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CHAPTER 1

Introduction and overview

The subject of this thesis is to develop statistical methods to reduce heterogene-

ity in gene mapping analysis. In fact, many geneticists, epidemiologists and

biologists have realized that heterogeneity results in loss of statistical power in

studies aiming to identify new genetic factors for complex genetic disorders.

To deal with heterogeneity additional risk factors are collected such as age at

onset, family-history, genetic and environmental factors. This information can

be used to select the most informative cases for the analysis or should be taken

into account while searching for new genetic factors by weighting individuals

according to their risk profiles.

The main focus of this thesis is to develop new and simple statistical meth-

ods to reduce heterogeneity weighting individuals for their age at onset. Fur-

ther, classical nonparametric linkage analysis methods are extended to include

the information given by the family-history. Finally, the family-based associ-

ation analysis methods are extended to adjust for the number of allele shared

identical by descent (IBD) and for gene-covariate interaction.

The thesis is a collection of six articles. The articles are self-contained and

they can in principle be read in any order. The objective of this introduction is to

present some background notation and information, useful for understanding

the articles included in the thesis.

1.1 Frailty models

Survival analysis

The analysis of time-to-event data is called survival analysis. Time-to-event

data are encountered in many scientific disciplines including demography,

medicine, biology, epidemiology, public health, engineering and economics.

One complication in the analysis of these data is the presence of censored obser-

vations. There are different types of censoring. The most common type of cen-

soring is the right censoring happening when the study does not span enough

time in order to observe the event for all the subjects in the study. If a patient

goes through the study without having the event, his time to the event is (right)
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censored, in the sense that we only know that the event happened after the last

time we observed the patient. Whenever the censoring time is less than the

event time, the event time is missing. Let T be the life-span, the observed time

is given by y = (t, δ) where t is the observed life-span if δ = 1 and the censor-

ing time if δ = 0. A standard assumption of survival analysis is that event-time

and censoring time are independent (noninformative censoring).

Most of the survival analysis methods are based on the hazard function λ(t),

which is the instantaneous failure rate and is defined as:

λ(t) = −
∂ log S(t)

∂t

where S(t) = P(T > t) is called survival function. Suppose a patient has

survived to time t; then the hazard function is the probability that the patient

will have an event in the next instant. Many methods have been proposed in

the literature to model the hazard function. Proportional hazard models are

widely used in medical statistics, where covariates (X) have a multiplicative

effect on the baseline hazard (λ0(t))

λ(t|X) = λ0(t) exp (βX)

For example the famous Cox model (Cox, 1972) is a proportional hazard model

with unspecified (nonparametric) baseline hazard function.

Multivariate Frailty models

Multivariate event time data arises when each study subject can potentially ex-

perience several types of failures or recurrences of a certain phenomenon, or

when failure times are sampled in clusters, such as families, schools, hospitals.

During the last two to three decades, a large body of literature on multivari-

ate survival analysis has been developed (Hougaard, 2000). Clustered survival

data are encountered in many scientific disciplines including human and vet-

erinary medicine, biology, epidemiology, public health and demography. The

statistical analysis of these data is complex, especially when the interest is in

the dependence structure. A standard statistical approach to model multivari-

ate failure time data is called frailty model. The hazard rate of the jth individual

in the ith cluster is given by

λ(tij|Xij, Uij) = λ0(tij|Xij)Uij. (1.1)

Note that we assume a general dependence between the baseline hazard (λ0)

and the vector of covariates (Xij). For easy of exposition suppose that clus-

ters are families composed of two siblings. Clayton (1978) and Vaupel et al.
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(1979) proposed frailty models where the dependence between the two siblings

is modelled by a shared random effect Ui1 = Ui2. In order to describe more

complex dependency structures the shared model was extended by Yashin et al.

(1995). Inspired by the variance components methods for quantitative traits,

they decomposed the frailty into the sum of independent effects. The total

frailty is given by the sum of an effect which is shared by the two siblings (Us)

and a residual (unshared) effect (Ue). According to the correlated frailty model,

the frailties of the two siblings in the ith family can be written as follows

Ui1 = Us,i + Ue,i1

Ui2 = Us,i + Ue,i2.

