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CHAPTER 3

Robust age at onset linkage analysis

in nuclear families

Abstract

Objective: Standard methods for linkage analysis ignore the phenotype of the

parents when they are not genotyped. However, this information can be useful

for gene mapping. In this paper we propose methods for age at onset genetic

linkage analysis in sibling-pairs, taking into account parental age at onset.

Methods: Two new score statistics are derived, one from an additive gamma

frailty model and one from a log-normal frailty model. The score statistics are

classical Non Parametric Linkage (NPL) statistics weighted by a function of the

age at onset of the four family-members. The weight depends on information

from registries (age specific incidences) and family studies (sib-sib and father-

mother correlation).

Results: In order to investigate how age at onset of sibs and their parents af-

fect the information for linkage analysis the weight functions were studied for

rare and common disease models, realistic models for breast cancer and human

lifespan. We studied the performance of the weighted NPL methods by simu-

lations. As illustration, the score statistics were applied to the GAW12 data.

The results show that it is useful to include parental age at onset information in

genetic linkage analysis.

3.1 Introduction

A strategy for gene mapping of complex traits is linkage analysis in sibling

pairs. For the parents of the siblings information on phenotypes may be

available while genotype data are often missing. For example in the Leiden

This chapter has been accepted for publication in Human Heredity as: A. Callegaro, J.C. van

Houwelingen and J.J. Houwing-Duistermaat (2009) Robust age at onset linkage analysis in nuclear

families.
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Longevity Study (Beekman et al., 2006), long lived sibling pairs were geno-

typed. When the sibling pairs were sampled, the parents were deceased hence

ages at death of the parents are known, but no genotypes are available. In ad-

dition to the phenotypes of the sib pairs, one also wants to use information

on the parental phenotypes. For quantitative traits, information on parental

phenotypes can easily be included in the weights of a Haseman Elston type of

analysis (Lebrec et al., 2004). The aim of this paper is to derive these weights

for age at onset data.

For linkage analysis of age at onset data, multivariate survival models

based on frailties have been proposed (Callegaro et al., 2009; Commenges, 1994;

Houwing-Duistermaat et al., 2009; Li, 1999, 2002; Li and Zhong, 2002; Pankratz

et al., 2005; Siegmund and Todorov, 2000). In these models the alleles at the dis-

ease locus are represented by unobserved random effects (frailties) which are

transmitted from parents to the children. The indication that different alleles at

the disease locus are associated with the disease is measured by the variance

of these random effects. In this way, frailty models are variance-component

models where the correlation between relatives depends on the number of alle-

les shared identical-by-descent (IBD) at the putative disease locus. The gamma

distribution is most commonly used because of its mathematical tractability

(Callegaro et al., 2009; Houwing-Duistermaat et al., 2009; Li, 1999, 2002; Li and

Zhong, 2002; Siegmund and Todorov, 2000).

In particular, Callegaro et al. (2009) proposed a robust score test for selected

sibling pairs. Their method can be interpreted as a regression of the IBD status

of sibling pairs on a function of their ages at onset. The method is applicable to

sib-pairs selected on the basis of their phenotypes, provided that population pa-

rameters (marginal survival and sib-sib correlation) are available. In this paper

we extend their method to nuclear families of size 4 (2 parents and an affected

sib pair (ASP)).

A drawback of the gamma frailty model is that the corresponding likelihood

becomes very complex when the number of relatives increases. In order to

solve this problem, we derive also a score test from a log-normal frailty model

which can easily be applied to general pedigrees. In the spirit of the work of

Lebrec and van Houwelingen (2007), the score test is derived from a Taylor

approximation of the log-likelihood around random effect equal to zero.

The rest of the paper is organized as follows. In the first section, we describe

the random effect models. We introduce a general model and describe the struc-

ture of the variance-covariance matrix of the random effect. We introduce the

gamma and the log-normal frailty models, and the formula of the weights are

given. We explore the weights as function of the age at onset of the offspring

and of the parents for rare as well as a common disease. For breast cancer and
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life span we describe the weights based on available population parameters.

To study the performance of the proposed methods we perform a simulation

study. Finally, we apply the weighted score tests to the GAW12 simulated data

(Almasy et al., 2001).

