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CHAPTER 4

Heavy physics in the Cosmic
Microwave Background

4.1 Introduction

One particularly compelling possibility which will be discussed in the next two chap-
ters is the possibility of features in the spectrum of perturbations that are generated
by heavy – relative to the scale of inflation – degrees of freedom which do not nec-
essarily decouple from the dynamics of the inflaton. Although the effects of massive
degrees of freedom on the density perturbations are known to quickly dissipate during
inflation, there are evidently still a number of contexts where features in the primor-
dial spectrum due to heavy physics can survive. It is well understood, for example,
that departures from a Bunch-Davies vacuum as the initial condition for the scalar
fluctuations will result in oscillatory features in the power spectrum (see for example
Martin and Brandenberger, 2001, Kempf and Niemeyer, 2001, Easther et al., 2001,
Danielsson, 2002, Kaloper et al., 2002 and Schalm et al., 2004. For a recent review,
see Jackson and Schalm, 2010). Other contexts in which features are generated in
the power spectrum involve particle production during brief intervals – much smaller
than an e-fold – as the universe inflates. Examples of this include those situations
where a massive field coupled to the inflaton suddenly becomes massless at a spe-
cific point in field space (Chung et al., 2000, Elgaroy et al., 2003, Mathews et al.,
2004, Romano and Sasaki, 2008, Barnaby and Huang, 2009). Here it is the transfer
of energy out of the inflaton field and the subsequent backscatter of its fluctuations
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Chapter 4: Heavy physics in the Cosmic Microwave Background

off the condensate of created quanta that can result in features in the power spectrum,
as well as in its higher moments (Barnaby and Huang, 2009, Barnaby, 2010). Yet
another context where such features have been shown to arise is in chain inflation,
where instead of slowly rolling down a smooth continuous potential, the inflaton field
gradually tunnels a succession of many vacua (Chialva and Danielsson, 2009).

The purpose of these chapters is to understand, in the context of inflation embed-
ded in a multi-scalar field theory, the general conditions under which features in the
power spectrum are generated (see work by Langlois and Renaux-Petel 2008, Peter-
son and Tegmark 2010, Cremonini et al. 2010a for other recent discussions on this).
For this we consider models of inflation where all of the scalar fields remain heavy
except for one, the inflaton, which rolls slowly in some multi-dimensional potential.
An effective field theory analysis tells us that in such scenarios, inflation should pro-
ceed in exactly the same way as in the single-field case, with subleading corrections
suppressed by the masses of the heavy scalar fields, see for example Weinberg (2008).
In this framework it is easy to take for granted that a simple truncation of any avail-
able heavy degrees of freedom is the same as having integrated them out. However, it
can certainly be the case that the adiabatic approximation is no longer valid at some
point along the inflaton trajectory, e.g. due to a “sudden” turn that mixes heavy and
light directions, and higher derivative operators in the effective theory are no longer
negligible even as inflation continues uninterrupted.

In various models of inflation in supergravity and string theory, the inflaton is
embedded in a non-linear sigma model with typical field manifold curvatures of the
string or Planck scale (Gomez-Reino and Scrucca, 2006a, Covi et al., 2008b,a). In this
type of scenario the inflaton traverses a curvilinear trajectory generating derivative
interactions between the adiabatic and non-adiabatic modes1 (Gordon et al., 2001,
Groot Nibbelink and van Tent, 2000, 2002). In this context, it is straightforward to
appreciate heuristically that a sudden enough turn can excite modes normal to the
trajectory and non-trivially modify the evolution of the adiabatic mode. We will see
that the net effect of this trajectory will translate into damped oscillatory features su-
perimposed on the power spectrum – the transients after a sudden transfer of energy
between the excited heavy modes and the much lighter inflaton mode, and the subse-
quent rescattering of its perturbations off the condensate of heavy quanta that redshift

1Here, by adiabatic mode we refer to the mode which fluctuates along the inflationary trajectory
whereas non-adiabatic modes correspond to those whose fluctuations remain orthogonal to the trajectory.
We will also frequently denote them as curvature and isocurvature modes in this chapter.
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4.1 Introduction

Figure 4.1: A generic example of a potential where turns happens while one of the fields
remain much heavier than the other.

in short time.2

A typical potential exhibiting such a curved trajectory is depicted in figure 4.1.
It can be appreciated that there is always a heavy direction transverse to the loci of
minima determining the inflaton trajectory. We should emphasise however that the
focus of this work is more general and that a curved trajectory in field space is not
exclusively due to the shape of the potential, but also depends on the particular sigma
model metric defining the scalar field manifold: on a particular curve the two can be
transformed into each other by suitable field redefinitions. With this perspective, we
will show that curved trajectories appear in any situation where a mismatch exists
between the span of geodesics of the scalar field manifold and the actual inflationary
trajectory enforced by the scalar potential through the equations of motion. The pre-
viously described situation is in fact generic of realisations of inflation in the context
of string compactifications, where a large number of scalar fields are expected to re-
main massive but with their vacuum expectation values depending on the field value
of the background inflaton (Blanco-Pillado et al., 2004, Lalak et al., 2007c, Conlon
and Quevedo, 2006, Blanco-Pillado et al., 2006b, Simon et al., 2006, Bond et al.,
2007, de Carlos et al., 2007, Lalak et al., 2007b, Grimm, 2008, Linde and Westphal,
2008).

Limits of certain cases we wish to study in this chapter have been explored re-
cently in seemingly different, but related contexts. In Chen and Wang (2010a,b), for

2We also note the investigations of Tye et al. (2009) and Tye and Xu (2010), where inflation in a putative
string landscape is modelled using a random potential. Here, the background inflaton effectively executes
a random walk, resulting in features at all scales in the power spectrum.
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instance, the effects on density perturbations due to a circular turn with constant cur-
vature in field space was explored within a two-field model. There, it was concluded
that such a turn could render non-Gaussian features in the bispectrum but would not
generate features in the power spectrum. In another recent publication by Tolley and
Wyman (2010), the effects of a sigma model with non-canonical kinetic terms mo-
tivated by string theory were explored within inflationary models where one of the
fields remained very massive. There, an effective theory was derived describing the
multi-field dynamics, characterised by having a speed of sound for the fluctuations
smaller than unity (and therefore indicating the possible departure from Gaussianity
of the CMB temperature anisotropies). In the framework we are about to discuss,
both examples are just different faces of the same coin: while a non-canonical sigma
model metric can always be made locally flat along a given trajectory this generally
generates contributions to the potential with a curved locus of minima. On the other
hand, it is also possible to find a field redefinition which makes the loci of flat direc-
tions of the potential look straight at the cost of introducing a non-canonical metric.

