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CHAPTER 4

New score tests for age-at-onset

linkage analysis in general

pedigrees

Abstract

Our aim is to develop methods for mapping genes related to age at onset in

general pedigrees. We propose two score tests, one derived from a gamma

frailty model with pairwise likelihood and one derived from a log-normal

frailty model with approximated likelihood around the null random effect. The

score statistics are weighted nonparametric linkage statistics, with weights de-

pending on the age at onset. These tests are correct under the null hypothesis

irrespective of the weight used. They are simple, robust, computationally fast,

and can be applied to large, complex pedigrees. We apply these methods to

simulated data and to the Genetic Analysis Workshop 16 Framingham Heart

Study data set. We investigate the time to the first of three events: hard coro-

nary heart disease, diabetes, or death from any cause. We use a two-step pro-

cedure. In the first step, we estimate the population parameters under the null

hypothesis of no linkage. In the second step, we apply the score tests, using the

population parameters estimated in the first step.

4.1 Background

It is well known that heterogeneity results in loss of statistical power when

studying genetic factors of complex genetic diseases. To deal with heterogene-

ity additional data such as covariates (e.g., age at onset, known genetic factors)

This chapter has been published as: A. Callegaro, H.W. Uh , Q. Helmer, J.J Houwing-

Duistermaat (2009). New score tests for age at onset linkage analysis in general pedigrees. BMC

Proceedings 3, S97.
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are collected. In this paper we are interested in adjusting linkage for age at

onset.

Frailty models have been proposed for age-at-onset linkage analysis (Calle-

garo et al., 2009; Commenges, 1994; Houwing-Duistermaat et al., 2009; Jonker

et al., 2009; Pankratz et al., 2005). Gamma frailty models are particularly at-

tractive because the gamma-distributed random effect can be easily integrated

out and it allows the use of observable marginal survival functions (Callegaro

et al., 2009; Commenges, 1994; Houwing-Duistermaat et al., 2009; Jonker et al.,

2009). A drawback of these models is that their corresponding likelihood be-

comes very complex for large pedigrees. To solve this problem, we propose a

score test based on a composite likelihood (Lindsay, 1998).

A second model for multivariate survival data is the log-normal frailty

model. Using this model, Pankratz et al. (2005) proposed a likelihood-ratio

approach for linkage. In the spirit of Lebrec and van Houwelingen (2007), we

derive a robust and simpler score test, using an approximation of the likelihood

around the null random effect.

4.2 Methods

Gamma frailty model: pairwise likelihood approach

Let Tij be the random variable of age at onset for relative j in family i, i = 1, , N.

Let (tij, dij) be the observed data where tij is the observed age at onset if dij = 1

and age at censoring if dij = 0. The conditional hazard for individual j in

family i, with covariates xij and random effect Zij, is given by λ(tij|xij, Zij) =

λ0(tij|xij)Zij. Without loss of generality, we assume that E[Z] = 1. The baseline

hazard λ0(t) is the hazard for x = 0 and Z = 1. The frailty Z is decomposed

into the sum of independent gamma distributed effects, namely a linkage ef-

fect, a residual additive effect, and a non-shared environment effect. The scale

parameter is common to all of the effects and is defined as the sum of the shape

parameters. When the proportion of alleles shared identically by descent (IBD)

for a relative pair (j, k) is known (πjk), the marginal bivariate survival function

can be derived from the additive gamma frailty model (Callegaro et al., 2009).

The bivariate survival function depends on the marginal survival functions, on

the variance of the random effect (σ2
G), and on the pairwise correlation. The cor-

relation ρjk(πjk) = (πjk− Eπjk)γ + ρjk depends on the IBD through the linkage

parameter γ. Under the null hypothesis (H0 : γ = γ0 = 0), the correlation

is equal to the correlation in the population (ρjk). The marginal correlation be-

tween the ith and the jth individual is a function of their expected proportion

of alleles shared IBD, ρjk = a2Eπjk, where a2 is the portion of the variance ex-

plained by the total additive effect.
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We use a retrospective likelihood (Callegaro et al., 2009) and, in order to deal

with general pedigrees, we consider a pairwise likelihood approach (Lindsay,

1998). For N families, the corresponding score statistic is a weighted nonpara-

metric linkage (NPL) statistic

NPL =
∑

N
i=1 vec(Wi)

