.01% DMSO in 
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buffer). We used 32 embryos for each concentration and 32 embryos each 

cannabinoid as control, and 32 embryos for each cannabinoid to control for the 

vehicle. The embryos for controls and treatment groups for each compound 

were plated in the same 96-well microtitre plates. 

Mortality scoring 

Mortality rate was recorded at 48, 72, 96 and 120 hpf in both range-finding and 

test concentration experiments, by examination under a dissecting 

stereomicroscope. Embryos were scored according to (Ali et al. 2011). 

Refined geometric series and LC50 determination 

After the range-finding experiments, a series of concentrations lying in the 

range between 0% and 100% mortality were selected for LC50 determination. 

The range for ∆
9
-THC and WIN 55,212-2 was 0.3-9.6 mg/L and for CP 55,940 

was 2.25-18.0 mg/L. Each geometric series of concentrations for each 

compound was repeated three times (in total 36 embryos per concentration and 

36 embryos for vehicle for each compound). The embryos for controls and 

treatment groups for each compound were plated in the same 96-well microtitre 

plates in each independent experiment. The LC50 in mg/L was then converted 

into LC50 mmol/L. The LC50 (expressed in mg/L of buffer) was determined 

based on cumulative mortality at 120 hpf using Regression Probit analysis with 

SPSS Statistics v.17.0 (SPSS Inc., Chicago, USA).  

Antagonist treatment 

A geometric series of concentrations (0.5-8 mg/L) of AM251 was used to select 

effective concentrations for further testing. These selected concentrations were 

used together with one fixed concentration of each cannabinoid. The 

concentrations of cannabinoids selected were those on which hyper-locomotor 

activity was obtained. 
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Chronic and acute exposure 

The exposure of cannabinoids for 96 h (24- 120 hpf) is defined as a chronic 

while for 1-12 h as acute exposure regime.  

Behavioural analysis 

The visual motor response test was performed at 5 days post fertilization (dpf) 

according to Ali et al. (2011a,  2011b) on all living larvae of both range finding 

experiments and geometric series. The test was performed in the presence of 

original solutions added at 24 h. Thus, there was no replacement or refreshment 

of buffer before test. The temperature used for testing was 28±0.5 °C. The 

visual motor response test has been previously characterized and typically 

consists of brief (less than 10 min) frequently alternating periods of light and 

dark. A key feature of this test is the robust but transient behavioral activity that 

occurs in response to sudden transitions from light to dark (Burgess and Granato  

2007, Emran et al. 2008, Macphail  et al. 2009, Rihel et al. 2010). Because such 

behavioral response has been shown to be highly sensitive to neuroactive 

chemical compounds, the visual motor response test has become a validated tool 

to assess the impact of a wider range of chemical agents on neuronal and 

physiological integrity of the developing zebrafish (Burgess and Granato 2007, 

Emran et al., 2008, Macphail et al. 2009, Rihel et al. 2010). Here we used a 

modified version of this test consisting of a single transition from light to dark. 

The activity of each larva was automatically recorded and analyzed in the 

ZebraBox recording apparatus equipped with VideoTrack software (both from 

Viewpoint S.A., Lyon, France). The white light intensity of the ZebraBox was 

500 lux. The experimental recording consists of two steps. First, larvae were 

acclimated to the behavioral setup with lights ON for 2 min. This period was 

necessary and sufficient to ensure low and stable behavioral activity. Once basal 

levels of locomotor activity were stabilized following the acclimatizing period, 
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basal swimming activity was recorded during 4 min with lights ON. This period 

is referred to as ‘basal context’. Immediately following the basal activity 

recording, the lights were suddenly turned off for 4 min. Behavioral activity in 

the dark was also automatically recorded during this period. This period is 

referred to as the ‘dark challenge context’. We chose four-minute session to 

prevent habituation, and also to favor more robust behavioral changes. Because 

of the robustness of the behavioral changes induced by varying illumination, 

this task can be used to reveal more readily than any other tasks, defective brain 

function, aberrant nervous system development and/or locomotor and visual 

defects caused by toxic compounds (Ali et al. 2011a). 

