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CHAPTER 5

Two-field models of inflation

5.1 Introduction

In the previous chapter we developed a framework, extending Groot Nibbelink and
van Tent (2000, 2002), in which we can calculate the effects of turning field space tra-
jectories on its perturbations. In this chapter, we will use that framework to calculate
features in the inflationary power spectrum generated by a turn in the inflaton trajec-
tory. Furthermore, we will derive an effective field theory that is valid for the large
hierarchy limit mH � H, and show that also in this limit there can be significant fea-
tures. As we will shortly demonstrate, the parameter determining how relevant a local
turn in the background inflaton trajectory is for the effective dynamics of the adiabatic
mode is given by the departure from unity of the quantity eβ = 1+4φ̇2

0/(κ
2M2), where

φ̇0 is the speed of the inflaton background field, κ is the radius of curvature of the curve
in field space and M is the mass of the direction normal to the trajectory. Keeping in
mind that during slow-roll inflation, the inflaton velocity is given by φ̇0 =

√
2εMPlH,

with ε being the usual slow-roll parameter, it follows that eβ = 1 + 8εM2
PlH

2/(κ2M2).
Thus, even with M2 � H2, if the radius of curvature describing the turn is small
enough, significant imprints of heavy physics on the dynamics of the adiabatic mode
can arise. More generally, whenever eβ , 1, some amount of particle creation takes
place that backreacts on the dynamics of the adiabatic mode. Let us not forget that in
addition to the scale invariance of the power spectrum, single-field slow-roll inflation
predicts that the observed CMB temperature anisotropies seeded by the curvature per-
turbation satisfy Gaussian statistics to a high degree of accuracy (Maldacena, 2003).
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Chapter 5: Two-field models of inflation

Interestingly, in the class of models examined in this work, if the normal direction to
the inflaton trajectory is sufficiently massive (M2 � H2), it is possible to compute
an effective action for the adiabatic mode capturing the relevant operators of the full
multi-field dynamics. This effective theory has the characteristic that the adiabatic
mode propagates with a speed of sound given by

c2
s = e−β (5.1)

and therefore becomes a functional of (the curvature of) the trajectory traversed by
the inflaton (as discussed in the previous chapter). Interestingly, this result has as
a special case the particular context of Tolley and Wyman (2010) and indicates the
presence of non-Gaussian signatures correlated with features in the power spectrum.1

This chapter will start with a discussion of two field models for inflation, general-
ising the discussion of section 4.4. In this section, we will also derive the appropriate
expressions for the power spectrum. In the next section, section 5.3, we will derive a
single-field effective theory with a reduced speed of sound, where the speed of sound
is determined by turns in the direction of the field that is integrated out. Then, we will
derive the two-field equations of motion in the limit of slow-roll inflation. We con-
clude this section by showing that the effective field theory can also be found in the
traditional way (Rubin, 2001). Next, in section 5.4 we solve the equations of motion
for specific trajectories with turns, and show that this leads to oscillations in the power
spectrum. We also perform the calculation in the effective single-field theory with a
reduced speed of sound, and see that for the large hierarchy limit both methods agree.
This leads to the conclusion that the effect of a turn in field space is signalled by a
simultaneous appearance of oscillations in the power spectrum and nongaussianities,
as is explained in section 5.5

5.2 Inflationary models with two scalar fields

We now study the evolution of perturbations in systems containing only two relevant
scalar fields. In this case, it is always possible to take the set of vielbeins {ea

I } to
consist entirely in ea

T = T a and ea
N = Na defined in Section 4.2.1. Then, the projec-

tion tensor Pab introduced in (eq. 4.23) vanishes identically and one is left with the

1In the paper by Cremonini et al. (2010b) the parametrisation of the non-decoupling parameter of
the isocurvature directions ξ relates as a specific realisation of our analysis. This is easiest seen through
comparing expressions (23) in Cremonini et al. (2010b) with (eq. 5.37) or (eq. 5.60) here.
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5.2 Inflationary models with two scalar fields

relations

DT a

dt
= − Hη⊥Na , (5.2)

DNa

dt
= Hη⊥T a . (5.3)

At this point we notice that the normal vector Na has always the same orientation
with respect to the curved trajectory, which is due to the presence of the signature
function sN in (eq. 4.9). For definiteness, let us agree that the normal direction Na

has a right-handed orientation with respect to T a as shown in Figure 5.1. With this

Figure 5.1: The figure shows a fixed right-handed orientation of Na with respect to T a.
If the turn is towards the left then η⊥ is negative, whereas if the turn is towards the right
then η⊥ is positive.

convention η⊥ changes signs smoothly in such a way that if the turn is towards the
left then η⊥ is negative, whereas if the turn is towards the right then η⊥ is positive. A
concrete choice for T a and Na with these properties is:

T a =
1

φ̇0

(
φ̇1, φ̇2

)
, (5.4)

Na =
1

φ̇0
√
γ

(
−γ22φ̇

2 − γ12φ̇
1, γ11φ̇

1 + γ21φ̇
2
)
, (5.5)

where γ = γ11γ22 − γ12γ21 is the determinant of γab. To continue, parallel and normal
perturbations with respect to the inflationary trajectory are then given by

vT = a QT = a TaQa , (5.6)

vN = a QN = a NaQa . (5.7)
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Chapter 5: Two-field models of inflation

By choosing this frame, one finds that ZT N = −ZNT = aHη⊥. The coupled equations
of motion describing the evolution of both modes vT

α (k, τ) and vN
α (k, τ) become

d2vT
α

dτ2
+ 2ζ

dvN
α

dτ
− ζ2vT

α +
dζ
dτ

vN
α + ΩT NvN

α + (ΩTT + k2)vT
α = 0 , (5.8)

d2vN
α

dτ2
− 2ζ

dvT
α

dτ
− ζ2vN

α −
dζ
dτ

vT
α + ΩNT vT

α + (ΩNN + k2)vN
α = 0 , (5.9)

where we have defined
ζ ≡ ZT N = aHη⊥ . (5.10)