We have organised this chapter in the following way. In section 4.2 we present the
general setup and the notations used throughout this and the next chapter, extending
the work of Groot Nibbelink and van Tent (2000, 2002). There, we will emphasise the
need for using a geometric perspective to describe the evolution of the homogeneous
background. Then, in section 4.3 we proceed to examine the perturbations of the
fields around a time dependent background and consider their quantisation and pro-
vide general formulae for the power spectrum. Our formalism allows us to consider
situations beyond the regime of applicability of existing methods, such as trajectories
with fast, sudden turns (regardless of whether the sigma model metric is canonical
or non-canonical), and any other situations in which the masses in the orthogonal
direction are changing relatively fast along the trajectory while still remaining much
heavier than H2. Then, in section 4.4 we will first derive the dynamics of turning
fields in the Minkowski limit. In this section we will discuss the useful two-field
model and its constant turn limit. Additionally, in the limit of large hierarchy we
will show that the dynamics can be described by an effective single-field theory for
the light field, with a reduced speed of sound. This chapter will be concluded by
a discussion on the validity of truncating non-decoupled sectors, as discussed also
in chapter 2. In the next chapter we will apply this framework for calculations of
features in the inflationary power spectrum.
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4.2 Basic considerations

Let us start our study by recalling some of the basic aspects of multi-field inflation
and by introducing the notations and conventions that will be used throughout this
work. Our starting point is to assume the following effective four dimensional action
consisting of gravity and a set of N scalar fields φa:

S =

∫
√
−g d4x

 M2
Pl

2
R −

1
2
γabgµν∂µφ

a∂νφ
b − V(φ)

 . (4.1)

Here R denotes the Ricci scalar constructed out of the spacetime metric gµν with
determinant g. Additionally, φa (a = 1, · · · N) denotes a set of scalar fields spanning
a scalar manifoldM of dimension N , equipped with a scalar metric γab. The scalar
fields may be thought of as coordinates onM with Christoffel symbols given by

Γa
bc =

1
2
γad (∂bγdc + ∂cγbd − ∂dγbc) , (4.2)

where ∂a are partial derivatives with respect to the scalar fields φa. In terms of these,
the Riemann tensor associated withM is given by

Ra
bcd = ∂cΓ

a
bd − ∂dΓa

bc + Γa
ceΓ

e
db − Γa

deΓ
e
cb . (4.3)

It is also possible to define the Ricci tensor as Rab = Rc
acb and the Ricci scalar R =

γabRab. We shall be careful to distinguish geometrical quantities related to the four
dimensional spacetime and theN-dimensional abstract manifoldM. We should keep
in mind that, typically, there will be an energy scale ΛM associated to the curvature
of M, and hence, fixing the typical mass scale of the Ricci scalar as R ∼ Λ−2

M
. In

many concrete situations, such as the modular sector of string compactifications, the
scale ΛM corresponds to the Planck mass MPl. The equations of motion for the scalar
fields are given by

�φa + Γa
bcgµν∂µφ

b∂νφ
c = Va , (4.4)

where Va ≡ γab∂bV . In what follows we discuss in detail the homogeneous solutions
φa = φa

0(t) to these equations where the scalar fields depend only on time. In this
section and section 4.3 we closely follow the formalism of Groot Nibbelink and van
Tent (2000, 2002), extended to allow for the possibility of sharp turns before and
around horizon exit.
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4.2.1 Background solution

We look for background solutions by assuming that all the scalar fields are time
dependent φa = φa

0(t), and that spacetime consists of a flat Friedmann-Lemaître-
Robertson-Walker (FLRW) geometry (eq. 1.1) of the form

ds2 = −dt2 + a2(t)δi jdxidx j . (4.5)

Later on we will also work in conformal time τ, defined through the relation dt = a dτ.
In this background, the equation of motion (eq. 4.4) describing the evolution of the
scalar fields is given by

D
dt
φ̇a

0 + 3Hφ̇a
0 + Va = 0 , (4.6)

where H = ȧ/a is the Hubble parameter characterising the expansion rate of spatial
slices, and where we have also introduced the convenient notation DXa = dXa +

Γa
bcXbdφc

0. On the other hand, the Friedmann equation describing the evolution of the
scale factor (eq. 1.2) in terms of the scalar field energy density is given by

H2 =
1

3M2
Pl

(
1
2
φ̇2

0 + V

)
, (4.7)

where φ̇2
0 ≡ γabφ̇

a
0φ̇

b
0. We thus see that φ̇0 corresponds to the rate of change of the

scalar field vacuum expectation value along the trajectory followed by the background
fields, we will assume that φ̇0 > 0 everywhere. It is also convenient to recall the
following equation describing the variation of H,

Ḣ = −
φ̇2

0

2M2
Pl

, (4.8)

which may be deduced by combining (eq. 4.6) and (eq. 4.7). By specifying the met-
ric γab and the scalar potential V , these equations can be solved to obtain the curved
trajectory inM followed by the scalar fields. To discuss several features of this tra-
jectory without explicitly solving the previous equations, it is useful to define unit
vectors T a and Na distinguishing tangent and normal directions to the trajectory re-
spectively, in such a way that T aNa = 0. These are defined as

T a ≡
φ̇a

0

φ̇0
,

Na ≡sN(t)

(
γbc

DT b

dt
DT c

dt

)−1/2
DT a

dt
, (4.9)
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where sN(t) = ±1, denoting the orientation of Na with respect to the vector DT a/dt.
That is, if sN(t) = +1 then Na is pointing in the same direction as DT a/dt, whereas
if sN(t) = −1 then Na is pointing in the opposite direction. Due to the presence of
the square root, it is clear that Na is only well defined at intervals where DT a/dt , 0.
However, since DT a/dt may become zero at finite values of t, we allow sN(t) to flip
signs each time this happens in such a way that both Na and DT a/dt remain a contin-
uous function of t. This implies that the sign of sN may be chosen conventionally at
some initial time ti, but from then on it is subject to the equations of motion respected
by the background.3 In the particular case whereM is two dimensional, the presence
of sN(t) in (eq. 4.9) is sufficient for Na to have a fixed orientation with respect to T a

(either left-handed or right-handed). This will become particularly useful when we
examine two dimensional models in sections 4.4 and 5.2.

Observe that the tangent vector T a offers an alternative way of defining the total
time derivative D/dt along the trajectory followed by the scalar fields,

D
dt
≡ φ̇0T a∇a = φ̇0∇φ . (4.10)

Now, taking a total time derivative of T a, we may use the equation of motion (eq. 4.6)
to write

DT a

dt
= −

φ̈0

φ̇0
T a −

1

φ̇0

(
3Hφ̇a

0 + Va
)
. (4.11)

Then, by projecting this equation along the two orthogonal directions T a and Na, we
obtain the following two independent equations

φ̈0 + 3Hφ̇0 + Vφ = 0 , (4.12)

DT a

dt
= −

VN

φ̇0
Na , (4.13)

where we have defined Vφ ≡ T aVa and VN ≡ NaVa to be the projections of Va = ∂aV
along the tangent and normal directions respectively. It is not difficult to verify that
Va lies entirely along a space spanned by T a and Na. That is, we are allowed to write
Va ≡ VφTa + VN Na. To anticipate the study of inflation within the present setup, it is

3We are assuming here that the background solutions φa = φa
0(t) are analytic functions of time and that

φ̇0 is nonvanishing. Under these conditions this procedure can always be performed.
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useful to define the dimensionless quantities4

ε ≡ −
Ḣ
H2

=
φ̇2

0

2M2
PlH

2
, (4.14)

ηa ≡ −
1

Hφ̇0

Dφ̇a
0

dt
, (4.15)

which are the multi-field equivalents of (eq. 1.5). We will not assume that these pa-
rameters are small until much later, where inflation is studied in the slow-roll regime
(see section 5.3 in the next chapter). Similarly to the case of Va, the vector ηa may be
decomposed entirely in terms of T a and Na as

ηa =η‖T
a + η⊥Na , (4.16)

η‖ ≡ −
φ̈0

Hφ̇0
, (4.17)

η⊥ ≡
VN

φ̇0H
, (4.18)

where we have used (eq. 4.6) to simplify a few expressions. Observe that η⊥ is di-
rectly related to the rate of change of the tangent unit vector T a, since (eq. 4.13) can
be written as

DT a

dt
= −Hη⊥Na . (4.19)

Comparison with (eq. 4.9) shows that sign(η⊥) = −sN . This is one of our main
reasons for having introduced sN(t) in (eq. 4.9): it allows us to keep η⊥ continuous
and avoid some unnecessary difficulties encountered in the definition of isocurvature
modes.5

Moving on with this discussion, we can relate η⊥ to the radius of curvature κ
characterising the bending of the trajectory followed by the scalar fields. To do so, let
us recall that given a curve γ(φ0) in field space parametrised by dφ0 = φ̇0dt, we may
define the radius of curvature κ associated to that curve through the relation

1
κ

=

(
γbc

DT b

dφ0

DT c

dφ0

)1/2

. (4.20)

4Note that our definition of ηa differs from the definition in Groot Nibbelink and van Tent (2000, 2002)
by a minus sign.