Using this model the dependence between the two siblings is a function of the

portion of the total variance explained by the shared effect.

Different distributions of the frailty have been proposed in the literature like

gamma, log-normal, positive-stable etc. The gamma distribution is mathemati-

cally convenient because it yields a closed form likelihood which can be readily

maximized. Gamma frailty models can also be expressed in terms of observable

marginal survival functions. A limitation of the gamma frailty model is that the

likelihood becomes too complex for large clusters (families). A possibility to

solve this problem is to decompose the likelihood into pairwise contributions

(Lindsay, 1998). Another possibility is to use the log-normal frailty model. In

contrast to the gamma frailty model the likelihood does not have closed form

and numerical approximations are required. However, the log-normal frailty

model can be applied to general families and it permits to model complex de-

pendence structures.

1.2 Nonparametric linkage analysis

Linkage analysis is a method to map disease genes along the genome. Using

this approach, the rough location of the disease genes are detected by typing

DNA sequence called genetic markers of pedigree sets. The method of linkage

analysis is based on the concept of biological inheritance. Human chromosomes

come in pairs, one is inherited from the father and one from the mother. Before

the chromosomes are transmitted to the offspring, the maternal and paternal

chromosomes pair up and exchange parts. Such a process is called crossing-

over and the exchange of genes is called genetic recombination (figure 1.1).

Since genes close by on the same chromosome tend to be inherited jointly,

the frequency of recombination measures the distance between genes. Dis-

ease genes are mapped by measuring recombination against a panel of dif-

ferent markers spread over the entire genome. In most cases, recombination
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FIGURE 1.1: Simplification of the meiosis process: (a) maternal chromosomes; (b) the mater-

nal chromosomes duplicate; (c) the four chromosomes crossover in random chromosomal

locations; (d) four mixed strands, one of them is randomly transmitted to the offspring.

will occur frequently, indicating that the disease gene and marker are far apart.

Some markers however, due to their proximity, will tend not to recombine with

the disease gene and these are said to be linked to it. Genetic linkage analy-

sis test for coinheritance of chromosomal regions with a trait. There are two

main classes of linkage analysis, the parametric and the non-parametric meth-

ods. Parametric linkage analysis is a powerful approach to localize genes when

a genetic model can be approximated, however they can be highly sensitive to

misspecification of the linkage parameters (gene frequency, penetrance and de-

gree of dominance) (Clerget-Darpoux et al., 1986). Since for complex traits the

mode of inheritance is often unknown, nonparametric methods are usually pre-

ferred because they do not make any (explicit) assumptions about the disease

model (Kruglyak et al., 1996).

Nonparametric methods are based on allele-sharing between individuals in

a pedigree. Two individuals share an allele identical by descent (IBD) if they

have both inherited exactly the same allele from a common ancestor. As an

example consider the following nuclear family shown on Figure 1.2. At the

locus x the two siblings have the same genotype (AA), but they share zero

alleles IBD. At the locus y the two siblings share the maternal allele (B) and

at the locus z the two siblings share both the maternal (C) and the paternal

allele (g), so they share 2 alleles IBD. The biological phenomenon behind the

nonparametric linkage analysis is that affected individuals in a family share
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the same ancestral predisposing DNA segment at a given trait locus. It follows

that linkage between a disease locus and marker genotypes can be studied by

comparing the observed number of alleles shared IBD to the expected number

of alleles in the population. An increase in the number of alleles IBD indicates

the presence of a susceptibility gene in the region. For a set of N affected sibling

pairs the popular NPL score (Blackwelder and Elston, 1985; Kruglyak et al.,

1996) is given by,

NPL =
∑

N
i=1 γi(π̂i − Eπ)