In the previous equations, the symmetric matrix ΩIJ is defined in (eq. 4.36) and
(eq. 4.48) and consists of the following elements:

ΩTT = − a2H2
(
2 + 2ε − 3η‖ + η‖ξ‖ − 4εη‖ + 2ε2 − η2

⊥

)
, (5.11)

ΩNN = − a2H2(2 − ε) + a2M2 , (5.12)

ΩT N =a2H2η⊥(3 + ε − 2η‖ − ξ⊥) , (5.13)

where M2 ≡ VNN + H2M2
Pl ε R is the effective squared mass of the vN-mode and

R = 2RT NT N = T aNbT cNdRabcd is the Ricci scalar parametrising the geometry ofM.
Furthermore, ξ‖ was defined in (eq. 4.31) and additionally we have defined2

ξ⊥ ≡ −
η̇⊥

Hη⊥
. (5.14)

To arrive at the form of the mass matrix ΩIJ shown in (eq. 5.11), (eq. 5.12) and
(eq. 5.13), we may start from the explicit form deduced out of (eq. 4.36) and (eq. 4.48)
for the case of two-field models,

ΩTT = − a2H2(2 − ε) + a2Vφφ − 2a2H2ε
(
3 − 2η‖ + ε

)
, (5.15)

ΩNN = − a2H2(2 − ε) + a2VNN + a2H2M2
Pl ε R , (5.16)

ΩT N =a2VφN + 2a2H2η⊥ε , (5.17)

where we have defined

Vφφ ≡T aT b∇aVb , (5.18)

VNN ≡NaNb∇aVb , (5.19)

VφN ≡T aNb∇aVb . (5.20)

2Note that this definition for ξ⊥ is different from the definition used in Groot Nibbelink and van Tent
(2000, 2002).
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5.2 Inflationary models with two scalar fields

Additionally R = 2RT NT N = T aNbT cNdRabcd is the Ricci scalar parametrising the
geometry ofM. Notice that Vφφ can be rewritten in the following way:

Vφφ =T a∇a(T bVb) − T a(∇aT b)Vb

=∇φVφ −
1

φ̇0

DT b

dt
Vb

=∇φVφ + H2η2
⊥ , (5.21)

where, to go from the second to the third line we made use of (eq. 5.2) and relation
VN = φ̇0Hη⊥ coming from the definition of η⊥ in (eq. 4.18). Similarly, the quantity
VφN may be manipulated as follows:

VφN =T a∇a(NbVb) − T a(∇aNb)Vb

=∇φVN −
1

φ̇0

DNb

dt
Vb

=∇φVN −
Hη⊥
φ̇0

Vφ , (5.22)

where again, to go from the second to the third line, we made use of (eq. 5.2). As a
final step, we may use VN = φ̇Hη⊥ to deduce

∇φVN =
1

φ̇0

d
dt

(
φ̇0Hη⊥

)
= −H2η⊥(η‖ + ε + ξ⊥). (5.23)

Collecting all of these terms back into (eq. 5.15), (eq. 5.16) and (eq. 5.17) we finally
arrive at (eq. 5.11), (eq. 5.12) and (eq. 5.13). Observe that we are not able to rewrite
VNN = NaNb∇aVb in a similar way, since it involves second variations away from the
inflationary trajectory. This simply means that the quantity VNN must be regarded as
an additional parameter of the model related to the mass of the transverse mode with
respect to the inflaton trajectory.

5.2.1 Power spectrum

Expressions (eq. 5.8) and (eq. 5.9) consist of the equations of motion necessary to
deduce the generation of the curvature perturbation in the case of two-field inflation.
Once the solutions of the fields vT = a QT and vN = a QN are known, it is possible to
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Chapter 5: Two-field models of inflation

define the curvature and isocurvature perturbations as

R ≡
H

φ̇0
QT , (5.24)

S ≡
H

φ̇0
QN , (5.25)

respectively. Using equation (eq. 4.74) with I = J = T , the resulting power spectrum
for adiabatic modes are found to be

PR(k, τ) =
H2

φ̇2
0

PTT
Q (k, τ) =

k3

4π2a2M2
Plε

∑
α=1,2

vT
α (k, τ)vT∗

α (k, τ) , (5.26)

where a and ε = φ̇2/(2M2
PlH

2) are functions of τ. We can also compute the power
spectrum for isocurvature modes and cross correlation as (Gordon et al., 2001, Amen-
dola et al., 2002, Wands et al., 2002)

PS(k, τ) =
H2

φ̇2
0

PNN
Q (k, τ) , (5.27)

PRS (k, τ) =
H2

φ̇2
0

PT N
Q (k, τ) , (5.28)

respectively. They can give rise to observable signatures in the CMB power spectrum
(Amendola et al., 2002), but it depends on post-inflationary processes which we do
not consider here. In this work we are primarily concerned with the computation
of the power spectrum of the curvature perturbation R at the end of inflation. This
corresponds to the quantity

PR(k) ≡ PR(k, τend) , (5.29)

where τend is the time at which inflation effectively ends.3 The computations of PS
and PRS can be done in an identical way.