3.2 Methods

Random effect models for nuclear families

Let Tij be the random variable of age at onset for relative j in family i. Let

yij = (tij, δij) be the observed phenotype data where tij is the observed age at

onset if δij = 1 and age at censoring if δij = 0. We assume that all the families

consist of two parents (j = 1, 2) and two children (j = 3, 4). Let the vector

Yi = (ti1, δi1, ti2, δi2, ti3, δi3, ti4, δi4) be the phenotypes of the 4 pedigree members

and let Zi = (Zi1, Zi2, Zi3, Zi4) be the vector of random effects (frailties) which

models the dependence between the outcomes of relatives. Under the frailty

model, the conditional hazard for the jth individual in the ith family given a

vector of measured covariates Xij and the random effect Zij is

λ(tij|Xij, Zij) = λ0(tij|Xij)Zij, (3.1)

where λ0(tij|Xij) is the baseline hazard stratified for the covariates Xij. The

marginal hazard h(tij|Xij) is obtained by integrating over the distribution of the

random variable Zij. In this paper we assume that the marginal hazard and the

frailty parameters (ρs, ρp, σ2) are known from previous studies.

For the sake of simpler notation, in the following we drop the family index i.

Two different distributions of the random effects are used, namely the gamma

distribution and the log-normal distribution. For both frailty models, the (j, k)-

th element of the variance-covariance matrix (Σ = Cov(Z)) is given by

Σ(j, k) = σ2

{

a2 + c2 + e2 = 1, if j = k;

(πjk − Eπjk)γ + (Eπjk)a2 + c2, if j 6= k,
(3.2)

where πjk is the proportion of alleles shared identity-by-descent (IBD) between

the members j and k. The parameter γ represents the part of the variance at-

tributable to the linkage effect, a2 denotes the part of the variance explained

by the additive genetic effects, c2 the part of the variance explained by com-

mon environmental effects and e2 the individual effect. The factor Eπjk is the

expected proportion of alleles shared IBD between pedigree members j and

k. The advantage of this parametrization of the covariance matrix is that the

correlation between two siblings can be written in terms of the marginal cor-

relations (ρs) (Tang and Siegmund, 2001). The correlation between siblings
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(ρs(π) = (π − Eπ)γ + ρs ) depends on the number of alleles shared IBD

through the linkage parameter. When the linkage parameter is null (γ = 0)

the correlation is independent of the IBD status, which means that the genetic

marker is not linked with a disease locus. Under the null hypothesis of no link-

age the sib-sib correlation is the marginal correlation (ρs) which is often known

from previous twin studies. In contrast with the sib-sib correlation, the sib-

parent correlation (ρsp = ρs) and the parent-parent correlations (ρp = c2) do

not depend on the linkage parameter. This is due to the fact that parent-sibling

pairs always share one allele IBD and the two parents do not share any alleles

IBD. The likelihood function P(Y|π; γ) for the gamma frailty model and for the

log-normal frailty model are derived in appendix A and B, respectively.

Score tests

To test the null hypothesis H0 : γ = γ0 = 0 versus H1 : γ > 0 a score test is

proposed. For a set of N independent pedigrees the score statistic based on the

retrospective likelihood of the marker data given the phenotypes (see appendix

C) is given by

NPLw =
∑

N
i=1(π̂i − Eπ̂i)wi

√

∑
N
i=1 var0(π̂i)w

2
i

, (3.3)

with weight function

wi =
∂ log P(Yi|πi; γ0)

∂ρ(γπ)
. (3.4)

where log P(Yi|πi; γ) is the prospective log-likelihood. This score statistic is a

weighted NPL statistic (Kruglyak et al., 1996) with known weight functions.

The weight derived from the gamma frailty model is a very complex func-

tion and the closed form is not reported. These weights depend on marginal

frailty parameters (ρs, ρp, σ2
G) and on the marginal cumulative hazard H (see

appendix B for details). The statistic based on this model is denoted by NPL
p
G.

When parental age at onset are not considered (S1 = S2 = 1 and δ1 = δ2 = 0)

this statistic is equivalent to the statistic derived by Callegaro et al. (2009), here

denoted by NPLG.

In contrast, the weight derived from the log-normal frailty model assuming

small random effects (NPL
p
N) is a simple formula (see appendix C for details).

Let δ, Λ0 and M = (δ− Λ0)/Λ0 be the four-dimensional vectors of the event

status, of the baseline cumulative hazards at the age at onset (age at censoring)

and of the standardized martingale residuals, respectively. The weight derived

from the log-normal frailty model is given by the (3,4)-th element of the follow-
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ing matrix

WN = C−1M(C−1M)′ − C−1 (3.5)

where C = DΣD+ D and D = diag(Λ0). The weight depends on the frailty pa-

rameters (ρs, ρp, σ2
N) and on the baseline cumulative hazard which is unknown.

The estimation of this hazard function is not straightforward when the families

have been selected on the phenotypes. In this paper, we estimate the baseline

cumulative hazard by the marginal hazard (Λ̂0 = H) (Wintrebert et al., 2006).

This estimator is valid for small residual effects. However, NPL
p
N gives actual

type I error rates equal to the nominal value irrespectively of the validity of the

baseline estimator.