Morphological assessment of embryo phenotypes in the survivor 

population 

Morphological assessment was done according to Ali et al. (2011a). All 

embryos remained in their original multi-well plates, so that every individual 

could be tracked throughout the entire experimental and analysis procedure. The 

phenotypes were scored according to the criteria listed in Table 1. 

          Table 1. Phenotype analysis. 

Larval phenotype Criteria  

1. Normal Absence of any of the phenotypes listed below: 

2. Heart Presence of pericardial oedema  

3. Yolk Presence of yolk sac oedema 

4. Pigmentation Dispersion of melanocytes (pigment cells)  

5. Tail Tail bent 

6. Body axis Body/primary axis bent/curved 

7. Meckel’s cartilage Meckel’s cartilage grossly hypoplastic, missing or unfused in 

midline. These effects may be unilateral or bilateral. 

8. Branchial arches One or more cartilages of the branchial skeleton hypoplastic 

or missing.  
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Description of the seven categories used to score larval phenotype at 5 dpf 

Statistical analysis  

Statistical analyses were performed using GraphPad Prism for Windows 

(version 5.03) and also used to plot graphs. To analyze the impact of 

compounds on embryo locomotion in the visual motor response test, we used 

one-way analysis of variance and a Dunnett’s Multiple comparison test with 

probability level of 5% as the minimal criterion of significance. LC50 was 

determined using Regression Probit analysis (Chi-Squares test, Pearson 

Goodness-of-fit test and 95% confidence interval) with SPSS Statistics for 

windows version. 17.0 (SPSS Inc., Chicago, USA).   

Results 

LC50 of cannabinoids 

The LC50 was determined for chronic exposure of zebrafish embryos to 

cannabinoids (96 h of exposure beginning at age 24 hpf). The following LC50 

values were obtained at 5 dpf: ∆
9
-THC, 3.37 mg/L (0.01 mmol/L); WIN 55,212-

2, 1.8 mg/L (0.003 mmol/L); and CP 55,940, 16.92 mg/L (0.049 mmol/L).  

Functional impairment at sub-lethal concentrations 

We analysed the degree of behavioural change in zebrafish embryos exposed to 

cannabinoids. We used a behavioral test, the visual motor response test, which 

relies on the integrity of the central and peripheral nervous systems, including 

the visual system, and on normal locomotor and skeletal system development. 

The effects of three cannabinoids are illustrated in Figure 1and Figure 2. 

We analysed the effects on total distance moved in the basal, challenge and 

recovery phases for both chronic and acute exposure regimes (Table 2, Table 3). 

The effects on this locomotory parameter fell into the categories of monotonic 
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stimulation; monotonic suppression; biphasic response (stimulation at lower and 

suppression at higher concentrations); or no significant effect. 

           Table 2. Concentration-dependent functional impairment by three cannabinoids 

(chronic exposure) 

 Tdm
a
 in  basal phase 

(light on)  

Tdm in  challenge phase 

(light off) 

Tdm in recovery phase 

(light on)  

 = ↓ ↑ = ↓ ↑ = ↓ ↑ 

Compound Con
b
 

(mg/L) 

con 

(mg/L) 

con 

(mg/L) 

con 

(mg/L) 

con 

(mg/L) 

con 

(mg/L) 

con 

(mg/L) 

con  

(mg/L) 

con 

(mg/L) 

 ∆9-THC 0.3, 0.6, 

1.2, 2.4 

- - 0.3, 0.6, 

2.4 

    - 1.2 0.3, 0.6, 

1.2, 2.4 

    -    - 

WIN55,212-

2 

0.3, 0.6, 

1.2 

- - 0.3, 0.6, 

1.2 

    -   - 0.3, 0.6, 

1.2 

    -    - 

CP55, 940 2.25, 

4.5, 9 

- - 2.25, 

4.5, 9 

    -  2.25, 

4.5, 9 

    -    - 

Key: ‘=’ equal to control; ‘↓’ significantly lower than control; ‘↑’ significantly 

higher than control; ‘a’ Total distance moved; ‘b’ Concentration. 

