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CHAPTER 1

Introduction

1.1 The standard model of cosmology

For a long time it has been realised that the observed darkness of the night contradicts
an eternal infinite universe. The first known account of the dark night paradox, most
commonly known as Olbers’ paradox (Olbers, 1823), is credited to Digges (Digges,
1576) and Kepler (Kepler, 1610). Later accounts include work by Halley (Halley,
1720a,b) and Chesaux (Cheseaux, 1744). The first attempt on a resolution to this
problem is by Lord Kelvin (Kelvin, 1901). For a historic account including translated
reprints of the cited articles, see Harrison (1987).

In the following years, progress was much more swift. In 1915, Einstein pub-
lished his papers concerning the theory of general relativity (Einstein, 1915, 1916),
which point to a universe that is unstable against collapse, and thus must either be
expanding at a declining rate or collapsing at an increasing rate. Einstein perceived
this as a problem — he assumed the universe was stationary — and introduced a cos-
mological constant to solve this (Einstein, 1917). However, a cosmological constant
still does not allow for a stable stationary universe, as shown by de Sitter in 1918. In
two papers, de Sitter analysed the behaviour of empty universes and showed that any
of those universes only has unstable fixed points (de Sitter, 1918a,b).

In the years following, Friedmann (1922), Lemaître (1927)1, Robertson (1929)
and Walker (1933) wrote down a maximally symmetric metric that does allow for

1English translation: Lemaître (1931)
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Chapter 1: Introduction

expansion or collapse by an overall scale factor a(t),

ds2 = dt2 + a(t)2dx2 , (1.1)

and used Einstein’s field equations to solve for the evolution of a(t),

H2 =

( ȧ
a

)2

=
8πG

3
ρ(t) −

kc2

a2
+

Λc2

3
, (1.2)

where c is the speed of light and k is a parameter that describes the spatial curvature
of the universe, k = 0,±1 for a flat, positive or negatively curved spatial hypersurface.
Furthermore, Λ parametrises the cosmological constant Einstein introduced to allow
stable cosmological solutions with matter and ρ describes the energy density. In this
equation the Hubble parameter H = ȧ/a is introduced, which is the rate of expansion
of the universe. Its current best estimates include 70.6±3.1 (km/s)/Mpc (Suyu et al.,
2010) and 70.4+1.3

−1.4 (km/s)/Mpc (Jarosik et al., 2010). The Hubble parameter has
the units of inverse time, H−1 is therefore a timescale, the Hubble time, which is
approximately the age of the universe. Multiplying with the speed of light gives the
Hubble radius cH−1, which is the maximum distance anything can have travelled in a
Hubble time.

The evolution of ρ can be found from the second Friedmann equation

ä
a

= −
4πG

3

(
ρ +

3p
c2

)
+

Λc2

3
(1.3)

together with an equation of state p = f (ρ) that relates the energy density to a pressure
p. We will take a linear relation p = wρ, with w an arbitrary parameter, as this suffices
to describe the cases of interest in this chapter. In fact, with this linear relation also
curvature and the cosmological constant can be defined in terms of an effective energy
density parameter ρ and effective pressure p, see table 1.1. Then all the contributions
ρmatter, ρradiation, ρk and ρΛ have to sum to 3H2/(3πG) = ρc, which allows one to write
the Friedmann equation (eq. 1.2) as

1 =
∑

i

ρi

ρc
(1.4)

where i labels the different components. The first experimental evidence of a non-
stationary universe came in 1929, when Hubble showed that almost all galaxies are
redshifted and thus move away from us, and that the redshift is positively correlated
with the distance of the galaxy. Much more convincing evidence came in 1965 when
Penzias and Wilson found the Cosmic Microwave Background. This background
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1.1 The standard model of cosmology

was already predicted by Gamow (1948a,b) and Alpher and Herman (1948) and is
created in the early universe, about 380,000 years after the big bang. In an expand-
ing universe, temperatures are higher in the past, and before 380,000 years after the
big bang the temperatures were too high for neutral hydrogen to exist. As photons
are very effectively scattered by free electrons, the mean free path of a photon was
much shorter than the Hubble radius, cH−1. Around 380,000 years after the big bang,
the recombination time, the universe cooled down enough for neutral hydrogen to
form. Neutral hydrogen scatters photons much less efficient, so suddenly the mean
free path of photons became much larger than the Hubble radius. As a result, the
universe became approximately transparent for photons. These photons, redshifted
by a factor Tnow/Tformation ∼ 1100, now form the 2.73 K microwave background. Due
to the finite lifetime of our universe, not all lines of sight do end on stars. Yet, in an
expanding universe of nonzero temperature one expects an all-sky background from
the recombination surface. In contrast to the all-sky stellar radiation from an eternal
universe, this background exists and thus provides strong evidence for an expanding
universe.

Figure 1.1: The current measurements on the energy density components of our universe
(image courtesy: LAMBDA, NASA.)

Furthermore, from (eq. 1.3) it is clear that the rate of expansion of the universe
should decrease (ä < 0) for energy density components with w > −1/3, while it
increases when w < −1/3. Recent evidence (Perlmutter et al., 1998, 1999, Riess
et al., 1998, Spergel et al., 2003, Komatsu et al., 2010) shows the Hubble parameter
H is currently increasing, which means that a cosmological constant or some other
form of dark energy must actually give a large contribution to the total energy density.
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Chapter 1: Introduction

Cold matter w = 0
Radiation w = 1/3
Curvature w = −1/3
Cosmological constant w = −1

Table 1.1: Equation of state for the different components of energy density.