Note that the classical NPL test (Blackwelder and Elston, 1985) corresponds

to the score statistic (??) with weight equal to wi = δi3 × δi4. In the case of

incomplete marker information the variance of the estimated proportion of IBD

given the marker data (var0(π̂)) can be estimated by simulations (Lebrec et al.,

2004).

3.3 Results

Weight functions

Weight function for common and rare disease models

The weight functions gave us the opportunity to describe the relationship be-

tween the phenotypes of the nuclear family and the information on linkage. We

studied the weight function of the gamma and of the log normally distributed

random effects for a rare and a common disease. For the rare disease we used

a constant marginal hazard rate of 0.001. The corresponding marginal survival

function was equal to 94% and 92% at age 60 and 80 respectively. For the com-

mon disease a constant marginal hazard rate of 0.01 with marginal survival

function equal to 55% and 44% at age 60 and 80 respectively was used. The

sib-sib and parent-offspring correlations were fixed at 0.5 and a parent-parent

correlation of 0.1. Similar results were obtained using different values of these

parameters. For the gamma distributed frailties, we used σ2
G equal to 1 and to

5. For the log normally distributed random effects we used σ2
N = log(1 + σ2

G)

to have similar scales for the gamma and normal distributions. For illustration

purpose, we used the same age at onset for the siblings. Firstly we considered

the situation that both parents had the same age at onset. Secondly we consid-

ered the situation that the parents had discordant phenotypes, i.e. one has early

onset and the other has late onset disease.
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Figure 3.1 shows the gamma frailty weight distribution in the case of rare

and common disease for σ2
G equal to 1 and to 5. When the disease is rare and

the variance of the random effect is small parents’ age at onsets provide little

information (Figure 3.1(a)). On the other hand, when the variance increases

the weight distribution depends on the age at onset of the parents. Note that

the most informative families have discordant siblings-parents phenotypes. In

three of the four configurations (Figures 3.1(a), 1(b) and 1(c)) the most informa-

tive families have early onset siblings and late-onset parents. However, if the

variance is not small and the trait is common the most informative families can

be the families with late-onset siblings and early-onset parents (Figure 3.1(d)).

The weights corresponding to the log normal distribution are depicted in

figure 3.2. For small variance, similar results were obtained. For large values of

the variance the two approaches gave different results. This is due to the fact

that the weights of the normal distributed frailty are accurate only for small

values of the variance.

Results may change when parents have different age at onsets. If late onset

siblings have been selected, concordant early onset parents are more informa-

tive (data not shown). If early onset siblings have been selected, families with

discordant parents appear to be more informative than families with concor-

dant late-onset parents (Figure 3.3 (a)). If discordant siblings have been se-

lected, the most informative families for linkage are families with early-onset

parents (Figure 3.3 (b)). Note that in this case the weights are always negative

because discordant siblings are expected to share less alleles IBD than one.

Weight function for breast cancer

Wienke et al. (2003) modelled the age at onset of breast cancer in Swedish

twins data. Using a correlated frailty model with Gompertz distributed base-

line hazard (λ0(t) = beςt) they estimated the following parameters b̂ = 1/105,

ς̂ = 0.120, σ̂2
G = 25, ρ̂DZ = 0.125 and ρ̂MZ = 0.154. From the marginal

survival and the two correlation parameters (ρp = 2ρ̂DZ − ρ̂MZ = 0.1 and

ρs = ρDZ = 0.125) we computed the weight function for various age at on-

set scenarios. The survival of the father was marginalized (S(t) = 1 and δ = 0)

and the two sisters had the same age at onset. Figure 3.4(a) shows the distribu-

tion of the gamma frailty weight function in terms of the age at onset of the two

sisters and the age at onset of the affected mother. The most informative fam-

ilies have early onset siblings with late-onset mother. In this case the weight

function of the NPL
p
N statistic differs from the weight function of the NPL

p
G,

because the variance of the random effect is large. The weights of NPL
p
N are

almost independent of the age at onset of the mother (data not shown).
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FIGURE 3.1: Weights corresponding to the gamma frailty model as a function of the age at onset of the

ASP and their affected parents. Fig. 1(a): rare disease and σ2
G = 1. Fig. 1(b): rare disease and σ2

G = 5.

Fig. 1(c): common disease and σ2
G = 1. Fig. 1(d): common disease and σ2

G = 5.
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FIGURE 3.2: Weights corresponding to the log-normal model as a function of the age at onset of the

ASP and their parents. Fig. 2(a): rare disease and σ2
N = log(1 + 1). Fig. 2(b): rare disease and

σ2
N = log(1 + 5). Fig. 2(c): common disease and σ2

N = log(1 + 1). Fig. 2(d): common disease and

σ2
N = log(1+ 5).
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FIGURE 3.3: Weights corresponding to the gamma frailty model as functions of the age at onset of the two

parents for a common disease with σ2
G = 5. Fig. 3.3(a): early onset ASP. Fig. 3(b): discordant sibling

pairs.

