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APPENDIX A

Commutation relations for
quantum multi-fields

In this appendix we show that the commutation relations (eq. 4.61) in section 4.3.2
are fully consistent with the evolution of the vI

α(k, τ) dictated by the set of equations
of motion (eq. 4.64). To begin with, observe that in order to satisfy the commutation
relation (eq. 4.61) the N mode solutions vI

α(k, τ) must satisfy the following condi-
tions:

∑
α

[
vI
α

DvJ∗
α

dτ
−
DvJ

α

dτ
vI∗
α

]
= iδIJ , (A.1)∑

α

[
vI
αvJ∗

α − vJ
αvI∗

α

]
= 0 , (A.2)

∑
α

[
DvI

α

dτ

DvJ∗
α

dτ
−
DvJ

α

dτ

DvI∗
α

dτ

]
= 0 . (A.3)
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Appendix A: Commutation relations for quantum multi-fields

To show that these relations are satisfied at any given time t we proceed as follows:
first, let us define the tensors

AIJ = i
∑
α

[
vI
αvJ∗

α − vJ
αvI∗

α

]
, (A.4)

BIJ = i
∑
α

[
DvI

α

dτ

DvJ∗
α

dτ
−
DvJ

α

dτ

DvI∗
α

dτ

]
, (A.5)

EIJ = i
∑
α

[
vI
α

DvJ∗
α

dτ
−
DvJ

α

dτ
vI∗
α

]
. (A.6)

These tensors satisfy the properties

AIJ =AIJ∗ = −AJI , (A.7)

BIJ =BIJ∗ = −BJI , (A.8)

EIJ =EIJ∗ . (A.9)

In other words, they are real, with AIJ and BIJ antisymmetric while EIJ has no specific
symmetries. Because of these properties AIJ and BIJ consist ofN(N − 1)/2 indepen-
dent real components each, whereas EIJ consists ofN2 independent real components.
Thus, in order to fix the values of all of these tensors we need to specify 2N2 − N

independent quantities. These tensors also satisfy the following equations of motion:

D

dτ
AIJ =EIJ − EJI , (A.10)

D

dτ
BIJ =ΩI

K EKJ −ΩJ
K EKI , (A.11)

D

dτ
EIJ =BIJ + AIK

(
k2δJ

K + ΩK
J
)
. (A.12)

Taking the trace to the last equation, we obtain that the trace E ≡ EI
I satisfies

dE
dτ

= 0 , (A.13)

and therefore E is a constant of motion of the system. Furthermore, observe that the
configuration EIJ = EδIJ/N and AIJ = BIJ = 0 for which conditions (eq. A.1-A.3)
are satisfied corresponds to a fixed point of the set of equations (eq. A.10-A.12). That
is, they automatically satisfy

D

dτ
AIJ =

D

dτ
BIJ =

D

dτ
EIJ = 0 . (A.14)
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Therefore, it only remains to verify whether there exist sufficient independent degrees
of freedom in order to satisfy the initial conditions EIJ = EδIJ/N and AIJ = BIJ = 0
at a given initial time τi. As a matter of fact, we have exactly the right number of
degrees of freedom. As we have already noticed there existsN independent solutions
vI
α(k, τ) to the equations of motion. To fix each solution vI

α(k, τ) we therefore need to
specify 2N2 independent quantities, corresponding to the addition ofN2 components
vI
α(τi) and N2 momentaDvI

α/dτ(τi). However, we must notice that the overall phase
of each solution vI

α(k, τ) plays no roll in setting the initial values for AIJ , BIJ and
EIJ . We therefore have precisely 2N2 − N free parameters to set EIJ = EδIJ/N and
AIJ = BIJ = 0. Of course, the value of the trace of E is part of this freedom, and we
are free to fix it in such a way that E/N = 1.