5.2.2 Effective Theory

If a hierarchy of scales is present in the matrix ΩIJ , then we can compute a fairly
reliable effective theory out of the system (eq. 5.8) and (eq. 5.9). Indeed, by assuming

3Since in multi-field inflation the adiabatic mode R (as well as other background quantities) may con-
tinue evolving on super horizon scales, here we do not follow the standard practise of evaluating the power
spectrum at horizon crossing time k = aH (Gong and Stewart, 2002). See Kinney (2005) for a discussion
of this point.
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5.2 Inflationary models with two scalar fields

that ΩNN remains positive at all times and that

ΩNN �|ΩTT | , (5.30)

ΩNN �|ΩT N | , (5.31)

we may integrate the heavy mode vN out of the system of equations. By examining
the specific shape of the entries ΩTT , ΩNN and ΩT N , we see that a generic requisite
for this hierarchy to exist is

M2 � H2 , (5.32)

where M2 is the effective mass of the heavy mode vN given by

M2 ≡ VNN + H2M2
Pl ε R . (5.33)

To compute the effective theory we proceed in the same way as in chapter 4. We
focus on the mode α associated to slower oscillations due to the hierarchy. Omitting
the α label, this mode is necessarily such that∣∣∣∣∣∣d2vN

dτ2

∣∣∣∣∣∣ � a2M2vN . (5.34)

This allows us to disregard the second derivative of vN in (eq. 5.9), and write vN in
terms of vT as

vN =
1

ΩNN − ζ2 + k2

(
2ζ

dvT

dτ
+

dζ
dτ

vT −ΩNT vT

)
. (5.35)

This expression for vN can be inserted back into the remaining equation of mo-
tion (eq. 5.8) to obtain an effective equation of motion for the light adiabatic mode
vT . Then, by defining a new field ϕ as

ϕ ≡eβ/2vT , (5.36)

eβ(τ,k2) ≡1 + 4η2
⊥

(
M2

H2
− 2 + ε − η2

⊥ +
k2

a2H2

)−1

. (5.37)

we finally arrive at the following effective equation of motion

ϕ′′ + eβ(τ,k2)k2ϕ + Ω(τ, k2)ϕ = 0 , (5.38)

where the time dependent function Ω(τ, k2) is found to be

Ω(τ, k2) =Ω0(τ) −
β′′

2
−

(
β′

2

)2

− aHβ′(1 + ε − η‖) , (5.39)

Ω0(τ) = − a2H2(2 + 2ε − 3η‖ − 4εη‖ − ξ‖η‖ + 2ε2) . (5.40)
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Chapter 5: Two-field models of inflation

Notice that Ω0 is precisely the mass term appearing in the conventional equation of
motion for adiabatic fluctuations in single-field slow-roll inflation. Furthermore, we
note that in the case where the mass M approaches the cutoff of our theory, our results
can be derived from an effective action for the adiabatic mode given by the action

S =
1
2

∫
dτd3x

(dϕ
dτ

)2

− ∇ϕ e−β(τ,−∇2)∇ϕ − ϕ Ω(τ,−∇2)ϕ

 , (5.41)

where β(τ,−∇2) and Ω(τ,−∇2) are the functions defined in (eqs. 5.37 and 5.39) but
with k2 replaced by −∇2. This result corresponds to the generalisation of our previ-
ous work, discussed in chapter 4, to the case of a slowly rolling background in the
presence of gravity. A slightly more formal deduction of this effective theory may be
found in section 5.3.4, where we see that it can be viewed as a leading order effect
at the loop level, and as such contains the higher dimensional corrections implied by
the general arguments made in Weinberg (2008) and Cheung et al. (2008). In section
5.4 we shall compare the power spectrum obtained using this effective theory with
the one obtained from the full set of equations for the perturbations. We anticipate
that this effective theory is very reliable regardless of how large the values of β are.

5.3 Slow-roll inflation in two-field models

So far we have not assumed the slow evolution of background quantities. We now
proceed to discuss the case of inflation realised in the slow-roll regime, where the
scale of inflation H varies slowly. Our main interest is to study the effects appearing
from curved inflationary trajectories, where η⊥ is non-vanishing. We will assume that
the radius of curvature κ may take values smaller than MPl, corresponding to turns of
the trajectory taking place at field scales smaller than the Planck scale. This situation
is certainly allowed and depending on the value of ε it may render large values of
η⊥ (recall (eq. 4.22) relating η⊥ and κ). By the same token, we will consider models
where the normal mode vN has a large effective mass M2 � H2.

5.3.1 Slow-roll parameters

In general, given the background equations of motion (eq. 4.6-4.8), we say that a
given background quantity A is slowly rolling if its variation satisfies

|δA| ≡

∣∣∣∣∣− 1
HA

dA
dt

∣∣∣∣∣ � 1 . (5.42)
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5.3 Slow-roll inflation in two-field models

Observe that we can write ε = δH and η‖ = δφ̇0
, and therefore both H and φ̇0 evolve

slowly if ε � 1 and |η‖| � 1 respectively. Since ε = φ̇2/(2M2
PlH

2), the condition
|η‖| � 1 also guaranties that ε will remain varying slowly during inflation. It is useful
to introduce a single small dimensionless number δ � 1 parametrising the slow-roll
expansion4 and demand that any quantity A to which slow-roll is imposed, generically
satisfies

1
HA

dA
dt

= O(δ) , (5.43)

which means ε = O(δ) and η‖ = O(δ). In the absence of clear evidence of it, for sim-
plicity we shall not consider here hierarchies between different slow-roll parameters.
Recall that (eqs. 4.29 and 4.30) are exact equations relating the parameters ε, η‖ and
ξ‖ to the shape of the potential V along the inflationary trajectory. Now, provided that
all of these parameters are small, we may re-express these equations to leading order
in δ as

η‖ + ε =M2
Pl

∇φVφ

V
, (5.44)

ε =
M2

Pl

2

(
Vφ

V

)2

. (5.45)

These are the usual equations defining the slow-roll parameters in terms of the shape
of the first and second derivatives of V .5 As long as ε � 1 and |η‖| � 1, the back-
ground geometry evolves slowly and the scalar field velocity is determined by the
attractor equation of motion 3Hφ̇0 + Vφ = 0. For completeness, notice from the def-
inition of η⊥ in (eq. 4.18) that it is possible to write η⊥ = VN/(

√
2εMPlH2). Then,

using (eq. 5.45) we deduce

η2
⊥ = 9

(
VN

Vφ

)2

, (5.46)

which is valid to leading order in δ. This equation nicely relates the slope of the
potential Vφ along the tangential direction T a with its counterpart VN along the normal
direction Na.

