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CHAPTER 2

Score test for age at onset genetic

linkage analysis in selected

sibling-pairs

Abstract

A new score statistic is derived which uses information from registries (age-

specific incidences) and family studies (sib-sib marginal correlation) to weight

affected sibling pairs according to their age at onset. Age at onset of sibling

pairs is modelled by a gamma frailty model. From this model we derive a bi-

variate survival function which depends on the marginal survival and on the

marginal correlation. The score statistic for linkage is a classical Non Parametric

Linkage statistic where the identical by descent sharing is weighted by a par-

ticular function of the age at onset data. Since the statistic is based on survival

models, it can also be applied to discordant and healthy sibling pairs. Simula-

tion studies show that the proposed method is robust and more powerful than

standard nonparametric linkage methods. As illustration we apply the new

score statistic to data from a breast cancer study.

2.1 Introduction

Although many traits are heritable, identification of responsible genes appears

to be a challenge. Recently new loci have been discovered by genome wide as-

sociation studies, but they explain only a part of the genetic variation and a lot

remains to be recovered. Focussing on chromosomal areas with linkage signals

is a way to find these genes. In practice, to perform linkage analysis families

are selected based on their phenotypes. A commonly used design for linkage is

This chapter has been published as: A. Callegaro, H. C. van Houwelingen, and J. J. Houwing-

Duistermaat (2009). Score test for age at onset genetic linkage analysis in selected sibling-pairs.

Statistics in Medicine 28, 1913–1926.
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the affected sibling pair design (ASP). When age at onset is available and varies

among sibling pairs the question arises whether age at onset contributes to the

linkage effect. In the ASP data it is not possible to estimate the marginal (popu-

lation) survival function and/or the marginal correlation between siblings from

the data. However, registries provide accurate estimation of the marginal haz-

ard rate since it is based on thousands of individuals. From twin studies, the

estimates of sib-sib correlations are also available for many diseases (Wienke

et al., 2003; Yashin et al., 1995; Zahl, 1997; Zdravkovic et al., 2002). Using this

information, we propose a new score test for age at onset in linkage analysis. If

age at onset plays a role the power to detect linkage will be increased.

As a motivating example, we consider a Dutch ASP data set on breast cancer

for genetic linkage analysis. The ages at onset of the ASP are known. Informa-

tion on age specific incidence is available from the Dutch breast cancer registry

(http://www.rivm.nl/vtv/object_document/o1502n17276.html). Frailty

parameters of the Dutch population are unknown, however they have been

estimated for the Swedish population (ρ = 0.125 and σ2 = 25) (Wienke et al.,

2003). The question is whether evidence for linkage depends on age at onset.

To answer this question we derive a new score test and apply it to these data.

The new score test is derived from a model for dependent survival data.

Hougaard (2000) discusses various multivariate survival models. The depen-

dence between relatives can be modelled using random effects survival mod-

els (frailty models). The observed times of a pair of relatives are independent

given the unobserved frailty. Clayton (1978) and Vaupel et al. (1979) proposed a

frailty model where the dependence between observations is modelled by one

shared random effect. In order to describe more complex dependency struc-

tures the shared model was extended by Yashin et al. (1995), who proposed a

correlated frailty model to jointly model the correlation structure of monozy-

gotic and dizygotic twins. Since monozygotic twins share all their genes and

dizygotic twins share only half of their genes, times observed in monozygotic

twins are more correlated than the outcomes of dizygotic twins when genetic

effects play a role. To model these correlations Yashin et al. (1995) divided the

frailty into a sum of independent gamma-distributed effects. These additive

models are mathematically appealing and can be considered as variance com-

ponents models for life times (Petersen, 1998; Petersen et al., 1996).

For genetic linkage analysis, methods based on frailty models have been

proposed for survival data (age at onset) (Commenges, 1994; Jonker et al., 2009;

Li and Zhong, 2002; Pankratz et al., 2005; Siegmund and Todorov, 2000; Sun and

Li, 2004). Commenges (1994) proposed a frailty model where the linkage effect

is decomposed into the sum of two random effects representing the two alleles

at the locus linked to a disease susceptibility gene. This model considers only
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one linkage effect, hence under the null hypothesis of no linkage, relatives are

assumed to be independent. For complex genetic traits this assumption is not

realistic. In order to take into account residual correlation Li and Zhong (2002)

proposed an additive gamma-frailty model where the frailty is decomposed

into the sum of the linkage effect and a shared residual effect. This model is a

shared frailty model under the null hypothesis of no linkage (correlation equal

to one). In the line of the work of Yashin et al. (1995), Jonker et al. (2009) ex-

tended the Li and Zhong model by adding an individual effect, in such a way

that, even at an unlinked locus the model is a correlated frailty model. The

main limitation of all these frailty methods for linkage is that they are not valid

for selected samples.