Effect of chronic (96 h) exposure to cannabinoids on locomotor activity  

We focus here on the dark challenge phase in order to be able to make 

comparisons with studies on mammals. The term ‘chronic exposure’ is here 

arbitrarily applied to 96 h of treatment since this covers the major stages of 

organogenesis (Kimmel et al. 1995). Compared to controls, embryos exposed 

chronically to all ∆
9
-THC concentrations showed habituation (with increasing 

concentration. Only with a concentration of 1.2 mg/L was there any significant 

stimulation in the challenge phase with ∆
9
-THC (Fig. 1A).  
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              Table 3. Concentration-dependent functional impairment by three cannabinoids (acute exposure) 

 Tdm in  basal phase 

(light on) 

Tdm in challenge phase 

(light off)  

Tdm in recovery phase 

(light on) 

  = ↓ ↑ = ↓ ↑ = ↓ ↑ 

Compound Exposure 

duration 

(hour) 

con 

(mg/L) 

con 

(mg/L) 

con 

(mg/L) 

con 

(mg/L) 

con 

(mg/L) 

con 

(mg/L) 

con 

(mg/L) 

con  

(mg/L) 

con 

(mg/L) 

  ∆9-THC 
 
 
 
 
 
WIN 

55,212-2 
 
 
 
 
 
CP55, 940 

1 0.6, 1.2   - 2.4, 3.4 0.6, 3.4   - 1.2, 2.4 0.6    - 1.2, 2.4 
3.4 

4 0.6, 1.2, 
3.4 

  - 2.4 0.6, 1.2, 
2.4 

 3.4   - 0.6, 1.2, 
3.4 

   - 2.4 

12 0.6, 1.2, 
2.4 

 3.4  - - 2.4, 3.4 0.6, 1.2 0.6, 1.2, 
2.4 

  3.4 - 

1   -  0.6, 
1.2, 1.8 

 - 0.6   - 1.2, 1.8 0.6, 1.2, 
1.8 

   - - 

4 0.6, 1.8    - 1.2 0.6, 1.8   - 1.2 0.6, 1.2, 
1.8 

   - - 

12 0.6, 1.2, 
1.8 

   - - 0.6, 1.8   - 1.2 0.6, 1.2, 
1.8 

   - - 

1 2.25, 
4.5, 9 

   - 18   -   - 2.25, 
4.5, 9, 
18 

2.25, 
4.5, 9 

   - 18 

4 2.25, 
4.5, 9, 
18 

   -   -   -   - 2.25, 
4.5, 9, 
18 

2.25, 9, 
18 

   - 4.5 

12 18    - 2.25, 
4.5, 9 

  -   - 2.25, 
4.5, 9,  

2.25, 9, 
18 

   - 4.5 
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Figure 1. Behavior analysis of live zebrafish embryos treated with Δ9-THC, WIN 

55,212-2 and CP 55,940 for 96 h. A, locomotor activity induced by Δ9-THC exposure;  

B, by  WIN 55,212-2; C, by CP 55,940. * depict differences between controls and 

different used concentrations. In figures A-C, it can be seen that there is habituation that 

occurs with 96 h exposure. The number inside the base of the bars = N embryos 

.Statistical icons: *= p< 0.05. 

