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CHAPTER 3

F-term uplifting and the
supersymmetric integration

of heavy scalars

3.1 Introduction

The search for de Sitter (dS) vacua in string theory has received a lot of attention
motivated by the need to construct realistic late-time cosmology scenarios. In 2003
Kachru et al. (KKLT) provided the first example of a mechanism to obtain stable
de Sitter vacua in the framework of Type IIB string theory. Their two-step approach
was to invoke background fluxes and non-perturbative effects in order to freeze the
heavy moduli present in the compactification while preserving supersymmetry, and
then add extra supersymmetry breaking effects in a controlled way, i.e. not interfering
with moduli stabilisation, so that the anti-de Sitter (AdS) minimum would be uplifted
to dS.

In practise, in the KKLT paper and in many sequels that discussed mechanisms
of uplifting of the AdS minimum, it is assumed that the complex structure moduli
are truncated before supersymmetry breaking effects are taken into account. The
effective field theory left after freezing these fields is assumed to beN =1 supergrav-
ity. In other words, the heavy moduli are truncated supersymmetrically (Binetruy
et al., 2004) and are assumed to be consistently decoupled, as discussed in de Alwis
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Chapter 3: F-term uplifting and the supersymmetric integration of heavy scalars

(2005b), de Alwis (2005a) and chapter 2, from the light fields.
The problem, as discussed in chapter 2, Choi et al. (2004),de Alwis (2005b),

de Alwis (2005a), Achúcarro and Sousa (2008) and Ben-Dayan et al. (2008), is that
in general it cannot be taken for granted that the supersymmetry breaking corrections
added to the effective action are consistent with the process of supersymmetrically in-
tegrating out part of the moduli. The reason is very simple: the heavy fields should be
integrated out in the full theory, including the supersymmetry breaking modifications.
Any other way to proceed may lead to inconsistencies. For example, the minimum
where the moduli were stabilised might shift by the supersymmetry breaking effects,
in which case the low energy effective theory would have the heavy fields – the com-
plex structure moduli in this case – fixed at a point which is not even an extremum of
the scalar potential.

In this chapter we will study a mechanism of F-term uplifting (Gomez-Reino
and Scrucca, 2006b,a, 2007) consistent with the supersymmetric integration of the
heavy moduli (chapter 2 and Achúcarro and Sousa, 2008). The basic idea of F-
term uplifting consists of adding an extra sector to the theory defined by the Kähler
and complex structure moduli which breaks supersymmetry separately, lifting the
vacuum to dS. In order to avoid that the interactions between the two sectors spoil the
stabilisation of moduli it is required that they are only weakly coupled. In the original
papers of F-term uplifting this was achieved by requiring that the two sectors interact
only with gravitational strength, i.e. coupling the sectors as

K = K(moduli) + K(upli f t) W = W (moduli) + W (upli f t) , (3.1)

and requesting all dimensionful couplings in the uplifting sector to be small compared
to the Planck mass. However, this ansatz does not satisfy in general the necessary
conditions for consistent supersymmetric decoupling of the heavy moduli (chapter
2 and de Alwis, 2005b,a, Ben-Dayan et al., 2008). For later developments on F-
term uplifting mechanism see Saltman and Silverstein (2004), Lebedev et al. (2006),
Lebedev et al. (2007), Dine et al. (2006), Kitano (2006), Dudas et al. (2007), Kallosh
and Linde (2007a), Abe et al. (2007b), Abe et al. (2007a), Lalak et al. (2007a), Brax
et al. (2007), Abe et al. (2008), Papineau (2008), Everett et al. (2008a), Covi et al.
(2008b), Aparicio et al. (2008), Everett et al. (2008b), Blumenhagen et al. (2008),
Abe (2009), de Alwis (2009), Jeong and Shin (2009), de Alwis (2010), Blumenhagen
et al. (2009), Correia and Schmidt (2010), Badziak (2010) and Maru (2010).

In these types of models it is tempting to argue that the effects of truncating the
heavy fields inconsistently would be too small to affect seriously the physics of the
effective theory. Although this might be correct if we are only interested in low energy
phenomenology, when the effective theory is used to describe inflation the situation is
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much more subtle. In this scenario the inflationary sector is what plays the role of the
supersymmetry breaking sector and, as in the case of uplifting, its interactions with
the moduli fields have to be consistent with the supersymmetric integration of the
heavy moduli. Recently Davis and Postma (2008) discussed an enlightening example
that illustrates the problems of an inconsistent truncation in an inflationary model.
They studied the F-term hybrid inflationary model proposed in Kallosh and Linde
(2004) which includes a moduli sector of the KKLT or racetrack (Blanco-Pillado
et al., 2004) form. This model gives viable inflation as long as the volume modulus
is assumed to be fixed during inflation and some of the parameters are fine-tuned.
However, this truncation of the modulus field is not consistent. When the dynamics
of this field is taken into account it can be seen that the field does not remain constant
during the inflationary period, it shifts from its stable value at the end of inflation.
The shift results in corrections to the inflationary potential that spoil its flatness and
therefore ruin inflation (see e.g. Ben-Dayan et al., 2008 for a recent discussion and
references).

In the previous chapter we revisited the conditions for consistent supersymmetric
decoupling of the heavy moduli. We found that these conditions can, when W , 0,
be translated into a particular form of the Kähler invariant function G = K + log |W |2.
For example, if the Kähler potential is separable, K = K(h)(heavy) + K(l)(light), it is
sufficient to require that the full Kähler invariant function is also separable:

G = G(h)(heavy) + G(l)(light) , (3.2)

or, equivalently, that the superpotential factorises in the two sectors:

W = W (h)(heavy)W (l)(light) . (3.3)

Note that consistent decoupling does not require the scalar manifold to be a product,
and thus this is just a special case of the class of interactions consistent with the
supersymmetric integration of the heavy fields.

The ansatz (eq. 3.2) has a long history. In the early 80’s it was studied as mech-
anism to couple the visible matter fields to a supersymmetry breaking sector or the
inflationary sector (Cremmer et al., 1983a, Binetruy and Gaillard, 1985), and more
recently has been discussed as a sufficient condition to consistently truncate super-
symmetric heavy chiral multiplets (Binetruy et al., 2004). It has also appeared in
connection with brane inflationary models and moduli stabilisation, in particular in
the D3/D7 model (Hsu et al., 2003), where it was shown that the ansatz preserves the
AdS flat direction (from shift symmetry) due to the BPS character of the configura-
tion.
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Achúcarro and Sousa (2008) studied the possibility of using a separable Kähler
function (eq. 3.2) as an alternative way to couple the heavy moduli to the supersym-
metry breaking sector in F-term uplifting mechanisms. This type of coupling ensures
that if the heavy fields are truncated at a supersymmetric critical point they remain
at a critical point of the potential after adding the supersymmetry breaking sector.
Moreover, the F-terms of the heavy moduli remain zero after the uplifting, and thus
supersymmetry breaking receives no contribution from the heavy fields.