4Current observations indicate that the order of such a reference parameter is given by the departure of
the spectral index from unity δ ∼ |nR − 1|.

5Let us recall that the parameter η was originally introduced in the study of single-field slow-roll in-
flation (Liddle and Lyth, 1992) as η = M2

PlV
′′/V . Therefore, in order to compare the present results with

those following the original convention, we must write η = η‖ + ε.
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Chapter 5: Two-field models of inflation

5.3.2 Perpendicular dynamics

Let us now turn our attention to parameter η⊥ defined in (eq. 4.18). Notice that this
parameter is not related to the slow-roll variation of any given background quantity
A in the sense of (eq. 5.42) and therefore is not constrained to be of O(δ). Moreover,
(eq. 4.22) tells us that η⊥ may be large compared to δ provided that the radius of
curvature κ is small compared to

√
2εMPl. It is important to recognise that the curved

inflationary trajectory (κ−1 , 0) has its origin in both the shape of the scalar potential
V and the geometry of the scalar manifold where the theory lives. In particular, since
H and φ̇0 are assumed to evolve slowly, we expect the flat inflationary trajectory
to remain close to the locus of points minimising the heaviest direction Na of the
potential. In other words, to ensure a bending of the trajectory we consider models
where the potential is such that

VNN � |∇φVφ| . (5.47)

It is entirely clear that in the event that the inflationary trajectory is suffering a turn, it
will not coincide exactly with curve minimising the heaviest direction, which is made
explicit by the result VN = η⊥φ̇0H found in (eq. 4.18). It is in fact easy to show that
the departure ∆ from the real minima VN |min = 0 is roughly given by the condition
VN + M2∆ ' 0, with M2 given by (eq. 5.33). Then, with the help of (eq. 4.18) one
finds that the ratio between the deviation ∆ and the radius of curvature κ is given by

∆

κ
' η2

⊥

H2

M2
. (5.48)

Observe that ∆/κ is essentially the combination eβ − 1 defined in (eq. 5.36) in the
regime k2 � a2H2. Thus the parameter β appearing in the effective theory deduced
in section 5.2.2 is giving us information regarding the dynamics perpendicular to the
inflaton trajectory.

It is important to check whether the bending interferes with the flatness of the
potential as felt by the adiabatic mode vT . Observe from (eq. 5.8) and (eq. 5.11) that
the effective mass m2(τ) of vT is given by

m2(τ) ≡ ΩTT − ζ
2 ≈ −a2H2(2 + 2ε − 3η‖) , (5.49)

where we have neglected terms of O(δ2). Note that m2(τ) = Ω0(τ), where Ω0(τ) is
the effective mass encountered in the effective theory deduced in section 5.2.2. Thus,
we see that η⊥ does not directly spoil the flatness of the potential V . Of course,
one should explicitly verify in which way a bending affects the value of ε and η‖ by
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5.3 Slow-roll inflation in two-field models

examining the evolution of the background. We however point out that there is no
reason a priori that fast and sudden turns with large values of η⊥ are not possible
while staying in the slow-roll regime.

5.3.3 Equations of motion in the slow-roll regime

Putting all of the previous results together back into the set of equations (eq. 5.8) and
(eq. 5.9), and neglecting terms of O(δ2), we finally arrive at the following equations
of motion for the perturbations vT

α and vN
α :

d2vT
α

dτ2
+ 2aHη⊥

dvN
α

dτ
+ a2H2

(
k2

a2H2
− 2 − 2ε + 3η‖

)
vT
α + 2a2H2η⊥ (2 − ξ⊥) vN

α =0 ,

(5.50)

d2vN
α

dτ2
− 2aHη⊥

dvT
α

dτ
+ a2H2

(
k2

a2H2
+

M2

H2
− 2 + ε − η2

⊥

)
vN
α + 2a2H2η⊥vT

α =0 ,

(5.51)

where ξ⊥ was defined in (eq. 5.14). In the next section we deal with these equations
numerically for suitable choices of the background parameters, and compare the ob-
tained power spectrum with that of the effective theory obtained in section 5.2.2. We
shall see how features in the power spectrum appear as a consequence of curved in-
flationary trajectory. We will, however, first give another derivation of the effective
theory presented in section 5.2.2.

5.3.4 Effective theory for the adiabatic mode

In this section we offer another deduction of the effective theory shown in section
5.2.2. We begin by writing the action (eq. 4.49) for the particular case of two fields:

S =

∫
dτd3x

1
2

(dvT

dτ

)2

−
(
∇vT

)2
−

(
ΩTT − ζ

2
) (

vT
)2


+

∫
dτd3x

1
2

(dvN

dτ

)2

−
(
∇vN

)2
−

(
ΩNN − ζ

2
) (

vN
)2


−

∫
dτd3x vN

(
ΩT N −

dζ
dτ
− 2ζ

d
dτ

)
vT . (5.52)

Given that ΩNN � |ΩTT | and ΩNN � |ΩT N | the field vN is the heavier of the two.
Taking this scale as the scale of the heavy physics that we wish to integrate out, we
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Chapter 5: Two-field models of inflation

can formally evaluate the functional integral for vN to obtain the one loop effective
action for vT as