In this paper, using a correlated gamma frailty model (Jonker et al., 2009)

together with a retrospective likelihood (Kruglyak et al., 1996; Li and Zhong,

2002; Whittemore, 1996), we derive a score test valid for any ascertainment

scheme. It is a weighted nonparametric linkage (NPL) statistic (Kruglyak et al.,

1996) where the (centered) proportions of alleles shared identical by descent

(IBD) are weighted by a known function of the ages at onset of the two siblings.

The proposed method is an extension of the score test proposed by Houwing-

Duistermaat et al. (2009), which is derived from a shared-frailty model. Both

methods are similar in spirit to the linkage analysis of quantitative traits in

selected samples (Lebrec et al., 2004; Sham and Purcell, 2001; Tang and Sieg-

mund, 2001; Tritchler et al., 2003), which also uses known information on the

distribution of the phenotype. In general, with respect to the likelihood-ratio

approaches (Jonker et al., 2009; Li and Zhong, 2002) the score test is less model

dependent and therefore more robust against misspecification of the model.

In section 2.1 we briefly describe the correlated frailty model for twins stud-

ies (Yashin et al., 1995). In section 2.2 we show that a similar model can be used

for linkage analysis and we derive the conditional hazard ratio for relative pairs

who share 0,1, or 2 IBD alleles. In section 2.3 we derive a score statistic from the

retrospective likelihood of the marker data conditional on the phenotype in or-

der to test for linkage. The power and the robustness of the proposed method is

studied in section 3 by means of simulation. In section 4 we illustrate the score

test by analyzing age at onset data on breast cancer (Oldenburg et al., 2008).

Conclusions, some remarks and suggestions for future developments are given

in section 5.
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2.2 Methods

Correlated frailty model for twin data

Let Tj and Zj (j = 1, 2) be the life span and the frailties of two related individ-

uals. The observed data are given by yj = (tj, δi) where tj is the observed age

at onset if δj = 1 and age at censoring if δj = 0. The individual hazards are in-

dependent given Zj and represented by the hazard model λj(t) = λ0(t; Xj)Zj,

j = 1, 2. Note that we assume a general dependence between the baseline haz-

ard (λ0) and the vector of covariates (Xj).

To jointly model survival data observed in monozygotic and dizygotic

twins, Yashin et al. (1995) proposed an additive gamma model. Outcomes ob-

served in twins may be correlated due to shared environmental and genetic ef-

fects. Because dizygotic twins share half of their genes and monozygotic twins

share all their genes, the outcomes of monozygotic twins are more correlated

than the outcomes of dizygotic twins when genetic effects are present. To model

this difference in correlation, Yashin et al. (1995) used three gamma distributed

components, namely one component for correlation due to genetic effects, one

component model for correlation due to shared environmental effects, and one

component for individual variation. Let (Z1, Z2) be the frailties for twin 1 and

twin 2 respectively. Then these frailties can be written as follows

Z1 = Z1a + Zc + Z1e

Z2 = Z2a + Zc + Z2e.
(2.1)

with (Z1a, Z2a) modelling additive genetic effects which are common for

monozygotic twins and partly shared by dizygotic twins, Zc modelling shared

environmental effects which are common for monozygotic as well as dizy-

gotic twins and (Z1e, Z2e) modelling individual variation. These latter com-

ponents are independent. The three components follow a gamma distribution

with the following parameters Zja ∼ Γ(νa, 1/σ2), Zc ∼ Γ(νc, 1/σ2) and Zje ∼

Γ(νe, 1/σ2). It is common to use the following constraint 1/σ2 = νa + νc + νe in

order to obtain E(Zj) = 1, j = 1, 2. Let a2 = νaσ2, c2 = νcσ2 and e2 = νeσ2, then

the correlation between the frailties (Z1, Z2) is given by

ρΨ = 2Ψa2 + c2, (2.2)

with Ψ the kinship coefficient (Ψ = 1/2 for monozygotic twins and Ψ = 1/4

for DZ twins).