′vec(Π̂i − EΠ̂i)
√

∑
N
i=1 vec(Wi)′var0(Π̂i)vec(Wi)

, (4.1)

where, Π̂ is the matrix of estimated proportion of alleles shared IBD. The

elements of the weight matrix W are given by Wjk = ∂ log Lπ
jk(γ0)/∂ρjk , where

Lπ
jk(γ) = P(δj, tj, δk, tk|πjk, γ) is the prospective bivariate likelihood. The opera-

tor vec(A) places the n columns of the m× n matrix A into a vector of mn× 1. In

the case of uncertain IBD status, the variance of the proportion of allele shared

IBD (var0(Π̂i)) can be estimated by simulations. Note that the classical mean

IBD test is a weighted NPL statistic (4.1) with weight equal to Wjk = dj × dk.

Log-normal frailty model

Let d, Λ0, and V = logZ be the n-dimensional vectors of the disease status, the

baseline cumulative hazards at the observed age, and the normally distributed

random effects of the n members of a particular pedigree, respectively. The

random effect V follows a multivariate normal distribution with mean zero,

and variance-covariance matrix Σ with elements Σjk = σ2
Nρjk(πjk). The log-

likelihood can be approximated by using a second-order Taylor approxima-

tion around V = 0. For small random effects and known baseline cumula-

tive hazard, the vector of standardized martingale residuals behaves as a nor-

mal distribution. Integrating over the distribution of the random effect gives

M = (d−Λ0)/Λ0 ∼ N(0, Σ1), where Σ1 = Σ + diag(1/Λ0). The score statistic

derived from the retrospective likelihood is a weighted NPL statistic in equa-

tion (4.1) with weight matrix W = Σ−1
1 M(Σ−1

1 M)′−Σ−1
1 and Σ1 taken in γ = 0.

In this paper we approximate the baseline cumulative hazard with the marginal

cumulative hazard.

Materials

Estimation of the population parameters

Three phenotype files were provided: Original Cohort participants, Offspring

participants, and Generation 3 participants. We combined the three files and

used this dataset as a random sample from the population. The total number of

individuals considered was 6879. The number of disease-free survival events
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was 644 (248 coronary heart diseases, 385 diabetes, and 98 deaths), with preva-

lence around 10We estimated the marginal survival functions stratified by sex

using the Kaplan-Meier estimator. By age 60 years, 20% of males and 10% of

females were affected. Using these estimated survival functions we fitted a

marginal pairwise correlated gamma frailty model. The sib-sib marginal corre-

lation was ρ = 0.46 and the variance estimated by the gamma frailty models

was σ2
G = 0.93. The sib-sib marginal correlation was = 0.5 and the variance

estimated by a log-normal frailty model (Pankratz et al., 2005) was σ2
N = 0.43.

Pedigree data preparation

In the Genetic Analysis Workshop (GAW) 16 Framingham Heart Study (FHS)

data 765 pedigrees with 2 to 301 genotyped subjects were available. To simplify

the IBD computation, large pedigrees were split into n=1599 nuclear families.

The number of nuclear families with at least one affected sibling was n=488.

Only 46 nuclear families were available with at least two affected siblings.

Single-nucleotide polymorphism (SNP) data selection

The GAW16 Framingham dataset included 550k SNP genotype data. Using the

nuclear families with at least one affected individual (2275 individuals), we se-

lected 15k SNPs informative for linkage. First, markers with known physical

position were selected (497k). Second, 10 markers per centimorgan with minor

allele frequency larger than 0.15 were considered (37k). Finally, SNPs were sim-

ulated on 250 sib-pairs in order to select 15k SNPs with the highest information

content. The information content of the final set of SNP was around 85%.

