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CHAPTER 6

Allele-Sharing Statistics Using

Information on Family History

Abstract

When conducting genetic studies for complex traits, large samples are com-

monly required to detect new genetic factors. A possible strategy to decrease

the sample size is to reduce heterogeneity using available information. In this

paper we propose a new class of allele-sharing statistics which takes into ac-

count the information given by the ungenotyped affected relatives (positive

family history). This information is included into the scoring function of classi-

cal allele-sharing statistics. We studied pedigrees of affected sibling pairs with

one ungenotyped affected relative. We show that, for common complex dis-

eases, the proposed method increases the expected power to detect linkage.

Allele-sharing methods were applied to the symptomatic osteoarthritis GARP

study where taking into account the family-history increased considerably the

evidence of linkage in the surrounding of the DIO2 susceptibility locus.

6.1 Introduction

Identifying genes underlying susceptibility to complex diseases is still a chal-

lenge. Large samples are needed for linkage analysis of complex traits, because

of the genetic heterogeneity and because of the high phenocopy rate of the trait.

A possible strategy to reduce the proportion of phenocopies in the sample is

by selecting individuals with family history of disease. Such a strategy has

been shown to be useful both in genetic association studies (Risch, 2001; Teng

and Risch, 1999) and in linkage analysis (Wallace and Clayton, 2006). In par-

ticular, Wallace and Clayton (2006) studied the power to detect linkage select-

ing affected sibling pairs (ASP) with one ungenotyped affected relative. They

showed that while such selection strategies can reduce power if disease risk

alleles are common and environmental heterogeneity low, under models more

likely to underly common complex diseases power will be increased, especially
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Chapter 6. Allele-Sharing Statistics Using Information on Family History

if more loci are involved.

Instead of selecting families with positive family-history, an alternative

strategy may be to recruit unselected families, but collect information on fam-

ily history. Then a variable summarising the family history may be included

in the analysis. Recently, the inclusion of relatives with known phenotype and

missing genotypes has been considered in association studies with related indi-

viduals (Thornton and McPeek, 2007; Visscher and Duffy, 2006). Including rela-

tives with unknown genotypes in association analysis appeared to improve the

power considerably (Visscher and Duffy, 2006). Thornton and McPeek (2007)

proposed a class of statistics which incorporates phenotype data about rela-

tives with unknown genotypes. More specifically, they used this information

to optimize the weights given to relatives with known genotypes.

In the same spirit, we propose a new class of statistics for genetic linkage

analysis where the positive family-history (defined as the ungenotyped affected

relatives) is included in the weights given to the identity by descent (IBD) prob-

abilities of the affected genotyped individuals. This implies, for example, that

an ASP with no phenotyped relatives should be weighted differently from an

ASP with an (ungenotyped) affected sibling. The proposed statistics are sim-

ple extensions of the classical non-parametric methods for linkage, also called

allele-sharing methods (Kong and Cox, 1997; Kruglyak et al., 1996; Risch, 1990;

Weeks and Lange, 1988; Whittemore and Halpern, 1994, 2006).

As a motivating example, we consider the symptomatic osteoarthritis GARP

study (Meulenbelt et al., 2008) which is an ASP data-set with known family-

history. In this data set a large number of ungenotyped affected siblings is

present. For example there is a family with 8 affected ungenotyped siblings.

The question is whether evidence for linkage increases when taking into ac-

count this additional information. To answer this question we applied a new

statistical approach which uses in an appropriate way the information on fam-

ily history.

In the methodological section, we briefly describe the allele-sharing meth-

ods and we propose a new class of scoring functions. To illustrate the gen-

eral issues, we consider pedigrees with two genotyped affected siblings and

one ungenotyped affected relative. The asymptotic behavior of the proposed

method for these particular pedigrees has been evaluated for various genetic

models. Finally, we applied the proposed method to the symptomatic os-

teoarthritis GARP study (Meulenbelt et al., 2008).
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6.2 Methods

Allele sharing statistics

In order to describe allele sharing statistics, we need to define the configu-

rations that specify identical by descent (IBD) relations among the 2n alle-

les of an ordered set of n individuals. To do so, we construct a sequence

s = (s11, s12, ..., sn1, sn2) of 2n integers, where si1 and si2 label the paternal

and the maternal alleles of the ith individual. The number of distinct inte-

gers represents the number of genetically distinct alleles among the individ-

uals. Next we identify any two sequence s and s′ that differs only in the order

of the maternal and paternal alleles for one or more individuals. These equiv-

alence classes are called IBD configurations. We denote an IBD configuration

by c = [s11, s12, ..., sn1, sn2], where (s11, s12, ..., sn1, sn2) is any representative of c

(McPeek, 1999).