FIGURE 3.4: Weights corresponding to realistic models for breast cancer (Fig. 4(a)) and for human life

span (Fig. 4(b)).
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Weight function for human life span

In order to study correlation of life span in twins Yashin et al. (1999) fitted a

gamma frailty model to Danish female twins born 1870-1900. They obtained

the following parameters ρ̂DZ = 0.31, ρ̂MZ = 0.51 and σ̂2
G = 1.23. The corre-

lation between parents is equal to ρ̂pp = 2ρ̂DZ − ρ̂MZ = 0.11. We used these

parameters values together with the Dutch marginal survival in order to study

the weights for life span.

Figure 3.4(b) shows the distribution of the gamma frailty weight function

with respect to the age of death of two siblings, and the age of death of the

parents. For simplicity, we assumed that the two siblings and the parents have

respectively the same age at death. The maximum weight is obtained for long-

lived siblings with early deceased parents. The weight function appears to de-

crease for parents older than 70 year. Such effect is less strong for discordant

parents. In fact, the combination of long lived siblings and one early deceased

parent is informative for linkage even if the other parent became long lived

(data not shown). The weight function of the NPL
p
N is very similar to the weight

function of the NPL
p
G, because the variance is rather small (data not shown).

Simulation results

By means of simulations of ASP data we compared the power of the method

proposed by Callegaro et al. (2009) (NPLG) which ignores the parental age at

onset to the power of the two new methods proposed in this paper, NPL
p
G and

NPL
p
N . Age at onset data were generated based on an additive gamma frailty

model with a Gompertz distributed baseline hazard (λ0(t) = beςt). Current

ages were simulated as age at censoring from a uniform distribution U(40, 100).

We studied common diseases where almost 10% and 40% of the population

is affected by age 60 and 80, respectively. We simulated data with two dif-

ferent genetic models with variances of the random effect given by σ2 = 3.3

(b = 1× 10−5, ς = 0.12 ) and σ2 = 1.1 (b = 1 × 9−5, ς = 0.1), respectively.

The random effect was decomposed into the sum of the linkage effect and the

residual shared environmental effect. For each of the two genetic models we

simulated data according to three decompositions of the total random effect.

In the first, the linkage effect explained all the variability of the random ef-

fects (γ = 1). In the second, the linkage effect explained two third of the total

variance (γ = 2/3). Finally, in the third decomposition of the random effect,

the linkage effect explained one third of the total variability (γ = 1/3). Each

configuration included 5000 replications under the null hypothesis and 1000

replications under the alternative hypothesis. For each replication the first 200

nuclear families with ASPs were ascertained.
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We evaluated the performance of the tests with a significance level of

α = 0.05. Under the null hypothesis all the tests have correct type one error

(Table 3.1). Under the alternative hypothesis there is an increase in power in-

corporating the parental age at onset in the weights (Table 3.2). In the case of

large variance of the random effect and small heritability, the gain in power of

NPL
p
G with respect to NPLG is about 60%. Note that NPL

p
G outperforms NPL

p
N

in the case of large variance σ2 because NPL
p
N assumes a small variance of the

frailty.

TABLE 3.1: Type one error comparisons based on 5000 replications of ASP with known parental

age at onset (significance level α = 0.05). No linkage effect (γ = 0).

σ2 = 1.1 σ2 = 3.3

Method a2 = 1 a2 = 2/3 a2 = 1/3 a2 = 1 a2 = 2/3 a2 = 1/3

NPL 0.051 0.050 0.051 0.049 0.049 0.051

NPLG 0.051 0.048 0.048 0.049 0.051 0.048

NPL
p
G 0.048 0.050 0.050 0.049 0.049 0.049

NPL
p
N 0.051 0.047 0.051 0.047 0.049 0.048

TABLE 3.2: Power comparison based on 1000 replications of ASP with known parental age at

onset (significance level α = 0.05). No residual additive effect (γ = a2).

σ2 = 1.1 σ2 = 3.3

Method a2 = 1 a2 = 2/3 a2 = 1/3 a2 = 1 a2 = 2/3 a2 = 1/3

NPL 0.52 0.31 0.18 0.87 0.58 0.26

NPLG 0.68 0.43 0.20 0.98 0.78 0.34

NPL
p
G 0.68 0.46 0.23 0.99 0.88 0.54

NPL
p
N 0.67 0.44 0.21 0.98 0.79 0.36

We further evaluated the robustness of the proposed methods. Figure 3.5

shows the power of the proposed score tests in the case of data simulated with

σ2
G = 3.3 and γ = 1/3. The power is shown for different values of the frailty

parameters specified in the weight (σ2, ρs, ρp). We computed the power as a

function of σ2 for three different values of the heritability a2 = 0.25, 0.5, 0.75.

