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APPENDIX A

Commutation relations for
quantum multi-fields

In this appendix we show that the commutation relations (eq. 4.61) in section 4.3.2
are fully consistent with the evolution of the v/,(k, 7) dictated by the set of equations
of motion (eq. 4.64). To begin with, observe that in order to satisfy the commutation
relation (eq. 4.61) the N mode solutions v(ly(k, 7) must satisfy the following condi-
tions:

Dvix Dyl
1 [ [WE — 1J Al
; [v" dr dr V“] 67 (A.D)
D =] =o, (A2)
DVt DvIs vl Dl 3 (A3)
—i| dr dr dr dr |~ '
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Appendix A: Commutation relations for quantum multi-fields

To show that these relations are satisfied at any given time ¢ we proceed as follows:
first, let us define the tensors

AM =i 3 il =il (A4)

a

vl DVl Dy Dvl

BIJ — a a « a , AS
; [ dr dr dr dt } (A5)

_ vl vl
EV =i [v{, e vg] . (A.6)

These tensors satisfy the properties

AIJ :AIJ* — _AJI , (A7)
BIJ :BIJ* — _B.II , (A8)
EY =E"*. (A.9)

In other words, they are real, with A’ and B!/ antisymmetric while E'/ has no specific
symmetries. Because of these properties A”/ and B! consist of N(N — 1)/2 indepen-
dent real components each, whereas E'/ consists of N2 independent real components.
Thus, in order to fix the values of all of these tensors we need to specify 2N? — N
independent quantities. These tensors also satisfy the following equations of motion:

%A” =" - g, (A.10)
D 1J 1 KJ J K1

EB =0 KE -Q KE B (All)
%E” =B" + A™ (KPsy, + Q) | (A.12)

Taking the trace to the last equation, we obtain that the trace E = E'; satisfies

dE

— =0, A.13
dr ( )
and therefore FE is a constant of motion of the system. Furthermore, observe that the
configuration E/Y = E§"/ /N and A" = B = 0 for which conditions (eq. A.1-A.3)
are satisfied corresponds to a fixed point of the set of equations (eq. A.10-A.12). That

is, they automatically satisfy

A/J:QBuzg

EVY =0. A.14
dr dr dr ( )
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Therefore, it only remains to verify whether there exist sufficient independent degrees
of freedom in order to satisfy the initial conditions E// = E§"/ /N and A" = B =0
at a given initial time 7;. As a matter of fact, we have exactly the right number of
degrees of freedom. As we have already noticed there exists A independent solutions
vE(k, T) to the equations of motion. To fix each solution v/ (k, T) we therefore need to
specify 2% independent quantities, corresponding to the addition of N> components
vl (1;) and N? momenta Dv/, /d7(t;). However, we must notice that the overall phase
of each solution v/,(k,7) plays no roll in setting the initial values for A", B! and
E'. We therefore have precisely 2N? — N free parameters to set E// = E§'/ /N and
Al = BY = 0. Of course, the value of the trace of E is part of this freedom, and we
are free to fix it in such a way that E/N = 1.

To summarise, it is always possible to choose the initial conditions for vfy(k, 7) and
Z)vi /dt(k,7) in such a way that conditions (eq. A.1-A.3) are satisfied. These condi-
tions ensure the commutation relation (eq. 4.61). To finish this discussion, recall that
one possible choice for the initial conditions for the perturbations allowing (eq. A.1)
to (eq. A.2) to be satisfied, are precisely those expressed in (eq. 4.67), with suitable
choices for the coeflicients v, (k) and 7, (k):

Va(k), (k) = v (K)o (k) = i, (A.15)

for @ = 1,--- N. We should emphasise however that this is not the unique choice
for initial conditions and, in general, any choice for which E"Y = E§"/N and A" =
B = 0 will do just fine.
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APPENDIX B

Zeroth-order theory of the
background fields

In this appendix we study in detail the dynamics offered by the tree level potential
V(p) = V.(¢) discussed in Section 4.4.1. We shall focus only on potentials V for
which the Hessian V,; is positive definite. Let us for a moment independently con-
sider solutions to the equation

Ve =0. (B.1)

In general, these will correspond to a set of fields parametrising a surface S in M.
The fields lying on this surface correspond to exactly flat directions of the potential
V. Let us express this surface by means of the parametrisation