Besides dark energy, there is also a missing energy component that satisfies the
matter equation of state, dark matter. From a wide range in scales it is known that
normal matter cannot explain the observed gravitational fields. At small scales ro-
tation curves in galaxies (Rubin and Ford, 1970) do not match the visible matter
distribution. At intermediate scales, peculiar motion in clusters (Zwicky, 1933) and
gravitational lensing (see eg. Bacon et al., 2000, Refregier, 2003 for constraints from
weak lensing from the large scale structure) point to a mass component that is not
visible. At large scales, the formation of the large scale structure (see Springel et al.,
2005 for an overview of the simulations, Tegmark et al., 2006, Reid et al., 2010 for
measurements) and the observations of the Cosmic Microwave background (Spergel
et al., 2003, Komatsu et al., 2010) need a dark matter component to understand the
data. We know that this dark matter component cannot be baryonic, as the baryonic
matter component can be determined via primordial nucleonsynthesis (Kernan and
Krauss, 1994, Copi et al., 1995, Coc et al., 2004). Furthermore, modified gravity
with baryonic matter does not fit lensing observations of the Bullet cluster (Clowe
et al., 2004) and the Cosmic Microwave Background data (Komatsu et al., 2010, for a
nice theoretical discussion see Mukhanov, 2004). These observations point to an in-
visible component that must have weak interactions with all matter in the universe2,
and certainly does not interact with light. Combining the current knowledge about
energy density components, we find that the universe is, within experimental bounds,
spatially flat (Komatsu et al., 2010) and dominated by dark matter and dark energy
(see figure 1.1).

In the Friedmann equations (eqs. 1.2 and 1.3) above the evolution of the universe
is such that, for w > −1/3, the Hubble radius is growing faster than the distance
between causally connected points, that is points that have been in causal contact.
Our universe is currently dark energy dominated, but back in time it certainly was
dominated by matter and earlier radiation (figure 1.2(b)). Current observations of

2This does not mean that dark matter is charged with respect to the the weak interaction, although a
very popular candidate, the “Weakly Interacting Massive Particle”, is.
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1.2 The inflationary paradigm

the Cosmic Microwave Background show correlated perturbations up to the size of
the visible universe. The Hubble horizon at the time of decoupling, and thus the
maximum distance between causally connected events, is 380,000 light years, which
corresponds to about one degree on the current sky (approximately the first peak in
the angular power spectrum, figure 1.3). This means that the Microwave Background
consists of approximately 40,000 patches that were causally disconnected at the time
of decoupling. Furthermore, the current measured flatness, isotropy and homogene-
ity of the universe (Spergel et al., 2003, Komatsu et al., 2010) also violates causality
or requires large amounts of finetuning, while the lack of phase transition defects
(eg. magnetic monopoles) is unnatural. All these problems can be solved by intro-
ducing a period of inflation, as proposed by Guth in 1980, which will be the topic of
the next paragraph.3

(a) Evolution of Hubble radius (solid line) and
a physical distance scale (dotted line), such as
the separation between two points.
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(b) Evolution of the different energy density
components as a function of redshift (image
from Frieman et al., 2008).

Figure 1.2:

1.2 The inflationary paradigm

The solution proposed in Guth (1981) is to use the observation that for energy contri-
butions with an equation of state parameter w < −1/3 the Hubble radius grows slower
than the distance between causally connected points. If a period with w < −1/3,

3Isotropy is actually not solved by inflation, as different dimensions could inflate at different rates.
String theory compactifications, discussed in section 1.3.1, actually need anisotropic inflation, as isotropic
inflation would also inflate the hidden dimensions.
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Chapter 1: Introduction

called an inflationary period, lasts only temporarily, it allows a region that is causally
connected before the onset of inflation to cover a causally disconnected region af-
ter the inflationary period. When inflation lasts long enough, our current observable
universe fits entirely within a region that was causally connected before inflation oc-
curred (figure 1.2(a)). Thus, inflation can solve finetuning problems concerning the
homogeneity of the visible universe. Furthermore, during the period of inflation the
accelerated expansion reverses the growth of curvature and dilutes matter, thus sol-
ving the flatness problem and the issues regarding the absence of cosmological de-
fects. A negative equation of state can be created by a field that has a small kinetic
energy term and a large potential energy term. For w = −1 the energy density per
unit volume is constant when the universe expands. A vacuum energy, generated by
a nonzero vacuum expectation value of a scalar field, is so far the only field theoret-
ical mechanism that can provide an equation of state with a negative w. The model
proposed by Guth used quantum tunneling from an inflating state to the current vac-
uum to end inflation. Later work by Linde (1982) and Albrecht and Steinhardt (1982)
found a new inflation paradigm that used a continuous potential along which the in-
flaton slowly rolls down.

Figure 1.3: Power spectrum of the angular cross correlation function of the temperature
of the Cosmic Microwave Background. The red line is the best fit, based on WMAP-data
alone, to the ΛCDM model (Dunkley et al., 2009). This fit agrees very well with the
higher multipole data. Image from Nolta et al. (2009).