√

∑
N
i=1 var0(π̂i)γ

2
i

(1.2)

where π̂i is the estimated proportion of alleles shared IBD between the ith sib-

pair; Eπ is the expected proportion of IBD under the null hypothesis and it is

equal to 0.5 for sibling pair; var0(π̂i) is the variance estimated under the null hy-

pothesis of no linkage and γi is the weight assigned to the ith sib pair. The NPL

score is computed at a grid of marker positions. The final statistic is the max-

imum value of NPL scores over all marker loci. Significant linkage is detected

whenever the maximum is larger than a threshold. The value of the threshold

to control false detection rate has been discussed by Feingold et al. (1993), Lan-

der and Schork (1994) and Lander and Kruglyak (1995). Kruglyak et al. (1996)

noted that, under the null hypothesis, the variance of the NPL score is generally

smaller than one. This effect is due to the fact that in general, the information

on descendent is incomplete. Assuming that the variance of NPL score is equal

to one lead to conservative p-value estimates in the case imperfect data. A pos-

sibility to solve the problem is to estimate the variance by simulations, or to use

a particular likelihood-ratio approach (Kong and Cox, 1997).

For quantitative traits, the phenotypes of the family-members are usually

modelled by multivariate normal distribution, with variance-covariance matrix

depending on linkage, on residual genetic and/or on environmental effects.

Since families are typically chosen based on their trait values, the retrospective

likelihood of the marker data conditioned on the trait is adequate to account

for the ascertainment process. From the retrospective likelihood different score

statistics have been proposed in the literature (Lebrec et al., 2004; Sham and

Purcell, 2001; Tang and Siegmund, 2001; Tritchler et al., 2003) which are similar

to the NPL score statistic (1.2). In this case, the weight function γi is derived

from the retrospective likelihood and it is a function of the family trait values

standardized against known population parameters.

For age at onset traits, different frailty models have been proposed in the

literature (Commenges, 1994; Jonker et al., 2009; Li and Zhong, 2002; Pankratz

et al., 2005). However, no NPL score statistics are available. For this reason a

major part of the thesis (Chapter 2-5) is devoted to the derivation of NPL score
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FIGURE 1.2: IBD sharing in a nuclear family.

statistics for age at onset data.

NPL score adjusting for age at onset

Many complex disease studies have suggested that casual genes can influence

the age at which the event occurs (age at onset). In the literature methods have

been proposed for linkage with age at onset data (Commenges, 1994; Jonker

et al., 2009; Li and Zhong, 2002; Pankratz et al., 2005) where the linkage effect

is modeled as a random effect of frailty models (1.1). To simplify the exposition

suppose that families are composed of two siblings. For notational simplicity,

we will suppress the family index. Let’s represent the four paternal alleles of a

particular family with the integers k = 1, 2, 3, 4. The segregation of these alleles

to the two siblings can be represented by the sequence s = (s11, s12, s21, s22)

where sj1 and sj2 label the paternal and the maternal alleles of the jth sibling.

The number of distinct integers represents the number of genetically distinct

alleles among the two siblings. Let’s represent the effect of the four paternal

alleles by four independent random variables Up,k, k = 1, ...4. Then the frailties

of the two siblings explained by the inherited paternal alleles can be written as
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follows
Ua,1 = Up,s11 + Up,s12

Ua,2 = Up,s21 + Up,s22.

Using this frailty model the dependence between the two siblings increases

with the number of allele shared IBD. Commenges (1994) proposed a frailty

model where the random effect of the sibling j is given by Uj = Ua,j. The

random effect comes from an unspecified distribution with E(Ua) = 0 and

E(U2
a) = 1. This model assumes that all the dependence between siblings de-

pends on a single causal gene, in fact, under the null hypothesis of no linkage

the two siblings are independent. In order to take into account residual ge-

netic or environmental correlation, Li and Zhong (2002) proposed an additive

gamma frailty model Uj = Ua,j + Us where Ua,j models the linkage effect and

Us is an independent random variable. Jonker et al. (2009) further extended the

Li and Zhong model (1.3) by adding an unshared random effect (Ue,ij). Instead

of using gamma distributed random effects, Pankratz et al. (2005) proposed a

log-normal frailty model for age at onset linkage analysis.