For the ith pedigree the standardized allele-sharing statistics is given by

Zi =
∑c S(c)[P(c|M)− P(c)]

√

∑c P(c)S(c)2− (∑c P(c)S(c))2
=

S̄i − µi

σi
, (6.1)

where P(c|M) is the probability of the IBD configuration vector (c) condi-

tional on the marker data (M) which is calculated under the null hypothesis of

no gene for the trait linked to that location. The sum in the numerator is over all

the possible IBD configurations. The probability of a particular configuration

given the marker data P(c|M) can be computed by standard software for link-

age (Abecasis et al., 2002; Kruglyak et al., 1996). The probabilities are weighted

by a particular function S(c) which is usually called scoring function.

Suppose we have N independent pedigrees, McPeek (1999) showed that

the optimal way to combine the pedigrees is to use the classical NPL statistic

(Kruglyak et al., 1996)

Z =
∑

N
i=1 γiZi

√

∑
N
i=1 γ2

i

, (6.2)

with family-specific weight function given by γi = σi/
√

∑
N
i=1 σ2

i . Using the op-

timal statistic (6.2) is equivalent to combine the unstandardized statistics over

the pedigrees.

Scoring function S

The scoring function (S(c, Φ)) is a function of the IBD configuration (c) and

of the phenotype information (Φ) in the pedigree. Standard methods gener-

ally consider sharing among affecteds only because they are more robust and
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affecteds contribute most of the information (McPeek, 1999). The scoring func-

tion can be derived from the likelihood (score tests) (Blackwelder and Elston,

1985; Teng and Siegmund, 1997), or empirically (Whittemore and Halpern,

1994). There is an extensive literature of such functions, examples are Spairs

(Weeks and Lange, 1988), Sall (Whittemore and Halpern, 1994), S#alleles (Sobel

and Lange, 1996), Srob dom (McPeek, 1999).

The most popular scoring functions are Spairs(c) and Sall(c). The advantage of

these empirical statistics with respect to the likelihood-based methods is that

they perform well under a variety of conditions and there is a definite algo-

rithm to compute them in general pedigrees. Spairs counts the number of alleles

shared IBD, from distinct affected pedigree members

Spairs(c) = ∑
(j,k)∈A

IBD(j,k)(c)

where j < k, A is the set of affecteds and IBD(j,k)(c) is the number of alleles

shared IBD between the j-th and the k-th affected in a particular IBD configu-

ration class c = [s11, s12, ..., sn1, sn2]. The function IBD(j,k)(c) is simply the num-

ber of labels in common between (sj1, sj2) and (sk1, sk2). In contrast with Spairs

which considers only pairwise IBDs, Sall is based on the simultaneous IBD-

sharing among all the affecteds in the pedigree. Consider a vector of length n,

where n is the number of affecteds, whose j-th component is one of the two

labels (sj1, sj2) of the i-th affected individual on the IBD configuration class c.

There are 2n such possible vectors w. The Sall score function is given by

Sall(c) =
1

2n ∑
w∈W(c)

h(w)

where W(c) is the set of the 2n vectors w and h(w) is the number of permu-

tations that preserve w. The advantage of this statistic respect to Spairs is that

the value assigned to a configuration increases with the number of affecteds

sharing the same allele.

Family history scoring function (S∗)

We now extend the scoring function S(c) by including information given by

the positive family history. Suppose that only n of the n + m affecteds of the

pedigree have been genotyped. For convenience we denote the unobserved

information (family-history) as missing. The marker data can be partitioned

as M = (Mobs, Mmiss), the observed and the unobserved components respec-

tively. In the same spirit the IBD configuration vector can be partitioned as

c = (cobs, cmiss). In order to take into account the positive family history, we

propose the following scoring function
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S∗(cobs) =
∑cmiss

P(cobs, cmiss)S(cobs, cmiss)

∑cmiss
P(cobs, cmiss)

. (6.3)

which is the expected value of the scoring function S over the distribution of

(cmiss|cobs). The family-history score function S∗ reduces to S when there is no

positive family-history. When there is positive family history the observed IBD

configuration (cobs) is weighted taking into account the ungenotyped affecteds.