Effect of acute exposure to cannabinoids on locomotor activity  

Here, acute exposure is arbitrarily applied to a 1-12 h exposure starting at 108 

hpf.  For behavioral analysis, embryos were exposed at 4.5 dpf for 12 h, and at 5 

dpf for 1-4 h (in order to provide a common endpoint of 5 d). With ∆
9
-THC, 

there was an effect of both concentration and duration of exposure on locomotor 

activity. With ≥1 h exposure time, locomotor activity was stimulated at low 

concentrations (Fig. 2A); no effect was found with high concentrations, even 

after 4 h of treatment (Fig. 2B). A biphasic response (stimulation at low 
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concentrations and suppression at high concentrations) was found with 12 h 

exposure (Fig. 2C). By contrast, low concentrations continued to cause hyper-

activity at 12 h exposure (Fig. 2A-C).  Concerning the other cannabinoids, the 

action of WIN 55,212-2 on locomotor activity closely resembles that of ∆
9
-THC 

and a biphasic response was found after 12 h of exposure (Fig. 2D-F). At low 

concentrations, CP 55,940 (Fig. 2G-I) and WIN 55,212-2 both gave a similar 

behaviour pattern as ∆
9
-THC (hyper-activity from 1 h - 12 h of exposure).  

Effect of exposure to the cannabinoid receptor antagonist AM251 on 

locomotor activity  

We exposed zebrafish embryos to AM251 for 1-12 h (acute exposure) or 96 h 

chronic exposure. Concentration-dependent suppression of locomotor activity 

was found in both cases (Fig. 3A-D). 

Embryos were co-exposed acutely to a cannabinoid plus antagonist (AM251) 

for 1-12 h. The antagonist caused a dose-dependent amelioration of the 

locomotor activity induced by the cannabinoid alone (Fig. 4A-I). 
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Figure 2. Behavior analysis of live zebrafish embryos treated with Δ9-THC, WIN 55,212-

2 and CP 55,940 for selected time points. The graphs represent locomotor activity at the 
following time points: A, D and G 1 h exposure with Δ9-THC, WIN 55,212-2 and CP 

55,940 respectively; B, E and H 4 h exposure with Δ9-THC, WIN 55,212-2 and CP 

55,940 respectively; C, F and I 12 h exposure with Δ9-THC, WIN 55,212-2 and CP 

55,940 respectively. * depict differences between controls and different used 

concentrations. In figures C, F and G, it can be seen that there is a biphasic response in 

acute regimes. The number inside the base of the bars = N. Statistical icons: *= p< 0.05, 

**= p< 0.01 and ***= p< 0.001. 
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Figure 3. Behavior analysis of live zebrafish embryos treated with AM251 for selected 

timepoints. The graphs represent locomotor activity at the following time points: A, 1 h 

exposure B, 4 h; C, 12 h; D, 96 h. * depict differences between controls and different 

used concentrations. The number inside the base of the bars = N. Statistical icons: *= p< 

0.05, **= p< 0.01 and ***= p< 0.001.  
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Figure 4. Behavior analysis of live zebrafish embryos co-administrated of AM251 with 

Δ9-THC, WIN 55,212-2 and CP 55,940 for selected timepoints. The graphs represent 

locomotor activity at the following time points: A, D and G 1 h exposure to AM251 

with Δ9-THC, with WIN 55,212-2 and with CP 55,940 respectively; B, E and H 4 h 

exposure to AM251 with Δ9-THC, with WIN 55,212-2 and with CP 55,940 

respectively; C, F and I 12 h exposure to AM251 with Δ9-HC, with WIN 55,212-2 and 

with CP 55,940 respectively. * depict differences between controls and different used 

concentrations.  The number inside the base of the bars = N. Statistical icons: *= p< 

0.05, **= p< 0.01 and ***= p< 0.001. 
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Morphological assessment of embryos 

The results of morphological analysis of embryos are shown in Figure 5 and 

Table 4. With 0.3 to 2.4 mg/L ∆
9
-THC treatment, the frequency of pericardial 

and yolk sac oedemas, and bent body, were significantly higher than in control 

(buffer only) and vehicle (DMSO and buffer only) experiments. With CP 

55,940 and WIN 55,212-2 no significant increase in the frequency of any 

malformation was seen (the apparent increase in yolk sac oedema with CP 

55,940 exposure was not statistically significant in view of the number of 

cases).  