5In Peterson and Tegmark (2010) for instance, a similar parameter η⊥ is introduced but with a fixed
sign. Partly due to this choice their numerical results cannot handle an overshoot that is occurs when a
potential turns from one direction to another.
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Figure 4.2: The figure shows schematically the relation between the tangent vector T a,
the normal vector Na and the radius of curvature κ.

Here κ stands for the radius of curvature in the scalar manifold M spanned by the
φa fields, and therefore it has dimension of mass. Figure 4.2 shows the relation be-
tween the pair of vectors T a, Na and the radius of curvature κ. Using (eq. 4.10) and
comparing the last two equations we find that κ and η⊥ are related as

κ−1 =
H|η⊥|

φ̇0
. (4.21)

By definition any autoparallel curve, a curve parallel to a geodesic, γ(φ0) in M
satisfies the relation Dφ̇a/dt ∝ φ̇a, which corresponds to the case κ−1 = 0, or alter-
natively, to the case η⊥ = 0. Thus, we see that the dimensionless parameter η⊥ is
a useful quantity that parametrises the bending of the inflationary trajectory with re-
spect to geodesics inM. It is interesting to rewrite the previous relation by replacing
φ̇0 =

√
2εHMPl coming from the definition of ε presented in (eq. 4.14), obtaining

|η⊥| =
√

2ε
MPl

κ
. (4.22)

Then, if the radius of curvature is such that κ � MPl, one already sees that η2
⊥ � 2ε.

We shall come back to this result later when we study curved trajectories in the slow-
roll regime ε � 1. To continue, we may further characterise the variation of Na

as
DNa

dt
= Hη⊥T a +

1
Hη⊥

Pab∇φVb , (4.23)
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where we have defined the projector tensor Pab ≡ γab −T aT b −NaNb along the space
orthogonal to the subspace spanned by the unit vectors T a and Na. That is, PabNb = 0
and PabT b = 0.

To obtain (eq. 4.23) we proceed as follows: first, by taking a total time derivative
to (eq. 4.6) we obtain

1

φ̇0

D2φ̇a
0

dt2
= 3H2(εT a + ηa) − ∇φVa , (4.24)

where ∇φ ≡ T a∇a. Recalling that T a = φ̇a
0/φ̇0, the previous equation can be re-

expressed as

D2T a

dt2
= T a∇φVφ − ∇φVa −

(
Vφ − φ̈0

)
VN

φ̇2
0

Na . (4.25)

On the other hand, taking a total time derivative to (eq. 4.13) we may obtain yet
another expression for the second variation D2T a/dt2, given by

D2T a

dt2
=

VN φ̈0

φ̇2
0

−
V̇N

φ̇0

 Na −
VN

φ̇0

DNa

dt
. (4.26)

Equating the last two expressions and performing some straightforward algebraic ma-
nipulations, we finally obtain (eq. 4.23).

To finish this section, let us state some useful relations that will be used through-
out the rest of this work. First, by using the definitions for ε and η‖ in (eqs. 4.14 and
4.17), we may rewrite the background equations (eq. 4.7) and (eq. 4.12) respectively
as:

3 − ε =
V

M2
PlH

2
, (4.27)

3 − η‖ = −
Vφ

φ̇0H
. (4.28)

With the help of (eq. 4.14) these two relations may be put together to yield:

ε =
M2

Pl

2

(
Vφ

V

)2 (
3 − ε
3 − η‖

)2

. (4.29)

Next, by deriving (eq. 4.12) with respect to time and using the definitions for ε and
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η‖, we deduce6

3(ε + η‖) =M2
Pl

∇φVφ

V
(3 − ε) + ξ‖η‖ , (4.30)

ξ‖ ≡ −
1

Hφ̈0

...
φ0. (4.31)

Both (eq. 4.29) and (eq. 4.30) are exact equations linking the evolution of background
quantities with the scalar potential V . It may be already noticed that if ε, η‖ and ξ‖
are all much smaller than unity, then we obtain the usual relations for the slow-roll
parameters ε and η‖ in terms of derivatives of the potential (see eqs. 1.5-1.7):

ε ≈
M2

Pl

2

(
Vφ

V

)2

, (4.32)

ε + η‖ ≈M2
Pl

∇φVφ

V
. (4.33)

We shall come back to these relations later, when we consider the evolution of the
background in the slow-roll regime.

4.3 Perturbation theory

The notation introduced in the previous section provides a useful tool to analyse per-
turbations δφa about the background solution φa = φa

0(t) by decomposing them into
parallel and normal components with respect to the inflaton trajectory. In what fol-
lows we proceed to study the evolution and quantisation of these perturbations. First,
we consider scalar field perturbations by expanding about the background φa(t, x) =

φa
0(t) + δφa(t, x). It is well known that the equations of motion for the perturbed

fields can be cast entirely in terms of the gauge-invariant Sasaki-Mukhanov variables
(Sasaki, 1986, Mukhanov, 1988)

Qa ≡ δφa +
φ̇a

H
ψ , (4.34)

where ψ is the curvature perturbation of the spatial metric. The equations of motion
for these fields are found to be (Sasaki and Stewart, 1996)

D2Qa

dt2
+ 3H

DQa

dt
−
∇2

a2
Qa + Ca

bQb = 0 , (4.35)

6Note that this definition for ξ‖ is different from the definition used in Groot Nibbelink and van Tent
(2000, 2002).
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where ∇2 ≡ δi j∂i∂ j is the spatial Laplacian and where the tensor Ca
b is defined as

Ca
b ≡ ∇bVa − φ̇2

0R
a

cdbT cT d + 2ε
H

φ̇0
(T aVb + TbVa) + 2ε(3 − ε)H2T aTb . (4.36)

We notice here that Cab = γacCc
b is symmetric. It is convenient to rewrite the set of

equations (eq. 4.35) in terms of perturbations orthogonal to each other. With this in
mind, we introduce a complete set of vielbeins eI

a = eI
a(t) and work with the following

quantities:
QI(t, x) ≡ eI

a(t)Qa(t, x) . (4.37)

The a-index labels the abstract scalar manifoldM whereas the I-index labels a local
orthogonal frame moving along the inflationary trajectory. Recall that vielbeins are
defined to satisfy the basic relations eI

aeJ
bγ

ab = δIJ and eI
aeJ

bδIJ = γab. From these
relations one deduces the identities

eI
a

D
dt

ea
J = − ea

J
D
dt

eI
a , (4.38)

ea
I

D
dt

eI
b = − eI

b
D
dt

ea
I , (4.39)

from which it is possible to read

Q̇I =eI
a

DQa

dt
− Y I

J QJ , (4.40)

Q̈I =eI
a

D2Qa

dt2
− 2Y I

J Q̇J −
(
Y I

KYK
J + Ẏ I

J

)
QJ , (4.41)

where the antisymmetric matrix YIJ = −YJI is defined as

Y I
J = eI

a

Dea
J

dt
. (4.42)

Before writing down the equations of motion respected by the fields QI , it is useful to
notice that the matrix YIJ allows us to define a new covariant derivative D/dt acting
on quantities such as QI labelled with the I-index in the following way7:

D

dt
QI ≡ Q̇I + Y I

J QJ . (4.43)

7It may be noticed that we can write Y I
J =

(
eI

a∂bea
J + eI

aΓa
bcec

J

)
φ̇b

0 = ωb
I

J φ̇
b
0 where ωb

I
J are the usual

spin connections for non-coordinate basis, hence justifying the definition of the new covariant derivative
of (eq. 4.43).
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This definition allows us to rearrange (eq. 4.40) and (eq. 4.41) and simply write