Now the marginal bivariate survival function S12(t1, t2) can be written as

function of univariate survival functions, ρΨ and σ2:

S12(t1, t2) =
S1(t1)

1−ρΨS2(t2)
1−ρΨ

(S1(t1)−σ2 + S2(t2)−σ2 − 1)ρΨ/σ2 , (2.3)
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where Sj = exp(−Hj) is the marginal survival, and Hj is the marginal cumula-

tive hazard for the jth twin.

Correlated frailty model for linkage analysis of sibling pairs

For linkage analysis of survival data observed in sibling pairs, a similar model

can be used. Instead of modelling the correlation of the frailties as a function

of the kinship coefficients, the correlation is modelled as a function of the pro-

portions of alleles shared identical by descent (π) at a particular locus. When

linkage at a locus is present, the correlation between frailties tends to increase

with the number of alleles shared IBD. The decomposition of the frailty is given

by

Z1 = Z1l + Zs + Z1e

Z2 = Z2l + Zs + Z2e,
(2.4)

with (Z1l , Z2l) correlated components which model linkage at the locus, Zs a

component which models correlation due to shared effects and (Z1e, Z2e) inde-

pendent components which model individual variation. To model the correla-

tion due to sharing alleles IBD at a locus, Commenges (1994) and Li and Zhong

(2002) wrote the random component Zjl (j = 1, 2) as the sum of two random

effects representing the two alleles of the jth individual (see appendix 1). Based

on this decomposition and using an additive genetic model for the locus, the

correlation between (Z1l , Z2l) is equal to the proportion of alleles shared IBD

(π). Note that if only data on siblings are available, the shared environmental

and residual genetic effects cannot be disentangled, hence Zs also models corre-

lation due to unlinked genes. When relative pairs with different kinship coeffi-

cients are available, a residual genetic effect and a shared environmental effect

can be modelled. The three components are gamma distributed with the fol-

lowing parameters: Zjl ∼ Γ(νl, 1/σ2), Zs ∼ Γ(νs, 1/σ2) and Zje ∼ Γ(νe, 1/σ2).

The variance of the random effect is (1/σ2 = νl + νs + νe).

Let γ = νlσ
2 be the linkage parameter. The correlation between the frailties

(Z1, Z2) of two siblings given π at the locus is given by

ρπ = πγ + s2, (2.5)

where s2 = νsσ
2 and the bivariate survival function is now

S12(t1, t2|π; γ) =
S1(t1)

1−ρπ S2(t2)
1−ρπ

(S1(t1)−σ2 + S2(t2)−σ2 − 1)ρπ/σ2 . (2.6)

The correlation between the two frailties given π (2.5) can also be written in

terms of the marginal sib-sib correlation ρ (Tang and Siegmund, 2001)
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ρπ = (π− Eπ)γ + ρ = (π − 1/2)γ + ρ, (2.7)

with the marginal sib-sib correlation equal to ρ = 1/2γ + s2. Note that if a

linkage effect is present at the locus (γ > 0), the correlation between frailties

of siblings sharing two alleles IBD will be higher and the correlation between

frailties of siblings sharing zero alleles IBD will be lower than the correlation in

the population. The model used by Li and Zhong (2002) corresponds to model

(2.4) without the term Zje, hence assuming νe = 0. Note that for νe = 0 the

marginal correlation ρ equals 1 under the null hypothesis of γ = 0. It follows

that for unlinked loci the Li and Zhong (2002) model corresponds to a shared

frailty model.

Model (2.6) with the parametrization (2.7) is particularly attractive in link-

age analysis where sib-pairs are commonly selected on the phenotype, be-

cause it depends on information about the age at onset at the population level

(S(t), ρ, σ2). This information is often available from registries and family (twin)

studies. For example, when twin data have been analyzed using model (2.1) es-

timates of the variance σ2 and the marginal sib-sib correlation ρ are available

(ρ = 1/2â2 + ĉ2).