In 1981 Mukhanov and Chibisov showed that perturbations of the metric and the
inflaton field lead to perturbations with a power spectrum that depends on the po-
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1.2 The inflationary paradigm

tential of the inflaton field (see also Hawking, 1982, Starobinsky, 1982, Guth and
Pi, 1982, Bardeen et al., 1983, Mukhanov, 1985). The power spectrum should be
exactly scale invariant for w = −1, but in order to explain why inflation could end
we need an inflaton field that evolves to lower energies. Therefore, a slightly red-
tilted power spectrum is predicted. In 1991 the COBE satellite (Smoot et al., 1992)
first observed these perturbations. In 1999, the ground based Toco experiment (Tor-
bet et al., 1999) found evidence for the first acoustic peak, later confirmed by the
BOOMERanG (Melchiorri et al., 2000) and MAXIMA (Hanany et al., 2000) balloon
experiments. In 2001, the quality of the data improved significantly with data from
the WMAP satellite (Spergel et al., 2003). Later, the WMAP 5-year data Hinshaw
et al. (2009), together with data from balloon experiments (ACBAR (Reichardt et al.,
2009), BOOMERanG (Jones et al., 2006) and CBI Readhead et al. (2004)) provided
an accurate map of the perturbations to small angular scales (figure 1.3), and con-
firmed the red tilt of the power spectrum (Dunkley et al., 2009). The current best esti-
mate is from the WMAP 7-year data (Komatsu et al., 2010), which is compatible with
an approximately power law power spectrum P(k) ∝ kns−1, with ns = 0.963 ± 0.012
at 68% CL. Upcoming improved measurements are expected from the ground based
Atacama Cosmology Telescope (see Fowler et al., 2010 for the first results) and the
Planck satellite (Planck collaboration, 2006), whose results are expected late 2012 or
early 2013.

In order to solve the problems that inflation was invented for, inflation needs to
last for at least 55 H−1, in which the universe thus expanded by e55 orders of magni-
tude or 55 e-folds. In order to have so many e-folds the potential energy is allowed
to vary only very slowly. Being consistent with a slightly red tilted power spectrum,
the most common mechanism to generate such a slow variation is called slow-roll
inflation. Non-inflationary mechanisms that are compatible with the observations
of the power spectrum include gauge/cosmology duality (McFadden and Skenderis,
2010a,b), the ekpyrotic scenario (Khoury et al., 2002, Steinhardt and Turok, 2001,
2002) or string gas cosmological models (Brandenberger and Vafa, 1989, Branden-
berger et al., 2004). Also, an entirely causal mechanism has been proposed (Turok,
1996).

1.2.1 Slow-roll inflation

Single field slow-roll inflation successfully accounts for many of the observed proper-
ties of the cosmic microwave background (CMB), including the near scale invariance
of the power spectrum of the primordial density fluctuations that seed the observed
CMB anisotropies (Mukhanov and Chibisov, 1981). Slow-roll inflation in its sim-
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Chapter 1: Introduction

plest form (Linde, 1982, Albrecht and Steinhardt, 1982) still marginally fits the cur-
rent observational bounds (Komatsu et al., 2010, Larson et al., 2010). Furthermore,
all inflation models developed since these earliest models depend on the slow-roll ap-
proximation (Steinhardt and Turner, 1984, Salopek and Bond, 1990, Liddle and Lyth,
1992. See Lyth and Liddle, 2009 for a recent text-book discussion) that the Hubble
rate is varying only slowly. In terms of the Hamilton-Jacobi slow-roll variables the
requirement is that

εH = −
Ḣ
H2
� 1 and

ηH = −
φ̈0

Hφ̇0
� 1 , (1.5)

where φ̇0 is the rate of change of the inflaton field. In a single-field inflationary sce-
nario, one can also define the slow-roll parameters by requirements on the potential

εV =
M2

Pl

2

(
V ′

V

)2

� 1 and

ηV = M2
Pl

V ′′

V
� 1 , (1.6)

which is the more commonly used definition. In the slow-roll limit the parameters
(eq. 1.5) and (eq. 1.6) are related as

εH = εV , ηH = ηV − εV . (1.7)

The slow-roll parameters are thus related to the velocity and acceleration of the
inflaton field along a field space trajectory. These are determined from an equation of
motion

φ̈0 + 3H(t)φ̇0 + Vφ = 0 . (1.8)

In the slow-roll limit, the potential is friction dominated, therefore the kinetic energy
φ̈0 is very small compared to the other two terms. Together with the assumption that
|Ḣ|/H � 1, which follows from the assumption that φ̇ is small and thus the motion
of the inflaton is potential energy dominated, the above equation reduces to

3H(t)φ̇0 = −Vφ , (1.9)

which straightforwardly translates into the slow-roll parameters defined in (eq. 1.6)
make sense. When φ̈0 cannot be neglected, the Hamilton-Jacobi parameters (eq. 1.5)
are still well defined. This is the so-called fast-roll limit, which cannot be used to
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1.2 The inflationary paradigm

generate many e-folds of inflation. It can be used, however, to end inflation, by
assuming that after some period of exponential expansion a change in the potential
leads to a rapidly decreasing Hubble parameter. Then, via some reheating mechanism
the kinetic energy of the inflaton must be transferred to other degrees of freedom to
populate the universe with the particles we see today.