DQI

dt
=eI

a
DQa

dt
, (4.44)

D2QI

dt2
=eI

a
D2Qa

dt2
. (4.45)

Thus, the equations of motion for the perturbations in the new basis become

D2QI

dt2
+ 3H

DQI

dt
−
∇2

a2
QI + CI

J QJ = 0 , (4.46)

where CIJ ≡ eIaeb
JCa

b. To deal with this set of equations, it is convenient to take one
last step in simplifying them and rewrite them in terms of conformal time dτ = dt/a,
and a new set of perturbations vI ≡ aQI . These redefinitions induce a re-scaling of
the covariant derivative (eq. 4.43) in the form D/dτ = aD/dt, from where we are
allowed to write

DvI

dτ
=

dvI

dτ
+ ZI

JvJ , (4.47)

where ZIJ = aYIJ . Then, the equations of motion for the vI-perturbations are found
to be

D2vI

dτ2
− ∇2vI + ΩI

JvJ = 0 , (4.48)

where ΩIJ = −a2H2(2 − ε)δIJ + a2CIJ and we have used the definition of ε to write
a′′/a = a2H2(2 − ε). For completeness, we notice that the equations of motion
(eq. 4.46) may be derived from the action (Groot Nibbelink and van Tent, 2000, 2002)

S =
1
2

∫
dτd3x

∑
I

(
DvI

dτ

)2

−
∑

I

(∇vI)2 −ΩIJvIvJ

 , (4.49)

which can be alternatively deduced directly from the initial action (eq. 4.1) by con-
sidering all of the field redefinitions introduced in the present discussion.

The set of equations (eq. 4.48) contains several non-trivial features. First, no-
tice that the covariant derivative D/dτ implies the existence of non-trivial couplings
affecting the kinetic term of each field vI . By the same token, under general circum-
stances the symmetric matrix ΩIJ does not remain diagonal at all times. In fact, as we
are about to see in the next section, it is possible to choose to write this theory either
in a frame where the N scalar fields are canonical (and therefore without non-trivial
couplings in the kinetic term), or either in a frame where ΩIJ remains diagonal, but
(in general) not both at the same time.
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4.3.1 Canonical frame

Observe that by introducing the vielbeins eI
a in the previous section, we have not

specified any alignment of the moving frame. In fact, given an arbitrary frame, char-
acterised by the set eI

a, it is always possible to find a canonical frame where the scalar
field perturbations acquire canonical kinetic terms in the action. To find it, let us
introduce a new set of fields uI defined out of the original fields vI in the following
way:

vI(τ, x) = RI
J(τ, τi)u

J(τ, x) , (4.50)

where RI
J(τ, τi) is an invertible matrix defined to satisfy the first order differential

equation
d
dτ

RI
J = −ZI

KRK
J , (4.51)

with the boundary condition RI
J(τi, τi) = δI

J set at some given initial time τi. Let
us additionally define a new matrix S I

J to be the inverse of RI
J , i.e. S I

KRK
J =

RI
KS K

J = δI
J . Then, S I

J satisfies the similar equation

d
dτ

S I
J = −ZJ

KS I
K , (4.52)

where we used the fact that ZIJ = −ZJI . Since both solutions to (eq. 4.51) and
(eq. 4.52) are unique, then the previous equation tells us that S IJ = RJI , that is, S cor-
responds to RT the transpose of R. This means that for a fixed time τ, RIJ(τ, τi) is an
element of the orthogonal group O(N), the group of matrices R satisfying RRT = 11.
The solution to (eq. 4.51) is well known, and may be symbolically written as

R(τ, τi) = 11 +

∞∑
n=1

(−1)n

n!

∫ τ

τi

T [Z(τ1) · · · Z(τn)] dnτ = T exp

[
−

∫ τ

τi

dτZ(τ)

]
, (4.53)

where T stands for the usual time ordering symbol, that is T [Z(τ1)Z(τ2) · · · Z(τn)]
corresponds to the product of n matrices Z(τi) for which τ1 ≥ τ2 ≥ · · · ≥ τn. Coming
back to the uI-fields, it is possible to see now that, by virtue of (eq. 4.51) one has

DvI

dτ
=RI

J
duJ

dτ
, (4.54)

D2vI

dτ2
=RI

J
d2uJ

dτ2
. (4.55)

Inserting these relations back into the equation of motion (eq. 4.48) we obtain the
following equation of motion for the uI-fields:

d2uI

dτ2
− ∇2uI +

[
RT (τ) Ω R(τ)

]I
JuJ = 0 . (4.56)
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Additionally, it is possible to show that the action (eq. 4.49) is now given by

S =
1
2

∫
dτd3x

∑
I

(
duI

dτ

)2

−
(
∇uI

)2
−

[
RT (τ)ΩR(τ)

]
IJ

uIuJ

 . (4.57)

Thus, we see that the fields uI correspond to the canonical fields in the usual sense.
This result shows, just as we have stated, that it is always possible to find a frame
where the perturbations become canonical, but at the cost of having a mass matrix[
RT (τ) Ω R(τ)

]
IJ

with non-diagonal entries which are changing continuously in time.

Another way to put it is that, while both RT (τ) Ω R(τ) and Ω share the same eigen-
values, as long as R(τ) varies in time, their associated eigenvectors will not remain
aligned. To finish, let us notice that by construction, at the initial time τi, the canon-
ical fields uI and the original fields vI coincide uI(τi) = vI(τi). However, it is always
possible to redefine a new set of canonical fields by performing an orthogonal trans-
formation of the fields.

4.3.2 Quantisation and initial conditions

Having the canonical frame at hand, we may now quantise the system in the standard
way. Starting from the action (eq. 4.57) it is possible to see that the canonical coordi-
nate fields are given by uI whereas the canonical momentum is given by ΠI

u = duI/dτ.
To quantise the system, we demand this pair to satisfy the commutation relation[

uI(τ, x),ΠJ
u(τ, y)

]
= iδIJδ(3)(x − y) , (4.58)

otherwise zero. With the help of the R transformation introduced in (eq. 4.50) we
can rewrite this commutation relation to be valid in an arbitrary moving frame. More
precisely, we observe here that we are allowed to define a new pair of fields vI and ΠI

v

given by

vI =RI
JuJ , (4.59)

ΠI
v ≡
D

dτ
vI = RI

J(τ, τi)Π
J
u . (4.60)

From (eq. 4.58), this new pair is found to satisfy the similar commutation relations[
vI(τ, x),ΠJ

v (τ, y)
]

= iδIJδ(3)(x − y) . (4.61)
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Following convention, it is now possible to obtain an explicit expression for vI(x, τ)
in terms of creation and annihilation operators.8 For this, let us write vI(x, τ) as a sum
of Fourier modes:

vI(τ, x) =

∫
d3k

(2π)3/2
eik · xvI(k, τ)

=

∫
d3k

(2π)3/2
eik · x

∑
α

[
vI
α(k, τ) aα(k) + vI∗

α (k, τ) a†α(−k)
]
. (4.62)

In writing the previous expression we have anticipated the need of expressing the
fields vI(τ, x) as a linear combination of N time-independent creation and annihila-
tion operators a†α(k) and aα(k) respectively, with α = 1, · · · N . These operators are
required to satisfy the usual relations[

aα(k), a†β(q)
]

= δαβδ
(3)(k − q), (4.63)

otherwise zero. This set of operators defines the vacuum |0〉 of the theory by their
action aα(k)|0〉 = 0. Since the operators a†α(k) and aα(k), for different values of
α, are taken to be linearly independent, then the time-dependent coefficients vI

α(k, τ)
appearing in front of them in (eq. 4.62) must satisfy the equation of motion9

D2

dτ2
vI
α(k, τ) + k2vI

α(k, τ) + ΩI
JvJ
α(k, τ) = 0 . (4.64)

Observe that there must exist N independent solutions vI
α(k, τ) to this equation (see

appendix A for a detailed discussion on the vI
α(k, τ)-functions).