It is remarkable that, in spite of the direct couplings present in W, the light and
heavy sectors almost do not interact (Achúcarro and Sousa, 2008 and chapter 2) even
when supersymmetry is broken by the light sector. Actually using the ansatz (eq. 3.2)
the perturbative stability analysis of the uplifted vacuum decouples in the two sectors.
In particular the stability condition along the heavy field directions has a simple form,
it has no dependence on the details of the uplifting sector other than through a single
parameter that measures the amount of uplifting, H/m3/2, the ratio of the Hubble
expansion rate to the gravitino mass of the uplifted vacuum. Achúcarro and Sousa
(2008) analysed a toy model with a single heavy field and found a region in parameter
space where the critical points of the heavy sector remain stable1 for arbitrary values
of this uplifting parameter H/m3/2. Interestingly, these critical points are stable AdS
maxima before the uplifting, and in our model correspond to minima of the Kähler
function G(h)(heavy). In this chapter we will prove that this result can be extended
to an arbitrary number of chiral fields in the heavy supersymmetric sector, provided
they satisfy (eq. 3.2), and that it survives the inclusion of gauge interactions. Also,
in more general scenarios where the Kähler function is not required to be separable,
we will prove using mild assumptions that the supersymmetric AdS maxima of the
potential always become stable for large enough values of the uplifting parameter.
The remarkable stability of dS vacua resulting from highly uplifted AdS local maxima
had not been noticed before and constitutes one of the main results in this chapter.

Our work complements those Gomez-Reino and Scrucca (2006b,a, 2007) and,
more recently, Covi et al. (2008b), who give necessary conditions for the stability
of uplifted vacua along the supersymmetry breaking directions, which we include
in the light sector. Here instead we obtain necessary and sufficient conditions for
the stability of the supersymmetrically truncated moduli, about which we have little
information or observational input. We take for granted the existence of stable dS
vacua in the effective theory for the light sector, which therefore has to satisfy the
conditions from Covi et al. (2008b). We will return to this point at the end of this

1In this chapter, as in Achúcarro and Sousa (2008), we only study the perturbative stability of the
uplifted vacua and therefore, after the uplifting, by stable vacua we mean local minima of the scalar
potential.
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3.2 F-term uplifting and integrating out heavy scalars

chapter.
In this work we will not make any specific assumptions about the origin of the set

of fields that are truncated supersymmetrically. For example in the KKLT framework
they could be identified with both Kähler and complex structure moduli, or with the
complex structure moduli alone depending on the masses of each set of fields. How-
ever, it should be clear that our results are not restricted to type IIB compactifications.
Regarding the light sector we expect it to include both the visible sector and the hid-
den sector where supersymmetry is broken spontaneously.

This chapter is organised as follows. We begin in section 3.2 with a quick review
of the basic features of the F-term uplifting mechanism characterised by the ansatz
(eq. 3.2). In section 3.3 we study the relation between the critical points of the Kähler
invariant function G and the scalar potential and prove a one-to-one correspondence
between the minima of G and the supersymmetric (AdS) local maxima of the po-
tential. The results in section 3.3 are completely general – we make no assumptions
about the form of G, only that supersymmetry is unbroken. At the same time we
introduce the technique used in later sections for the stability analysis of the uplifted
vacua. In section 3.4 we analyse the stability of the heavy fields in F-term uplifted
vacua where the coupling to the light (supersymmetry breaking) sector is given by the
ansatz (eq. 3.2). We extend the results of Achúcarro and Sousa (2008) to an arbitrary
(supersymmetric) heavy sector; we also consider the effect of gauge couplings and
D-terms and show that the results are unchanged for consistently decoupled charged
fields. Then, in section 3.5, we consider more general uplifting scenarios where the
coupling between the light and heavy fields no longer satisfies (eq. 3.2) but only the
milder condition K = K(h)(heavy) + K(l)(light). We finish with a summary of our
results and a discussion in section 3.6.

3.2 F-term uplifting and integrating out heavy sca-
lars

Let us now review the basic features of the F-term uplifting mechanism proposed in
Achúcarro and Sousa (2008). In this new class of F-term uplifting the couplings be-
tween the heavy moduli and the uplifting sector are consistent with the requirements
found in the previous chapter for the supersymmetric integration of heavy moduli.
The coupling between the heavy moduli, Hα, and the uplifting sector, which belongs
to the set of light fields Li, is defined in terms of an ansatz for the Kähler function of
the form (eq. 3.2)

G(H, H̄, L, L̄) = A(H, H̄) + B(L, L̄) . (3.4)
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In the absence of gauge interactions the scalar potential derived from this ansatz
can be seen to be, using (eq. 1.43)

V = eA+B
(
Aαβ̄AαAβ̄ + Bi j̄BiB j̄ − 3

)
. (3.5)

Fixing the heavy fields at the supersymmetric critical point Hα
0 we obtain the effective

potential of the low energy theory, which reduces to the simple expression:

V(H0, L) = eA(H0)Vlight(L) , (3.6)

where Vlight = eB(Bi j̄BiB j̄ − 3) is the scalar potential of the uplifting sector when con-
sidered alone. The uplifting properties of this ansatz can be summarised as follows:

• Suppose that Hα
0 is a supersymmetric critical point of the heavy sector, and Li

0
is a critical point of Vlight, then the field configuration (Hα

0 , L
i
0) is a critical point

of the full potential.

• The value of the potential of the light sector Vlight(L) at the critical point Li
0

determines whether the supersymmetric vacuum is lifted to dS, Minkowski or
remains AdS:

Vlight(L) > 0 =⇒ (Hα
0 , L

i
0) is a dS vacuum

Vlight(L) = 0 =⇒ (Hα
0 , L

i
0) is a Minkowski vacuum

Vlight(L) < 0 =⇒ (Hα
0 , L

i
0) is an AdS vacuum.

• If there is more than one supersymmetric configuration of the heavy sector, all
of them become degenerate when uplifted to Minkowski (note that this makes
the possibility of topological inflation quite natural).

In view of the direct couplings in (eq. 3.5) one might think that the two sectors
strongly influence each other and therefore the uplifting would easily destabilise the
heavy moduli, however in Achúcarro and Sousa (2008) it was found that the two
sectors almost do not interact. In this paper, Achúcarro and Sousa studied the pertur-
bative stability of vacua of the form (Hα

0 , L
i
0) where Hα

0 is a supersymmetric config-
uration of the heavy sector and Li

0 a critical point of Vlight. They found that the mass
matrix around this vacuum is block diagonal in the two sectors, meaning that there
are no quadratic interactions between the fluctuations of the heavy and light fields,

∂2
iαV(H0, L0) = 0 , ∂2

iᾱV(H0, L0) = 0 . (3.7)
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Actually it turns out that this is a prerequisite for freezing the heavy fields consis-
tently. To consistently truncate the fluctuations with large masses around a given
vacuum first we have to find their mass spectrum, which requires diagonalising the
mass matrix, and only after having identified the heavy modes can we set them con-
sistently to zero. Proceeding in this way, by construction, the mass matrix at the
vacuum is always block diagonal in the massive and light modes.