S∗all computation for affected sibling pairs (ASP)

We first consider the family-history scoring function of pedigrees of two af-

fected siblings (ASP) and one ungenotyped affected relative. For ASPs with a

missing affected parent (mother), Table 6.1 shows the Whittemore and Harpen

scoring functions (Sall) in the case of no missing data and Table 6.2 shows the

scoring functions when parents are missing. The family-history scoring func-

tions of zero and two alleles IBD are equal to the scoring functions in the case of

known maternal alleles (column 2 of table 1). The family-history scoring func-

tion of one allele shared IBD is the mean of the two possible scoring functions

given to the shared maternal allele and to the shared paternal allele in the case

of known maternal alleles. In this case the standardized family-history allele-

sharing statistic Z∗i is equivalent to the standardized allele sharing statistic ig-

noring the family-history Zi. However, the standard error of Z∗i (σ∗all = 0.265)

is 1.5 times bigger than the standard error of the Zi (σall = 0.17). It follows that

combining the unstandardized statistics of the different ASPs using equation

(6.2), the proposed method is a classical mean IBD statistic

Z∗ =
∑

N
i=1 w∗i (π̂i − 1/2)

√

∑
N
i=1 w∗2

i var0(π̂i)
, (6.4)

with family-history weight w∗i equal to 1 for ASPs without positive family his-

tory and equal to 1.5 for ASPs with untyped affected mothers.

Further, we evaluated the family-history scoring function for ASPs with one

affected untyped sibling, grandparent, half-sibling and first cousin. It is inter-

esting to note that when parents are untyped, the proposed method always

corresponds to the mean statistic in equation (6.4). The family-history weights

for ASP with one ungenotyped affected sibling (or parent), one ungenotyped

affected grandparent (or half-sibling) and one ungenotyped affected first cousin

are equal to 1.5, 1.25 and 1.125, respectively. In a similar way we computed the

weights for ASP with ungenotyped parents and two affected untyped relatives.

The weight for ASPs with two untyped affected parents and with two untyped
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affected sibligs are equal to 2 and 2.625, respectively. Based on these results

we propose a formula to compute the weights of equation (6.4) for ASPs with

general positive family-history

w∗i = 1 +
2+mi

∑
k=3

φi
1k +

2+mi

∑
k=3

φi
2k, (6.5)

where φi
jk is the kinship coefficient between the j-th genotyped sibling (j = 1, 2)

and the k-th ungenotyped affected relative in the ith pedigree.

Now we consider the cases of ASP with genotyped parents. We first com-

pute the family-history scoring function in the case of ASP with a missing af-

fected (maternal) grandparent. All the possible IBD configurations are shown

on table 3. The corresponding family-history scoring functions are shown on

table 6.4. In this case, the standardized statistic (Z∗i ) is not equivalent to the

ASP mean statistic. In fact, the family-history scoring function of the maternal

allele shared IBD is higher than the family-history scoring function of the pa-

ternal allele shared IBD. A similar result was observed in the case of ASP with

a missing affected first cousin and genotyped parents (Table 6.5).

6.3 Power Study

The asymptotic performance of the proposed family history approach were

evaluated in the case of two affected siblings with one missing (ungenotyped)

affected relative. We computed the ratio of the non-centrality parameters be-

tween the family-history approach (S∗all) and the standard unadjusted approach

ignoring the family history (Sall).

First, we considered the case of a missing affected sibling. Following the

work of Wallace and Clayton (2006) the mean trait value for an individual with

genotype i/j is given by

µij = µ + αi + αj + e,

where µ is the population trait main, αi and αj are the additive effects due

to the alleles i and j, respectively, and e is a shared environmental effect. We

assumed population trait mean µ = 0.1 and a single biallelic locus with allele

frequencies π = (0.01, 0.05, 0.1) and recurrence risk ratio of λS = (1.5, 5). We

decomposed the variance into the additive and the residual familial correla-

tion, shared between all members of a family (σ2 = σ2
a + σ2

e ). The noncentrality

parameters were derived using the formula in the appendix II of Wallace and

Clayton (2006). We considered a 50:50 mixture of ASP and ASP with one miss-

ing affected sibling for different values of the heritability h2 = σ2
a /(σ2

a + σ2
e ).

Figure 6.1 shows that, in models more likely to underline complex diseases
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(h2 < 0.5), the proposed family-history approach is more likely to increase

power, especially for high recurrence risk ratios. Note that the same results are

obtained for a 50:50 mixture of ASP and ASP with one missing affected parent.