Of course, a critical issue here is to set the correct initial conditions for the mode
amplitudes vI

α(k, τ) in such a way that the commutation relations (eq. 4.61) are re-
spected at all times. As a first step towards determining these initial conditions we
notice that at a given initial time τ = τi we may choose each mode vI

α(k, τ) to satisfy
the following general initial conditions:

vI
α(k, τi) =eI

αvα(k) , (4.65)

DvI
α

dt
(k, τi) =eI

απα(k) , (4.66)

8From this point on, we continue working with the more general vI -fields instead of the canonical uI -
fields. Nevertheless, we emphasise that the uI -fields allowed us to find the correct quantisation prescription
for the vI -fields.

9It is crucial to appreciate that the Greek indices α label scalar quantum modes and not directions in
field space, as capital Latin indices do. Different α-modes may contribute to the same fluctuation along a
given direction I. The quantities linking these two different abstract spaces are the mode functions vI

α(k, τ)
whose time evolution is dictated by (eq. 4.64). A similar scheme to quantise a coupled multi-scalar field
system may be found in Nilles et al. (2001).
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where eI
α is a complete set of unit vectors satisfying δIJeI

αeJ
β = δαβ and δαβeI

αeJ
β = δIJ ,

which should not be confused with the vielbeins defined in (eq. 4.37), and vα(k) and
πα(k) are factors defining the amplitude of the initial conditions. In order for the
commutation relations to be fulfilled, these initial conditions must satisfy

vα(k)π∗α(k) − v∗α(k)πα(k) = i , (4.67)

which are the analogous relations to the Wronskian condition in single-field slow-roll
inflation. Since the operator D/dτ = d/dτ + Z mixes different directions in the vI-
field space and since in general the time-dependent matrix ΩIJ is non-diagonal, then
the mode solutions vI

α(k, τ) satisfying the initial conditions (eq. 4.67) will not remain
pointing in the same direction (nor will they remain orthogonal) at an arbitrary time
τ , τi. In Appendix A we show that the commutation relations of (eq. 4.61) are
consistent with the evolution of the vI

α(τ, k) dictated by the set of equations of motion
(eq. 4.64).

In the previous expressions the set of unit vectors eI
α are arbitrary. Moreover, the

amplitudes vα(k) and πα(k) entering (eq. 4.67) are in general not uniquely determined,
as there is a family of solutions parametrised by the relative phase between vα(k) and
πα(k). Indeed, notice that without loss of generality we may write

πα(k) =
e−iθα(k)

2v∗α(k) sin θα(k)
, (4.68)

where θα(k) is a set of real phases relating both amplitudes. Any value of θα(k)
will satisfy the commutation relations (eq. 4.61), and therefore they specify differ-
ent choices for the vacuum state |0〉. Although in general it is not possible to decide
among all the possible values for θα(k), fortunately, in the context of inflationary
backgrounds a → 0 as τ → −∞ and a particular choice for these phases becomes
handy. Indeed, observe that in the formal limit a→ 0 one has ZIJ → 0 and ΩIJ → 0,
which is made explicit by (eq. 4.47) and (eq. 4.48), and the equations of motion
(eq. 4.64) become (

d2

dτ2
+ k2

)
vI
α(k, τ) = 0 , (τ→ −∞) . (4.69)

In this limit there is no mixing between different α-modes and perturbations evolve as
if they were in Minkowski background.10 In this case, we are free to choose eI

α = δI
α

10To be more rigorous, in inflationary backgrounds this limit is obtained for k-modes such that their
wavelength is much smaller than the de Sitter scale k2 � a2H2.
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and the solutions to (eq. 4.69) satisfying the commutation relations (eq. 4.61) may be
chosen as

vI
α(k, τ) = δI

α

1
√

2k
e−ikτ , (τ→ −∞) . (4.70)

Thus we see that in the limit a → 0 (τ → −∞) we may choose modes in the Bunch-
Davies vacuum θα = π/2. We will come back to these conditions in the next chapter,
in section 5.4, where we set initial conditions on a finite initial time surface where
(eq. 4.70) cannot be exactly imposed.

4.3.3 Two-point correlation function

To finish this general discussion on multi-field perturbations, we proceed to define the
spectrum for the perturbations vI(τ, x). The power spectrum, the Fourier transform of
the two-point correlation function, is defined in terms of the Fourier modes as〈

0
∣∣∣vI(k, τ)vJ∗(q, τ)

∣∣∣ 0〉 ≡ δ(3)(k − q)
2π2

k3
PIJ

v (k, τ) . (4.71)

In terms of the mode amplitudes vI
α(τ, k), this is found to be

PIJ
v (k, τ) =

k3

2π2

∑
α

vI
α(τ, k)vJ∗

α (k, τ) . (4.72)

Since the commutation relations require
∑
α

[
vI
α(k, τ)vJ∗

α (k, τ) − vJ
α(k, τ)vI∗

α (k, τ)
]

= 0
(see Appendix A) we see that the spectrum PIJ

v is real, as it should be. Additionally,
the two point correlation functions in coordinate space may be computed out of PIJ

v

as 〈
0
∣∣∣vI(τ, x)vJ(τ, y)

∣∣∣ 0〉 =
1

4π

∫
d3k
k3
PIJ

v (k, τ)e−ik · (x−y) . (4.73)

We may also define the power spectrum associated to the QI fields instead of the vI

fields. Recalling that QI = vI/a, the power spectrum for these fields at a given time τ
is then given by

PIJ
Q (k, τ) =

k3

2π2a2

∑
α

vI
α(k, τ)vI∗

α (k, τ) . (4.74)

This expression will be used to compute the power spectrum of the curvature pertur-
bation produced during inflation. Although, in this section we have chosen to exploit
a notation whereby Greek indices α label quantum modes, notice that this formalism
is equivalent to the use of stochastic Gaussian variables, as in Tsujikawa et al. (2003)
(see also Lalak et al., 2007b).

74



4.4 Applications in Minkowski space

4.4 Applications in Minkowski space

In this section we will go to the Minkowski limit, meaning that we set the Ricci scalar
to zero and replace the action (eq. 4.1) with

S = −

∫
d4x

[
1
2
γab∂

µφa∂µφ
b + V(φ)

]
, (4.75)

Most of the discussion in sections 4.2 and 4.3 remains relevant, where of course all
equations are to be understood with H = ε = η = 0. In particular, this means that the
equations for the perturbations (eq. 4.48) reduce to

D2

dt2
vI − ∇2vI + CI

JvJ = 0 , (4.76)

where CI
J ≡ eI

aeb
JCa

b and

Ca
b = ∇bVa − φ̇2

0 R
a
cdbT cT d . (4.77)

4.4.1 Dynamics in the presence of mass hierarchies

The main quantity determining the dynamics of the present system is the scalar poten-
tial V(φ). Since we are interested in studying the dynamics of multi-scalar field the-
ories in Minkowski space-time, we will assume that it is positive definite, V(φ) ≥ 0.
From the potential one can define the mass matrix M2

ab associated to the scalar fluc-
tuations around a given vacuum expectation value 〈φa〉 = φa

0 as

M2
ab(φ0) ≡ ∇a∇bV

∣∣∣
φ=φ0

. (4.78)