To summarise, it is always possible to choose the initial conditions for vI
α(k, τ) and

DvI
α/dτ(k, τ) in such a way that conditions (eq. A.1-A.3) are satisfied. These condi-

tions ensure the commutation relation (eq. 4.61). To finish this discussion, recall that
one possible choice for the initial conditions for the perturbations allowing (eq. A.1)
to (eq. A.2) to be satisfied, are precisely those expressed in (eq. 4.67), with suitable
choices for the coefficients vα(k) and πα(k):

vα(k)π∗α(k) − v∗α(k)πα(k) = i , (A.15)

for α = 1, · · · N . We should emphasise however that this is not the unique choice
for initial conditions and, in general, any choice for which EIJ = EδIJ/N and AIJ =

BIJ = 0 will do just fine.
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APPENDIX B

Zeroth-order theory of the
background fields

In this appendix we study in detail the dynamics offered by the tree level potential
V(φ) = V∗(φ) discussed in Section 4.4.1. We shall focus only on potentials V for
which the Hessian Vab is positive definite. Let us for a moment independently con-
sider solutions to the equation

Va = 0 . (B.1)

In general, these will correspond to a set of fields parametrising a surface S in M.
The fields lying on this surface correspond to exactly flat directions of the potential
V . Let us express this surface by means of the parametrisation

φa
∗ = φa

∗(χ
α) , (B.2)

where α = 1, · · · nS, with nS the number of flat directions of the potential. Then

Va
[
φ∗(χ)

]
= 0 (B.3)

for any χ. Clearly, nS is the dimension of the surface. We may now define the induced
metric on the surface by making use of the pullbacks Xa

α ≡ ∂αφ
a
∗:

gαβ = Xa
αXb

βγab . (B.4)

Let us for a moment disregard the degrees of freedom perpendicular to this surface
and consider only those lying on S. This corresponds to truncating the theory by
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Appendix B: Zeroth-order theory of the background fields

considering only the fields χα. The theory for such fields would be deduced from the
action

S = −
1
2

∫
d4x gαβ∂µχ

α∂µχβ , (B.5)

and the equations of motion would be given by

D
dt
χ̇α =

d2χα

dt2
+ Γ̂αβγ

dχβ

dt
dχγ

dt
= 0 , (B.6)

where

Γ̂αβγ =
1
2

gαδ
(
∂βgδγ + ∂γgβδ − ∂δgβγ

)
(B.7)

is the connection deduced out of the induced metric gαβ. The relation between Γ̂αβγ
and Γa

bc is given by

Γ̂αβγ = X α
a

(
Xb

βXc
γΓ

a
bc + Xa

βγ

)
, (B.8)

where Xa
βγ ≡ ∂γXa

β. It is convenient here to define Ma
βγ ≡ Xb

βXc
γΓ

a
bc + Xa

βγ, which

yields Γ̂αβγ = X α
a Ma

βγ. To review under what conditions the previous truncation is
consistent, let us recall how much a solution to (eq. B.6) deviates from the equation
of motion of the full theory given by (eq. 4.6). By differentiating with respect to time
the solution (eq. B.2) with χα satisfying (eq. B.6), we find

D
dt
φ̇a
∗(χ) = Xa

αχ̈
α + Ma

αβχ̇
αχ̇β (B.9)

=⇒
D
dt
φ̇a
∗(χ) =

(
Ma
αβ − Xa

γX γ
b Mb

αβ

)
χ̇αχ̇β . (B.10)

It is useful to define Qa
αβ ≡ Pa

bMb
αβ, where Pa

b ≡ δ
a

b − Xa
γX γ

b is the projector along
the space perpendicular to the surface. Qa

αβ transforms as a tensor:

Qa
αβ = ∂αXa

β + Γa
bαXb

β − Γ̂
γ
αβXa

γ = DαXa
β , (B.11)

where Γa
bα ≡ Γa

bcXc
α. The previous notation is consistent as Xa

α transforms homoge-
neously under reparametrisations of φ and χ. Thus, finally we are left with

D
dt
φ̇a
∗(χ) = Qa

αβχ̇
αχ̇β . (B.12)