In order to test for linkage most of the authors proposed likelihood-ratio

tests (Jonker et al., 2009; Li and Zhong, 2002; Pankratz et al., 2005). However,

the score test is a computationally faster, locally most powerful, and robust

alternative to the likelihood ratio test. For these reasons, in Chapter 2-5 we

derived new score tests for age at onset linkage analysis. The derived score

statistics are classical NPL scores (1.2) with weight functions γi depending on

the age at onset times standardized against known population parameters. In

the simple case that the siblings are independent under the null hypothesis,

the weight is the product of the martingale residuals of the two siblings γi =

(δi1 − Λ1(ti1)) × (δi2 − Λ2(ti2)), where Λ is the known marginal cumulative

hazard function.

NPL score adjusting for family-history

Wallace and Clayton (2006) showed that selecting cases with positive family

history of disease generally increases the power to detect linkage for common

complex diseases. The increase in power is observed particularly in the pres-

ence of environmental effect and with rare disease risk alleles. Instead of se-

lecting families with positive family-history, an alternative strategy may be to

recruit unselected families, but collect information on family history. Then a

variable summarising the family history may be included in the analysis.

A standard approach to take into account ungenotyped affected individuals

is by sampling the distribution of the missing marker data given the observed

marker throught MCMC algorithms. Multiple imputation methods has been

proposed for linkage analysis with a two step procedure: first, inferring missing
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genotypes from the genotype of the observed relatives, and, second applying

standard linkage analysis (Almasy and Blangero, 1998; Sobel and Sengul, 2001).

Skrivanek et al. (2003) proposed a sequential imputation method to approxi-

mate the allele sharing statistics. These MCMC methods are complex, compu-

tationally intensive and they are not powerful when there is a large number of

samples completely untyped (Sobel and Sengul, 2001).

In Chapter 6 we derive a simpler method where the family-history is in-

cluded in the weight of the NPL score. The weight depends on known infor-

mation so no complex sampling methods are necessary. Suppose that affected

sibling pairs (ASPs) have been genotyped for the analysis and suppose that a

portion of them has one untyped affected siblings (or one untyped parent). In

this simple case the proposed method is the NPL score (1.2) with weight γ = 1

for the ASPs without positive family history and weight γ = 1.5 for the ASPs

with positive family history.

1.3 Family based association analysis

Genome-wide linkage analysis are often followed by association studies of can-

didate genes located under the linkage peak. With these genetic association

studies one hopes to identify candidate genes whose variation causes the excess

IBD sharing of marker alleles in the linkage study. Genetic association studies

compares alleles or genotype frequencies in affected individuals with those in

unaffected individuals. A marker may be associated with the disease because it

is in linkage disequilibrium with a causal variant at the disease locus. Linkage

disequilibrium is the condition in which the haplotype frequencies in a popu-

lation deviate from the values they would have if the genes at each locus were

combined at random. In contrast with linkage, the linkage-disequilibrium is a

result from ancestral recombination events and it is a measure of co-segregation

in the population, instead of a measure of co-segregation in a pedigree.

Disease-marker association may also be due to population stratification.

Population stratification is the presence of a systematic difference in allele fre-

quencies between subpopulations. To eliminate false positive results, family-

based designs are used. The unified approach to Family-Based Tests of asso-

ciation (FBAT) have been proposed by Rabinowitz and Laird (2000) and Laird

et al. (2000), builds on the original TDT method (Spielman et al., 1993) in which

alleles transmitted to affected offsprings are compared with the expected dis-

tribution of alleles among offsprings. Let Xg,ij denotes some function of the jth

offspring’s marker genotype in the ith family. Usually the association effect is

modeled as a covariate, so for age at onset trait a natural choice is

λ(tij|Xg,ij, Uij) = λ0ij(tij) exp(βgXg,ij)Uij, (1.3)
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where the random effect Uij models the dependence between siblings and it

may have components that are attributable to the linkage effect, to shared envi-

ronmental and polygenic effect.

The score statistic to test H0 : βg = 0 (from a retrospective likelihood) gives

the so called FBAT statistic

FBAT =
∑

N
i=1(Xgi − EXgi)

′γi
√

∑
N
i=1 γ′ivar0(Xgi)γi

, (1.4)

which is a linear combination of offspring genotypes (Xgi) and weights (γi).