In general, this definition renders a non-diagonal mass matrix, yet it is always possi-
ble to find a “local” frame in which it becomes diagonal and with the entries given by
the eigenvalues m2

a. Now, we take into account the existence of hierarchies among dif-
ferent families of scalar fields, and specifically consider two families, herein referred
to as heavy and light fields which are characterised by

m2
H � m2

L . (4.79)

In the particular case where the vacuum expectation value of the scalar fields remains
constant φ̇a

0 = 0, it is well understood that the heavy fields can be systematically
integrated out, providing corrections of O(k2/m2

H) with k being the energy scale of
interest to the low energy effective Lagrangian describing the remaining light degrees
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of freedom (Appelquist and Carazzone, 1975). If however the vacuum expectation
value φa

0 is allowed to vary with time, new effects start occurring which can be sig-
nificant at low energies. We focus on scalar potentials V(φ) for which hierarchies are
present, and for which the trajectory followed by the scalar fields is such that

T aT bM2
ab ∼ m2

L , (4.80)

NaNbM2
ab ∼ m2

H . (4.81)

Since M2
ab is in general non-diagonal, for consistency we take T aNbM2

ab to be at most
of O(mLmH). Such trajectories are generic in the following sense: for arbitrary initial
conditions, the background field φa

0 typically will start evolving to the minimum of
the potential V(φ) by first quickly minimising the heavy directions. Then the light
modes evolve to their minimum much more slowly.

We will continue the present analysis systematically by splitting the potential into
two parts,

V(φ) = V∗(φ) + δV(φ) . (4.82)

Here, V∗(φ) ≥ 0 is the zeroth-order positive definite potential characterised by con-
taining exactly flat directions, and δV(φ) is a correction which breaks this flatness.11

By construction, V∗(φ) contains all the information regarding the heavy directions.
Therefore, the mass matrix M2

∗ ab obtained out of V∗(φ) presents eigenvalues which
are either zero or O(m2

H). Consequently, the light masses appear only after including
the correction δV(φ). We thus require the second derivatives of δV(φ) to be at most
O(m2

L). It should be clear that such a splitting is not unique, as it is always possible to
redefine both contributions by keeping the property M2

∗ ab ∼ m2
H .

It is clear that the solution to the equation

Va
∗ (φ) = 0 (4.83)

defines a hypersurface S in M. The dimension of the surface S corresponds to the
number of flat directions present in V(φ). Let us denote this solution by φa

∗. In ap-
pendix B we study in detail the dynamics offered by the zeroth-order theory, in which
only the contribution V∗(φ) to the potential V(φ) is taken into account. For present
purposes we quote here a simple result concerning background solutions offered by
potentials of this sort: φa

0 and φa
∗ are related by

φa
0 = φa

∗ + ∆a , (4.84)

11Such a type of splitting happens in the moduli sector of many low energy string compactifications,
where V∗ appear as a consequence of fluxes (Giddings et al., 2002), and δV(φ) arguably from non-
perturbative effects (Kachru et al., 2003a).
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Figure 4.3: The difference between φ∗ and φ0.

where ∆a ' Na∆ parametrises the displacement fromS of the field trajectory obtained
by considering the full potential (eq. 4.82), with ∆ given by (see figure 4.3)

∆ =
φ̇2
∗

m2
∗Hκ∗

. (4.85)

Here, κ∗ is the radius of curvature of the projected curve on S. We see that the
deviation from the surface S will be small as long as the dimensionless parameter

β

4
≡

∆

κ∗
=

φ̇2
∗

m2
∗Hκ

2
∗

(4.86)

remains small.12 In what follows, we shall see how this parameter affects the low
energy dynamics valid for the light degrees of freedom tangent to S. To simplify our
analysis, we focus on two-dimensional models. These results can be easily gener-
alised to an arbitrary number of scalar fields.

4.4.2 Two-field models

For theories with two scalar fields we can always choose the set of vielbeins eI
a to

consists in the following pair:

ea
1 = ea

T = T a , (4.87)

ea
2 = ea

N = Na . (4.88)

12As ∆ is a function of κ∗, this leads to a lower bound on κ for which this approach is valid. For small ∆

we find that we need to require κ∗ ≈ κ � φ̇2
∗/M

2
∗H .
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With this choice we can write vT ≡ Taϕ
a and vN ≡ Naϕ

a in a similar fashion as is done
in (eq. 4.37), which denote the perturbations parallel and normal to the background
trajectory, respectively. In the case where M is two-dimensional, these mutually
orthogonal vectors are enough to span all of space. Therefore, the two unit vectors
satisfy the relations

DT a

dt
= −

φ̇0

κ
Na , (4.89)

DNa

dt
=
φ̇0

κ
T a , (4.90)

assuming that DT a/dt is nonvanishing and sN(t) < 0 (this assumes a right turning
trajectory, see figure 5.1). In terms of the formalism of the previous sections, these
expressions may be written down as ZT N = −ZNT = φ̇0/κ. Further, the entries of the
symmetric tensor CIJ = ea

I eb
JCab defined in (eq. 4.77) are given by

CTT = T aT b∇aVb , (4.91)

CT N = T aNb∇aVb , (4.92)

CNN = NaNb∇aVb +
φ̇2

0

2
R , (4.93)

whereR = γabRc
acb = 2RT

NT N is the Ricci scalar.13 Then, we notice that T aT b∇aVb =

T a∇a

(
T bVb

)
−
(
T a∇aT b

)
Vb and using the fact T a∇a ≡ ∇φ = φ̇−1

0 D/dt, we may rewrite

CTT = ∇φVφ + ζ2 , (4.94)

CT N = ζ̇ −
2Vφ

κ
, (4.95)

where ζ ≡ φ̇0/κ and Vφ ≡ T aVa. The remaining component CNN cannot be deduced
in this way, as it depends on the second variation of V away from the trajectory.
Inserting the previous expressions back into (eq. 4.48), the set of equations of motion
for the pair of perturbations vT and vN is found to be

v̈T − ∇2vT + 2ζv̇N + 2ζ̇vN + ∇φVφvT − 2
Vφ

κ
vN = 0 , (4.96)

v̈N − ∇2vN − 2ζv̇T + M2vN − 2
Vφ

κ
vT = 0 , (4.97)

13Since M is two dimensional, RT
NT N = R/2 is the only non-vanishing component of the Riemann

tensor.
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where M2 = CNN − ζ
2. The rotation matrix RI

J connecting the perturbations vI with
the canonical counterparts uI is easily found to be

RI
J =

(
cos θ(t) − sin θ(t)
sin θ(t) cos θ(t)

)
, (4.98)

θ(t) =

∫
t

dt′ ζ(t′) . (4.99)

The convenience of staying in the frame where ea
T = T a and ea

N = Na is that the
matrix CIJ has elements with a well defined physical meaning.