Simulated data

To assess power and type I error rates, we simulated data using a frailty model

with parameter values estimated in the GAW16 FHS data. The random effect

was gammadistributed with a mean of one and variance of σ2
G = 0.93. The base-

line hazard was derived from the marginal hazard. The random effect was de-

composed into the sum of three components: one locus-additive genetic effect

(explaining 60% of the variability), one shared environmental effect (explaining

20% of the variability), and one unshared environmental effect. We simulated

pedigrees with 15 members (Figure 4.1). Marker data were simulated far from

any disease locus (null hypothesis) and close to the disease locus, which ex-

plains all the additive genetic variance (alternative hypothesis).
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FIGURE 4.1: Pedigree structure of 15 individuals used for simulating data.

4.3 Results

Simulated data results

Table 4.1 shows the type I error rates based on 5000 replications and the power

based on 1000 simulations, for sample size of 300 families with at least two af-

fected siblings. On simulated data, the proposed methods have correct type I

error rates. For our simulation settings, taking into account age at onset con-

siderably increases the power to detect linkage. On a moderately sized pedi-

grees (15 members), the lognormal approach is more powerful than the pair-

wise gamma frailty approach.

TABLE 4.1: Estimates of type I error rates and power.

Null hypothesis Alternative hypothesis

Method α = 0.05 α = 0.01 α = 0.05 α = 0.01

Mean IBD 0.05 0.01 0.34 0.14

Gamma 0.05 0.01 0.94 0.80

Log-normal 0.05 0.01 0.98 0.85

Application to the FHS dataset

We performed a genome-wide linkage analysis using the unweighted NPL test

(mean IBD test) with variance of the allele shared IBD estimated by simulations

(Abecasis et al., 2002). Figure 4.2 shows the two highest LOD scores (close to
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FIGURE 4.2: Age at onset genetic linkage analysis of GAW16 FHS dataset LOD scores on chromosomes

4 (left) and on chromosome 5 (right).

LOD=2), which are located on chromosomes 4 and 5, respectively.

We applied the proposed methods to the data of these two chromosomes.

The linkage analysis was performed on all the nuclear families (n=1599), on the

families with at least one affected siblings (n=448) and on the subset of families

with at least two affected siblings (n=45). The maximum LOD-scores were ob-

tained considering only families with at least two affected siblings. Figure 4.2

shows the results on this subset of families. On chromosome 4, adjusting for

age at onset increases the maximum LOD score from 2 to 2.5. On chromosome

5, with the proposed methods the maximum LOD score is in a slightly different

location (10 cM) with respect to the unweighted mean IBD test (25 cM). Results

on chromosome 5 are replicated on the larger set of families with at least one

affected sibling (data not shown).

4.4 Discussion

In this paper we proposed two approaches for age-at-onset linkage analysis in

general pedigrees. We applied the proposed methods to the GAW16 FHS data

in two suggestive regions identified by the standard NPL method. The maxi-

mum LODscores were obtained analyzing only the set of families with at least

two affected siblings. This can be due to the fact that affected individuals carry

most of the information for linkage. On the densest pedigrees, adjusting for age

at onset slightly increased the evidence for linkage. However, it is difficult to

interpret the results because of the small number of events.

Since GAW16 FHS families were randomly selected, it was possible to esti-

mate the marginal information directly from the data. When marginal informa-

tion is known from previous twin (family) studies, the proposed methods can
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be applied to ascertained families.

For the two identified regions, association analysis in the presence of link-

age may be the next step. The proposed models can be easily extended to study

association in the presence of linkage by including the genotype of the siblings

as a covariate. In this paper we computed IBD probabilities using MERLIN and

we estimated the variance of the allele shared IBD using simulations (Abecasis

et al., 2002). Because this software can deal only with small to moderately large

families, we split large families into nuclear families. An alternative approach is

to estimate IBD probabilities using Markov-chain Monte Carlo methods, which

now provide this information for general pedigrees. Sampled inheritance vec-

tors can also be used to estimate the variance of the allele shared IBD in the

denominator of the score statistic. Software to apply the proposed methods is

freely available at http://www.msbi.nl/Genetics/Software.

4.5 Conclusions

We proposed two new score tests for age of onset linkage analysis. Both

methods are simple and can be applied to general pedigrees. Simulations

showed that the proposed methods outperform the traditional affected-only

NPL method. On the application to the GAW16 FHS data, adjusting for age at

onset slightly increased the interesting linkage peaks.
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