S =

∫
dτd3x

1
2

(dvT

dτ

)2

−
(
∇vT

)2
− (ΩTT − ζ

2)
(
vT

)2


+
1
2

∫
dτd3x

∫
dτ′d3x′O(τ)vT (x, τ)G(x, τ; x′, τ′)O(τ′)vT (x′, τ′) + S CT ,

(5.53)

with O given by

O(τ) ≡ −

(
ΩT N −

dζ
dτ
− 2ζ

d
dτ

)
, (5.54)

and the Green’s function G given by

G
(
x, τ; x′, τ′

)
=

1
� + ΩNN − ζ2

. (5.55)

The term S CT renormalises the effective action for the background inflaton field. We
have to demand that the parameters of this effective action that satisfy the slow-roll
conditions rather than those of the bare action (Burgess et al., 2010), which we pre-
sume to be the case here. In general, evaluating the full effective action is a highly
non-trivial task. However, in Fourier space one can formally make the expansion

G
(
τ, τ′, k

)
=

1
−∂2

τ + k2 + ΩNN − ζ2
=

1
ω2

(
1 −

∂2
τ

ω2
+ · · ·

)
, (5.56)

where
ω2 ≡ k2 + ΩNN − ζ

2. (5.57)

Where implicit in the above is that if the scale M tends to the cutoff of the theory
(so that VNN ∼ M2) we can neglect the temporal derivatives in the expansion above,
relative to the mass term and the spatial derivatives (which always become significant
at horizon crossing). This reduces the Green’s function to leading order of only the
contact term.6 Integrating the second term in (5.53) by parts results in

S =

∫
dτd3k

1
2


(

dvT

dτ

)2

eβ(k,τ) −
[
k2 + Ω̄(τ, k)

] (
vT

)2
 , (5.58)

6A related derivation for the effective field theory of the inflaton field coupled to a massive field with a
cubic interaction term with the inflaton can be found in Rubin (2001).
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with

eβ(τ,k2) ≡ 1 + 4η2
⊥

(
M2

H2
− 2 + ε − η2

⊥ +
k2

a2H2

)−1

, (5.59)

Ω̄(τ, k) ≡Ω0 −
4a4H4η2

⊥(1 + ε − η‖)2

ω2
+ 4

d
dτ

[
a3H3η2

⊥(1 + ε − η‖)

ω2

]
, (5.60)

whilst Ω0 is given by (eq. 5.40). Making the field redefinition ϕ ≡ eβ/2vT (and upon
integrating by parts the resulting friction term), one then obtains the effective action

S =

∫
dτd3k

1
2

(dϕ
dτ

)2

− ϕ e−β(τ,k)k2ϕ − ϕ Ω(τ, k)ϕ

 , (5.61)

where Ω(τ, k2) is defined as in (eq. 5.39). We thus see that the expression (eq. 5.41)
follows.

5.4 Features in the power spectrum

We now study the evolution of perturbations and analyse how features in the pri-
mordial spectrum are generated along curved trajectories. To this extent, we solve
(eqs. 5.50 and 5.51) numerically for different background solutions representing cur-
ved trajectories and obtain the mode solutions vI

α which, with the help of (eq. 5.29),
provide us the desired power spectrum at the end of inflation. For definiteness, we
consider models of inflation with an inflationary period of at least 60 e-folds and set
the initial conditions a few e-folds before this period starts. To avoid unnecessary
complications with initial conditions, we considered models where turns in the tra-
jectory only happen within the last 60 e-folds. Before this period, η⊥ = 0 and the
equations of motion determining the evolution of perturbations reduce to

d2vT
α

dτ2
+ a2H2

(
k2

a2H2
− 2 − 2ε + 3η‖

)
vT
α =0 , (5.62)

d2vN
α

dτ2
+ a2H2

(
k2

a2H2
+

M2

H2
− 2 + ε

)
vN
α =0 . (5.63)
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Then, as long as ε and η‖ are small, we are allowed to make use of initial conditions
(eq. 4.65-4.67) with eI

α = δI
α, and v1(k) and v2(k) given by

v1(k) =

√
π

4
√

aiHi
ei π2 (ν1+ 1

2 )H(1)
ν1

(
k

aiHi

)
, (5.64)

v2(k) =

√
π

4
√

aiHi
ei π2 (ν2+ 1

2 )H(1)
ν2

(
k

aiHi

)
, (5.65)

where H(1)
ν (x) denotes the first kind Hankel function, whereas ai and Hi are the values

for the scale factor and Hubble parameter at the initial time τi. Similarly, the quan-
tities π1(k) and π2(k) entering the initial conditions (eq. 4.67) are given by the time
derivatives of the previous expressions. On the other hand, the parameters ν1 and ν2

are respectively given by

ν1 =

√
(3 − ε)2

4(1 − ε)2
− 3(η − ε) , (5.66)

ν2 =

√
(3 − ε)2

4(1 − ε)2
−

M2

H2
i

. (5.67)

Note that in the short wavelength limit, k � aiHi, the previous conditions matches
the mode fluctuations about a Bunch-Davies vacuum (eq. 4.70), discussed in sec-
tion 4.3.2. In all of the cases examined, we consider inflationary trajectories where ε,
η‖ and ξ‖ remain small during the interval of interest, while allowing different types
of time variation of η⊥, which is the quantity that parametrises the bending.