¢ = ¢ (x"), (B.2)
where @ = 1, - - - ng, with ng the number of flat directions of the potential. Then
Val#.00)] =0 (B.3)

for any y. Clearly, ns is the dimension of the surface. We may now define the induced
metric on the surface by making use of the pullbacks X¢, = 9,¢%:

8ap = XX Yap . (B.4)

Let us for a moment disregard the degrees of freedom perpendicular to this surface
and consider only those lying on §. This corresponds to truncating the theory by
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Appendix B: Zeroth-order theory of the background fields

considering only the fields y®. The theory for such fields would be deduced from the
action

S = _% f d*x gap0, X 'Y (B.5)

and the equations of motion would be given by

Q.Q_dea-i_,\a d/\/ﬁ%_

- — = B.6
a’* T ar TP ar ar (B.6)

where |
ng = Egrw (6[3g6y + 0y8ps — &;gﬁy) (B.7)

is the connection deduced out of the induced metric g,s. The relation between fgy
and I'; is given by

fa _ % b yc 1a a

fe =X, (X 15X, Ty + X m) , (B.8)

where {(aﬂy = (?yX“ﬁ. It is convenient here to define ng = XbﬁXCyFZC + X“ﬁy, which
yields I'y, = X,*Mg . To review under what conditions the previous truncation is
consistent, let us recall how much a solution to (eq. B.6) deviates from the equation
of motion of the full theory given by (eq. 4.6). By differentiating with respect to time
the solution (eq. B.2) with y“ satisfying (eq. B.6), we find

D .
Ed’il()() = X 07 + Mgy X* (B.9)
D .

- Egbg()() = (Mgﬁ - XayXbVMZﬁ)Xa/\-/ﬂ ) (B]O)

It is useful to define QF 5 = PZMZB, where P4, = 6%, — X“Vbe is the projector along

the space perpendicular to the surface. Qs transforms as a tensor:
A
Ohp = 0 X% + T Xy — rgﬁx“y = Do X%, (B.11)

where I'; =Ty X¢,. The previous notation is consistent as X“, transforms homoge-
neously under reparametrisations of ¢ and y. Thus, finally we are left with

D .

27100 = Q"X (B.12)
Therefore, since V¢(¢.) = 0 by definition, if QZBX“/\?ﬁ is non-vanishing along the
trajectory followed by y“, then ¢¢ does not satisfy the equations of motion for ¢“ in

the full theory. In fact, since we are interested in an arbitrary solution y* = y“(¢)

120



of (eq. B.6), in general either y* = 0 or Qo = 0. The first case corresponds to a
stationary solution, where the background is not evolving. The second case Q=0
is more interesting, as it corresponds to the case in which S is geodesically generated.
To appreciate this, notice first that if Q% 5= 0 then ¢ = ¢%(¢) satisfies the equation of
a geodesic. In second place, it is possible to deduce the following identity

Ry = PXXXR
= P, (D0}, - Dy 05, - (B.13)

Thus, if Qgﬁ = 0 then arbitrary vectors, which are tangent to S, will not generate a
component normal to S after being transported around an arbitrary loop in S. Finally,
one also has the general relation

RYys = XXX XER, g + (s Var Oy 87 — O ¥arQhse”™) . (B.14)

aBy

meaning that if Qflﬁ = 0 one has that the Riemann tensor @aﬁvé characterising S
coincides with the induced Riemann tensor Xa"XbﬁX"yX"&R“bc , to the surface.

It is rather clear that whenever the surface S is not geodesically generated, the
solution ¢* = ¢*(y) is not a solution of the full set of equations of motion. Let us
now ask under what circumstances this might be a good approximation. For this,
consider the following notation for the full solution:

" =L + A", (B.15)

where A“ has the purpose of parametrising the displacement of the full solution from
¢¢ defining the surface S. To deduce the equation of motion for A notice that

¢a
dt

= ¢ + T4($)¢ 9"
. b /. \C
= ¢+ A+ Ty (b, + D) (60 + A) (¢ + A)

D ha o
= D0 KA TLQON G+ TL@IPA + AT (0B A . (B16)
On the other hand, we have the relation
DzAa a a b A b b d ;
T = AT 0A ] + T (00 |47 + TG 0005 | 6. (B.17)