This result allows us to study the stability of the two sectors separately. In the
case of the supersymmetry breaking sector it is possible to prove a remarkably sim-
ple result, namely that the vacuum (Hα

0 , L
i
0) is perturbatively stable with respect to

fluctuations of the light fields as long as Li
0 is a minimum of the potential of the light

sector Vlight(L). For the heavy sector it is more difficult to obtain model independent
statements concerning the perturbative stability. Nevertheless, Achúcarro and Sousa
(2008) were able to give a few general results:

• the stability analysis for fluctuations of the heavy fields depends on the light
sector only through a single parameter b = Bi j̄BiB j̄|L0 that controls the amount
of uplifting,

b − 3 = e−GV =

(
3H
m3/2

)2

, (3.8)

• any vacuum becomes stable or neutrally stable with respect to fluctuations of
the heavy fields after being uplifted to Minkowski. A similar result was found
in Blanco-Pillado et al. (2006a)), where it was argued that SUSY vacua with
vanishing cosmological constant are automatically stable, up to flat directions,

• for large amounts of uplifting the full potential becomes approximately:

V(H, L) ≈ b eA+B , (3.9)

and therefore the stable configurations of the heavy sector are those minimising
the Kähler function A(H, H̄).

In order to understand better the details of this new uplifting mechanism we anal-
ysed the perturbative stability of the supersymmetric sector in a toy model with only
one heavy field. The result of this study was quite surprising, we found that the su-
persymmetric AdS maxima of the potential at zero uplifting (b = 0), which are stable
since they satisfy the Breitenlohner-Freedman bound, remain stable configurations of
the heavy sector for any uplifting. Interestingly, we also found that these AdS maxima
coincide with the minima of the Kähler function. When we studied the uplifting of
AdS minima of the scalar potential we recovered the standard result, for sufficiently

39



Chapter 3: F-term uplifting and the supersymmetric integration of heavy scalars

large amount of uplifting these configurations always become unstable. This result
opens a new door for the construction of stable dS vacua, instead of constraining
ourselves to the uplifting of AdS minima we can also use the AdS maxima of the
potential which seem to have better stability properties, at least for a certain class of
interactions between the moduli and the uplifting sectors.

In the previous chapter we also considered the case where the gauge interactions
of the light sector were turned on. We found that, as long as the heavy fields are
consistently decoupled, the gauge interactions in the light sector do not change the
results listed above. The consistent decoupling of the heavy sector imposes certain
restrictions on the type of allowed gauge interactions. In particular any gauge field
that survives at low energies should not interact simultaneously with both heavy and
light fields, otherwise the heavy fields could be sourced in the low energy theory due
to the gauge interactions. In practise, this requirement means that the Killing vectors
of the light sector can only have components along the light directions, ki

a. Moreover,
a consistent decoupling also demands that the critical points of the heavy sector do
not shift due to the presence of the light sector, implying that the Killing vectors
and the gauge kinetic functions of the light sector cannot depend on the heavy fields,
k = ki

a(L), fab(L). In this situation the contribution to the scalar potential generated
by gauge interactions, the D-term potential (eq. 1.44), is independent of the heavy
fields, and thus the stability analysis along the heavy directions is unaffected.

3.3 Stability of supersymmetric critical points

In this section we study the stability properties of a supersymmetric critical point
in a completely general setup. We take the action to be characterised by a Kähler
potential G(ξ, ξ̄), and we allow for an arbitrary gauge coupling defined by the gauge
kinetic functions fab(ξ) and Killing vectors k(ξ)I

a. We will relate the stability of the
supersymmetric vacua to the curvature of the Kähler function, and in particular we
will show that maxima of the scalar potential always correspond to minima of the
Kähler function.

3.3.1 Analysis of the Kähler function

We begin by studying the character of the critical points of the Kähler function, which
is a simple calculation and will serve us to introduce the technique we will use later
in the analysis of the scalar potential. The Taylor expansion of the Kähler potential
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3.3 Stability of supersymmetric critical points

G(ξI , ξ Ī) around a supersymmetric critical point ξI
0, reads

G = G(ξ0)+GI(ξ0)ξ̂I +G Ī(ξ0)ξ̂ Ī +GI J̄(ξ0) ξ̂I ξ̂ J̄ + 1
2GIJ(ξ0) ξ̂I ξ̂J + 1

2G Ī J̄(ξ0) ξ̂ Ī ξ̂ J̄ + . . . ,

(3.10)
where we define ξ̂I = ξI − ξI

0. Note that the first order terms vanish since GI(ξ0) = 0.
In order to know if ξI

0 corresponds to a minimum, a maximum or a saddle point the
Kähler function we need to find the eigenvalues of its Hessian evaluated at the critical
point (

GI J̄ GIJ

G Ī J̄ G Ī J

)
ξ0

. (3.11)

This expression simplifies considerably by redefining the ξI fields so that they have
canonical kinetic terms at the critical point, GI J̄(ξ0) = δI J̄ . With this choice of coor-
dinates the equation for the eigenvalues, g, takes the form

det

(
(1 − g) X

X† (1 − g)

)
= 0 , (3.12)

where we have used the matrix notation X = XT ' GIJ(ξ0) and ' δI J̄ . Using a
known property of determinants,

det

(
M P
Q N

)
= det (MN − QP) , provided that QN = NQ and det(M) , 0 ,

(3.13)
for square submatrices M,N, P,Q, we can see that g is a solution of (eq. 3.12) if and
only if it also solves

det
(
(1 − g)2 − X†X

)
= 0 . (3.14)

Strictly speaking this equation was derived for g , 1, but it is not difficult to check
that it also gives the correct solution for g = 1. In order to solve this equation we use
the freedom of field redefinition once more. Requiring that the fields have canonical
kinetic terms is not enough to fix the choice of fields completely, we can still redefine
the fields by a constant unitary transformation of the form ξ̃I = U I

J ξ
J . Under this

field redefinition the matrix X and the combination X†X transform as

X = UT X̃U , X†X = U† (X̃†X̃) U , where U = U I
J , (3.15)

and therefore we can use this freedom to transform the Hermitian combination X†X
into a real diagonal matrix. The eigenvalues of X†X are necessarily nonnegative, and
we will denote them by |xλ|2, with λ labelling the p different eigenspaces. Moreover,
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the symmetry of X implies that X†X = (XX†)∗, thus in the basis that makes X†X
diagonal we have