Therefore, since Va(φ∗) = 0 by definition, if Qa
αβχ̇

αχ̇β is non-vanishing along the
trajectory followed by χα, then φa

∗ does not satisfy the equations of motion for φa in
the full theory. In fact, since we are interested in an arbitrary solution χα = χα(t)
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of (eq. B.6), in general either χ̇α = 0 or Qa
αβ = 0. The first case corresponds to a

stationary solution, where the background is not evolving. The second case Qa
αβ = 0

is more interesting, as it corresponds to the case in which S is geodesically generated.
To appreciate this, notice first that if Qa

αβ = 0 then φa
∗ = φa

∗(t) satisfies the equation of
a geodesic. In second place, it is possible to deduce the following identity

Ra
αβγ ≡ Pa

bXc
αXd

βXe
γR

B
cde

= Pa
b

(
DβQb

γα − DγQb
βα

)
. (B.13)

Thus, if Qa
αβ = 0 then arbitrary vectors, which are tangent to S, will not generate a

component normal to S after being transported around an arbitrary loop in S. Finally,
one also has the general relation

R̂αβγδ = X α
a Xb

βXc
γXd

δR
a
bcd +

(
Qa
βδγabQb

σγgσα − Qa
βγγabQb

σδg
σα

)
, (B.14)

meaning that if Qa
αβ = 0 one has that the Riemann tensor R̂αβγδ characterising S

coincides with the induced Riemann tensor X α
a Xb

βXc
γXd

δR
a
bcd to the surface.

It is rather clear that whenever the surface S is not geodesically generated, the
solution φA = φA(χ) is not a solution of the full set of equations of motion. Let us
now ask under what circumstances this might be a good approximation. For this,
consider the following notation for the full solution:

φa = φa
∗ + ∆a , (B.15)

where ∆a has the purpose of parametrising the displacement of the full solution from
φa
∗ defining the surface S. To deduce the equation of motion for ∆a notice that

Dφ̇a

dt
= φ̈a + Γa

bc(φ)φ̇bφ̇c

= φ̈a
∗ + ∆̈a + Γa

bc(φ∗ + ∆)
(
φ̇∗ + ∆̇

)b (
φ̇∗ + ∆̇

)c

=
Dφ̇a
∗

dt
+ ∆̈a + Γa

bc(φ∗)∆̇
bφ̇c
∗ + Γa

bc(φ∗)φ̇
b
∗∆̇

c + ∂dΓa
bc(φ∗)φ̇

b
∗φ̇

c
∗∆

d . (B.16)

On the other hand, we have the relation

D2∆a

dt2
=

[
∆̇a + Γa

bc(φ∗)∆
bφ̇c
∗

]
˙+ ΓA

bc(φ∗)
[
∆̇b + Γb

de(φ∗)∆
dφ̇e
∗

]
φ̇c
∗ . (B.17)

Putting these two expressions together we find the equation of motion for ∆a to be
given by

D2∆a

dt
+ Qa

αβχ̇
αχ̇β + Ca

b(φ∗)∆
b = 0 , (B.18)
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Appendix B: Zeroth-order theory of the background fields

where we are neglecting terms of higher order in ∆. In the previous expression we
have defined

Ca
b(φ∗) ≡ Va

b(φ∗) − R
a
cdb(φ∗)φ̇

c
∗φ̇

d
∗ , (B.19)

where Va
b(φ∗) ≡ γac(φ∗)∇cVb(φ∗). In deriving this expression we have assumed that

Qa
αβχ̇

αχ̇β is of O(∆). This is correct since we need to demand ∆ = 0 for the particular
case Qa

αβχ̇
αχ̇β = 0. That is to say, we are strictly interested in the inhomogeneous

solution of the previous equation. Notice that the effective mass Ca
b contains a con-

tribution from the Riemann tensor. However, the direction given by φ̇a
∗ continues to

be a flat direction since Ra
cdb(φ∗)φ̇c

∗φ̇
d
∗ φ̇

b
∗ = 0. In other words,

Ca
b(φ∗)φ̇

b
∗ = 0 . (B.20)

Additionally, notice that Cab is symmetric. To proceed, let us define a few more
quantities. First, the tangent vector to the trajectory defined by φ∗(t) on the surface is
given by