5.4.1 Constant radius of curvature

Let us start by considering the simple case in which η⊥ is constant during the whole
period of inflation where currently accessible modes were generated. As we have
already emphasised, if ε remains nearly constant a constant η⊥ corresponds to a tra-
jectory with a constant radius of curvature κ. We find that the overall effect of having
a constant turn is simply to normalise the amplitude of the spectrum, without modify-
ing the usual single-field dependence of the spectral index nR in terms of the slow-roll
parameters ε and η‖ (see also Chen and Wang, 2010a,b),

nR − 1 = 2η‖ − 4ε . (5.68)

In the case M2/H2 � 1, the predicted power spectrum obtained by the effective
theory is indistinguishable from the one obtained by solving the full set of equations.
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Moreover, with the help of this effective theory, it is in fact possible to infer a simple
relation between the power spectrum PR(k) with η⊥ , 0 and the analytical power
spectrum P(0)

R
(k) computed with η⊥ = 0. To this extent, notice that although β(k, τ)

is a function of k, we see that when the physical wavelength of the mode becomes
larger than the scale M−1 (i.e. k2/a2 ≤ M2), the parameter β(τ, k) becomes effectively
k independent, and we can write

eβ = 1 + 4η2
⊥

H2

M2
. (5.69)

Since M2 � H2, this happens before horizon crossing and the relevant dynamics is
well described by this k-independent form of β. Then the relation between PR(k) and
P

(0)
R

(k), as predicted by the effective theory, becomes

PR(k) =

(
1 + 4η2

⊥

H2

M2

)
P

(0)
R

(k) . (5.70)

This result modifies the usual normalisation condition of the spectrum coming from
the COBE data, leading to the following relation among the various parameters:(

1 + 4η2
⊥

H2

M2

)
P

(0)
R

(kCOBE) ≈ 2.46 × 10−9 . (5.71)

Physically, this result may be interpreted as coming from the fact that heavy and light
modes are interchanging energy at a constant rate, therefore rendering only a change
in the overall amplitude of the spectrum. However, as manifest from the effective
theory (eq. 5.38), the speed of sound is modified as

c2
s = e−β =

(
1 + 4η2

⊥

H2

M2

)−1

. (5.72)

This implies the generation of nongaussianity noticeable in the bispectrum, as studied
in Chen and Wang (2010a,b).

5.4.2 Single turn in the trajectory

As a next step, we consider the presence of a single turn in the inflationary trajec-
tory. To simplify our analysis, we consider the specific case in which the trajectory
is initially autoparallel to a geodesic (a straight path), then goes through a short pe-
riod in which it suffers a turn, and finally goes back to the curve autoparallel to a
geodesic. Figure 5.2 shows a prototype example of such a situation. We also assume
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Figure 5.2: The figure shows a prototype example of a trajectory which suffers a localised
bend towards the right.

that throughout this process all the slow-roll parameters except for η⊥ remain nearly
constant. To model this situation, we take η⊥ to be an analytical function of the e-fold
number N in the following way:

η⊥(N) =
η⊥max

cosh2 [2(N − N0)/∆N]
, (5.73)

where ∆N is the number of e-folds during which the bending happens, and N0 is
the e-fold value at which the bending is at its peak, in which case η⊥(N0) = η⊥max.
We recall that N may be suitably defined from conformal time τ through the rela-
tion dN = aHdτ. For the other slow-roll parameters we choose the reference values
ε = 0.022 and η‖ = 0.034. These values correspond to a spectral index nR = 0.98
and to a tensor to scalar ratio r = 0.35, which are marginally compatible with current
CMB tests (Larson et al., 2010). Additionally, these values imply H = 10−5MPl. Fig-
ure 5.3 shows the power spectra for six cases with different choices of the parameters
∆N, η⊥max and M2. The plots contain both the spectrum obtained by solving the full
coupled system of equations (solid line) and the spectrum obtained by solving the
effective single-field equation of motion (dashed line). For simplicity, we normalise
our results in units of 2.46 × 10−9 and give the scale k in units of Mpc−1. As a ref-
erence, we have included the case η⊥ = 0, which corresponds to the power spectrum
that would be obtained in the single-field case.

The main characteristic shown by the plots are oscillatory features appearing in
the spectrum. It may be noticed that the e-fold width ∆N during which the turn takes
place actually set the scale k of the oscillatory features. On the other hand, the ampli-
tude of the oscillations is roughly dictated by the ratio 4η⊥maxH2/M2. More precisely,
the amplitude of the largest oscillatory feature is of order δPR/PR ∼ 4η⊥maxH2/M2,
which agrees with the result of (eq. 5.70). Additionally, the match between the curve
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5.4 Features in the power spectrum

Figure 5.3: The primordial power spectrum PR(k) normalised in units of 2.46 × 10−9,
obtained for six different choices of ∆N, η⊥max and M2. The plots show a comparison
between the power spectrum obtained using the full system of equations (solid line) and
the one obtained using the effective theory (dashed line). We have chosen as a pivot scale
the value k∗ = 0.002Mpc−1.
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predicted by the effective theory and the full set of equations becomes better as
M2/H2 acquires larger values, irrespective of how large is β. In fact, in all of the
examples shown we have β ∼ 1.

The appearance of oscillatory features, not just a single bump, in the spectrum
reflects the fact that both modes vN and vT backreact at sub-horizon scales as the turn
happens. Once both modes cross the horizon, the amplitude of the adiabatic mode
becomes frozen (therefore capturing the moment in which the mode was receiving
or releasing energy) while the amplitude of the heavy mode quickly decays due to
the accelerated expansion. In fact, we have checked that the levels of isocurvature
perturbations at the end of inflation are negligible.

5.4.3 A specific example

As a last step towards understanding the effects of curved trajectories, we discuss our
results applied to a specific toy model, where turns are produced due to the non-trivial
evolution of the sigma model metric. Let us consider a two-field model with fields
φ1 = χ and φ2 = ψ with a kinetic term containing the following sigma model metric:

γab =

(
1 Γ(χ)

Γ(χ) 1

)
, (5.74)

where Γ(χ) is only a function of the χ field and restricted to satisfy Γ2(χ) < 1. The
non-vanishing connections are Γ

χ
χχ = −ΓΓχ/(1 − Γ2) and Γ

ψ
χχ = Γχ/(1 − Γ2) with

Γχ = ∂χΓ, and the equations of motion for the background fields are found to be

χ̈ −
ΓΓχ

1 − Γ2
χ̇2 + 3Hχ̇ +

1
1 − Γ2

Vχ −
Γ

1 − Γ2
Vψ =0 , (5.75)