X†X = XX† = Diag(|x1|
2

n1 , . . . , |xp|
2

np ) , |xλ|
2 ≥ 0 , (3.16)

where nλ is the dimension of the eigenspace of eigenvalue |xλ|2. Note also that in this
particular basis the matrices X and X†X commute, which implies that X should be
block diagonal in each of the eigenspaces of X†X:

X = Diag(X1, . . . , Xp) with X†λXλ = |xλ|
2

nλ . (3.17)

This means that the eigenvalue problem decouples for the m different eigenspaces of
X†X, and therefore the equation (eq. 3.14) takes a very simple form

p∏
λ=1

[
(1 − gλ)2 − |xλ|

2
]nλ

= 0 , (3.18)

which we can solve easily giving the eigenvalues

g±λ = 1 ± |xλ| . (3.19)

which have multiplicity nλ. The different possibilities for the character of the critical
point Hα

0 are summarised in the following table:

Local minimum|xλ| < 1 for all λ = 1, . . . , p ,

Saddle point|xλ| > 1 for some or all λ . (3.20)

The result (eq. 3.19) also indicates that, for each eigenvalue of X†X that satisfies
|xλ|2 = 1, the Kähler function has a flat direction and a local minimum (a trough)
along one of the complex directions ξI .

3.3.2 Analysis of the scalar potential with vanishing D-terms

We will now analyse how the maxima and saddle points of the Kähler function relate
to the different types of supersymmetric critical points of the scalar potential. This is
especially interesting because the Kähler function is much easier to study. We will
demonstrate a remarkable result: the minima of the Kähler function are in one to one
correspondence with the supersymmetric AdS maxima of the scalar potential. We
start assuming that there are no gauge interactions, and in the next section we will
prove this result in full generality.

42



3.3 Stability of supersymmetric critical points

The stability analysis of a supersymmetric critical point of the scalar potential
can be done using the same techniques of the previous subsection. Consider first its
Taylor expansion around a supersymmetric critical point ξI

0,

V = V(ξ0) + 1
2 VIJ(ξ0) ξ̂I ξ̂J + 1

2 VĪ J̄(ξ0) ξ̂ Ī ξ̂ J̄ + VI J̄(ξ0) ξ̂I ξ̂ J̄ + . . . , (3.21)

where the second derivatives of the potential evaluated at the point ξI = ξI
0 can be

calculated from (eq. 1.43) using that GI(ξ0) = 0,

VIJ(ξ0) = −GIJ(ξ0)eG(ξ0) , (3.22)

VI J̄(ξ0) = eG(ξ0)
[
GRS̄ GRIGS̄ J̄ − 2GI J̄

]
ξ0
. (3.23)

In order to determine the character of the critical point ξI
0 we need to find the eigenval-

ues of the Hessian of the potential, which gives the mass spectrum of the fluctuations
around ξI

0. As in the previous subsection we define the fields ξI so that they have
canonical kinetic terms, GI J̄(ξ0) = δI J̄ , and the Hermitian matrix X†X becomes dia-
gonal. With this choice the Hessian has the simple form(

VI J̄ VIJ

VĪ J̄ VĪ J

)
ξ0

= eG(ξ0)

(
XX† − 2 −X
−X† X†X − 2

)
. (3.24)

Since in the basis we have chosen X†X = XX† it is easy to check that this matrix also
satisfies the first of the conditions necessary to apply (eq. 3.13), and we find that the
equation for the spectrum of masses m2 reads

det
(
(X†X − (2 + e−G(ξ0) m2) )2 − X†X

)
= 0 . (3.25)

In order to use (eq. 3.13) we also need to assume that the following matrix is non-
singular,

det
(
X†X − (2 + e−G(ξ0) m2)

)
, 0 , (3.26)

but after some algebra it is possible to prove that (eq. 3.25) also gives the right result
in the singular case. As in the previous section we can use that X has the block
diagonal form (eq. 3.17) to show that the eigenvalue problem can be decomposed in
each of the eigenspaces of X†X. Using this fact the eigenvalue equation (eq. 3.25)
can be written as

p∏
λ=1

[
(|xλ|

2 − 2 − e−G(ξ0) m2)2 − |xλ|
2
]nλ

= 0 . (3.27)
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Therefore the spectrum of masses at the supersymmetric critical point is given by

m2
±λ = eG(ξ0)(|xλ|

2 − 2 ± |xλ|) = eG(ξ0)
((
|xλ| ± 1

2

)2
− 9

4

)
. (3.28)

Each of these energy levels contains nλ different excitations with the same mass. The
set of quantities |xλ| determine which type of extremum the supersymmetric critical
point ξI

0 is

|xλ| > 2 for all λ⇒ local AdS minimum,

|xλ| < 1 for all λ⇒ local AdS maximum, (3.29)

and any other combination corresponds to AdS saddle points (|xλ| = 1, 2 give flat di-
rections). The result (eq. 3.28) also provides a proof of the stability of all supersym-
metric critical points, regardless of the possible negative curvature of the potential.
Since all these critical points are AdS, the perturbative stability is determined by the
Breitenlohner-Freedman bound (eq. 1.53), which is always satisfied as is clear from
(eq. 3.28),

m2 ≥ −
9
4

eG(ξ0) =
3
4

V(ξ0) . (3.30)

Now we already have at hand all the results we need to check the claim we made
at the beginning of this subsection. Comparing equations (eq. 3.20) and (eq. 3.29)
we see immediately that the supersymmetric AdS maxima of the potential always
coincide with the minima of the Kähler function.

3.3.3 Analysis of the scalar potential with non-vanishing D-
terms

Let us now generalise the result of the previous subsection to the case where the
gauge couplings are turned on. In this case we have to add to the scalar potential
the contribution from D-terms (eq. 1.46). In order to calculate the new contributions
to the Hessian of the scalar potential around the critical point ξI

0 we must find the
derivatives of the D-term potential at this point. Using that GI(ξ0) = 0 we find

VD|IJ(ξ0) = 1
2 (Re f (ξ0))−1 ab kR

a (ξ0)kS̄
b (ξ̄0) [GIRGJS̄ + GJRGIS̄ ]ξ0 ,

VD|I J̄(ξ0) = 1
2 (Re f (ξ0))−1 ab kR

a (ξ0)kS̄
b (ξ̄0) [GIRG J̄S̄ + G J̄RGIS̄ ]ξ0 . (3.31)