From the proposed model, the conditional hazard ratio function for sib pairs

(Clayton, 1978; Li and Zhong, 2002; Oaks, 1989) given π is given by

φπ(t1, t2) =
λπ(t1|T2 = t2)

λπ(t1|T2 > t2)
= 1 +

ρπσ2

∆1π∆2π
, (2.8)

where ∆1π = (1 + (1 − ρπ)S(t1)
σ2
(S(t2)

−σ2
− 1)) and ∆2π = (1 + (1 −

ρπ)S(t2)
σ2
(S(t1)

−σ2
− 1)). The conditional hazard ratio is a decreasing func-

tion from 1 + ρπσ2 to 1 + ρπσ2/(2− ρ2) when t1 = t2 = t. When e2 = 0 the

conditional hazard ratios reduce to those derived in Li and Zhong (2002).

As an example we show the conditional hazard ratio for breast cancer us-

ing the Dutch marginal survival function (Figure 2.1(a)) and marginal frailty

parameters for the Swedish population (ρ = 0.125, σ2 = 25) (Wienke et al.,

2003). Figures 2.1(b) to 1(d) show the conditional hazard ratio (2.8) for siblings

sharing 0, 1 and 2 alleles shared IBD at the disease locus which explains 10% of

the total variability (γ = 0.1). Clearly φ(t1, t2) depends on the ages of the two

siblings: if t2 is small then the cross ratio decreases with t1 but when t2 is large,

the cross ratio is an increasing function of t1. The ratio increases with respect

to the number of alleles shared IBD. The cross-ratios observed under the null

hypothesis of no linkage corresponds to the case of 1 allele shared IBD (Figure

2.1(c)).
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Score test for selected sib-pairs

Denote the genotypes at the marker by MD. From these marker data the prob-

ability of the proportion of alleles shared IBD by a sib-pair P0(π|MD) can be

estimated at each location by standard software for linkage analysis (i.e. MER-

LIN (Abecasis et al., 2002), GENEHUNTER (Kruglyak et al., 1996)). For selected

samples, the conditional distribution of the marker data given the phenotype

y=(t1, δ1, t2, δ2) gives a natural framework for testing linkage (Kruglyak et al.,

1996; Whittemore, 1996). The retrospective log-likelihood is given by

log P(MD|y; γ) = log[ ∑
π∈{0,0.5,1}

P(y|π; γ)P0(π|MD)]−

log[ ∑
π∈{0,0.5,1}

P(y|π; γ)P0(π)] + log P0(MD).

P(y|π; γ) is the likelihood of two individuals who share π proportion of allele

shared IBD (Appendix 2) and is derived from the marginal bivariate survival

function (2.6). P0(π) is the probability under the null hypothesis of no linkage.

To test the null hypothesis H0 : γ = γ0 = 0 versus H1 : γ > 0, a score

test based on the retrospective likelihood is proposed. The score statistic for n

independent sib-pairs is given by

NPLρ =
∑

n
i=1(π̂i − Eπi)ℓρ ,i(γ0)

√

∑
n
i=1 var0(π̂i)ℓρ ,i(γ0)2

, (2.9)

where π̂i is the expected value of the π given the marker genotypes of the ith

sib-pair, Eπi = 1/2 for sibling pairs and ℓρ ,i(γ0) =
∂ log P(yi|π;γ0)

∂ρ (Appendix

3). For the univariate survival functions the known population (marginal) sur-

vivals are used and for (ρ, σ2) the values are obtained from previous twin stud-

ies. The variance (the denominator) of the statistic is the robust empirical vari-

ance given by the square of the score function. In the case of incomplete data

on IBD, var0(π̂i) can be estimated by multipoint simulations.

The statistic (2.9) is part of a class of statistics for genetic linkage called

weighted NPL statistics (Kruglyak et al., 1996) where the excess IBD sharing

(π − Eπ) is weighted by particular weight functions. In our case the weight

function, ℓρ(γ0), depends on the marginal survival distribution of the two sib-

lings and on the population frailty parameters. For breast cancer we show how

the weights depend on the ages of the two siblings. Figure 2.2(left) shows the

contour plot of the weights for ASP. Figure 2.2(right) shows the contour plot of

the weight for discordant sibling pairs, i.e. one sibling is affected and the other

sibling is censored. Figure 2.2 shows that the largest weights are assigned to

early-onset sibling pairs.
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FIGURE 2.1: Conditional hazard ratios for sib pair (1,2) with breast cancer for the three IBD categories.

Fig 1(a) shows the Dutch breast cancer marginal survival function. Subfigures (b), (c) and (d) show

the conditional hazard ratio for siblings sharing 0, 1 and 2 alleles IBD.
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FIGURE 2.2: Weight function for breast cancer. Figure Left: Contour plot of ℓρ(γ0) for ASP. Figure Right:

Contour plot of ℓρ(γ0) for one affected sibling (sib 1) and one unaffected sibling (sib 2).