A B

C D

E F

YSEPE

BB

 

Figure 5. Morphological assessment of zebrafish embryos at 5 dpf treated with 

cannabinoids. Zebrafish embryos stained with alcian blue reveals the ventral view. The 

aim of this figure is to show the effects on body axis of embryos after 96 h exposure to 

cannabinoids. A, control; B, vehicle; C, 1.2 mg/L Win 55,212-2; D, 9 mg/L CP 55,940; E, 

0.6 mg/L Δ9-THC; F, 2.4 mg/L Δ9-THC. PE, pericardial edema; YSE, yolk sac edema; 

BB, bent body.  
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Table 4. Statistical analysis of incidence of malformations in zebrafish embryos 

at different concentrations of ∆
9
-THC. 

 

 

 

 

 

 

 

 

 

Key:* Statistical icons: (-), not significant; (*), p< 0.05; (**), p< 0.01; and 

(***), p< 0.001. Note that there were no significant increases in malformations 

after exposure to WIN 55,212 and CP 55,940. Statistical icons: *= p< 0.05, **= 

p< 0.01 and ***= p< 0.001. 

Discussion 

We have studied the effects of cannabinoids on the survival, locomotor 

activity and morphological development of zebrafish embryos. Our readouts 

were mortality recording, the visual motor response test and morphological 

analysis. Both acute and chronic exposure regimes, and the effects of the 

cannabinoid receptor antagonist (AM251), were examined.  

In acute regimes, ∆
9
-THC showed a biphasic response with increasing 

hyperactivity succeeded by suppression of activity as the dose increased. These 

findings are consistent with studies in rodents which reported a stimulation of 

locomotor activity by ∆
9
-THC at low concentrations, and suppression at higher 

 Significance level 

Categories 

0.3 

(mg/L) 

0.6 

(mg/L) 

1.2 

(mg/L) 

2.4 

(mg/L) 

Pericardial Oedema - ** * * 

Yolk sac oedema *** *** *** *** 

Bent tail  - - - - 

Body/primary axis 

(bent/curved) 

*** *** * * 

Meckel's cartilage( 

hypoplasia) 

- - - - 

Branchial arches 

(hypoplasia) 

- - - - 
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concentrations (Grisham and Ferraro 1972, Ferraro and Gluck 1974, Taylor and 

Fennessy 1977). A recent study (Freedland  et al. 2002) suggested that high 

concentrations of ∆
9
-THC in adult rats decreased cerebral metabolism. 

According to this study, this metabolic change was associated with the biphasic 

motor behaviour of ∆
9
-THC. In zebrafish embryos, CB1 receptors are expressed 

in the preoptic area by 24 hpf (Lam et al. 2006). We therefore chose this time to 

begin chronic administration of cannabinoids. For acute exposure, we began to 

expose embryos of 4.5 dpf so that all embryos, regardless of treatment, were 

analysed at the same endpoint (day 5).   

WIN 55,212-2 also caused a biphasic response in acute regimes. This is 

consistent with findings (Drews et al. 2005) in the open field test, where rats 

treated with low concentrations of WIN 55,212-2 covered more distance than 

controls, and those treated with high concentrations covered less distance. CP 

55,940 also caused a biphasic response in acute exposure regimes. Biphasic 

locomotor activity has been reported in rats exposed to CP 55,940 (McGregor et 

al. 1996). Furthermore, a pre-treatment of CP 55,940 caused hyperactivity in 

rats subsequently exposed to morphine (Norwood  et al.  2003).  