As we have done previously we will define the scalar fields ξI so that they have trivial
kinetic terms GI J̄ = δI J̄ and the Hermitian matrix X†X is diagonal. In the case of
the D-term potential we can simplify the calculations even further making use of the
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freedom we have to define the gauge fields Aa
µ. Actually, the action is invariant under

constant linear transformations of the gauge fields Ab
µ = Ob

a Ãa
µ, with Ob

a any non-
singular real matrix, provided that the gauge kinetic functions fab and the Killing
vectors kI

a transform as

f̃cd = O a
c O b

d fab , k̃I
b = O a

b kI
a . (3.32)

In particular, note that the gauge covariant derivatives and the Yang-Mills terms do
not transform under these redefinitions, since

Aa
µkI

a = Ãb
µk̃I

b, (Re fab)Fa
µνF

a µν = (Re f̃cd)F̃c
µνF̃

d µν . (3.33)

We can use this freedom to turn Re( fab) into a matrix proportional to the identity

Re( fab) = eG(ξ0) δab , (3.34)

where the overall factor has been chosen for convenience. Using these conventions,
and defining the matrix k = kI

a(ξ0), we can write the Hessian of the D-term potential
as (

VD|I J̄ VD|IJ

VD|Ī J̄ VD|Ī J

)
ξ0

= 1
2 eG(ξ0)

(
kk† + X kk†X† X kk† + k∗kT X

X† k∗kT + kk† X† k∗kT + X† k∗kT X

)
, (3.35)

which has to be added to (eq. 3.24) in order to get the Hessian of the full scalar
potential.

Before we continue the calculation, let us derive a useful property of the Killing
vectors k. We mentioned in section 1.3.2 that the Kähler function G(ξI) has to be
invariant under gauge transformations. In particular in a Taylor expansion of the
Kähler function around ξ0 (eq. 3.10) all the terms have to be invariant under gauge
transformations order by order in ξ̂ = ξ − ξ0. From the gauge transformation of the
order one terms in the expansion we find the condition(

GIJ(ξ0)kJ
a(ξ0)ξ̂I + GI J̄(ξ0)k J̄

a
(ξ0)ξ̂I + GI(ξ0)∂JkI

aξ̂
J
)
αa = 0 , (3.36)

which has to be satisfied for all values of the gauge parameters αa, and the fluctuations
ξ̂I . Since GI(ξ0) = 0, then with our field definitions and in matrix notation this
condition simply reads

k∗ = −Xk . (3.37)

An immediate consequence of this requirement is that the Killing vectors are eigen-
vectors of the matrix X†X with eigenvalue gλ = 1,

X†X k = −X†k∗ = k , (3.38)
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Chapter 3: F-term uplifting and the supersymmetric integration of heavy scalars

since XT = X. This means that the matrices kk† and kkT have all the entries zero
except in the block that corresponds to the eigenspace of eigenvalue |xλ|2 = 1 of X†X.
As we saw in the previous section the eigenvalue problem of the Hessian decouples in
the different eigenspaces of the matrix X†X. We have just proven that the corrections
introduced by the D-term potential respect this decoupling and moreover, that the
corrections only affect the eigenspace with eigenvalue |xλ|2 = 1. Therefore we can
use the results of the previous section for all the eigenspaces with |xλ| , 1 to find
the corresponding eigenvalues. In the remainder of this section we will just focus on
solving the eigenvalue problem in the eigenspace where |xλ|2 = 1, which we label
by λ = 1. In order to keep notation simple, we will use the matrices X1 and k1 to
represent the submatrices corresponding to the eigenspace λ = 1, thus

X†1 X1 = X1X†1 = n1 . (3.39)

Notice that, since the Hermitian matrix k1k†1 transforms under scalar field redefinitions
in the same way as X1X†1 , we can use the residual freedom to choose the eigenvectors
in the eigenspace with |xλ|2 = 1 to turn k1k†1 into a real diagonal matrix

k1k†1 = Diag(|k1|
2, . . . , |kn1 |

2) , (3.40)

where n1 is the dimension of the eigenspace with |xλ|2 = 1. The final expression for
the Hessian of the full potential restricted to this eigenspace can be obtained from
(eq. 3.35) and (eq. 3.24), and is

(
VI J̄ VIJ

VĪ J̄ VĪ J

)
λ=1

= eG(ξ0)

(
− + k1k†1 (− + k1k†1) X1

(− + k1k†1) X†1 − + k1k†1

)
, (3.41)

where we have used the properties (eq. 3.37), (eq. 3.39) and (eq. 3.40) in order to sim-
plify (eq. 3.35). It is easy to check that the matrices X1 and k1k†1 commute, therefore
we can use (eq. 3.13) in order to find the equation for the mass spectrum m2, which
reads

n1∏
i=1

((
|ki|

2 − 1 − e−G(ξ0) m2
)2
− (|ki|

2 − 1)2
)

= 0 , (3.42)

after having substituting the diagonal form of k1k†1 (eq. 3.40). The solution to this
equation, together with the results we found in the previous section, which apply for
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|xλ| , 1 are summarised below

m2
±λ = eG(ξ0)

((
|xλ ± 1

2 |
)2
− 9

4

)
if |xλ|

2 , 1,

m2
+1i = 2eG(ξ0)

(
|ki|

2 − 1
)

if |xλ|
2 = 1,

m2
−1i = 0 if |xλ|

2 = 1. (3.43)

The quantities |ki|
2 determine the mass of the gauge bosons at the supersymmetric

critical point ξ0, therefore we can see that the breaking of gauge symmetries can only
improve the stability of vacuum. This result agrees with the analysis in Gomez-Reino
and Scrucca (2007) of the stability of uplifted vacua.

The fact that the Killing vectors are associated to the eigenvalues |xλ|2 = 1 should
not be surprising. On the one hand the eigenvalues |xλ|2 = 1 are always related to
marginally stable directions m2 = 0. On the other hand we know that the potential
has to be invariant under gauge transformations, thus each Killing vector has to be
naturally associated with a flat direction of the potential, which appear in the spectrum
as massless fluctuations (the would-be Goldstone bosons that disappear due to the
Higgs mechanism).

In view of the result (eq. 3.43) we can argue that the presence of non-vanishing
gauge couplings does not modify the conclusion of the previous section, namely that
the minima of the Kähler function G(ξI , ξ Ī) are always in one to one correspondence
with the supersymmetric AdS maxima of the scalar potential.

3.4 Stability of uplifted vacua

We now return to the main question in this chapter, the perturbative stability of the
heavy sector when these AdS supersymmetric vacua are uplifted to dS by supersym-
metry breaking effects in the light sector. In this section we again assume that the
Kähler invariant function is separable in the heavy and light sectors, (eq. 3.4).

3.4.1 Stability of uplifted vacua with zero D-term potential

We start by generalising the results of Achúcarro and Sousa (2008) to an arbitrary
number of heavy fields in the supersymmetric sector. We assume all fields are un-
charged.