The above scenario assumes there is only one single light degree of freedom dur-
ing inflation, that is not coupled to heavy degrees of freedom. Although a minimal as-
sumption, it is certainly not a natural assumption. For example, it might be that there
was more than one light field present during inflation, leading to models of multi-
field inflation (eg. Groot Nibbelink and van Tent, 2000, 2002, Hwang and Noh, 2002,
Wands et al., 2002, van Tent, 2004, Rigopoulos et al., 2006b, Seery and Lidsey, 2005,
Rigopoulos et al., 2006a, 2007, Byrnes and Wands, 2006, Lalak et al., 2007b, Wands,
2008, Malik and Wands, 2009, Langlois et al., 2008c, Langlois and Renaux-Petel,
2008, Langlois et al., 2008a,b, Peterson and Tegmark, 2010). Another possibility is
that the kinetic terms are noncanonical, with higher order derivative operators present
(eg. Armendariz-Picon et al., 1999, Garriga and Mukhanov, 1999, Alishahiha et al.,
2004, Bezrukov and Shaposhnikov, 2008, Barvinsky et al., 2008). Also, couplings to
heavy degrees of freedom will lead to non-trivial results (chapters 4 and 5 and Tolley
and Wyman, 2010, Chen and Wang, 2010b, Cremonini et al., 2010b. However, cur-
rently a large subset of the simplest models of single-field inflation remain perfectly
compatible with current CMB precision measurements (Komatsu et al., 2010, Lar-
son et al., 2010), predicting a nearly scale invariant power law inflation (Starobinsky,
1992, Adams et al., 2001, Tocchini-Valentini et al., 2005, Gong, 2005, Covi et al.,
2006, Hunt and Sarkar, 2007, Ichiki et al., 2010, Peiris and Verde, 2010, Hamann
et al., 2010)). Upcoming data, such as that from the Planck satellite promises to
provide new handles on the overall shape of the spectrum and, particularly in combi-
nation with other data sets, could help us determine the precise nature of any possible
features in it. If present, such features will lead to qualitative new tests on the single-
field slow-roll paradigm (Kosowsky and Turner, 1995, Copeland et al., 1998) and
could constitute strong evidence in favour of the existence of additional degrees of
freedom present during the evolution of density perturbations as the universe inflated.

1.2.2 The power spectrum

Given an inflaton trajectory parametrised by a parameter φ0, one can define perturba-
tions around the trajectory as

φ = φ0 + δφ . (1.10)
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Chapter 1: Introduction

This definition is not gauge invariant, as also the spacetime metric will experience
perturbations. Therefore, it is convenient for the calculation of the perturbations to
introduce a gauge-invariant parameter (Sasaki, 1986, Mukhanov, 1988)

Q ≡ δφ +
φ̇

H
ψ , (1.11)

with ψ the scalar perturbation associated with the metric. Then, for Q the equation of
motion is

d2Q
dt2

+ 3H
dQ
dt
−
∇2

a2
Q + m2

effQ = 0 , (1.12)

with m2
eff

= H2(2 + 2εH − 3ηH) for slow-roll inflation. Furthermore, a parameter
v = aQ can be introduced, which allows a convenient expression of (eq. 1.12) in
conformal time, dt = adτ,

d2v
dτ2
− ∇2v + a2

(
H2(2 − ε) + meff

)
v = 0 . (1.13)

Considering the Fourier transformed equation,

d2v
dτ2
− k2v + a2

(
H2(2 − ε) + meff

)
v = 0 . (1.14)

one sees there are two obvious limits. First, one has the short wavelength limit where
k � aH. In this case (eq. 1.14) reduces to a normal oscillator equation. The other
limit is when k2 � aH, the late time limit, where the solution to (eq. 1.14) is v →
a × const.. The behaviour changes when k ∼ aH, when the wavelength k is of the
same order as the Hubble radius, and thus crosses the horizon.

These perturbations are sourced by the everpresent quantum fluctuations at small
scales, which are in a de Sitter universe described by a Bunch-Davies vacuum (Bunch
and Davies, 1978). In order to match the classical perturbations of (eq. 1.13) these
perturbations have to be quantised. One proceeds by Fourier transforming the pertur-
bation equation, and expand the mode v(k, τ) as

(2π)3v(k, τ) = v(k, τ)â(k) + v∗(k, τ)â†(k) , (1.15)

with initial condition

v(k, τ) =
1
√

2k
e−ikτ , (1.16)

since we need the growing mode. The mode that satisfies the initial condition is

v(k, τ) =
e−ikτ

√
2k

kτ − i
kτ

, (1.17)
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1.2 The inflationary paradigm

which goes, well after horizon crossing, to

v(k, τ) =
i
√

2k

1
kτ

. (1.18)

This derivation is for a single-field, the multi-field derivation is presented in section
4.3. The application to slow-roll two-field inflation is presented in section 5.4. In the
remainder of this introductory section the single-field scenario will be discussed.

The initial curvature power spectrum is then given by the two-point correlation
function of the curvature perturbations

PR(k) = 〈v(k, τend)v(−k, τend)〉 . (1.19)

where statistical isotropy can be assumed to perform the sum over all angles PR(k) =∑
angles PR(k). For single-field slow-roll inflation one finds for the power spectrum

PR(k, τend) =
H2

24π2M4
Plε

∣∣∣∣∣∣
k=aH

(1.20)

where the power spectrum is evaluated at horizon exit, k = aH and stays constant
until τ = τend. For comparison with the cosmic microwave background, we need a
spherical expansion (Lyth and Liddle, 2009)

v(k) =

∫ ∞

0
dk

∑
lm

vlm(k, τend)Zklm(x) (1.21)

with vlm(k, τend) the expansion coefficients of v(k, τend) and

Zklm(x) ≡

√
2
π

k jl(k|x|)Ylm(θ, φ) . (1.22)

In this equation, jl is the spherical Bessel function, (θ, φ) are the spherical directions
of x and Ylm is the spherical harmonic. Then, integrating vlm over the sphere and,
using statistical isotropy, summing over l and m, one obtains

〈v∗lm(k, τend)vl′m′ (k
′, τend)〉 = (2π)3PR(k)δ(k − k′)δll′δmm′ . (1.23)