For simplicity, we defined c2 = 1− a2; ρs = 1/2a2 + c2 and ρp = c2. The hor-

izontal lines represents the unweighted NPL (solid line) which is independent

of the frailty parameters. The proposed methods have maximal power around

the true population parameter values. However, they outperform the classical

NPL methods for a wide range of the frailty parameters used in the weight. For

example, NPL
p
G (Figure 3.5(a)) is more powerful than the classical NPL for ev-
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FIGURE 3.5: Power of the test statistics based on simulated data (significance level α = 0.05). The

horizontal lines represent the power of the unweighted NPL (solid line). Dashed lines, dotted lines,

dashed-dotted lines represent the power of proposed NPL methods assuming a2 = 0.25, 0.5 and 0.75,

respectively. Figure on the left (a): NPL
p
G. Figure on the right (b): NPL

p
N .

ery value of σ2
Z smaller than 15. In a similar way, NPL

p
N is more powerful than

the unweighted method for every value of σ2
N smaller than 10, irrespectively of

the correlation values specified in the weight (Figure 3.5(b)). In this particular

case NPL
p
G is more powerful than NPL

p
N because the data have been simulated

with a large variance of the random effect. Note that when the value of the vari-

ance specified in the weight is equal to zero (σ2 = 0) the two proposed methods

have the same power, and they are more powerful than the unweighted NPL

method.

Application to GAW12 data

We applied the proposed methods to the GAW12 simulated data of general

population (Almasy et al., 2001). Disease data were generated using a complex

model where seven genes influenced the liability and the age at onset. Major

gene 7 directly contributed to age at onset and major gene 6 contributed to the

disease liability. Both genes were located on chromosome 6, respectively at

position 31.5 cM and 30.5 cM. More details on how the data were generated can

be found in Almasy et al. (2001). The GAW12 general population data include a

total of 50 replicates, each of them containing 23 extended pedigrees. From the

first 30 replications we selected 500 independent ASPs with known age at onset

(age at censoring) of the parents. The marginal survival functions and the frailty
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parameters were estimated on the remaining 20 data-sets. For the marginal

survival, we used a Kaplan-Meier estimator stratified by sex and the frailty

parameters by a correlated gamma frailty model (ρs = 0.7, ρp = 0.1, σ2
G = 3.75).

The estimated prevalence of the disease at 70 years is 50% and 25% for females

and males, respectively. We computed the weights for the NPL statistics. For

the weights of the NPL
p
N we used the variance equal to σ2

N = log(1 + σ2
G) =

1.55. The weight values of NPL
p
G and NPL

p
N were quite similar for this data set.

As expected, families with early-onset siblings and late-onset parents had high

values of the weight. However, since we used marginal survival stratified by

sex, the values of the weight depend on the sex configuration of the siblings.

Parental genotypes were not considered in the analysis and the variances

of the IBD (var0(π)) were estimated by multipoint simulations using MERLIN

(Abecasis et al., 2002; Callegaro et al., 2009). Without taking into account the

age at onset, the most significant evidence for linkage was on chromosome 6,

with a NPL LOD score of about 4.5 at the locus of the major gene 7. Further,

we applied the score test of Callegaro et al. (2009) (NPLG) ignoring the parental

ages (LOD=5.5), and finally we applied the two score tests taking into account

the parental age at onset. Figure 3.6 shows that -at the disease locus- NPL
p
N

(LOD=5.6) is slightly more powerful than NPL
p
G (LOD=5.5). In this data set

adjusting for the parental age at onset only slightly changed the results.

3.4 Discussion

In order to map disease genes involved in complex traits one may want to use

all available information. A common strategy for linkage is to collect large sam-

ples of ASP. In this paper, we extended the score test of Callegaro et al. (2009) to

include the parental ages at onset or current ages. When frailty parameters are

known, the score statistic is a classical NPL statistic (Kruglyak et al., 1996), with

known weights depending on the siblings and on the parental ages at onset.

We also derived a score test from a log normal frailty model. Assuming small

random effects, the weight function derived from this model is very simple and

it can easily be computed for general sibship sizes.