Suppose that the set of chiral fields ξI can be split in two sectors, nh heavy fields
Hα and nl light fields Li, which are coupled as in (eq. 3.4). We will assume that the
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Chapter 3: F-term uplifting and the supersymmetric integration of heavy scalars

system is stabilised at a critical point of the potential (Hα
0 , L

i
0), which is also a su-

persymmetric configuration of the heavy sector, Gα(H0, L0) = 0, but supersymmetry
is broken in the light sector, Gi(H0, L0) , 0. Then, as discussed in section 3.2, the
Hessian of the full potential has a block diagonal form in the two sectors (eq. 3.7)
and therefore it is consistent to consider the stability of the potential only along the
“heavy” and “light” directions independently. We will take the light sector fixed at a
perturbatively stable configuration, and we will focus on the stability analysis along
the heavy directions. For this purpose we only need to calculate Vαβ̄(H0, L0) and
Vαβ(H0, L0) from (eq. 3.5),

Vαβ̄(H0, L0) = eA+B|H0,L0

[
Aγδ̄AαγAβ̄δ̄ + (b − 2)Aαβ̄

]
H0

,

Vαβ(H0, L0) = eA+B|H0,L0 (b − 1)Aαβ(H0) , (3.44)

where we are using the notation b = Bi j̄BiB j̄|L0 . We will use same choice of fields as
in the previous section, where Hα are canonically normalised at Hα

0 and the matrix
X†X is real and diagonal, with X = Aαβ(H0). With this choice we obtain the following
expression for the Hessian of the potential at (Hα

0 , L
i
0):(

Vαβ̄ Vαβ

Vᾱβ̄ Vαβ̄

)
H0,L0

= eA+B|H0,L0

(
XX† + (b − 2) (b − 1) X

(b − 1) X† X†X + (b − 2)

)
. (3.45)

Calculating the mass spectrum as in the previous section we arrive at our final
result,

m2
±λ = eA+B|H0,L0

[
|xλ|

2 + (b − 2) ± |(b − 1)xλ|
]

= eA+B|H0,L0

[(
|xλ| ± 1

2 (b − 1)
)2
− 1

4 (b − 3)2
]
. (3.46)

To obtain the last expression we assumed that b > 1, but in the case b < 1 then
m2

+λ and m2
−λ have to be exchanged. For each energy level characterised by m2

±λ there
are nλ different excitations with the same mass, where, in analogy with the previous
sections, nλ represents the dimension of the eigenspace of X†X with eigenvalue |xλ|2.
The stability condition after uplifting the minimum of the potential to Minkowski or
de Sitter, b ≥ 3, reduces to m2

±λ > 0 for all λ = 1, . . . , p, but if the minimum remains
AdS after the uplifting, b < 3, the masses have to satisfy the Breitenlohner-Freedman
bound (eq. 1.53), which yields

for b < 3 =⇒

[(
|xλ| ± 1

2 (b − 1)
)2
− 1

4 (b − 3)2
]
≥

3
4

(b − 3) ,

for b ≥ 3 =⇒

[(
|xλ| ± 1

2 (b − 1)
)2
− 1

4 (b − 3)2
]
≥ 0 . (3.47)
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3.4 Stability of uplifted vacua

Recalling that b ≥ 0, and after a little bit of algebra, it is possible to see that the
first of the two inequalities is always satisfied. The second shows that there are no
instabilities when the minimum is uplifted to Minkowski b = 3, although zero modes
are possible if any |xλ| = 1. Thus, the instabilities can only arise for upliftings to dS.
These results are summarised in figure 3.1.

-

Figure 3.1: Stability of supersymmetric critical points after the uplifting. The quantity
on the vertical axis (3H/m3/2)2, the Hubble parameter during inflation, is proportional
to the effective cosmological constant via (eq. 3.8). The horizontal axis represents the
curvature of the Kähler function, as defined in (eq. 3.16), at the critical point along one
of the heavy field directions Hα: |xλ| < 1 corresponds to local minima and |xλ| > to saddle
points. The coloured regions represent stable configurations under perturbations of the
heavy fields. For (3H/m3/2)2 < 0 and (3H/m3/2)2 = 0 the uplifted vacua, which are AdS
and Minkowski respectively, are always stable. Local AdS minima of the scalar potential
at zero uplifting, |xλ| > 1, are stable only in the red region and are always destabilised for
large uplifting. Local AdS maxima, |xλ| < 1, are depicted by the green region and remain
stable for arbitrary large uplifting.

We can see that all the results that were obtained in the study of a single modulus
toy model in Achúcarro and Sousa (2008) can be generalised to an arbitrary number
of fields in the heavy sector. Local AdS minima and saddle points before the uplifting
are only stable for small values of the cosmological constant, while local AdS maxima
of the potential, which coincide with the local minima of the Kähler function, are
always stable.

49



Chapter 3: F-term uplifting and the supersymmetric integration of heavy scalars

3.4.2 Stability of uplifted vacua with a non-zero D-term poten-
tial

Now we study the stability of uplifted vacua when the gauge couplings are turned
on. Including gauge interactions is specially relevant in the case of the light sec-
tor, since it includes the visible sector. In section 3.2 we mentioned that any gauge
field that appears in the effective theory cannot be coupled to the fields that are con-
sistently truncated, otherwise the gauge fields could act as sources for the truncated
fields leading to an inconsistency. For instance, if the truncated fields acquire an
expectation value, any gauge field coupled to it would be Higgsed and the full mas-
sive vector multiplet would have to be truncated as well. In our analysis, we will
assume that Killing vectors and the gauge kinetic functions satisfy the requirements
for a consistent decoupling of the heavy sector described in section 3.2. Moreover,
we will ask the gauge fields in the heavy and light sectors to have decoupled kinetic
terms, or in other words, that the gauge kinetic function fab is block diagonal in the
two sectors. Other than that we will allow the Killing vectors and the gauge kinetic
functions of the heavy sector to have an arbitrary dependence on the light and heavy
fields kαa (H, L) and f (h)

ab (H, L). Under these requirements the D-term potential reads

VD = 1
2

(
Re f (L)

)−1 ab ki
a(L) k j̄

b(L̄) GiG j̄+

1
2

(
Re f (H, L)

)−1 ab kαa (H, L) kβ̄b(H̄, L̄) GαGβ̄ . (3.48)

Since the gauge kinetic functions and the Killing vectors of the light sector depend
only on the light fields, and Gi(H, L) = Ai(L), all the dependence of VD on the heavy
fields comes from the second term in (eq. 3.48). Therefore, using that Gα(H0) =

0, it is easy to check that, despite the dependence of the D-term potential of the
heavy sector on the light fields, the critical points of the heavy sector are preserved.
Moreover, the stability analysis along the heavy field directions is also unaffected by
the light sector. For example, the Hessian of the potential at the critical point remains
block diagonal in the two sectors, VD|αi(H0, L0) = VD|αī(H0, L0) = 0, and the second
derivatives of the D-term potential along the heavy directions are given by