ψ̈ +
Γχ

1 − Γ2
χ̇2 + 3Hψ̇ +

1
1 − Γ2

Vψ −
Γ

1 − Γ2
Vχ =0 , (5.76)

where Vχ = ∂χV and Vψ = ∂ψV . For concreteness, let us consider the following
separable scalar field potential:

V(χ, ψ) = V0(χ) +
1
2

M2ψ2 . (5.77)

In the particular case of Γ = 0, the dynamics of the two fields decouple and inflation
may be achieved with χ by a suitable choice of the potential V0(χ). If, however, Γ(χ)
is allowed to be non-vanishing for certain values of χ, then a mixing between the
two modes is inevitable, and the inflationary trajectory will be curved. Following
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the discussion at the beginning of Section 5.2, we choose the tangential and normal
vectors T a and Na as in (eq. 5.4) and (eq. 5.5):

T a =
1

φ̇0

(
χ̇, ψ̇

)
, (5.78)

Na =
1

φ̇0

√
1 − Γ2

(
−ψ̇ − Γχ̇, χ̇ + Γψ̇

)
, (5.79)

where φ̇0 = χ̇2 + ψ̇2 + 2Γχ̇ψ̇. Recall that with this convention η⊥ is allowed to change
its sign. The relevant background parameters describing this situation are then

ε =
χ̇2 + ψ̇2 + 2Γχ̇ψ̇

2M2
PlH

2
, (5.80)

η‖ = 3 +
χ̇Vχ + ψ̇Vψ

H
(
χ̇2 + ψ̇2 + 2Γχ̇ψ̇

) , (5.81)

η⊥ = −

(
ψ̇ + Γχ̇

)
Vχ −

(
χ̇ + Γψ̇

)
Vψ

H
√

1 − Γ2
(
χ̇2 + ψ̇2 + 2Γχ̇ψ̇

) , (5.82)

where H is given by 6M2
PlH

2 = χ̇2 + ψ̇2 +2Γχ̇ψ̇+2V . For concreteness, let us consider
a parameter Γ(χ) having the following χ-dependence:

Γ(χ) =
Γ0

cosh2 [
2(χ − χ0)/∆χ

] , (5.83)

where Γ0 is the maximum value attained by Γ(χ). We take the potential V0(χ) as

V0(χ) =
1

256V5
0

(
16V3

0 + V2
1χ

3 − 2V0V1χ
2(V1 + 2V2χ) + 8V2

0χ
(
V1 + χ(V2 + V3χ)

))2
,

(5.84)
with V0 = 3Hi, V1 = −

√
2εiV0, V2 = V0(εi + ηi) and V3 = 10−4V0, where, as before,

Hi, εi and ηi render values ε = 0.022 and η‖ = 0.034 for the slow-roll parameters in
the absence of curves. For this specific configuration, we found that the background
value of ε(τ) remains nearly constant at the attractor value ε = 0.022 whereas the
background value of η‖(τ) is more sensitive to the turns suffered by the trajectory,
having small deviations from the attractor value η‖ = 0.034. Additionally, we found
two relevant time scales determining the behaviour of background quantities η‖ and
η⊥:

Tψ ≡M−1 , (5.85)

Tχ ≡
∆χ

φ̇0
=

∆χ
√

2εMPlH
. (5.86)
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The appearance of these time scales are actually easy to understand. First, notice that
Tχ is the time during which the turn takes place whereas Tψ is the oscillation period
of the massive field ψ. We find that if Tχ � Tψ, then the background dynamics is
such that φa

0 = (χ, ψ) oscillates about ψ = 0, meaning that both η‖ and η⊥ presented

oscillatory features with frequency O
(
T−1
ψ

)
. On the other hand, if Tχ � Tψ, the

background field departs adiabatically from the minima of the potential ψ = 0, and
the time evolution of η‖ and η⊥ is dictated by the time scale Tχ. This latter case may be
interpreted as a situation where the trajectory is momentarily pushed towards one of
the walls of the potential, as the curve takes place. Figure 5.4 shows the background
values of η⊥ and η‖ (as functions of the e-fold number N) for the case Γ0 = 0.9,
M2 = 300H2 and two values of ∆χ, namely ∆χ = 0.076MPl and ∆χ = 0.041MPl.
In the latter case, it may be appreciated how the time scale Tψ appears mildly in the
shape of η⊥.

The figure also shows the power spectrum obtained for the two described cases
(right panels). In the present examples, the features appearing in the spectrum are
not as regular as those of Figure 5.3. This is mainly because in the present situation
the curvilinear trajectory contains several turns, in order to go back to the attractor
solution. Although in this specific model the slow-roll parameter η‖ appears to be
sensitive to the mass scale M and the curves taking place, it is important to notice
that this is a model dependent characteristic, and that in general η‖ may show various
types of behaviour depending on the sigma model metric and the potential. In gen-
eral, however, the momentary time variation of η‖ due to curved trajectories does not
spoil the slow-roll regime, and background fields tend to quickly evolve back to the
attractor behaviour characteristic of the single-field case as soon as the bending of the
trajectory stops. In this regard, we find that the time variation of η‖ is not relevant for
the appearance of features in the power spectrum, and that the main contribution is
coming from the derivative interactions due to η⊥ in the equations of motion.