T a
∗ =

φ̇a
∗

φ̇∗
, (B.21)

where φ̇2
∗ = γabφ̇

a
∗φ̇

b
∗. In fact, notice that

T a
∗ = Xa

αTα
∗ , (B.22)

Tα
∗ =

χ̇α

φ̇∗
, (B.23)

φ̇2
∗ = gαβχ̇

αχ̇β . (B.24)

It is a simple matter to show that

DT a
∗

dt
= φ̇∗Q

a
αβT

α
∗ T β
∗ , (B.25)

φ̈∗ = 0 . (B.26)

It follows that Na
∗ ∝ Qa

αβT
α
∗ T β
∗ . It should be clear that T b

∗V
a
b(φ∗) = 0, as T a

∗ is
by definition along the flat directions of the potential. It is useful to consider the
definition of the radius of curvature κ∗ parametrising the deviation of the trajectory in
S with respect to geodesics inM. The radius of curvature κ∗ comes defined as

DT a
∗

dφ∗
= −

Na
∗

κ∗
, (B.27)

and therefore one has

1
κ∗

= −N∗aQa
αβT

α
∗ T β
∗ =

√
γabQa

αβT
α
∗ T β
∗Qb

γδT
γ
∗ T δ
∗ . (B.28)

122



Notice that this quantity depends only on geometrical objects, as it should. Coming
back to (eq. B.18), we may now write

D2∆a

dt2
− φ̇2

∗N
a
∗ κ
−1
∗ + Ca

b(φ∗)∆
b = 0 . (B.29)

At this point one may argue that there are no good reasons to consider κ−1
∗ to be a

small parameter. In fact, typically, for theories incorporating modular fields, κ should
be of O(1) in Planck units. Since φ̇∗ is constant, it is convenient to parametrise the
trajectory with φ∗. We can in fact write

D∆a

dt
= φ̇∗

D∆a

dφ∗
, (B.30)

D2∆a

dt2
= φ̇2

∗

D2∆a

dφ2
∗

. (B.31)

We can therefore re-express the equation of motion for ∆a in terms of the proper
parameter φ∗ along the curve:

D2∆a

dφ2
∗

+
1

φ̇2
∗

Ca
b(φ∗)∆

b = Na
∗ κ
−1
∗ . (B.32)

To gain experience with this equation, consider the following situation. Suppose we
have a trajectory in field space characterised by a constant curvature κ∗ and such that
Ca

bNb = M2 Na with M2 > 0 a constant. That is, Na is an eigenvector of Ca
b. Under

such conditions, using the results of section 4.2.1 we find that

D2Na
∗

dφ2
∗

= −
Na
∗

κ2
∗

. (B.33)

Then, we can see that ∆a = ∆ Na with ∆ constant is a solution of the equation, with

∆ =
φ̇2
∗

κ∗

(
M2 −

φ̇2
∗

κ2
∗

)−1

. (B.34)

It is entirely reasonable to expect M2 � φ̇2
∗/κ

2
∗ , which corresponds to the case in

which the energy scale of the low energy dynamics is much smaller than the energy
scale associated to the heavy fields. In such a case we simply have

∆ '
φ̇2
∗

M2κ∗
, (B.35)
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Appendix B: Zeroth-order theory of the background fields

This is the typical deviation from the true minimum of the potential if the surface of
this minimum is not a geodesic, the deviation from which is parametrised by κ∗. To
be more general, let us focus on a class of background trajectories in which

D∆a

dφ∗
∼ O

(
∆

κ∗

)
. (B.36)

This is a very reasonable situation to look into (our previous example is a particular
case of this) as it correspond to those cases in which the main scale encoding the
geometrical effects in the trajectory is its curvature. Then, if the non-vanishing eigen-
values of Ca

b are much larger than φ̇2
∗/κ

2 we can neglect the first term in (eq. B.32)
and write

Ca
b(φ∗)∆

b '
φ̇2
∗N

a

κ∗
. (B.37)

Thus more generally ∆ ' φ̇2
∗/(M2κ∗) is indeed a good measure of the deviation from

the true minimum. Notice that in the case of a system with two scalar fields this is
precisely the case.
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