Putting these two expressions together we find the equation of motion for A? to be
given by
DZA“

+ Q" + C(¢)A" = 0, (B.18)
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Appendix B: Zeroth-order theory of the background fields

where we are neglecting terms of higher order in A. In the previous expression we
have defined

C(@e) = V(@) = R (S0P (B.19)
where V9, (¢.) = y*(¢.)V.:Vp(#.). In deriving this expression we have assumed that
Qf;ﬁ/\/“/\/ﬁ is of O(A). This is correct since we need to demand A = 0 for the particular
case Qiﬁ)‘(”)'(ﬁ = 0. That is to say, we are strictly interested in the inhomogeneous
solution of the previous equation. Notice that the effective mass C“, contains a con-

tribution from the Riemann tensor. However, the direction given by ¢¢ continues to
be a flat direction since R, (¢.)¢ ¢’ = 0. In other words,

(.90 = 0. (B.20)

Additionally, notice that C,;, is symmetric. To proceed, let us define a few more
quantities. First, the tangent vector to the trajectory defined by ¢.(¢) on the surface is
given by

T¢ = Z—* , (B.21)

where ¢2 = y.,¢?®". In fact, notice that
T =X°T7, (B.22)

a
T = );— , (B.23)
¢ = gapt "X (B.24)
It is a simple matter to show that
DT? s

e = .00 TITY (B.25)
$.=0. (B.26)

It follows that N¢ « QZET}} T?. 1t should be clear that T? Vi (g.) = 0, as T} is
by definition along the flat directions of the potential. It is useful to consider the
definition of the radius of curvature «, parametrising the deviation of the trajectory in
S with respect to geodesics in M. The radius of curvature . comes defined as

DT*¢ N¢
— = (B.27)
de. K
and therefore one has
1
— = =N QL TT! = \/yaan T"T’BQ” TYTS. (B.28)
K
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Notice that this quantity depends only on geometrical objects, as it should. Coming
back to (eq. B.18), we may now write
D?A°
dr?

- $INUC + C(p)A" = 0. (B.29)

At this point one may argue that there are no good reasons to consider «;! to be a
small parameter. In fact, typically, for theories incorporating modular fields, « should
be of O(1) in Planck units. Since ¢, is constant, it is convenient to parametrise the
trajectory with ¢,. We can in fact write

DA* . DA
=¢.—, B.30
dt ¢ do., ( )
D’AY ., D?A°
— = . B.31

We can therefore re-express the equation of motion for A* in terms of the proper
parameter ¢, along the curve:

D*A°

1 _
v + —C (A" = N« (B.32)

¢

To gain experience with this equation, consider the following situation. Suppose we
have a trajectory in field space characterised by a constant curvature «, and such that
C% N® = M? N* with M* > 0 a constant. That is, N* is an eigenvector of C*,. Under
such conditions, using the results of section 4.2.1 we find that

D’N¢  N¢
dg? K&

(B.33)

Then, we can see that A = A N* with A constant is a solution of the equation, with

) 20y —1
A:ﬁ(Mz——*) . (B.34)

K K%

It is entirely reasonable to expect M> > ¢?/«k2, which corresponds to the case in
which the energy scale of the low energy dynamics is much smaller than the energy
scale associated to the heavy fields. In such a case we simply have

32
T M2,

, (B.35)
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Appendix B: Zeroth-order theory of the background fields

This is the typical deviation from the true minimum of the potential if the surface of
this minimum is not a geodesic, the deviation from which is parametrised by «.. To
be more general, let us focus on a class of background trajectories in which

DA“ A
e O(Z) . (B.36)

This is a very reasonable situation to look into (our previous example is a particular
case of this) as it correspond to those cases in which the main scale encoding the
geometrical effects in the trajectory is its curvature. Then, if the non-vanishing eigen-
values of C“, are much larger than #?/k* we can neglect the first term in (eq. B.32)
and write

PN

*

CY(@IA" = (B.37)

Thus more generally A ~ ¢2/(M>k.) is indeed a good measure of the deviation from

the true minimum. Notice that in the case of a system with two scalar fields this is
precisely the case.
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