The scale dependence of PR(k) is defined as

n − 1 ≡
d log PR(k)

d log k
. (1.24)
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Assuming a constant spectral tilt, n − 1, one finds that PR(k) ∝ kn−1. From (eq. 1.20)
we obtain, using d log(aH) ' Hdt and

−
d(log H)

DN
' −ε , −

d(log ε)
DN

' 4ε − 2η , (1.25)

where dN = −Hdt, that the spectral tilt is related to the slow-roll parameters as

ns = 1 − 6ε + 2η . (1.26)

For multi-field inflation, also entropy perturbations, commonly known as isocur-
vature perturbations, are possible. These perturbations do not change the energy
density but redistribute energy differently among particle species. They occur when
perturbations in a direction normal to the inflaton trajectory are generated. Entropy
perturbations are defined similarly as curvature perturbations, as a variance of a sta-
tistical field. Given an isocurvature perturbation S (x, τ) = (δni(x, τ))/ni, evaluated at
a slice of uniform energy density, we define the isocurvature power spectrum

PS = 〈S xS −x〉 (1.27)

and similarly a cross correlation power spectrum

PRS = 〈vxS −x〉 . (1.28)

Besides curvature and isocurvature perturbations, also tensor perturbations are
possible. Sourced by perturbations of the metric, they have a different energy depen-
dence

Ph(k) =
2H2

3π2M4
Pl

∣∣∣∣∣∣
k=aH

, (1.29)

so that the tensor to scalar ratio r becomes (Liddle and Lyth, 1992)

r ≡
Ph(k)
PR(k)

= 16ε . (1.30)

This ratio can be used to determine the necessary field variation

r < 0.003

(
50
N

)2 (
∆φ

MPl

)2

, (1.31)

which is super-Planckian for large field inflationary models (Lyth, 1997).
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1.2 The inflationary paradigm

1.2.3 Nongaussianities

One of the prime objectives of the Planck mission is to put better constraints on
the existence of nongaussianities (Planck collaboration, 2006). Nongaussianities are
given by the three point function (see Bartolo et al., 2004, for a review)

〈v(k1, τend)v(k2, τend)v(k3, τend)〉 =

(
3
5

)3

(2π)3δ(k1 + k2 + k3)F(k1, k2, k3) . (1.32)

In this equation, the δ-function ensures momentum conservation, meaning that the
vectors k1, k2 and k3 should form a triangle in phase space. The shape of the triangle
is determined by the shape function F(k1, k2, k3) = fNLS (k1, k2, k3), which consists of
an identity shape function S (k1, k2, k3) and a factor fNL that determines the relative
weight of this shape.

Figure 1.4: A pictorial version of three commonly used shape functions for the nongaus-
sianities

Commonly, three momentum triangle shapes are studied (see figure 1.4). First,
the local shape corresponds to k1 ≈ k2, while k3 → 0. Second, the equilateral shape
corresponds to k1 ≈ k2 ≈ k3. Finally, the orthogonal shape is defined by the momenta
k1 ≈ k2, while k3 → ∞. These relations are used to define identity shape functions,
that are multiplied with a factor fNL as a measure of the amount of nongaussianities in
the cosmic microwave background. Current best estimates, at 68% confidence level,
are f (local)

NL = 32± 21, f (eq.)
NL = 26± 140 and f (ort.)

NL = 202± 104 (Komatsu et al., 2010).

For a free field theory fNL = 0. For single-field inflation, the only source for
nongaussianities is due to the nonlinear character of gravity, which generates local
nongaussianities f (local)

NL (5/12)(1 − ns) ≈ 10−2 (Maldacena, 2003, Acquaviva et al.,
2003)
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Chapter 1: Introduction

1.3 Heavy physics and inflation

Inflationary physics takes place at the highest energy scales — the natural scale for
inflation is O(1014)GeV — where string theory becomes relevant. It is for this reason
that many attempts have been made to find string theory models for inflation. A short
overview is given in the next subsection. In this subsection, also the vacuum structure
of string theory is discussed. Almost all 4 dimensional reductions of string theory
bring many degrees of freedom, moduli, that need some mechanism to be stabilised.
No matter the mechanism, these modes will be lighter than the Planck mass and thus
be relatively light as seen from the point of view of inflation. This warrants a study
of an effective field theory description of string inflation, which in turn requires a
discussion of the role, or rather the removal, of these light fields. A short overview of
this method is presented in the second subsection, a further study is the topic of this
thesis.

1.3.1 String theory and inflation

Flux compactifications

String theory is conventionally and conveniently defined in ten dimensions. In order
to get an effective four dimensional theory, six dimensions have to be compactified on
a six dimensional manifold. Using the supergravity descriptions of string theory, it is
known that compactifying on a torus leaves the maximal amount of supersymmetry,
while compactifying on manifolds with less internal symmetry leads to less super-
symmetric effective theories (Aspinwall, 2000, Freedman and van Proeyen, 2009).
Compactifying IIB supergravity on a Calabi-Yau manifold leads to an N = 2 super-
gravity. Adding orientifolds, branes and/or fluxes can reduce this toN =1 supergrav-
ity. For this reason, Calabi-Yau manifolds are widely used as compact manifold for
compactification.

Calabi-Yau manifolds have many internal symmetries (Candelas and de la Ossa,
1991) that will show up as light degrees of freedom, moduli, in the effective descrip-
tion, unless some stabilising potential is generated. Work by Gukov et al. (2000),
Dasgupta et al. (1999), Greene et al. (2000) and Giddings et al. (2002) has shown that
three form fluxes can provide the necessary potential for the complex structure mo-
duli and the dilaton, leaving only the volume moduli unfixed. A first method to fully
stabilise all moduli, the so called KKLT framework, was provided by Kachru et al.
(2003a), where nonperturbative effects provide a potential for the volume moduli. In
the KKLT paper, also a method to provide an additional contribution to the vacuum
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expectation value is provided. This is necessary, as without it the model predicts a
vacuum in anti-de Sitter space, while our universe has always been characterised by
a positive vacuum expectation value.