4.4.3 Constant radius of curvature

To gain some insight into the dynamics behind these equations, let us consider the
particular case where Vφ = T aVa = 0 and ∇φVφ = 0. This is the situation in which
the background solution consists of a trajectory in field space crossing an exactly flat
valley within the landscape. As Vφ = 0 requires φ̈0 = 0, we see that φ̇0 becomes a
constant of motion. Additionally, let us assume that the radius of curvature κ remains
constant, and that the mass matrix M2 = CNN − ζ

2 is also constant.14 Under these
conditions ζ is a constant and one has CTT = ζ2 and CT N = 0. Then, the equations of
motion for the perturbations become

v̈T − ∇2vT + 2ζv̇N = 0 , (4.100)

v̈N − ∇2vN − 2ζv̇T + M2vN = 0 . (4.101)

We can solve and quantise these perturbations by following the procedure deduced in
section 4.3. First, the mode solutions vI

α(k) must satisfy

v̈T
α + 2ζv̇N

α + k2vT
α = 0 , (4.102)

v̈N
α − 2ζv̇T

α +
(
M2 + k2

)
vN
α = 0 . (4.103)

To obtain the mode solutions let us try the ansatz

vT
α (k, t) = vT

α (k)e−iωαt, (4.104)

where ωα ≥ 0 (α = 1, 2) corresponds to a set of frequencies to be deduced shortly.
Notice that the associated operators a†α(k) and aα(k) create and annihilate states char-

14Notice that in the particular case whereM is flat and with a trivial topology, these conditions would
correspond to an exact circular curve, such as the one that would happen near the bottom of the ‘Mexican
hat’ potential.
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acterised by the frequency ωα and momentum k. With the former ansatz, the equa-
tions of motion take the form(

k2 − ω2
α

)
vT
α (k) − 2iωαζvN

α (k) = 0 , (4.105)(
M2 + k2 − ω2

α

)
vN
α (k) + 2iωαζvT

α (k) = 0 . (4.106)

Combining them one finds the equation determining the values of ωα as(
k2 − ω2

α

) (
M2 + k2 − ω2

α

)
= 4ζ2ω2

α . (4.107)

The solutions to this equation are

ω2
± =

1
2

[(
M2 + 2k2 + 4ζ2

)
±

√(
M2 + 2k2 + 4ζ2

)2
− 4k2

(
M2 + k2

)2
]
. (4.108)

On the other hand, the coefficients vT
α (k) and vN

α (k) must be such that the relations
(eq. A.1) and (eq. A.2) are satisfied. After straightforward algebra, it is possible to
show that these coefficients are given by

|vT
−(k)|2 =

(
ω2

+ − k2
)
ω−

2k2
(
ω2

+ − ω
2
−

) , |vN
− (k)|2 =

(
ω2

+ − M2 − k2
)
ω−

2
(
M2 + k2

) (
ω2

+ − ω
2
−

) , (4.109)

|vT
+(k)|2 =

(
k2 − ω2

−

)
ω+

2k2
(
ω2

+ − ω
2
−

) , |vN
+ (k)|2 =

(
M2 + k2 − ω2

−

)
ω+

2
(
M2 + k2

) (
ω2

+ − ω
2
−

) . (4.110)

If ζ2 � M2 we can in fact expand all the relevant quantities in powers of ζ2. One
finds, up to leading order in ζ2/M2,

ω− = k

(
1 −

2ζ2

M2

)
, (4.111)

ω+ =
√

M2 + k2

(
1 +

2ζ2

M2

)
, (4.112)

|vT
−(k)|2 =

1 − 2ζ2/M2

2k
, (4.113)

|vN
− (k)|2 =

2ζ2k
M4

, (4.114)

|vT
+(k)|2 =

2ζ2
√

M2 + k2

M4
, (4.115)

|vN
+ (k)|2 =

1 − 2ζ2/M2

2
√

M2 + k2
. (4.116)
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Thus we see that in the particular case where ζ = 0 at all times (a straight trajectory)
one has |vN

− (k)|2 = 0 and |vT
+(k)|2 = 0 and one recovers the standard results describing

the quantisation of a massless scalar field vT
− and a massive scalar field vN

+ of mass
M. Observe that in this case it was not necessary to choose (eqs. 4.65-4.67) as initial
conditions to ensure the quantisation of the system.

4.4.4 Low energy effective theory

Although in general it is not possible to solve (eq. 4.96) and (eq. 4.97) analytically,
we may integrate the heavy mode to deduce a reliable low energy effective theory
describing the light degree of freedom parallel to the trajectory as long as ζ � M and
k � M. From the discussion of the previous section, it is not difficult to anticipate
that the two modes α = 1, 2 will be closely related to the light and heavy direction.
Let us therefore adopt the notation α = L,H and focus on the light mode vI

L, which
here we express as

vI
L →

(
vT

L
vN

L

)
≡

(
ψ

χ

)
, (4.117)

where χ is a contribution satisfying |χ̈| � M2|χ|, that is, its time variation is much
slower than the time scale M−1 characterising the heavy mode. Then, inserting
(eq. 4.117) back into the second equation of motion (eq. 4.97) and keeping the leading
term in χ, we obtain the result

χ =
2ζ
M2

ψ̇ + 2
Vφ

M2κ
ψ . (4.118)

Of course, we are due to verify that |χ̈| � M2|χ| is a good ansatz for the solution.
Inserting (eq. 4.118) back into the first equation of motion (eq. 4.96) we obtain

ψ̈ + 4
d
dt

(
ζ2

M2
ψ̇

)
+

(
k2 + m2

L

)
ψ = 0 , (4.119)

m2
L = ∇φ

[(
1 +

4ζ2

M2

)
Vφ

]
. (4.120)

Simple inspection of this equation shows that indeed |χ̈| � M2|χ| is satisfied. Addi-
tionally, from (eq. 4.118) notice that the vector (eq. 4.117) is pointing almost entirely
towards the direction (1,0), which corresponds to the direction parallel to the mo-
tion of the background field. To deal with the previous equation we define eβ =
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1 + 4ζ2/M2.15 Then, we may write

eβ
(
ψ̈ + β̇ψ̇

)
+

(
k2 + m2

L

)
ψ = 0 , (4.121)

m2
L = ∇φ

(
eβVφ

)
. (4.122)

We can alternatively rewrite m2
L = ∇φ

(
eβVφ

)
= eβ∇φVφ + eβVφβ̇/φ̇0. It is possible to

see that the previous equation of motion can be obtained from the action

S =
1
2

∫
dtd3x

[
eβψ̇2 − (∇ψ)2 − m2

Lψ
2
]
. (4.123)

By performing a field redefinition ϕ ≡ eβ/2ψ, we see that the previous action may be
re-expressed as

S =
1
2

∫
dtd3x

[
ϕ̇2 − e−β(∇ϕ)2 − M2

L ϕ
2
]
, (4.124)

M2
L = ∇φVφ +

Vφβ̇

φ̇0
+
β̈

2
+
β̇2

4
. (4.125)

For the particular case in which ∇φVφ = 0 and the bending of the trajectory is
such that β̇ = 0, then the frequency ω of the light mode reduces to ω = ke−β/2 '
k
(
1 − 2ζ2/M2

)
, which coincides with the previous result (eq. 4.111).

4.5 Discussion

In this chapter, we considered the structure of scalar field theories with a pronounced
hierarchy of mass scales. First, we set up a framework for describing a light field
moving along a multi-field trajectory in field space. From this, we determined the
background equations of motion, around which we can study perturbations. Finally,
we deduced the effective theory describing light perturbations for the case in which
the background field is following a curved trajectory in field space.

The main manifestation of the non-trivial mixing of the heavy and the light direc-
tions is in the appearance of the coefficient e−β in front of the term (∇ϕ)2 containing
spatial derivatives appearing in the action (eq. 4.124). Since β ≥ 0, the net effect of
the bending of the background trajectory is to reduce the energy per scalar field quan-
tum. This is due to the fact that during bending the light modes momentarily start
exciting heavy modes, therefore transferring energy to them. Yet, since β = 4ζ2/M2,

15Since ζ2/M2 � 1, then β ' 4ζ2/M2.
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there are two effects competing against each other in this process. On one hand one
has ζ = φ̇/κ, which may be interpreted as the angular speed of the background field
along the curved trajectory. On the other hand, there is the mass of the heavy mode
M, which must be excited by the light modes during the bending. In what follows we
discuss two applications of our results.