In chronic regimes, all three cannabinoids showed habituation. It is interesting 

to notice that the habituation is probably not accompanied by general sedation 

of the embryos because their locomotor activity in the corresponding basal 

phase is normal (Table 2, Table 3). Several studies in different species have 

shown that chronic exposure of cannabinoids is accompanied by the 

development of tolerance to many of the acute effects. These effects include 

memory disorder, hypothermia and analgesia (reviewed by (Howlett et al. 

2004). In rodents, the development of tolerance to motor-behavioural effects of 

chronic cannabinoids exposure has been studied. For example, chronic exposure 

to ∆9-THC (Abood et al. 1993, Rodriguez  et al. 1994, Howlett et al. 2004), 
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WIN 55,212-2 (Martini et al. 2010) and CP 55,940 (Costa et al. 1996, Rubino et 

al. 1997) all caused tolerance to the effects of those cannabinoids on 

suppressing locomotor activity. This phenomenon was associated with down 

regulation of CB receptors after long-term exposure to cannabinoids (Abood et 

al. 1993, Rodriguez et al. 1994, Costa et al. 1996, Rubino et al. 1997, Howlett et 

al. 2004, Martini et al. 2010). Hence, the study of CB receptors expression level 

after a chronic exposure to cannabinoids can further extend our understanding 

of the phenomenon of tolerance in zebrafish embryos.  

An increased incidence of curved body axis and bent tail were found in embryos 

exposed chronically to Δ
9
-THC. It is necessary, therefore to consider the 

possibility that the changes in locomotion and behaviour were caused by these 

malformations, and not by an action of the cannabinoid on the nervous system. 

But it can be seen in Figure 1, embryos exposed chronically to Δ
9
-THC  have 

shown similar locomotor activity compared to control. Moreover, Win 55,212-2 

and CP 55,940 have not shown any significant incidence of malformations at 

any concentration tested, yet do show changes in locomotor behaviour in acute 

regimes. This suggests that the locomotor effects of these cannabinoids is not a 

secondary one due to teratogenicitiy. 

It has previously been reported in rodents that AM251 decreases the total 

distance travelled in open field test (Sink et al. 2010) and also blocks the 

locomotor excitation caused by CB1 agonists (Kongkam et al. 2008). Our data 

suggest that AM251 attenuates the increased locomotor activity induced by CB1 

agonists.  These results implicate the involvement of CB1 receptors in the 

regulation of locomotor activity in zebrafish larvae and are in good agreement 

with previous rodent studies.  

It has also been shown that AM251 attenuates the behavioural sensitization 

induced in rodents by amphetamine, nicotine and ∆
9
-THC (Gatley  et al. 1996, 
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Thiemann et al. 2008, Le et et al. 2008). These studies show that the blockade 

of CB1 receptor not only opposes the inducing effect of cannabinoids but can 

also alter the activity of other psychotropic compounds having binding sites 

other than CB receptors.   Another study found that CP 55,940 has one, and 

WIN 55212-2 two different binding sites in the zebrafish brain (Rodriguez  et 

al. 2007). So, It would be of great interest to explore the AM251 binding 

affinity in the zebrafish brain. It is also likely that CB receptor-knockout in 

zebrafish embryos will lead to a deeper understanding of the role of CB 

receptors in zebrafish physiology. Moreover, study of agonist and antagonist 

interactions could be helpful in understanding the zebrafish endogenous 

cannabinoid system. 

Conclusions 

Our findings show that 96 h duration of exposure in zebrafish embryos starting 

at 24 hpf can be used to study the teratology of sub-lethal concentrations of 

cannabinoids. This regime also leads to habituation in behavioural response. In 

acute exposure, our findings are similar to the results found in rodents, with 

dose-dependent hyperactivity followed by suppression. The antagonist blocks 

the increased locomotor activity induced by cannabinoids. This suggests that 

some similarity in cannabinoid response pathways between zebrafish and 

mammals exists. Further validation, and study of receptor interactions, is 

needed before we can be sure that the zebrafish embryo can be a useful tool for 

the pre-clinical screening of natural, synthetic and endogenous cannabinoids.  
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