The weight functions gave us the opportunity to study the complex relation-

ship between age at onset and linkage effect. We explored the weight function

for rare and common disease models. In line with previous papers on ASP

(Callegaro et al., 2009; Li and Zhong, 2002) our results show that age at onset is

not informative for rare diseases. In the case of common diseases, discordant

parent-sibling families appear to be the most informative for linkage. A simi-

lar result was obtained for quantitative traits (Lebrec et al., 2004). The study of

the weight distribution for breast cancer suggests that families with early onset
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FIGURE 3.6: Genetic Linkage analysis of the GAW12 data on chromosome 6. Straight lines represents

NPL method, dashed line represents NPL
p
G method, and pointed line represents NPL

p
N method.

sister pairs and late onset (unaffected) mothers are the most informative fam-

ilies to detect linkage. From the model for human life span our results show

that long lived sibling pairs with early deceased parents are the most informa-

tive. In fact, selecting ASP with affected parents might increase the number of

copies of any given disease-related variant in families. Families carrying mul-

tiple copies of a disease-related allele may not show linkage since the affected

individuals may inherit that allele from different ancestors and therefore not

deviate from expected IBD sharing (Wallace and Clayton, 2006).

Simulation results showed that adjusting for the parental age at onset can

considerably increase the power to detect linkage. In fact, for common dis-

ease with small heritability, the gain in power of NPL
p
G compared to NPLG

was about 60%. We applied the proposed methods to GAW12 simulated data.

The NPL scores taking into account the parental age of onset outperformed the

NPL method which ignores the age at onset. However, the performance of the

proposed methods was similar to the performance of NPLG, which ignores the

parental data. This result can be interpreted in terms of the number of families

with discordant age at onset in siblings and parents. In fact, only few families

were available with early-onset siblings and late-onset parents. Suppose for ex-
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ample that early onset is defined as disease with age of onset before 30 (preva-

lence of 93%) and late onset is defined as disease with age of onset/censoring

after 60 (prevalence of 50%). In this case only 10 families out of 500 were avail-

able with early-onset siblings and late-onset parents.

The proposed methods can only be applied when population parameters

are known. However, the values of these parameters are available for many

phenotypes, such as aging (Yashin et al., 1995), breast cancer (Wienke et al.,

2003), coronary heart disease (Zdravkovic et al., 2002), malignant melanoma,

colon cancer, (Zahl, 1997) etc. Further, we showed the robustness of these

methods against misspecification of the frailty parameters. Simulation results

showed that the proposed methods are not very sensitive for the frailty param-

eter values specified in the weight. The derived score tests have several advan-

tages with respect to likelihood-ratio approaches (Jonker et al., 2009; Li, 2002;

Li and Zhong, 2002; Pankratz et al., 2005). First of all, they maintain correct

type I error irrespectively of the weights. Second, they can easily be applied to

selected samples. Finally, they are simpler and computationally faster because

they are computed under the null hypothesis.

It is interesting to compare the two score tests proposed. The additive

gamma frailty model is mathematically appealing because the random effects

can be integrated out, which allows us to work with observable marginal sur-

vival functions. However, results obtained from these additive models should

be interpreted carefully (Petersen et al., 1996) . It may be more intuitive if the

variance components act multiplicatively, like unobserved covariates in a Cox

model (Cox, 1972). Another problem is that the likelihood function becomes too

complicated to write down for general pedigrees. In contrast, the log normal

model is a multiplicative model. Hence the parameters may be better inter-

pretable. The formula of the weight is simple, and it can easily be computed

for sibships of any size. The main limitation of this model is that it is power-

ful only for small values of the random effects. In this paper, we estimated the

baseline hazard with the marginal hazard. A possibility to improve the power

of the test based on the log-normal weight is to derive the baseline hazard using

numerical methods.

An interesting extension of the proposed models is to include a cure frac-

tion, like in the paper of ?. If the cure effect is estimable, these extended models

may better explain the data than standard survival methods.

In summary, we derived two different weights for the NPL statistic to take

into account the age at onset or current age of two selected siblings and their

parents. When the variance of the random effect is large (σ2
G > 3) we recom-

mend to use the weight based on the gamma frailty model. When the variance

of the random effect is small the two proposed methods have similar perfor-
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mance. However, in this case we recommend to use the log-normal weight

because the formula is much simpler and it can be computed for sibships of

arbitrary sizes.

The relation between the linkage effect, the age at onset of the siblings and

their parent is complex and depends on many parameters. This paper is an

attempt to understand this relationship and to use it to increase the power to

detect linkage. Software to apply the described methods are freely available

from our website (http://www.msbi.nl/genetics).