4.5.1 Inflation

Understanding in detail how light and heavy modes remain coupled under more gen-
eral circumstances could be particularly significant for cosmic inflation (Guth, 1981,
Albrecht and Steinhardt, 1982, Linde, 1982). Indeed, although current observations
are consistent with the simplest model of single-field inflation, it is rather hard to con-
ceive a realistic model where the inflaton field alone is completely decoupled from
UV degrees of freedom. One way of addressing this issue is by studying multi-field
scenarios where many scalar fields have the chance to participate in the inflationary
dynamics (Starobinsky, 1985), despite of different mass scales among the inflaton
candidates. Hence, there could exist certain phenomena related to inflation in which
the effects studied in this chapter can be relevant. This has also recently been consid-
ered in Tolley and Wyman (2010) and Chen and Wang (2010b).

First, note that the equation of motion deduced out of the action (eq. 4.124) is
given by

ϕ̈ + e−βk2ϕ + M2
L ϕ = 0 . (4.126)

For definiteness, let us focus on phenomena characterised by
∣∣∣β̇∣∣∣ � k and consider

the case in which the potential is flat enough so that M2
L � k2 is satisfied. Then, the

time variation of β along the trajectory is small enough to allow us to write the mode
solution as

ϕ(k, t) =
eβ/4
√

k
exp

[
ie−β/2k t

]
, (4.127)

where the factor eβ/4/
√

k is necessary in order to satisfy the commutation relation
[ϕ, ϕ̇] = i. This factor coincides with the one found in (eq. 4.113) for the amplitude
of light modes in the case where β is a constant. To continue, from (eq. 4.127) we
can see that in the vacuum, the two point correlation function of the perturbation
ϕ(x, t), has the form 〈ϕ(x, t)ϕ(y, t)〉 ∝ eβ(t)/2. One direct consequence of this result
is for inflation, where the amplitudes of scalar fluctuations freeze after crossing the
horizon, i.e. when the physical wavelength k−1 satisfies the condition e−β/2k = H.
More precisely, if we generalise (eq. 4.126) to include gravity, we would conclude
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that the speed of sound of adiabatic perturbations is given by

c2
s = e−β . (4.128)

Such an effect is known to produce sizable levels of nongaussianities (Alishahiha
et al., 2004). Additionally it modifies the power spectrum as

P(k) ' eβ(k)/2P∗(k) , (4.129)

where P∗(k) is the conventional power spectrum P∗(k) ∝ kns−1 deduced in single-field
slow-roll inflation, and β(k) is the value of β(t) at the time t when the mode k crosses
the horizon.16 The more interesting case is a varying β and since β can be as large
as ε, such an effect may be sizable and observable in the near future. In many scalar
field theories, such as supergravity, the masses of heavy degrees of freedom during
inflation are typically of order M ∼ H, leading to the relation

β ∼ 4ε
M2

Pl

κ2
. (4.130)

If the bending is such that the radius of curvature becomes of order κ ∼ MPl (a
rather conservative value) one then obtains effects as large as β ∼ ε. In the case
where a turn of the trajectory happens during a few e-folds, one then should be able
to observe features in the power spectrum of O(ε), particularly by modifying the
running of the spectral index as dns/d ln k, which otherwise would be of O(ε2). A
detailed computation of this effect is done in the next chapter.

4.5.2 Decoupling of light and heavy modes in supergravity

Let us next point out that our results can be also used to assess when a low energy
effective theory, deduced from a multi-scalar field theory containing both heavy direc-
tions and light directions, is accurate enough. As discussed in full detail in appendix
B, whenever the background fields are evolving (as in inflation) the only way of hav-
ing a vanishing β-parameter is for a trajectory to correspond to a curve autoparallel
to a geodesic in the full scalar field manifold M. It is clear that the only way of
achieving this is by having some property relating the shape of the potential V(φ)
with the geometry of M. In the particular case of supergravity such a property is
known to exist, and therefore one should expect supergravity theories rendering low

16In the constant curvature case κ = const., β(κ) is constant as well and we find an overall modulation of
the power spectrum compatible with Chen and Wang (2010b).
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energy effective theories for which β vanishes exactly. To be more precise, in N = 1
supergravity the scalar field potential is given by

V = eG
(
Gi ̄GiG ̄ − 3

)
, (4.131)

with definitions matching those of section 1.3.2. Consider a supergravity theory in
which a set of massive chiral fields φH satisfy the condition

GH = 0 , (4.132)

along a given hypersurface S inM parametrised only by the light fields L.17 It is then
possible to verify that the scalar fluctuations φL parallel to S are decoupled from the
fields φH , rendering β = 0. To appreciate this, observe first that at any point on the
surface S the Kähler metric GI J̄ is diagonal between the two sectors. Indeed, since
GH = 0 holds at any point in the surface, then it must be independent of arbitrary
displacements δφL along S. This implies that

∂L̄GH = GHL̄ = 0. (4.133)

This condition automatically ensures that in the absence of a scalar field potential, the
trajectory along S will be on an autoparallel curve. It remains then to verify that the
potential does not imply quadratic couplings between both sectors, therefore leaving
these autoparallel geodesic trajectories unmodified. Given the first derivative of the
scalar potential (eq. 1.37) and using the requirement for supersymmetry (eq. 1.51),
one immediately obtains VH = 0 in S. Using (eq. 1.38 and 1.39), it is not difficult
to notice that also ∇LVH = ∇L̄VH = ∇LVH̄ = ∇L̄VH̄ = 0 on S, which also hinge on
GHL̄ = 0 and GH = 0. Put together, these results imply that the heavy sector will
not affect the light sector as long as the background trajectory tracks the geodesically
generated surface S.

Conversely, deviations from the condition GH = 0, or a surfaceSwith H , const.,
will produce interactions leading to the appearance of the coupling β studied in the
present work. A particularly interesting example is Gallego and Serone (2009), where
O(ε) couplings between heavy and light fields in the superpotential result in sup-
pressed, O(ε2) terms in the effective action for the light fields. This result was ob-
tained by expanding about a particular H = const. configuration which, for constant
light background fields, only deviates at O(ε) from the true solution to the equations
of motion. But along an arbitrary background L(t) the deviation will exceed O(ε) for
displacements ∆L/κ > ε (due to the ΓH

LLL̇2 term in the H equation of motion) and the
corrections to the effective action discussed in this chapter become dominant.

17This means that a surface S is defined by f (H, H̄) = 0 rather that by a function f (H, H̄, L, L̄) = 0
(de Alwis, 2005a and chapter 2).
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4.5.3 Consistent decoupling and autoparallel trajectories

The condition (eq. 4.132) leads to (∂L)n(∂L̄)mGH = 0 for all n and m on the hyper-
surface S. This means, in particular, that the metric is block diagonal, GLH̄ = 0,
on S. Also, ΓH

LL = GLLH̄GHH̄ = 0 and the heavy direction is at a critical point as
VH ∝ GH = 0. Thereby, VH = GHH̄VH̄ + GHL̄VL̄ = 0 on the hypersurface S.

Inserting this in the equations of motion (eq. 4.6),

φ̈L + ΓL
HH(φ̇H)2 + 2ΓL

HLφ̇
Hφ̇L + ΓL

LL(φ̇L)2 + 3Hφ̇L + VL = 0 , (4.134)

φ̈H + ΓH
HH(φ̇H)2 + 2ΓH

HLφ̇
Hφ̇L + ΓH

LL(φ̇L)2 + 3Hφ̇H + VH = 0 , (4.135)

we see that the second one is satisfied identically for H = const., while the first one
becomes a function of the light fields only,

φ̈L + ΓL
LL(φ̇L)2 + 3Hφ̇L + VL = 0 . (4.136)

Note that this derivation only holds on S. Any quantity that depends on a region
around this trajectory, such as derivatives, would see the connection in the heavy
direction.

Whether the trajectory is autoparallel in terms of the real and imaginary parts of
the light fields L depends on the consistently truncated Kähler function. The effective
action for the light fields has to be re-expressed to a real field sigma model action
which can analysed using the machinery presented in this chapter.

86