VD|αβ(H0, L0) = 1
2

(
Re f (H0, L0)

)−1 ab kγa(H0, L0) kδ̄b(H̄0, L̄0) GγαGδ̄β ,

VD|αβ̄(H0, L0) = 1
2

(
Re f (H0, L0)

)−1 ab kγa(H0, L0) kδ̄b(H̄0, L̄0) GγαGδ̄β̄ . (3.49)

Thus, in order to find the mass matrix of the heavy fields at the critical point
(Hα

0 , L
i
0), we only have to add the Hessian of the D-term potential with respect to the

heavy fields to the result we found for the F-term potential (eq. 3.45). We choose
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3.5 More general couplings

our heavy scalar fields so that they have trivial kinetic terms Gαβ̄ '
2 and that the

matrices X†X (X = Gαβ) and kαakβ̄a are both real and diagonal. We also define the

gauge fields A(h) a
µ such that the real parts of the gauge kinetic functions of the heavy

sector are proportional to the identity matrix,

Re f (h)
ab = eG |H0,L0 δab . (3.50)

The calculation of the D-term contribution to the Hessian can be done along the same
lines as in section (eq. 3.4.2). Is not difficult to check that the properties (eq. 3.37)
and (eq. 3.38) still hold, thus here again the matrices kk† and kkT , with k = kαa, have
non-vanishing components only in the eigenspace corresponding to the eigenvalue
|xλ|2 = 1. Thus, after some simplifications, the Hessian of the total scalar potential
reads(

Vαβ̄ Vαβ

Vᾱβ̄ Vαβ̄

)
H0,L0

= eA+B|H0,L0

(
XX† + kk† + (b − 2) (b − 1 + kk†) X

(b − 1 + kk†) X† X†X + kk† + (b − 2)

)
.

(3.51)
From this expression it is straightforward to find the mass spectrum of fluctuations of
the heavy sector along the heavy directions:

m2
±λ = eG(ξ0)

((
|xλ ± 1

2 (b − 1)|
)2
− 1

4 (b − 3)2
)

if |xλ|
2 , 1,

m2
+1i = 2 eG(ξ0)

(
|ki|

2 + b − 1
)

if |xλ|
2 = 1,

m2
−1i = 0 if |xλ|

2 = 1. (3.52)

We can see that figure 3.1 is still valid when we include the gauge interactions. The
only difference with the result in the previous section is that if some of the gauge sym-
metries are spontaneously broken the mass degeneracy in the eigenspace with |xλ| = 1
is destroyed. From (eq. 3.52) we can see that the presence of gauge interactions only
increases the stability of the critical point.

3.5 More general couplings

An interesting question to consider is whether it is possible apply our results to other
systems where light and heavy moduli are not coupled with the ansatz (eq. 3.4). Let

2We do not consider the possibility of a nilpotent Kähler metric (Groot Nibbelink et al., 2001). We
thank Jan-Willem van Holten for pointing this out.
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Chapter 3: F-term uplifting and the supersymmetric integration of heavy scalars

us assume only the mild condition that the Kähler potentials are separable in the light
and heavy sectors,

K = Kh(H, H̄) + Kl(L, L̄) .

This condition ensures that mixed derivatives of the Kähler function of the form
Giᾱ(H0, L0), Giᾱβ(H0, L0) et cetera, involving both holomorphic and antiholomorphic
indices from the two sectors, must vanish. We will also focus on cases where su-
persymmetry is unbroken at low energies, thus we take the heavy fields fixed at a
supersymmetric critical point.

As we discussed in section 3.2, the condition that the potential has to be block
diagonal in the light and heavy fields is necessary in order to truncate the heavy fields
consistently. Therefore, in any scenario where part of the moduli are going to be
truncated the stability of these fields can be studied independently considering only
the “heavy” directions in field space. In order to recover a mass matrix of the form
(eq. 3.44) and (eq. 3.51) we would need to satisfy the extra condition

Giα(H0, L0) = 0 . (3.53)

We can prove this equation from the requirement that the low energy effective action
must be invariant under supersymmetry transformations. In particular, this require-
ment means that the supersymmetry transformations cannot generate the fields that
we have truncated. Consider the supersymmetry transformation of the fermions of
the heavy sector, which in a homogeneous bosonic background are simply

δχαL = − 1
2 e

K
2 W̄Gαβ̄Gβ̄ εL . (3.54)

Expanding this expression to first order in the fluctuations of the light fields around
the critical point Li = Li

0 + L̂i gives

δχαL = − 1
2 e

K
2 W̄Gαβ̄Gīβ̄(H0, L0) L̂īεL . (3.55)

We can see that, unless the quantity Giα(H0, L0) vanishes, the supersymmetry trans-
formations will generate the fermions of the heavy sector (W , 0). The condition
(eq. 3.53) also ensures that the point where we are fixing the heavy moduli is an
extremum of the scalar potential,

Vα(H0, L0) =
[
eGGi j̄GiαG j̄

]
H0,L0

= 0 , (3.56)

where we have already used that the Kähler potential is separable and Gα(H0, L0) = 0.
Since all the mixed derivatives of the Kähler potential Giα(H0, L0) and Giᾱ(H0, L0)

vanish, it makes sense to study the curvature of G(H, L) at the critical point Hα
0 only
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along the heavy directions. Thus, we can repeat the analysis of section 3.1 arriving at
similar conclusions:

• the Kähler function G(L,H) has a local minimum at Hα
0 along the heavy direc-

tions if the eigenvalues of the matrix X†X satisfy the conditions |xλ| < 1 for all
λ = 1, . . . , p, with X = Gαβ(H0, L0),

• if any of the eigenvalues of X†X satisfies |xλ| > 1 the function G(H, L) has a
saddle point at H0,

• for each eigenvalue of X†X satisfying |xλ| = 1 the Kähler function has a neu-
trally stable direction and a minimum along some complex direction Hα.

Using all these results, we can now study the stability of the scalar potential along the
heavy directions as in section 3.2. The second derivatives of the scalar potential are
given by

Vαβ(H0, L0) = eG |H0,L0

[
(b − 1)Gαβ + Gi j̄GiαβG j̄

]
H0,L0

, (3.57)

Vαβ̄(H0, L0) = eG |H0,L0

[
Gγδ̄GαγGβ̄δ̄ + (b − 2)Gαβ̄

]
H0,L0

, (3.58)

where we have used the notation b = Gi j̄GiG j̄|H0,L0 .
Note that, apart from the second term in the equation (eq. 3.57), the result we have

obtained is of the same form as (eq. 3.44). If the quantity Giαβ stays of order O(1),
the extra term that we have obtained is roughly of order O(b1/2), which means that for
large values of the uplifting, b � 3, it will become subdominant. Therefore, in this
limit, the mass matrix becomes proportional to the Hessian of the Kähler function at
Hα

0 ,(
Vαβ̄ Vαβ

Vᾱβ̄ Vαβ̄

)
H0,L0

= b

(
X

X†

)
eA+B|H0,L0 = b

(
Gαβ̄ Gαβ

Gᾱβ̄ Gᾱβ

)
H0,L0

eA+B|H0,L0 , (3.59)

indicating that the minima of the Kähler function along the heavy directions will al-
ways survive uplifting to an arbitrary large value of the cosmological constant. Note
also that before uplifting, Gi(H0, L0) = 0, the mass matrix given by (eq. 3.58) coin-
cides with (eq. 3.23), so we can again identify the AdS maxima of the scalar potential
with the local minima of the Kähler function along the heavy directions.