These results agree with the power results of Wallace and Clayton (2006).

Using the theoretical work of Teng and Siegmund (1997), we considered

families of ASP with known parental genotypes and a missing affected grand-

parent. Details about the derivation of the non-centrality parameters for this

pedigree are described in the appendix. The family-history scoring functions

are shown on table 6.4. The proposed method is applied in various one and

two locus models, with two alleles at each locus (table 6.6). Phenocopies con-

tribute 0%, 33%, or 50% of the total incidence of the trait. The prevalence of the

diseases varies from 1% to 10% and the relative risk to offspring ranges from 1.8

to 13.4. The penetrance and the allele frequency of the locus varies among the

models (see Teng and Siegmund (1997) for more details). Figure 6.2 shows that,

in the case of this particular pedigree, the family-history approach always in-

creases the power to detect linkage. Figure 6.2 left shows the increase in power

taking into account for the family history at the more frequent and highly pen-

etrant first locus. Note that the model where the increment of power is smaller

(model 7) is a unilocus model without residual effects and with common al-

lele frequency (π = 0.2). Models with the higher increment of power (models

1,3,4,6,8) are the models with small allele frequency and high recurrence risk

ratios. Figure 6.2 right shows that there is a consistent increase in power adjust-

ing for family-history also for the rarer and less penetrant second locus. Also

in this case the increment of power is higher in the models with small allele

frequencies and high recurrence risk ratios (models 4,8).

6.4 Data Analysis: Application to families with Symptomatic

Osteoarthritis

Meulenbelt et al. (2008) performed a linkage analysis of 179 affected siblings

and four trios with generalized osteoarthritis (GARP study). They identified a

osteoarthritis susceptibility locus (DIO2) on chromosome 14. Information about

the number of siblings and parents with similar symptoms is available. 30% of

the genotyped affected siblings have no missing affected siblings, 30% have

one missing (ungenotyped) affected sibling. The maximum number of missing

affected siblings is 8 (one family). Concerning affected parents, 16% and 60% of

the ASPs had two and one affected ungenotyped parents, respectively.

We applied the Whittemore and Harpen scoring statistic (Sall), with and

without family-history adjustment. Different pedigrees were combined sum-

ming over the unstandardized statistics (6.4). Since parental genotypes were
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not available we computed the family-history scoring function using equation

(6.5). In order to take into account the uncertainty on the IBD, the variance of

the allele sharing statistics (var0(π̂)) was estimated by gene-dropping simula-

tions (Abecasis et al., 2002).

Figure 6.3 shows the linkage results on chromosome 14. Taking into account

the family history increased considerably the LOD score. Note that the maxi-

mum of the peak of the proposed statistic is closer to the susceptibility locus

DIO2 with respect to analysis which ignores the family-history.

6.5 Discussion

This paper is concerned with efficient strategies for gene mapping using in-

formation given by positive family history. We proposed a new class of allele

sharing statistics where the family history is included into the scoring func-

tion. We studied in detail small pedigrees containing an ASP and one ungeno-

typed affected relative. When the parental genotypes are available the pro-

posed method (S∗all) gives higher weight to the allele shared IBD related with

the missing affected relative, with respect to the other allele shared IBD. When

the parental genotypes are not available S∗all reduces to a weighted ASP mean

statistic where the excess IBD is weighted by a function of the family-history.

Based on these results, we proposed a simple formula (depending on kinship

coefficients) to compute these weights for general positive family-history.

Our numerical results showed that for common complex diseases, power

will generally be increased using S∗all. These results agree with the power com-

putations of Wallace and Clayton (2006). We applied the allele-sharing ap-

proaches to the symptomatic osteoarthritis GARP study where S∗all increased

the LOD-score in the surrounding of the DIO2 susceptibility locus form 3 to 3.6.

Further, weighting for family-history moved the maximum of the LOD-scores

closer to the location of DIO2.

Another approach that can be used to take into account ungenotyped af-

fected individuals is by sampling the distribution of the missing marker data

given the observed marker through MCMC algorithms. We analyzed the symp-

tomatic osteoarthritis GARP data also using Simwalk2 (Sobel and Sengul, 2001).