In the next sections we will compare the proposed score statistic (NPLρ)

with the unweighted mean test (NPL) (Blackwelder and Elston, 1985) and

with two score tests derived from additive gamma frailty models namely

NPL0, and NPLρ(ρ=1). NPL0 is a weighted NPL statistic where the excess IBD

is weighted by the product of the martingale residuals of the two relatives

(w = (δ1 − H1)(δ2 − H2)) (Commenges, 1994; Houwing-Duistermaat et al.,

2009). This statistic is derived from the retrospective likelihood correspond-

ing to the model of Commenges (1994). The score test NPLρ(ρ=1) is given by

(2.9) with ρ equal to one and the variance equal to the variance estimated at

population level by a gamma shared frailty model. This test is the score test for

the Li and Zhong (2002) model.

For genome-wide analysis, the NPL statistic is computed at each marker

locus. Morton (1955) obtained the threshold level of 3 (p=0.0001) for the LOD-

score (defined as sign(NPL)NPL2/(2ln10)) used to declare the presence of link-

age in a genome-wide study.

2.3 Simulation studies

Gamma frailty model

Age at onset was simulated from gamma frailty models, with Gompertz dis-

tributed baseline hazard (λ0(t) = beτt, b = 1/105, τ = 0.120). Current age was

simulated as age at censoring from a uniform distribution U(60, 80). In order

to obtain an estimate of the marginal survival we calculated Kaplan Meier sur-

vival using an independent simulated population of 5000 random pedigrees.
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Respectively 10% and 40% of the population was affected by age 60 and 80.

Two configurations of random effects were considered. In the first, data were

simulated without environmental effects (γ = 1, s2 = 0, e2 = 0). In the sec-

ond, data were simulated with shared and unshared environmental effects

(γ = 0.33, s2 = 0.33, e2 = 0.33). In both cases, the variance of the random

effect was equal to σ2 = 3.3 and the marginal sib-sib correlation was equal to

ρ = 0.5. Each scenario included 10000 replications. For each replication the first

200 affected sib pairs (ASPs) were used for analysis.

Figure 2.3 shows the power (proportion of LOD scores greater than 3) of the

proposed score test (NPLρ) as a function of σ2 for different values of the param-

eter ρ. Long-dashed lines represent the power of the NPLρ method when the

true population correlation is used in the weight function. The two horizontal

lines represent the NPL (solid line) and the NPL0 test (dashed line). These tests

are independent of the frailty parameters. NPLρ has maximal power around

the true population parameters values. There is a considerable gain in power

achieved by our method when the population frailty parameters are known. In

the case of no environmental effect, the gain in power of the proposed NPLρ

compared to the NPL0 and to the unweighted NPL method is about 5% and

20%, respectively (Figure 2.3 left). In the case of environmental effects, the gain

in power of the proposed NPLρ compared to the NPL0 and to the unweighted

NPL method is about 15% and 50%, respectively (Figure 2.3 right). The pro-

posed method performs better than the other methods for a wide range of

(ρ, σ2) values specified in the weight. For example, in the first configuration

(Figure 2.3 left) the marginal values of the frailty parameters are (ρ, σ2)=(0.5,3.3)

but the score test NPLρ is more powerful than the classical NPL test for all the

values of ρ > 0.1 and σ2 < 4. For σ2 values smaller than the population value,

NPLρ and NPL0 have similar performance. Note that also NPL0 performs bet-

ter than the classical NPL method. When the value of σ2 used in the weight

function is larger than twice the marginal value, NPLρ loses power with respect

to the NPL method.

For each configuration of data, we also simulated under the null hypothesis.

All the tests have correct type I error rates (data not shown).

Dominant major gene model

Age at onset data were generated using a major gene model with a normally

distributed residual effect, as described by Commenges and Abel (1996). The

annual incidence was assumed to be constant and equal to 0.002 over the in-

terval 0-60 years, then 11% of the population is affected by age 60 years (Fig-

ure 2.4(left)). A normally distributed underlying liability, s = µ + ǫ, was

assumed with a major gene effect (µ), and an individual environment ef-
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FIGURE 2.3: Power of the test statistics based on Gamma frailty simulated data. Horizontal lines repre-

sent the unweighted NPL (solid line) and the NPL0 method (dashed line). Dotted lines, long-dashed

lines and solid lines represent the power of NPLρ with correlation values ρ=0.1, 0.5 and 1, respectively.

