
Non-decoupling of heavy scalars in cosmology
Hardeman, A.R.

Citation
Hardeman, A. R. (2012, June 8). Non-decoupling of heavy scalars in cosmology. Casimir PhD
Series. Retrieved from https://hdl.handle.net/1887/19062
 
Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/19062
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/19062


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/19062 holds various files of this Leiden University 
dissertation. 
 

Author: Hardeman, Sjoerd Reimer         
Title: Non-decoupling of heavy scalars in cosmology 
Date: 2012-06-08 

https://openaccess.leidenuniv.nl/handle/1887/1�
http://hdl.handle.net/1887/19062


CHAPTER 2

Consistent decoupling of
heavy scalars and N =1

supergravity

The viability of theories based on extra dimensions, in particular string theory, relies
on being able to stabilise and integrate out the fields (moduli) that describe the shapes
and sizes of those extra dimensions, for which so far there is no observational evi-
dence. In flux compactifications (Giddings et al., 2002) some moduli are stabilised at
a high energy scale and decouple from the low energy theory. From that moment on
we never see them in the effective low energy description.

Unlike in global supersymmetry, complete decoupling is of course impossible
in supergravity – even in principle – because gravity couples to all fields. At low
energies one is usually satisfied with gravitational strength couplings between the
heavy, stabilised, fields and the low energy fields. However, such interaction terms
are of order O(GNewtonE2) = O(E2/M2

P), where E is the energy scale and MP ≈

2.4 × 1018GeV the reduced Planck mass. Even if they are strongly suppressed at
low energy and in particle accelerators, these couplings become sizable at the energy
scales relevant to the early Universe, and one must look for a more robust definition of
decoupling that can be extrapolated over a wide range of energy scales. The purpose
of this chapter is to provide such a definition, and a simple test of whether it holds in
specific models.
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Chapter 2: Consistent decoupling of heavy scalars and N =1 supergravity

There are at least two situations in which the details of decoupling are important.
One is supersymmetry breaking, which will affect the heavy fields in a way that is
not accounted for in the low energy effective action. Uplifting in KKLT scenarios
(Kachru et al., 2003a) is a prime example. The second is inflation with moduli stabil-
isation, because the inflaton, which is a low energy field in this language, can have its
expectation value vary over many Planck-masses.

Here we take a bottom-up approach and try to find for what types of Supergravity
couplings we can be sure that the heavy moduli will not shift from their expectation
values due to low energy processes. We do not require small gravitational coupling
to the light(er) fields because instead we rely on supersymmetry to partially protect
the expectation values of the heavy moduli.

It must be stressed that what we are proposing here, building on arguments by
Choi et al. (2005), de Alwis (2005b), de Alwis (2005a), Binetruy et al. (2004) and
Achúcarro and Sousa (2008), is a simple consistency test. It checks explicitly what is
implicitly assumed by the very use of a low energy effective action. So it is somewhat
surprising to find that the most common ansatz for decoupled fields in the literature,
the standard “gravitational strength coupling” ansatz, generically fails the test. It
partly explains the difficulties encountered in supergravity models of inflation with
moduli stabilisation. The problem essentially disappears for consistently decoupled
moduli (Davis and Postma, 2008, Achúcarro and Sousa, 2008).

2.1 Consistent decoupling of scalar fields in N = 1
supergravity

In what follows we consider two sets of fields, heavy (H) and light (L), and assume
the heavy fields are stabilised at an expectation value H = H0, an extremum of the
scalar potential for the heavy moduli. If the heavy field is a singlet under all low
energy symmetries and its mass is large enough it will decouple from low energy
phenomena and can be truncated, leaving an effective theory for the light degrees of
freedom. To make this distinction, we will again use hatted quantities to indicate the
full theory, including heavy and light fields, and unhatted quantities for the effective
theory involving light fields only

S (L, L) = Ŝ (H0,H0, L, L). (2.1)

We are interested in the case in which the resulting effective theory is also de-
scribed by N = 1 supergravity. In this case, there should be an effective K and W (or
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2.1 Consistent decoupling of scalar fields in N =1 supergravity

G) depending only on the light fields, from which to compute the low energy action
S and supersymmetry transformations

G[L, L] = Ĝ[L, L,H0,H0] , (2.2)

δεL = δ̂εL|H0 = f [L,G(L, L)] , (2.3)

δ̂εH|H0 = 0 . (2.4)

Notice that the F-terms (eq. 1.45) of the heavy fields must vanish because the super-
symmetry transformations read,

δ̂εH ∼ χε, δ̂εχ ∼ ∂/Hε −
1
2

Fε (2.5)

and if the F-terms are non-zero a supersymmetry transformation will generate light
fermions, related to the supersymmetry breaking in the heavy sector, that are not in
the low energy effective action. Thus, the heavy fields cannot contribute to supersym-
metry breaking, leading to