EXgi denotes the expectation of the offspring’s marker genotype conditioned

on the parental genotypes. The weight is a function of the trait values. For

example, if we assume that the frailty is constant Uij = 1, the weight is the

martingale residual γij = δij−Λ0(tij). In particular, using a gamma distributed

random effect Zhong and Li (2004) derived a particular weight function to test

for association in the presence of linkage.

In Chapter 7 we derive a new class of weights from a generalized linear

mixed model. For survival (age at onset) data we use the Poisson model. Fur-

ther, we extended the FBAT statistics in order to adjust for gene-covariate inter-

action.

1.4 Outline of the thesis

This thesis consists of three parts. The first part consists of Chapter 2 up to 5. It

develops new NPL score tests for age at onset linkage analysis. The second part

consists of Chapter 6, which presents a new method to test for linkage analysis

taking into account the family-history. Finally, the third part, Chapter 7, ad-

dresses the subject of family-based association analysis adjusting for linkage

effect and/or gene-environmental interaction.

Chapter 2 deals with the age at onset linkage analysis of selected sibling

pairs. We derive a NPL score statistic from the retrospective likelihood of a

gamma-frailty model. We use the model proposed by Jonker et al. (2009) but

with a different parametrization which permits to use information known from

twin studies such as the sib-sib correlation. Simulation studies show that the

proposed method is robust and more powerful than standard nonparametric

linkage methods. As illustration we apply the new score statistic to data from

a breast cancer study.

Chapter 3 extends the score test derived in Chapter 2 to include the parental

age at onset. NPL score statistics are derived from a gamma frailty model and

from a log-normal frailty model, respectively. In order to investigate how age

at onset of sibs and their parents affect the information for linkage analysis the
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weight functions were studied for rare and common disease models, realistic

models for breast cancer and human lifespan. We studied the performance of

the methods by simulations. As illustration, the score statistics were applied to

the GAW12 data. The results show that it is useful to include parental age at

onset information in genetic linkage analysis.

Chapter 4 addresses the issue of testing for age at onset linkage analysis in

general pedigrees. The score test derived in Chapter 2 is extended to general

pedigrees using a pairwise likelihood approach (Lindsay, 1998). Further, this

method is compared by simulations with the approximated log-normal frailty

model derived in Chapter 3. The two methods are applied to the GAW16 Fram-

ingham data.

Chapter 5 is concerned with robust score tests for aggregation and linkage

analysis of human longevity. We propose a new statistic for aggregation analy-

sis, which tests for a relationship between a family history of excessive survival

of the sibships of the long-lived pairs and the survival of their parents and their

offspring. For linkage analysis, we derive a new NPL score statistic from a

shared gamma frailty model, which is similar in spirit to the score test derived

in Chapter 2. We apply the methods to data from the Leiden Longevity Study

(Schoenmaker et al., 2006).

Chapter 6 is concerned with a new class of allele-sharing statistics which

takes into account the information given by the family history. Such an infor-

mation is included into the scoring functions of classical allele-sharing statis-

tics. We consider pedigrees of affected sibling pairs with positive family-history

given by one ungenotyped affected relative. By simulating using models for

complex diseases we showed that taking into account family-history generally

increases the power to detect linkage. Allele-sharing methods were applied

to the symptomatic osteoarthritis GARP study where taking into account the

family-history increased considerably the power to detect linkage in the sur-

rounding of the DIO2 susceptibility locus.

In Chapter 7, we develop a score test for family-based association analysis.

In order to study family based association in the presence of linkage we extend

a generalized linear mixed model proposed for genetic linkage analysis (Lebrec

and van Houwelingen, 2007) by adding a genotypic effect to the mean. The cor-

responding score test is a weighted statistic, where the weight depends on the

linkage effect and on other genetic and shared environmental effects. To test for

genetic association in the presence of interaction, we propose a linear regression

method where the family-specific score statistic is regressed on family-specific

covariates.

In the last chapter the results presented in chapters 2 to 7 are summarized.

Finally, the appendix illustrates the use of arthur package, a software which
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was built to apply most of the methods discussed in this thesis.
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