Figure Left: No environmental effect. Figure Right: environmental effects.

fect (ǫ ∼ N(0, 0.648)). The major gene was diallelic (A/B) with p = 0.05,

µBB = −0.195 and µAA = µAB = −1.805. Affection at age k was defined

by having a s value above an age specific threshold (thrk). An individual

with a liability value less than the last threshold value (thr60) was not af-

fected; otherwise he became affected at age k such that thrk < s < thrk−1 with

thr0 = ∞. The cumulative probability of being censored by age k was equal

to Pc(k) = 1/[1 + exp(10− 0.2k)]. We generated a marker with 21 alleles in

order to have perfect IBD and 10000 replicates. For each replication the first

200 affected sib pairs (ASPs) were ascertained. The marginal survival and the

population frailty parameters (ρ̂, σ̂2) = (0.3, 11) were estimated from an inde-

pendent random data-set of 5000 sib-pairs.

Figure 2.4(right) shows the power of the NPLρ statistic as function of σ2 for

various values of ρ. The long-dashed line represents the power of the NPLρ

test with the value of ρ equal to the marginal correlation, ρ = 0.3. The two

horizontal lines represent the power of NPL and NPL0. When the population

frailty parameters are known, the gain in power of NPLρ compared to NPL0

and to the unweighted NPL method is about 5% and 10%, respectively. The

proposed score test has not maximal power at the marginal correlation value,

but at ρ = 0.1. However, figure 2.4(right) shows that for a wide range of the

(ρ, σ2) values, the score test NPLρ is the most powerful test. On these data,

the score test NPL0 performs better than the shared residual effect score test

(NPLρ(ρ=1)) because the true marginal correlation is small.
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FIGURE 2.4: Power of the test statistics based on dominant major gene simulated data. Figure Left:

Marginal survival function. Figure Right: Power of the test statistics. Horizontal lines represent the

unweighted NPL (solid line) and the NPL0 method (dashed line). Dotted line, long-dashed line and

solid line represents NPLρ with correlation ρ=0.1, 0.3 and 1, respectively.

2.4 Application to breast cancer data

We applied the new method to breast cancer ASP with known age at onset. For

this analysis we used the ASP of the original set of 55 high-risk Dutch breast

cancer families without any mutations in BRCA1 and BRCA2 described by Old-

enburg et al. (2008). They found evidence for linkage at chromosome 9 around

82 cM. The question is whether taking into account age at onset will increase

evidence for linkage. Data on 20 microsatellite markers at chromosome 9 were

available. For the sibling pairs IBD status was estimated using MERLIN soft-

ware (Abecasis et al., 2002) and the variances of the IBD status were estimated

by simulations (Abecasis et al., 2002). Figure 2.2(left) shows the weight of the

NPLρ method. The proposed method weights the early-onset siblings (both af-

fected before the age of 30) 6 times more than ASPs with ”mean” age at onset.

We applied the standard NPL method (NPL), NPL0 and the proposed score test

(NPLρ).

Taking into account the cumulative hazard (NPL0) increases the maximum

LOD score with respect to the NPL method from 2.9 to 3.0 (p=0.0001). Tak-

ing into account the dependence between siblings (NPLρ) further increases the

maximum LOD score to 3.6 (p=0.000002) (Figure 2.5). Adjusting for age at onset

increases evidence for linkage at chromosome 9 around 82 cM.
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FIGURE 2.5: Results of genetic linkage analysis of breast cancer data for chromosome 9. Solid line, dashed

line and dotted line represent the unweighted NPL method, the NPL0 method and the NPLρ method,

respectively.
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2.5 Discussion

We have proposed a new score statistic for age at onset linkage analysis for se-

lected sibling-pairs. One of the main advantages of the method is that it can

use marginal information known from previous family (twin) studies. Using

this information, the proposed approach allows testing for age at onset link-

age in affected-sibling pairs. Another advantage of this method with respect to

likelihood-ratio approaches (Jonker et al., 2009; Li and Zhong, 2002) is that, un-

der the null hypothesis of no linkage, the mean of the statistic is null. Hence it

maintains the correct type I error for an arbitrary choice of population param-

eters. Thus if ”known” population parameter values are not optimal the test

loses power but it maintains the correct type I error.