∂HĜ|H0 = 0 or D̂HŴ |H0 = 0 , (2.6)

(see also de Alwis, 2005b) where D̂iŴ = ∂iŴ + (∂iK̂)Ŵ is the Kähler covariant
derivative that transforms as D̂iŴ → e−h(z)D̂iŴ under Kähler transformations. Note
that D̂HŴ = 0 is the condition used in flux compactifications (Giddings et al., 2002)
and by extension in KKLT (Kachru et al., 2003a) and LARGE volume scenarios
(Balasubramanian et al., 2005), where the complex structure moduli are stabilised at
a supersymmetric point before uplifting.

The Kähler metric should be block diagonal in the light and heavy fields when
evaluated at H0, otherwise propagators will mix these two sets of fields. Additionally,
the truncation H = H0 must of course be a consistent truncation. This means that the
equations of motion of the light fields derived from the effective theory are the same
as the equations of motion obtained from the full theory. To zeroth order in the
fluctuations of the heavy fields

δŜ
δL

∣∣∣∣∣
H0

=
δŜ |H0

δL
=
δS
δL

, (2.7)

ensuring that the fluctuations of H are not sourced by the light fields. In particular,
the heavy fields should be singlets under the surviving gauge group at low energies,
otherwise they remain coupled to the light fields by the gauge interaction. In what
follows we will consider fab(L) independent of the heavy fields. In that case they do
not contribute to the D-terms, which will only involve light fields.
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Chapter 2: Consistent decoupling of heavy scalars and N =1 supergravity

2.2 Analysis of the consistency conditions

The heavy fields thus need to be stabilised at an expectation value H0, where H0 is
the solution to (eq. 2.6)[

∂HŴ(H, L) + ∂H K̂(H,H, L, L)Ŵ(H, L)
] ∣∣∣∣∣

H0

= 0 . (2.8)

which implies ∂HV̂ |H0 = 0. The LHS is some function of both the heavy and the light
fields, let us call it Φ(H,H, L, L). In general, the condition Φ = 0 (together with its
complex conjugate Φ = 0) relate the heavy and light fields. If we can solve for H we
obtain an expression of H0 as a function of the light fields,

H = H0(L, L) , (2.9)

which can be substituted back into K̂, Ŵ to give an effective action for the light fields

S (L, L) = Ŝ (H0(L, L),H0(L, L), L, L) . (2.10)

An immediate concern with the consistency of this procedure, pointed out in
de Alwis (2005b), is that in general this leads to a non-holomorphic expression for
the would-be effective superpotential W = Ŵ(H0(L, L), L). However, this problem is
easily avoided: it does not arise if Ŵ is independent of H. The case Ŵ = 0 is obvious,
so consider Ŵ , 0. It is always possible to perform a Kähler transformation that
makes Ŵ constant

Ŵ → 1 , (2.11a)

K̂ → K̂ + log Ŵ + log Ŵ = Ĝ . (2.11b)

In this so called Kähler gauge, (eq. 2.8) reads

∂HĜ(H,H, L, L) = 0 , (2.12)

from which we can extract H = H0(L, L) and make the previous substitution directly
into the Kähler invariant function without any inconsistency (see also Curio and Spill-
ner, 2007):

G = Ĝ(H0(L, L),H0(L, L), L, L) . (2.13)

In fact, the issue is not whether H0(L, L) is holomorphic but rather whether it is
a (non-trivial) function at all. The assumption that the heavy fields are stabilised at
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2.2 Analysis of the consistency conditions

H = H0 is simply the condition that H0(L, L) = constant. Any other dependence
on the light moduli would translate into a constraint on the light fields which would
have to be accounted for explicitly in the low energy action (de Alwis, 2005a). This
is what we have to avoid.

To summarise, the (rather obvious) mathematical condition for the heavy fields to
be truncated consistently with an expectation value H0 and to decouple from the low
energy fields is that the system of equations

∂HĜ ≡ Φ(H,H, L, L) = 0 , (2.14)

which is the same as (eq. 2.8) defined in the Kähler gauge (eq. 2.11), admits the
constant solution

H = H0(L, L) = const , H = H0(L, L) = const . (2.15)

In spite of being obvious, this condition is not empty. For instance, we will see
below that it fails generically for standard couplings of the form K = K1 + K2 and
W = W1 + W2. However, let us first consider two specific situations in which the
decoupling condition does hold.