Appendix

A: Additive gamma frailty model

Let the random effect Z in model (3.1) be the sum of four independently gamma

distributed random effects (Z = Zg + Zp + Uc + Ue). Here Zg,ik ∼ Γ(νg, 1/σ2)

represents the linkage effect, Zp,ik ∼ Γ(νp, 1/σ2) the residual additive effect,

Uc,i ∼ Γ(νc, 1/σ2) the common environment effect and Ue,ik ∼ Γ(νe, 1/σ2) the

individual effect. In order to obtain E(Z) = 1 we assume σ2 = 1/(νg + νc +

νp + νe). Following the work of Commenges (1994) the linkage effect is mod-

elled by the sum of two effects which represent the alleles inherited from the

parents. Using this model the variance-covariance matrix of the random effects

is equal to the classical variance-covariance matrix for quantitative traits (3.2)

where the linkage effect is given by γ = νg/(νg + νc + νp + νe).

From this model the following four-dimensional marginal survival function

can be derived (see below for details)

S1234(π; γ) =

K
−

ρp

σ2

1234

4

∏
j=1

K
−

1−2ρs+ρp

σ2

j

2

∏
i=1

[Ki34Ki3Ki4Ki]
− 1

2 (1−τ)
ρs−ρp

σ2 ×

[K13K14K23K24]
− 1

2

ρp−ρs(π)+(1+τ)(ρs−ρp)

σ2 ×

[K134K234K1K2]
− 1

2

ρs(π)−ρp−(1−τ)(ρs−ρp)

σ2 . (3.6)

where KB = ∑j∈B exp(σ2Hj) − b + 1 with Hj =
∫ tj

0 h(u)du the marginal cu-

mulative hazard of the jth subject, B a subset of the indexes {1, 2, 3, 4}, the

parameter b is the number of elements in B. The prospective likelihood of

the phenotypes (Y) conditional on the proportion of alleles shared IBD (π) is

a function of (3.6). In fact, the joint survival and density function for a family

46



Chapter 3. Robust age at onset linkage analysis in nuclear families

with d = ∑
4
j=1 δj affected and 4− d unaffected relatives is

P(Y|π; γ) = (−1)d ∂dS1234(π; γ)

∂δ1 t1∂δ2 t2∂δ3 t3∂δ4 t4
,

where ∂δj tj = ∂tj if δj = 1 and ∂δj tj = 1 if δj = 0. The prospective likelihood

corresponds to the four dimensional survival function S1234(π; γ) when d = 0.

Note that the frailty parameters (ρs, ρp, σ2) can be obtained from twin studies

and that under the null hypothesis τ =
νg

νg+νp
= 0 and ρs(π) = ρs.

Semiparametric four-dimensional survival function

Arbitrarily label the paternal chromosomes as (1,2) and the maternal chro-

mosomes as (3,4). The inheritance vector of a sib-pair is the vector

Vd = (υ1, υ2, υ3, υ4)

where υ2j−1 = 1 or 2, υ2j = 3 or 4, for j = 1, 2. The inheritance vector indi-

cates which parts of the genome are transmitted to the children from the father

and the mother. The linkage effect is modeled by the sum of two allelic effects

(Ug ∼ Γ(νg/2, 1/σ2)). The linkage effect of the father and of the mother are

equal to Zg,1 = Ug,1 + Ug,2 and to Zg,2 = Ug,3 + Ug,4, respectively. The linkage

effect of the jth sibling, j = 3, 4 is equal to Zg,j = ∑
4
k=1 Ug,kakj, where akj = 1

if ν2(j−2)−1 = k or ν2(j−2) = k, and 0 otherwise. The residual additive ran-

dom effect is modelled as the sum of four random effects (Up ∼ Γ(νp/4, 1/σ2)).

The residual additive random effect of the father and of the mother are equal

to Zp,1 = Up,1 + Up,2 + Up,3 + Up,4 and Zp,2 = Up,5 + Up,6 + Up,7 + Up,8

respectively. The residual additive effects of the two siblings are given by

Zp,3 = Up,1 + Up,2 + Up,5 + Up,6 and Zp,4 = Up,1 + Up,3 + Up,5 + Up,7, respec-

tively.

The total random effect of the jth individual, j = 1, ..., 4 is given by the

Zj = Zg,j + Zp,j + Zc + Ze,j where Zc ∼ Γ(νc, 1/σ2) represents the common

environmental effect and Ze,j ∼ Γ(νc, 1/σ2) represents the non-shared environ-

mental effect.
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Then the marginal bivariate survival of two siblings is given by