Simulation results showed that our statistic is not very sensitive for the spec-

ified frailty parameters. We compared the proposed score statistic NPLρ with

the classical NPL test, with a test inspired by the Commenges tests and adapted

for selected samples, NPL0, and with a score test derived from the Li and Zhong

(2002) model (NPLρ(ρ=1)). We simulated data with a gamma distributed ran-

dom effect and with a dominant major gene effect. When population frailty

parameters are approximately known the proposed methods outperforms the

other methods. In fact, the expected gain in power of NPLρ compared to NPL0

and to the unweighted NPL method is about 5% and 10%, respectively. The

NPLρ and the NPLρ(ρ=1) methods are equivalent when the true value of the

marginal correlation is high. But, when the marginal correlation is small, NPLρ

performs better. When the frailty parameters are unknown, NPLρ should not be

used because when the difference between the used and the marginal parame-

ters is large NPLρ loses power with respect to NPL. In this case NPL0 should be

applied. In fact, the gain in power of NPL0 compared to NPL method is about 5-

10%. By means of simulations, we also showed the robustness of the proposed

method with respect to the uncertainty on the marginal survival function. In

fact the survival function has been estimated by Kaplan-Meier in random sam-

ples, and we never used the true value. In addition, data from registries are

often based on large samples.

We applied the new score test to breast cancer data, where it increased ev-

idence for linkage with respect to the standard NPL method and with respect

to NPL0. Since the frailty parameter values of the Dutch population are un-

known, we used the frailty parameter values estimated in the Swedish popula-

tion. Note that when the frailty parameters of the two populations are similar,

the power of the test is maximized.

A number of extensions to the proposed model can be considered. For

sake of notation we only considered sib-pairs but the extension to any kind
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of relative-pairs is straightforward. In fact it can easily be proved that the score

test for selected relative pairs is the same as derived in this paper, where the

mean of the IBD (Eπ) and the marginal correlation depend on the genetic dis-

tance between relatives. For example, suppose the variance components have

been estimated in a previous twin studies (â2, ĉ2, σ̂2). In this case the score test

for relative pairs is given by (2.9) where Eπ = 2Ψ, and the marginal correlation

between relatives in the weight function is given by ρΨ = 2Ψâ2 + ĉ2 where Ψ

is their kinship coefficient. The proposed method can also deal with person-

specific covariates for which known population incidences are stratified. For

example, gender-specific incidences can be used. It is more complex to consider

continuous covariates. We described the method using the common ASP de-

sign, but the method can include discordant and unaffected relative pairs. The

extension of the model to general pedigrees can be done using a pairwise like-

lihood approach (Lindsay, 1998). We are currently exploring this approach. In

this paper we assumed additive genetic effects. It is not straightforward to ex-

tend the additive gamma frailty model to model more complex genetic effects.

An intuitive way to model dominance in sib-pairs is by using the marginal

bivariate survival (2.6) with the parametrization of the correlation derived by

Tang and Siegmund (2001) ρπ = (π− 1/2)γ− (I(π = 1/2)− 1/2)̺+ ρ where

I() is the indicator function and ̺ is the dominance effect. The linkage effect is

modeled by two parameters (γ, ̺) with a joint null hypothesis (γ, ̺)=(0, 0). De-

tailed investigation on this case is one direction for future research. The model

can also be extended to include frailties due to multiple disease loci (Jonker

et al., 2009; Zhong and Li, 2002).

It is interesting to relate our approach to other published frailty methods

for age at onset. Li and Zhong (2002) used a retrospective likelihood which de-

pends on information (the baseline hazard and the shared residual effect) that

have to be estimated together with the linkage effect. This approach cannot

yield unbiased population-based parameter estimates. In fact, this is possible

only through proper construction of the ascertainment-adjusted likelihood (Ep-

stein et al., 2002; Sun and Li, 2004), but the probability of the sampled families

are often unknown and hard to model. Recently, Jonker et al. (2009) proposed a

correlated gamma frailty model for linkage similar to the one described in this

paper. We used a different parametrization (Tang and Siegmund, 2001) which

depends on marginal frailty parameters, which are potentially known from pre-

vious twin studies. In contrast to these papers we derived a score test instead

of a likelihood-ratio test. Although the likelihood-ratio can have greater power

for strong effects, the score test has the advantage to be always correct under

the null hypothesis. Furthermore, it is more robust and simpler because it is

computed under the null hypothesis.
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Another approach to take into account age at onset is the conditional-logistic