We would like to emphasise that in order to obtain this result we have made very
mild assumptions. We have required that the Kähler potential is separable in the
two sectors, we have also imposed the condition that the effective action left after
truncating the heavy moduli is invariant under supersymmetry, and finally we asked
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the quantity Giαβ to stay of orderO(1) for large values of the uplifting. In this scenario
we have proved that the AdS maxima of the potential along the heavy directions at
zero uplifting (Gi(H0, L0) = 0), which are perturbatively stable configurations, remain
stable after the uplifting for arbitrary large values of the cosmological constant.

3.6 Summary and Conclusions

In this chapter we have studied in detail the stability properties of the F-term up-
lifting mechanism recently proposed in Achúcarro and Sousa (2008). This way of
uplifting AdS vacua guarantees that the interactions between the uplifting sector and
the moduli of the compactification are consistent with supersymmetrically truncating
the heavy fields (chapter 2). The exact composition of the heavy sector in a KKLT
scenario depends on the details of the compactification, but we expect it to include
the complex structure moduli and some heavy Kähler moduli. In that case the light
sector would comprise the remaining Kähler moduli, the visible matter fields and the
hidden sector where supersymmetry is spontaneously broken.

In this type of F-term uplifting mechanisms the couplings between the light fields
L and heavy fields H are characterised by the separability of the Kähler invariant
function of the total theory,

G(H, H̄, L, L̄) = G(h)(H, H̄) + G(l)(L, L̄) ,

which can be expressed in terms of the Kähler potential and the superpotential as

K(H, H̄, L, L̄) = K(h)(H, H̄) + Kl(L, L̄) ,

W(H, L) = W (h)(H) W (l)(L) .

This ansatz is approximately satisfied by the couplings between the frozen complex
structure moduli and the Kähler moduli in large volume scenarios (Conlon et al.,
2005, 2007, Conlon, 2008). In these models it ensures the consistency of includ-
ing the non-perturbative effects with the supersymmetric integration of the complex
structure moduli.3

The key property of this type of coupling is that the heavy fields remain at a
supersymmetric configuration after coupling them to the light sector, even when su-
persymmetry is broken by the light fields. In view of the direct couplings in the su-
perpotential it might appear that the two sectors are strongly interacting, and thus that
the supersymmetry breaking is likely to spoil the stabilisation of the heavy moduli.

3We thank Joe Conlon for a discussion on this point.
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However, a more careful analysis reveals that the two sectors are essentially decou-
pled. For instance, the mass matrix of field fluctuations around the uplifted vacuum
is block diagonal in the light and heavy directions. This implies that the stability
analysis can be done independently for the light and heavy sectors. In this chapter we
have focused on the study of the stability of the heavy moduli that are truncated. Our
results completely confirm and generalise those of the toy model considered in Achú-
carro and Sousa (2008), where the heavy sector consisted of a single modulus. More
precisely, there is always a basis such that the mass matrix and the Kähler metric can
be diagonalised simultaneously. This allows expressing the stability requirement of
having a positive definite mass matrix as a constraint on the curvature of the Käh-
ler function at the uplifted vacuum (eq. 3.47). We found that the stability diagram
obtained for the toy model holds separately for each eigenvalue of the mass matrix
of the uplifted scalar potential, figure 3.1. In particular, our results show that if the
heavy fields are fixed at a minimum of the Kähler function the configuration remains
stable for any final value of the cosmological constant. However, if the heavy fields
are fixed at a saddle point of the Kähler function – the Kähler function cannot have
maxima – the configuration always becomes unstable for large enough values of the
cosmological constant.

This analysis complements that of Covi et al. (2008b), who formulated a neces-
sary (and in most practical situations sufficient) condition for the existence of (meta)-
stable de Sitter vacua, following earlier work by Gomez-Reino and Scrucca (2006b,a,
2007). The constraint restricts the Kähler geometry of the non-linear sigma model
associated to the chiral multiplets. Expressed in terms of the metric GI J̄ and the Rie-
mann tensor RI J̄MN̄ of the Kähler manifold it reads

σ ≡
[1
3

(
GI J̄GMN̄ + GIN̄GMJ̄

)
− RI J̄MN̄

]
GIG J̄GMGN̄ > 0 . (3.60)

This condition, they point out, is e.g. not satisfied by moduli with no-scale Kähler
functions of the form K = −3 log(ξ + ξ̄), or more generally K = −

∑
I nI log(ξI +

ξ̄ Ī),
∑

I nI = 3. Clearly, the constraint (eq. 3.60) is only sensitive to the geometry of
the Kähler manifold along the direction of the goldstino vector GI , and therefore it
can say nothing about the perturbative stability of moduli with zero F-terms, GI =

0. In particular, it cannot be used to restrict the interactions of those fields that are
supersymmetrically decoupled – in the sense of the previous chapter – from the sector
that breaks supersymmetry. Our work provides necessary and sufficient conditions for
the perturbative stability of these GI = 0 fields in a particular class of models where
they are supersymmetrically decoupled.

Finally, we have also confirmed that the one-to-one correspondence found in

55



Chapter 3: F-term uplifting and the supersymmetric integration of heavy scalars

Achúcarro and Sousa (2008) between local minima of the Kähler invariant function G
and (stable) AdS supersymmetric vacua that are local maxima of the scalar potential is
completely general. These supersymmetric vacua satisfy the Breitenlohner-Freedman
bound and are therefore stable. Our results imply that supersymmetric AdS maxima
remain perturbatively stable when supersymmetry is broken by a supersymmetrically
decoupled sector satisfying (eq. 3.4). Moreover, we have been able to prove that even
in more general scenarios where the truncated heavy moduli do not satisfy (eq. 3.4),
the supersymmetric AdS maxima are always stable for large values of the cosmologi-
cal constant. To our knowledge, the uplifting of (AdS) supersymmetric local maxima
of the scalar potential has not been considered before and constitutes a new class
of stable de Sitter vacua and inflationary troughs whose phenomenology has to be
explored.
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