1. The consistency condition is trivially satisfied if the function Φ(H,H, L, L) has
no explicit dependence on the light fields. In this case by integrating (eq. 2.14)
one recovers the condition found in Binetruy et al. (2004)

∂HĜ = Φ(H,H)→ Ĝ = Ĝ1(H,H) + Ĝ2(L, L) (2.16)

and it is obvious that the Kähler metric is block diagonal in this case. This
ansatz has a long history which goes back to Cremmer et al. (1983a) and al-
lows a detailed stability analysis of the heavy fields (Achúcarro and Sousa,
2008 and chapter 3), in particular in the context of F-term uplifting of flux
compactifications.

2. On the other hand, this requirement is too restrictive. It is sufficient if the
function Φ(H,H, L, L) factorises,

Φ(H,H, L, L) = Φ1(H,H, L, L) Φ2(H,H) = 0 , (2.17)

in which case we just solve Φ2 = Φ2 = 0 to get constant H0,H0. We can-
not give the general form of Ĝ for which this factorisation occurs, but it will
certainly hold if Ĝ has the following functional form:

Ĝ = f (L, L, g(H,H)) , (2.18)
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Chapter 2: Consistent decoupling of heavy scalars and N =1 supergravity

since in that case (eq. 2.6) is replaced by

∂Hg(H,H) = 0 . (2.19)

The first situation, (eq. 2.16), is a special case of (eq. 2.19), with Φ1 constant.
In both cases, the same condition that makes ĜH |H0 = 0 also implies that the Kähler
metric and the Hessian of V are block diagonal for any Φ1. Indeed, from (eq. 2.19)
we find that

ĜLH |H0 = ∂L∂g f (L, L, g(H,H))∂Hg(H,H)|H0 = 0 (2.20)

and further all mixed derivatives with only one derivative with respect to the heavy
field vanish. As VLH always contains terms ∝ ĜH or ∝ (∂L)nĜH , which vanish at H0,
the Hessian of V is block diagonal.1

2.3 Consistent decoupling compared to gravitatio-
nal coupling in rigid supersymmetry

Finally, we stress that the condition derived here has no direct relation to the condition
usually associated with gravitational strength coupling, see also the discussion in
section 1.3.2. In fact, the ansatz

K̂ = K1(H,H) + K2(L, L̄) , (2.21a)

Ŵ = W1(H) + W2(L) (2.21b)

does not satisfy the decoupling condition in general. Suppose (eq. 2.6) admits a
constant solution H = H0. Then

0 = ∂HW1|H0 + ∂H K1|H0 [W1(H0) + W2(L)] , (2.22)

which only holds if

∂H K1|H0 = 0 ⇒ ∂HW1|H0 = 0 or

∂H K1|H0 , 0 ⇒ W2(L) = −
∂HW1|H0

∂H K1|H0

−W1(H0)

= const. (2.23)

1Note that it is always possible to block-diagonalise the Kähler metric or the Hessian of V at one point,
but it is not necessarily the case that both block-diagonalisations are compatible, as we have here.
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2.4 Discussion

Another way to see this: since D̂HŴ = 0 does not factorise, the (Kähler-gauge
covariant) requirement that it is independent of the light fields is (see also Ben-Dayan
et al., 2008)

D̂L(D̂HŴ) = 0 . (2.24)

Inserting the ansatz (eq. 2.21) then gives

∂H K1|H0∂LW2 = 0 . (2.25)

Unless K1(H,H) has no linear terms or W2(L) = constant, the condition will not
be met. However, if W2(L) = constant (e.g. no scale models, such as presented in
Cremmer et al., 1983b, Giddings et al., 2002) then equation (eq. 2.16) holds and Ŵ
is trivially a product. On the other hand, we can always expand K1(H,H) around H0

and remove the linear terms by a Kähler transformation (eq. 1.36), but this spoils the
separability of the superpotential (eq. 2.21b).

In other words, if two sets of fields are described by a separable Kähler function
K = K1(heavy) + K2(light), the addition of their superpotentials does not respect
the decoupling condition except in special cases (and, incidentally, neither does it
guarantee gravitational strength couplings if K1(heavy) = O(M2

p), as is usual for
moduli).

2.4 Discussion

In this chapter we have studied how to truncate heavy scalars and moduli and their
superpartners in N = 1 supergravity, subject to two explicit requirements. First, the
expectation values of the heavy fields should be unaffected by low energy phenomena,
in particular supersymmetry breaking. Second, the low energy effective action should
be described by N =1 supergravity. This is what we call consistent decoupling.

If the heavy fields are stabilised at a critical point of the potential, integration of
the whole superfield requires that the F-terms should be zero (Binetruy et al., 2004).
The criterion for consistent decoupling is that the expectation value of the heavy
scalars H should not depend on the light fields L (de Alwis, 2005a). Our main result
is a class of Kähler invariant functions that satisfy the condition, given in (eq. 2.18):

Ĝ = f (L, L, g(H,H)) .