We applied the MCMC Sall method to two different datasets, namely one with

and one without the untyped affected relatives. In the dataset without the un-

typed affecteds the results of Simwalk2 were very similar to the results of MER-

LIN (Abecasis et al., 2002). However, when we added so many untyped affect-

eds, the signal dissipated (data not shown). The reason for this effect is that the

MCMC software allows the untyped to have any genotypes consistent with the

rest of the pedigree, ignoring the affection status. Then a stretch of DNA shared
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among the genotyped affecteds, is often not present in the other affecteds and

so, overall, that stretch does not seem to be present in the affecteds much more

often than by chance.

We described our approach using Sall (Whittemore and Halpern, 1994) be-

cause comparisons of allele-sharing methods showed good performance of this

statistic (Feingold et al., 2000; McPeek, 1999; Sengul et al., 2001; Teng and Sieg-

mund, 1997). However, the proposed method is general and it can be ap-

plied to any kind of scoring function. Applying our method to Spairs (Whit-

temore and Halpern, 1994) appears to down-weights families with a posi-

tive family-history compared to families without family-history. The weights

for S∗pairs are qualitative similar to the weights obtained by using a logistic

model with family-history as a covariate. The score statistic of a logistic model

for linkage is the mean NPL statistic in equation (6.4) with weight given by

wi = (yi1− µi1)× (yi2− µi2) where yij and µij are the trait value and the expec-

tation of the trait for the jth sibling in the ith family, respectively (Commenges,

1994). Since a positive family history increases µ (Houwing-Duistermaat and

van Houwelingen, 1998), this score-statistic approach down-weights ASPs with

positive family-history. Based on our numerical results (Figure 1) and on the

power study of Wallace and Clayton (2006), these two methods are expected

to be more powerful than S∗all when only a few common variants explain the

heritability of the trait.

In conclusion, a new and simple procedure to take into account the in-

formation given by the positive family-history into the classical nonparamet-

ric linkage analysis was proposed. Considering proxy conditions where ASP

have a third ungenotyped affected relative, we showed that adjusting for fam-

ily history can considerably increase the power to detect linkage. Software to

compute the family-history statistics will be soon available from our website

(http://www.msbi.nl).
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Appendix

Affected siblings with a missing affected grandparent

Suppose we have N pedigrees, each of which consists of two affected siblings

and an affected (maternal) grandparent. Following the results of Teng and Sieg-

mund (1997) the marginal log-likelihood function at a trait locus is given by

ℓ =Y111 log(1 + 3α + δ) + Y110 log(1 + 3α− δ)

+ (Y101 +Y011 + Y001) log(1− α + δ)

+ (Y100 +Y010 + Y000) log(1− α + δ)

where Yijk count the number of pedigrees with grandparent and the first sibling

sharing an allele identical by descent (i = 1) or not (i = 0), the pedigrees with

the grandparent and the second sibling sharing an allele identical by descent

(j = 1) or not (j = 0), and the pedigrees with siblings sharing IBD their pater-

nally inherited chromosome (k = 1) or not (k = 0). Under the null hypothesis

of no linkage the two parameters (α and δ) are equal to zero and Yijk are multi-

nomial with probabilities 1/8. Table 6.3 shows the eight IBD configurations in

the case of affected siblings with one affected grandparent. Third column gives

the scoring functions proposed by Whittemore and Halpern (1994).

If the genotype of the grandparent is unknown the observable configura-

tions are four (table 6.4). Ignoring the family history (the affected grandparent)

corresponds to use the statistic with scoring functions reported in column 3 of

table 6.4. In this paper instead, we propose to weight the observable configu-

rations with the mean of the scoring function of the corresponding unobserved

IBD configurations (6.3). These combined scoring functions are reported in col-

umn 4 of table 6.4 (S∗all(c)). The corresponding family-history allele sharing

statistic can be written as

Z∗all = 2[5(Y111 +Y001) + 3(Y110 + Y000) + 2(Y101 + Y011)− 5/2N]/(13N)1/2.

From the likelihood we derived the following noncentrality parameter ξ∗all =

(N/13)1/2(3α + 2δ). The noncentrality parameter of the statistic which ignores

the family-history is ξall = (N/2)1/2(α + δ) (Teng and Siegmund, 1997).

82



Chapter 6. Allele-Sharing Statistics Using Information on Family History

FIGURE 6.1: Ratio of Noncentrality parameters (NCP) to detect linkage using the family-history scoring

function (S∗all), with respect to the mean statistic (Sall) in a 50:50 mixture of ASP and ASP with one

missing affected sibling. y-axis represents the NCP ratio. x-axis represents the broad sense heritability.