Another method of stabilising all moduli was found by Balasubramanian et al.
(2005), the so-called large volume compactifications. The method invoked is that a
combination of stringy corrections (α′ corrections) and nonperturbative effects gener-
ate a potential that is zero at the origin and at infinity, while it is negative in between.
It can be shown that at an exponentially large volume there exists a minimum with a
negative vacuum expectation value and broken supersymmetry. These models gener-
ally predict a low scale of supersymmetry breaking and can be phenomenologically
successful (eg. Conlon et al., 2005, 2007).

Inflation in string theory

A good overview of the current state-of-the-art of string theory inflation is given in
McAllister and Silverstein (2008), Baumann and McAllister (2009) and references
therein. String theory models fall in two broad classes, small-field and large-field
models, depending on the range of variation of the inflaton. Small-field models are
models where the inflaton degree of freedom is represented by a parameter that can
only move small distances on the internal compactification manifold, and by invoking
the Lyth bound (eq. 1.31) thus operates at low energy scales. The typical model
consists of a D-brane moving along a warped throat (Klebanov and Strassler, 2000).
A first model, using the potential of a D3−D3 brane pair in a KKLT compactification,
was provided by Kachru et al. (2003b). Further work has shown that the true story is
more complicated (eg. Baumann et al., 2008, 2007, Krause and Pajer, 2008) although
the strongly coupled dynamics of branes can also be used for inflation (Silverstein
and Tong, 2004, Alishahiha et al., 2004). An overview of other available degrees of
freedom can be found in Binetruy and Gaillard (1986)

In general, the KKLT framework has lead to a large class of inflation models. Fur-
ther addition of an extra nonperturbative term leads to the racetrack scenario (Blanco-
Pillado et al., 2004, Lalak et al., 2007c, Blanco-Pillado et al., 2006b), Kähler moduli
inflation (Conlon and Quevedo, 2006, Blanco-Pillado et al., 2010) or other volume
moduli inflation models (Misra and Shukla, 2008, Conlon et al., 2008, Badziak and
Olechowski, 2009, 2008). Models that use the volume modulus as inflaton also draw
inspiration from the large volume compactification framework.

As discussed above, inflation using a string degree of freedom allows the inflaton
to move only sub-Planckian distances in field space and thus allows only for a low
scale of inflation (Kallosh and Linde, 2007b). A detection of tensor modes (eq. 1.30),
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pointing to a large scale of inflation (eq. 1.31) thus suggests a non-stringy inflation
mechanism. A loophole in this argument is exploited by monodromy inflation (Sil-
verstein and Westphal, 2008, McAllister et al., 2010), by D-branes and axions respec-
tively. Later models include and Cicoli et al. (2009), Kaloper and Sorbo (2009) and
Dong et al. (2010). Furthermore, renewed interest in shift symmetries (Kallosh and
Linde, 2010, eq.) also suggests the possibility of large field models.

The complicated vacuum landscape has sparked many multi-field modes of strin-
gy inflation (eg. Groot Nibbelink and van Tent, 2000, 2002, Hwang and Noh, 2002,
Wands et al., 2002, van Tent, 2004, Rigopoulos et al., 2006b, Seery and Lidsey, 2005,
Rigopoulos et al., 2006a, 2007, Byrnes and Wands, 2006, Lalak et al., 2007b, Wands,
2008, Malik and Wands, 2009, Langlois et al., 2008c, Langlois and Renaux-Petel,
2008, Langlois et al., 2008a,b, Peterson and Tegmark, 2010). Given the presence of
multiple fields and interactions, one expects observable features in the power spec-
trum (chapter 5, Cremonini et al., 2010a,b) and nongaussianities, see chapter 5. There
is a lot of work on this subject, see eg. Maldacena (2003), Bernardeau and Uzan
(2002), Creminelli (2003), Bartolo et al. (2004), Rigopoulos et al. (2006a), Seery
and Lidsey (2005), Langlois et al. (2008a), Langlois et al. (2008b), Langlois et al.
(2008c), Tolley and Wyman (2010), Chen and Wang (2010b) and Barnaby (2010).

An important feature is that almost all models are set up such that the inflationary
physics is happening in a sector well separated from all other physics and that the
sectors are only coupled due to gravity. In principle, one could then integrate out these
hidden degrees of freedom. However, integrating out physics is very challenging,
therefore this separation is used as a justification to truncate the additional degrees of
freedom. In this thesis, however, it is shown that such truncations are usually not well
justified, and discusses the non-decoupling of these gravitationally coupled degrees
of freedom. Truncation only makes sense when it is done consistently, such that the
equation of motion obtained from the truncated theory is the same as the equation
of motion obtained from the full theory. In this thesis, it is shown that consistently
truncating degrees of freedom is far more subtle than usually assumed. A recent
application of this knowledge in terms of the η-problem, the problem that the natural
scale for η if O(1) instead of O(10−3) is given by Hardeman et al. (2010).

1.3.2 Supergravity and effective field theory

In this thesis, we will study the applicability of supergravity as an effective theory. For
this to be possible, it is necessary to consistently truncate heavy degrees of freedom,
as discussed in chapter 2. It is generally assumed that having gravitational strength
couplings between two sectors is enough to truncate one of these sectors. Before dis-
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cussing and properly defining this statement later in this section, let us first introduce
the notation used.