model implemented in LODPAL (Olson, 1999). Here age at onset is included

as a covariate. Our approach offers several advantages above this model. First,

it can be applied to unaffected samples, which are considered censored at their

current age. Secondly, no arbitrary pairwise ”covariates” has to be defined, in

fact there is no theory justifying the use of the sum of the age at onset. Thirdly,

our method is a score test. Note that the likelihood-ratio approach (like LOD-

PAL) can give extraordinary large LOD scores due to instability of the maxi-

mization of the pseudo-likelihood (Schaid et al., 2007). Finally, the proposed

method is more powerful because no degrees of freedom are spent to adjust for

age at onset. In contrast, for LODPAL the degrees of freedom increase when

covariates (age at onset) are considered. In fact, our score test is distributed as

a 50:50 mixture of χ2
0 and χ2

1, while the LODPAL approach, adjusting for age at

onset as a covariate is distributed as a 50:50 mixture of χ2
1 and χ2

2. We applied

LODPAL approach to the breast cancer data. Probably due to the increment

of the degrees of freedom, adjusting for the sum of the age at onset did not

increase the evidence of linkage (data not shown).

We used additive gamma frailty models. These models have some draw-

backs, first the additivity of the effects is mathematically appealing but it is

not intuitive because in the individual hazard they act in a multiplicative way.

Secondly only positive correlation can be taken into account. In order to deal

with these issues a multivariate survival model with log-normal distribution

has been proposed (Pankratz et al., 2005). However, these methods cannot be

computed directly and Laplace approximations are needed. The computational

demands may be high and convergence is not always ensured. More impor-

tantly, the log-normal frailty model cannot be formulated in terms of marginal

parameters. In fact the baseline hazard and the residual additive effect have to

be estimated, which is not straightforward for selected samples.

In summary, we have derived a new score test for age at onset linkage anal-

ysis. The proposed method is simple and is valid for any kind of ascertained

samples. It is robust and computationally fast. When the marginal frailty pa-

rameters are known from previous twin studies, the proposed NPLρ approach

is more powerful than standard nonparametric linkage approaches. When the

frailty parameters are unknown, we recommend to use NPL0 which is less pow-

erful than NPLρ but has still more power than NPL.

A collection of compiled C++ programs which implements the proposed

score test is available from our web site (http://www.msbi.nl/Genetics). The

software uses Merlin (Abecasis et al., 2002) to compute the probabilities of IBD

and to estimate the variance of the IBD by simulations.
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Appendix

1. Definition of the linkage random effect

Following Li and Zhong (2002) we define the component of the frailty due to the

linkage effect by the sum of two random effects one inherited from the mother

and the other from the father. Specifically, the component due to the causal

gene can be modeled by Zjl = ∑
4
j=1 ajkUlk j = 1, 2 where

ajk =

{

1, if j has allele k;

0, if j does not have allele k
.

Ulk ∼ Γ(νl/2, 1/σ2) is the effect of the kth allele of the parents (Ul1 and Ul2

represent the two alleles of the mother and Ul3 and Ul4 represent the alleles of

the father).

2. Bivariate likelihood conditioned on π

The likelihood of two individuals with π proportion of alleles shared IBD is

given by

P(y|π; γ) = P(t1, δ1, t2, δ2|π; γ) = (−1)δ1+δ2
∂δ1+δ2

∂t
δ1
1 ∂t

δ2
2

S12(t1, t2|π; γ),

where S12(t1, t2|π; γ) is given by the equation (2.6).

3. Weight function of the score statistic

The weight function of the proposed score statistic is given by

ℓρ (γ0) =
∂ log P(y|π; γ0)

∂ρ
= H1 + H2 −

log(K)

σ2
+

δ1(1− δ2)
k1 − 1

θ1
+ δ2(1− δ1)

k2 − 1

θ2
+

δ1δ2
(k2 − 1)θ1 + (k1 − 1)θ2 + σ2k1k2

θ1θ2 + ρσ2k1k2
, (2.10)

where Hj =
∫ tj

0 h(t)dt is the marginal cumulative hazard of the jth individual;

K = (exp(H1σ2) + exp(H2σ2)− 1), kj = exp(Hjσ
2)/K, and θj = 1 + ρ(kj − 1).
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