Straight line, dashed line and dot-dashed lines represent the NCP ratio with locus allele frequency of

0.01, 0.05 and 0.1, respectively. Left and right figures show the increase in power taking into account

the family history when λS = 1.5 and λS = 5, respectively.

FIGURE 6.2: Ratio of Noncentrality parameters (NCP) to detect linkage with the family-history scor-

ing function S∗all with respect to the mean test (Sall) in ASP with one missing affected grandparent

and known parental genotypes. y-axis represents the NCP ratio. x-axis represents the the 13 models

described in table 6.6. Left and right figures show the increase in power at locus 1 and at locus 2,

respectively.
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FIGURE 6.3: Linkage analysis on chromosome 14 using 179 sibling pairs and four trios from the GARP

study. Straight line represents the LOD score derived from the NPL statistic with Sall scoring func-

tion; dashed line represents the LOD score derived from the NPL statistic with family-history scoring

function (S∗all). The vertical line represents the locus of DIO2 (78cM).

TABLE 6.1: IBD configurations and scoring functions for two affected siblings with an affected

mother

ca Sall(c) P(c)

(12 13 13) 5/4 1/4

(12 13 14) 1 1/4

(12 13 23) 3/4 1/4

(12 13 24) 1/2 1/4
a A={mother, sibling1, sibling2}.

TABLE 6.2: IBD configurations and scoring functions for two affected siblings with missing

(untyped) affected mother

ca
obs Sall(cobs) S∗all(cobs) P(cobs)

(12 12) 1/2 5/4 1/4

(12 13) 1/4 (1+3/4)/2 1/2

(12 34) 0 1/2 1/4
a A={sibling1, sibling2}.
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TABLE 6.3: IBD configurations for two siblings and one grandparent

ca Y(c) Sall(c) P(c)

(12 13 13) Y111 5/4 1/8

(12 13 14) Y110 1 1/8

(12 13 34) Y101 1/2 1/8

(12 34 13) Y011 1/2 1/8

(12 34 34) Y001 1/2 1/8

(12 13 45) Y100 1/4 1/8

(12 34 15) Y010 1/4 1/8

(12 34 35) Y000 1/4 1/8
a A={grandparent, sibling1, sibling2}

TABLE 6.4: IBD configurations for two siblings and one missing affected (maternal) grandpar-

ent.

ca Y(c) Sall(c) S∗all(c) P(c)

(12 12) Y111+ Y001 1/2 (5/4+1/2)/2=7/8 1/4

(12 13)b Y110+Y000 1/4 (1+1/4)/2=5/8 1/4

(12 13)c Y101+Y011 1/4 (1/2+1/2)/2=1/2 1/4

(12 34) Y100+Y010 0 (1/4+1/4)/2=1/4 1/4

a A={sibling1,sibling2}; b the two siblings share the maternal allele; c the two siblings share the

paternal allele.

TABLE 6.5: IBD configurations for two siblings and one missing affected (maternal) first-cousin.

ca Sall(c) S∗all(c) P(c)

(12 12) 1/2 0.6875 1/4

(12 13)b 1/4 .4375 1/4

(12 23)c 1/4 .375 1/4

(12 34) 1/0 0.125 1/4

a A={sibling1, sibling2}; b shared maternal allele; c shared paternal allele.
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TABLE 6.6: One and two locus models considered in the case of two siblings and one missing

affected grandparent.

MODEL f0 f f ′ p p′ K λS

1 .008 .40 .00 .01 .00 .016 7.2

2 .000 .50 .00 .10 .00 .100 3.3

3 .000 .30 .15 .01 .02 .012 10.3

4 .000 .25 .25 .02 .01 .015 9.2

5 .040 .40 .00 .05 .00 .080 2.2

6 .006 .30 .15 .01 .02 .018 5.1

7 .000 .25 .00 .20 .00 .100 2.0

8 .000 .25 .25 .01 .01 .010 13.4

9 .000 .30 .15 .05 .10 .060 2.8

10 .000 .25 .25 .10 .05 .075 2.5

11 .000 .25 .25 .05 .05 .050 3.4

12 .030 .30 .15 .05 .10 .090 1.8

13 .018 .30 .15 .01 .04 .036 2.4

NOTE.-Penetrances are as follows: f0 for phenocopies, f at locus 1, f ′ at locus 2. Allele frequencies

p at locus 1 and p′ at locus 2, incidence K, and sibling relative risk to λS.

86