Notation and conventions

Supergravity is defined by an action

S = M2
Pl

∫
d4x
√

g

[
1
2

R − gµνGI J̄∇µξ
I∇νξ̄

J̄ − V M2
Pl

]
, (1.33)

in which GI J̄ is the inverse field space metric GI J̄ = ∂I∂J̄G and gµν is the spacetime
metric with associated Riemann scalar R. Greek indices run over spacetime coordi-
nates {µ, ν}, capital indices run over all fields {I, J̄}. For calculational convenience we
have defined the scalar fields ξ and functions V , K and W to be dimensionless. The
(F-term) potential V of the scalar sector is defined as

V = eG
(
GIG

I − 3
)
. (1.34)

Through the metric defined as above and GI = ∂IG the action (eq. 1.33) is completely
specified by the real Kähler function G(ξ, ξ̄), which is, when W , 0, related to global
supersymmetry quantities through

G(ξ, ξ̄) = K(ξ, ξ̄) + log (W(ξ)) + log
(
W̄(ξ̄)

)
(1.35)

in terms of the real Kähler potential K(ξ, ξ̄) and the holomorphic (dimensionless)
superpotential W(ξ). The definition for G is convenient as it is invariant under Kähler
transformations, i.e. it is invariant under the simultaneous transformation of

K(ξ, ξ̄)→ K(ξ, ξ̄) + f (ξ) + f̄ (ξ̄) and

W(ξ)→ e− f (ξ)W(ξ) , (1.36)

for an arbitrary holomorphic function f (ξ). Furthermore, the first and second deriva-
tives of the potential (eq. 1.34) are easily calculated and read

∇IV = eG
(
GI + GJ∇IGJ

)
+ VGI , (1.37)

∇I∇J̄V = eG
(
GI J̄ + ∇JGK∇J̄GK − RI J̄KL̄GKGL̄

)
+ GIVJ̄ + G J̄VI

+ (GI J̄ −GIG J̄)V , (1.38)

∇I∇JV = eG
(
2∇IGJ + GK∇I∇JGK

)
+ GIVJ + GJVI + (∇IGJ −GIGJ) V . (1.39)
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In the action (eq. 1.33) we have denoted the gauge covariant derivatives by ∇µξI =

∂µξ
I−Aa

µk I
a (ξ), and k I

a (ξ) are the Killing vectors that define the gauge transformations
of the scalars,

δgaugeξ
I = k I

a (ξ)αa, a = 1, . . . , nv , (1.40)

where αa are the gauge parameters. The kinetic terms of the gauge fields are deter-
mined by the (holomorphic) gauge kinetic functions fab(ξ)

Lgauge = −
1
4

(Re fab)Fa
µνF

bµν +
1

4
√
−g

(Im fab)Fa
µνε

µνρσFb
ρσ . (1.41)

The scalar potential includes a contribution from F-terms and D-terms

V = VF + VD , (1.42)

where VF and VD can be written in as a function of the auxiliary fields of the chiral
and gauge superfields, F I and Da respectively,

VF = GI J̄ F I F J̄ − 3eG = eG(GI J̄GIG J̄ − 3) , (1.43)

VD =
1
2

Re( fab)DaDb . (1.44)

The auxiliary fields have equations of motion that can be solved algebraically in terms
of the chiral fields and read

F I = eG/2GI J̄G J̄ , (1.45)

Da = i(Re f )−1abkI
bGI = −i(Re f )−1abkĪ

bG Ī . (1.46)

The two expressions given for the D-terms are equivalent due to the gauge invariance
of the Kähler function G(ξ, ξ̄) (Groot Nibbelink and van Holten, 2000, Binetruy et al.,
2004)

δgaugeG = (kI
aGI + kĪ

aG Ī)α
a = 0, for all a = 1, . . . , nv . (1.47)

In this thesis we will assume that there are no constant Fayet-Iliopoulos terms (Fayet
and Iliopoulos, 1974) present. Fayet-Iliopoulos terms require a more careful treat-
ment that is outside the scope of this thesis.

TheN =1 supersymmetry transformations of the fermions in the chiral and vector
multiplets χI and λa are

δχI
L = 1

2γ
µ∇µξ

IεR −
1
2 e

1
2 K K I J̄DJ̄W̄ εL ,

δλa = 1
4γ

µνFa
µνε + 1

2 iDaγ5ε . (1.48)
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Here ε is the parameter of the supersymmetry transformations, and γµ represent the
gamma matrices as usual. The subscripts R and L of the fermions stand for right and
left chirality respectively,

χI
R = 1

2 (1 − γ5)χI
R χI

L = 1
2 (1 + γ5)χI

L (1.49)

From (eq. 1.48) we can see that in a homogeneous background (∇µξI = Fa
µν = 0),

a set of necessary conditions for unbroken supersymmetry is

DIW = 0 for all I = 1, . . . , nc . (1.50)

Equivalently this condition can be written in terms of the Kähler function as

∂IG(ξ, ξ̄) = 0 for all I = 1, . . . , nc , (1.51)

which, using (eq. 1.37) immediately shows that supersymmetric solutions are auto-
matically extrema of the scalar potential (eq. 1.34). Furthermore, note that although
it is always possible to break supersymmetry spontaneously by non-vanishing F-
terms and zero D-terms (eq. 1.48), the relations (eq. 1.45) and (eq. 1.46) imply that
non-vanishing D-terms necessarily require non-vanishing F-terms, and therefore su-
persymmetry can never be broken by D-terms alone (Choi et al., 2005).