5.4.4 Enhancement of nongaussianity

We briefly elaborate here on another potentially observable feature which is so far not
discussed. In the previous section the power spectrum of the curvature perturbation
was computed for a few examples where the inflaton traverses sufficiently curved
regions in field space. From the results, it is clear that features in the spectrum will be
generated each time the trajectory traverses a bend. These features are produced via
the kinetic interaction between the heavy isocurvature modes and the light curvature
mode as the turns are traversed by the background field. Crucially, in these examples
the heavy mode remained very massive throughout (M2 � H2), highlighting the
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Figure 5.4: Left panels: the evolution of η⊥ (solid line) and 10 × η‖ (dashed line) as
functions of e-fold number N for two set of values of parameters ∆χ, Γ0 and M2/H2. In
the first case, ∆χ = 0.076MPl and the maximum value of η⊥ is about |η⊥| ≈ 1.7, whereas
in the second case, ∆χ = 0.076MPl and the maximum value becomes |η⊥| ≈ 3.5. Right
panels: the resulting primordial power spectrumPR(k), normalised in units of 2.46×10−9,
obtained for the set of parameters used in the plots of η⊥. The scale k appears in units of
Mpc−1.

fact that heavy fields may not always be disregarded (truncated) when computing the
spectrum for adiabatic modes.

What is important to note is that the interaction between curvature and isocurva-
ture modes implies a change in the speed of sound for the curvature perturbations –
as long as M2 � H2, β(τ, k) is effectively k-independent before horizon crossing and
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the speed of sound may be written as

c2
s = e−β =

(
1 + 4η2

⊥

H2

M2

)−1

. (5.87)

As is well known, a model with a speed of sound significantly smaller than unity
gives rise to a noticeable level of nongaussianity of equilateral type, characterised by
the non-linear parameter (Bartolo et al., 2004)

f (eq)
NL ∼

1
c2

s
. (5.88)

Thus, we are led to reason that for generic models of inflation with curvilinear trajec-
tories in a multi-dimensional field space, glitches in the power spectrum are accompa-
nied by a correlated enhancement of nongaussianity of the equilateral type, provided
that the turns in the inflaton trajectory violate the adiabatic approximation vigorously
enough – a phenomenon which we have argued occurs at various points in field space
in many realistic realisations of inflation. Thus although there appear to be many
models where either non-trivial modulations in the power spectrum (e.g.!features in
the single-field inflaton potential, Starobinsky, 1992, Adams et al., 2001, Tocchini-
Valentini et al., 2005, Gong, 2005, Covi et al., 2006, Hunt and Sarkar, 2007, Ichiki
et al., 2010, Peiris and Verde, 2010, Hamann et al., 2010) or large equilateral nongaus-
sianity (e.g. DBI inflation, Silverstein and Tong, 2004, Alishahiha et al., 2004) result,
it appears that in generic multi-field models with curved inflationary trajectories, both
are present and correlated. Evidently, the effective quadratic action (eq. 5.41) contains
the leading higher order corrections which can also result in non-Gaussian signatures
and implies the non-linear parameter (eq. 5.88) (Cheung et al., 2008). However, to
fully describe the bispectrum associated with the curvature perturbation, we need to
properly take into account the cubic order action including gravity. We will discuss
this issue in a separate publication.

5.5 Conclusions

Multi-field models of inflation contain a range of physics which goes beyond that
encountered within the single-field paradigm. In this work we have focused on the
particular case where all of the scalar fields remain massive during inflation except
for one, which slowly rolls down the multi-field potential. We have found that curved
inflationary trajectories can generate significant features in the primordial spectrum of
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density perturbations arising from normal modes becoming excited and backreacting
on the dynamics of the adiabatic mode.

To achieve these results, an extension of Groot Nibbelink and van Tent (2000,
2002), we analysed the evolution of the quantum perturbations of a general multi-
field setup, including the presence of a non-canonical kinetic term. Our methods are
completely general and naturally incorporate those implemented in previous works
(Lalak et al., 2007b, Tsujikawa et al., 2003), where stochastic Gaussian variables are
used. Moreover, although the main focus of this work was the study of systems where
there exists a hierarchy, our results may be used to study a wide range of situations,
including situations where no such hierarchies are present.

Our formalism allows us to consider time-dependent situations beyond the regime
of applicability of existing methods, such as inflaton trajectories with fast, sudden
turns (regardless of whether the sigma model metric is canonical or non-canonical)
as well as more general situations in which the masses of the heavy fields in the
orthogonal direction are changing along the trajectory (even if they still remain much
heavier than H2 and all other scales of interest). Additionally, we wish to emphasise
that these non-decoupling effects have their origin in the non-geodesic nature of the
trajectories in field space.7.

Our results highlight the limitations of simply truncating heavy physics when
modelling single-field realisations of inflation and show under which circumstances
high energy effects can leave an imprint on the power spectrum. The main reason
behind these effects is the existence of kinetic couplings between adiabatic and non-
adiabatic modes, emerging as the inflationary trajectory suffers a turn. As we have
seen in section 4.3.1, it is always possible to change basis to a canonical frame where
such interactions are absent. In that case, the eigenvectors of the perturbation mass
matrix quickly vary as the inflationary trajectory turns, and we are left with the al-
ternative point of view by which these high energy effects appear due to a violation
of the adiabatic condition for truncating heavy fields. In fact, if the heavy fields are
sufficiently massive, we find that we can construct an effective field theory for the adi-
abatic modes encapsulating the relevant effects of the full multi-field dynamics. As
we have seen, such effects are not mere corrections to the standard single-field theory,
but represent entirely new contributions to the quadratic action for perturbations.

Particularly noteworthy is the presence of potentially observable signatures that
result from a reduced speed of sound for the adiabatic perturbations during sudden
turns. As a corollary, correlated nongaussianity will also become manifest as a result
of these sudden turns although a full analysis studying the details of their appearance

7Recent work by Cremonini et al. (2010b) discusses some of these effects in a particular model, the
so-called gelaton model of Tolley and Wyman (2010).
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in multi-field inflation is beyond the scope of this chapter and will be addressed in a
future report. Nevertheless, it would appear that in generic multi-field models with
curved inflationary trajectories, both effects are present and correlated, and can po-
tentially give information about other, much heavier, fields that would otherwise be
inaccessible to experiment.
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