S1234 = E[SZ1
1 SZ2

2 SZ3
3 S

Z4
4 ] =

E[exp(−Uc

4

∑
j=1

Λj)
4

∏
j=1

exp(−Ue,jΛj)

exp(−Up,1(Λ1 + Λ3 + Λ4)) exp(−Up,2(Λ2 + Λ3 + Λ4))

exp(−Up,3(Λ1 + Λ3)) exp(−Up,4(Λ2 + Λ3))

exp(−Up,5(Λ1 + Λ4)) exp(−Up,6(Λ2 + Λ4))

exp(−Up,7Λ1) exp(−Up,8Λ2) exp(−Ug,1(Λ1 + a13Λ3 + a14Λ4))

exp(−Ug,2(Λ1 + a23Λ3 + a24Λ4)) exp(−Ug,3(Λ2 + a33Λ3 + a34Λ4))

exp(−Ug,4(Λ2 + a43Λ3 + a44Λ4))],

S1234 = (1 + σ2
4

∑
j=1

Λj)
−νc [

4

∏
j=1

(1 + σ2Λj)]
−νe

[
2

∏
i=1

(1 + σ2(Λi + Λ3 + Λ4))(1+ σ2(Λi + Λ3))

(1 + σ2(Λi + Λ4))(1 + σ2(Λi))]
−

νp
4

[(1 + σ2(Λ1 + a13Λ3 + a14Λ4))(1 + σ2(Λ1 + a23Λ3 + a24Λ4))

(1 + σ2(Λ2 + a33Λ3 + a34Λ4))(1 + σ2(Λ2 + a43Λ3 + a44Λ4))]
−

νg
2 .

In the following we apply the transformation Λj = (S−σ2

j − 1)/σ2 where Sj is

the marginal survival of the jth subject. If we define KB = ∑j∈B exp(σ2Hj)−

b + 1, B is a subset of the elements (1, 2, 3, 4) and b is the number of elements

in B then the survival functions for 0 and 1 proportion of allele shared IBD are

given by

S1234|π=0 = K−νc
1234

4

∏
j=1

K−νe
j

2

∏
i=1

[Ki34Ki3Ki4Ki]
−νp/4[K13K14K23K24]

−νg/2

S1234|π=1 = K−νc
1234

4

∏
j=1

K−νe
j

2

∏
i=1

[Ki34Ki3Ki4Ki]
−νp/4[K134K234K1K2]

−νg/2.

If the parental genotypes are unknown then the survival conditioned on half of
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the alleles shared IBD is the mean of the two survival functions

S1234|π=0.5 =K−νc
1234

4

∏
j=1

K−νe
j

2

∏
i=1

[Ki34Ki3Ki4Ki]
−νp/4×

[K134K23K24K1]
−νg/2 + [K234K13K14K2]

−νg/2

2
.

In order to simplify the formula, we approximate the arithmetic mean with a

geometric mean

S1234|π=0.5 ≈ K−νc
1234

4

∏
j=1

K−νe
j

2

∏
i=1

[Ki34Ki3Ki4Ki]
−νp/4−νg/4.

If follows that the approximated 4D survival function is given by

S1234 =K−νc
1234

4

∏
j=1

K−νe
j

2

∏
i=1

[Ki34Ki3Ki4Ki]
−

νp
4 ×

[K13K14K23K24]
−

νg(1−π)
2 [K134K234K1K2]

−
νgπ

2 .

B: Log-normal frailty model

Let δ, Λ0 and V = log Z be the four-dimensional vectors of the status, of the

baseline cumulative hazards at the age at onset (age at censoring) and the nor-

mally distributed random effects of the four pedigree members, respectively.

The random effect V follows a multivariate normal distribution with mean zero

and covariance matrix Σ (3.2). The log-likelihood can be approximated by us-

ing a second order Taylor approximation around V = 0. For small σ2
V , it follows

that

log P(Y|Λ0, V) ≈
4

∑
i=1

ci −
1

2
Λ0,i(

δi −Λ0i

Λ0i
−Vi)

2.

When the baseline cumulative hazard is known, the vector of standardized phe-

notypes behaves as a normal distribution (Wintrebert et al., 2006). Integrating

over the distribution of the random effect gives

δ−Λ0

Λ0
∼ N(0, Σ+ diag(1/Λ0)),

and the vector of the baseline martingale residuals is distributed as

M = δ−Λ0 ∼ N(0, DΣD + D),
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where D = diag(Λ0). It follows that for small σ2
V , the four-dimensional likeli-

hood is given by

P(Y|π; γ) ≈ |C|−1/2 exp(−
1

2
M′C−1M), (3.7)

where C = DΣD + D.

C: Retrospective likelihood

Using Bayes rule the retrospective log-likelihood of the marker data (MD) given

the phenotype Y (Li and Zhong, 2002; Whittemore, 1996) is given by

ℓ(γ) = log P(MD|Y, γ)

= log[ ∑
π∈{0,0.5,1}

P(Y|π; γ)gπ]

− log[ ∑
π∈{0,0.5,1}

P(Y|π; γ)pπ] + log P0(MD),

where gπ = P0(π|MD), pc = P0(π), and P0 is the probability assuming inde-

pendent assortment of chromosomal regions to gametes.
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