This functional form guarantees that the Kähler metric and Hessian of V are si-
multaneously block diagonal in the heavy and light fields. It also allows the embed-
ding of BPS solutions of the low energy effective theory into the full theory without
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Chapter 2: Consistent decoupling of heavy scalars and N =1 supergravity

destroying their BPS character (if the F-terms of the heavy fields are zero and in
the absence of constant Fayet-Iliopoulos terms, the supersymmetric transformation
of the gravitino depends only on the light fields). We would expect the BPS character
to survive quantum corrections – now in the full theory –. Thus, at least in this special
case it would seem possible to “screen” the heavy, decoupled fields from the effects
of (partial) supersymmetry breaking in the low energy sector.

We only have experimental access to G, the effective low energy theory, and there
is a large class of supergravity models (read a landscape of compactifications), char-
acterised by Ĝ, in which the low energy theory could be embedded. Here, Ĝ includes
all stringy, perturbative and non-perturbative effects. The decoupling condition re-
stricts the allowed functional form of Ĝ and therefore the class of models that are
consistent with the assumption of decoupling that is implicit in our use of G. From
the point of view of model building, it provides a simple test that has not been con-
sidered before. There are string compactifications which approximately satisfy the
decoupling condition in the form (eq. 2.16), such as some LARGE volume scenarios
(LVS) (Balasubramanian et al., 2005, Conlon et al., 2005, 2007, Conlon, 2008).

To see this, note first of all that the tree level or GKP limit (Giddings et al., 2002)
of Ĝ satisfies (eq. 2.16) with the complex structure moduli and the dilaton S playing
the role of the heavy fields. Assume the usual form for the leading non-perturbative
and α′ corrections, Ŵ = WGKP(H) + Wnp(L), δK̂ ∼ 2(S + S̄ )3/2/V, with V is the
volume modulus of the compact manifold. Ignoring for a moment the dilaton depen-
dence of δK̂, we find for the complex structure moduli

∂HĜ = ∂H Kheavy(H) +
∂HWGKP(H)

WGKP(H)

[
1 + δ(L,H)

]−1

, (2.26)

where δ = Wnp(L)/WGKP(H). Including dilaton effects adds a correction δ ∼ (S +

S̄ )3/2/vol (whichever is larger). The condition of consistent decoupling is violated by
the L-dependence of δ.

A stabilised LVS or KKLT vacuum, with nonperturbative corrections, is obtained
from a Kähler potential and superpotential of the form

K = Kcs − 2 log

e− 3φ0
2 V +

ξ

2

(
−i (τ − τ̄)

2

)3/2 , (2.27)

W = W0 +
∑

n

Aneianρn . (2.28)

Here, τ represents the axio-dilaton field and ξ = −ζ(3)χ(M)/(16π3), where χ(M) is
the Euler characteristic. Furthermore, ρi are the complexified Kähler moduli which
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2.4 Discussion

in this specific case correspond to 4-cycles. Furthermore, ai = 2π/K, with K ∈ Z+.
From the Kähler potential K and superpotential W one obtains a scalar potential

V = eK
[
Gρ jρ̄k

(
a jA jakĀkei(a jρ j−ak ρ̄k) + i

(
a jA je

ia jρ j W̄∂ρ̄k K − akĀke−iak ρ̄k W∂ρ j K
))

+ 3ξ

(
ξ2 + 7ξV +V2

)
(V − ξ) (2V + ξ)2

|W |2
]

≡ Vnp1 + Vnp2 + Vα′ . (2.29)

It can be shown that for Calabi-Yau manifolds with a negative Euler characteristic
the potential is positive at V = 0, zero at V → ∞ and negative for large V. This
construction can thus be used to generate a potential that allows for a vacuum solution
at an exponentially large volume. As this solution is obtained after truncating the
complex structure, it might be shifted as given by (eq. 2.26). In the case of an LVS
vacuum with parameters A ∼ 1, WGKP(H0) ∼ 10, V ∼ 1010, Ae−a4τ4 ∼ 1/V (see
Balasubramanian et al., 2005) it is negligible, δ ∼ O(10−10), as the correction scales
inversely with the volume.2 In the mirror mediation scenarios (Conlon, 2008) δ is
even smaller.

Another well known solution to (eq. 2.29) is the KKLT solution (Kachru et al.,
2003a). This solution is characterised by parameters A ∼ O(1), WGKP(H0) ∼ O(10−4),
aL ∼ O(10) and leads to a significant change of the vacuum obtained in the truncated
theory as δ ∼ O(1).

2Berg et al. (2007) and Cicoli et al. (2008) suggest that string loop corrections to K̂ scale as (V)−2/3

and would lead to δ < 10−6. We thank M. Cicoli for this remark.
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