The result (eq. 1.51) implies, together with the expression for the scalar potential
(eq. 1.43) and (eq. 1.44), that supersymmetric critical points ξI

0 with non vanishing
superpotential W(ξ0) , 0 always have a negative vacuum energy, i.e. they are Anti-de
Sitter critical points

V(ξ0) = −3eG(ξ0) < 0 . (1.52)

Interestingly, supersymmetric critical points are always perturbatively stable, regard-
less of being local minima, maxima or saddle points. The reason is that in an Anti-de
Sitter background a fluctuation with a tachyonic mass might still be stable as long as
it satisfies the Breitenlohner-Freedman bound (Breitenlohner and Freedman, 1982)

m2 ≥
3
4

V(ξ0), (1.53)

which is always fulfilled by supersymmetric critical points.

Gravitational couplings in supergravity and rigid supersymmetry

Having introduced the notation, we can now focus on defining gravitational couplings
as discussed in this thesis. As is clear from (eq. 1.46) D-terms can never appear
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without F-terms. Therefore, in the following discussion we focus in the simpler case
of only F-terms. The only effect D-terms can have is coupling decoupled sectors via
gauge couplings, leading to an entirely different scenario that is not discussed in this
thesis.

To describe a two-sector system we will consider a minimally coupled scenario
(Cremmer et al., 1983a, Binetruy and Gaillard, 1985)

G(L, L̄,H, H̄) = G(1)(L, L̄) + G(2)(H, H̄) , (1.54)

with L,H denoting the fields in the two sectors respectively. In the following, we will
take the indices {i, ̄} to run over the L fields, while {α, β̄} denote the fields in the H
sector. The L fields are assumed to be in the visible sector and thus allowed to be
dynamical, while the H fields reside in another sector which is assumed not to take
part in the dynamics and is hence called hidden sector. In chapter 2, a mass hierarchy
between a light visible sector L and a heavy hidden sector H is present, which is
why the sectors are labelled with L and H. However, currently L and H can be of
arbitrary mass and are thus not necessarily light or heavy. This split of the Kähler
function G(L, L̄,H, H̄), (eq. 1.54), is invariant under Kähler transformations in each
sector separately (chapter 2 and Choi et al., 2004, de Alwis, 2005a,b, Achúcarro and
Sousa, 2008) and thus defines a sensible way of splitting up the action in multiple
sectors. In terms of K and W, this definition has a conventional separation of the
Kähler function

K(L, L̄,H, H̄) + log |W(L,H)|2 = K(1)(L, L̄) + K(2)(H, H̄) + log |W (1)(L)W (2)(H)|2 ,
(1.55)

but the superpotentials in each sector combine multiplicatively rather than add.
Let us illustrate the importance of this multiplicative superpotential in the situa-

tion in which the hidden sector resides in a supersymmetric vacuum, i.e. ∂aV(H0) = 0
and ∂aG(2)(H0) = 0. We write the superpotential of the hidden sector as W (2)(H) =

W (2)
0 + W (2)

global(H − H0). The second term in this expression is what determines the
potential for fluctuations around the minimum of the hidden sector, while the first
constant term is just an overall contribution and hence not interesting for the internal
hidden sector dynamics at energies much less than the Planck scale. However, for
the gravitational dynamics and the remaining Hα sector this “vacuum energy contri-
bution” W (2)

0 is of crucial importance as it sets the scale of the potential (Davis and
Postma, 2008, Hardeman et al., 2010)

V = eK(2)
|W (2)

0 |
2eG(1)

(
G(1)

i G(1)i
− 3

)
, (1.56)
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which is evaluated at H = H0 such that all terms depending on W (2)
global vanish. The

normal practise of setting W (2)
0 to zero as an overall contribution to the hidden sector

is neglecting the fact that gravity also feels the constant part of the potential energy, as
opposed to field theory. The inflationary sector feels the presence of the hidden sector
through this coupling and as such it may be more intuitive to regard W (2)

0 to contain
information about the inflationary sector rather than the hidden sector. Making a
similar split in W (1), the constant part W (1)

0 is the overall contribution to the hidden
sector due to the inflaton sector.

The multiplicative superpotential also means that the zero-gravity limit to a global
supersymmetry is more subtle than just taking MPl → ∞ as is usually done. One must
first determine a ground state which sets W (1)

0 and W (2)
0 , and then send both W (1)

0 → ∞

and W (2)
0 → ∞ in such a way that the combinations W (1)

0 W (2)
global and W (2)

0 W (1)
global remain

constant. The total superpotential

W = W (1)
0 W (2)

0 + W (1)
0 W (2)

global + W (2)
0 W (1)

global + W (1)
globalW

(2)
global (1.57)

then consists of an overall infinite contribution, a finite sum of two terms and a neg-
ligible product. Only in this decoupling limit, does one recover the two independent
global supersymmetry sectors with the naive additive behaviour in both the superpo-
tential and the Kähler potential:

K(L, L̄,H, H̄) = K(1)(L, L̄) + K(2)(H, H̄) ,

W(L,H) = W (1)(L) + W (2)(H) . (1.58)

However, one cannot use this split (eq. 1.58) and couple gravity back in (Davis and
Postma, 2008). As explained, in supergravity the definition (eq. 1.58) is not invariant
under Kähler transformations in each sector separately and is valid only in a specific
Kähler frame or, say, gauge dependent (Achúcarro and Sousa, 2008). Another way
to understand the result is to realise that the definition (eq. 1.58) does not lead to a
Kähler metric and mass matrix that can be made block diagonal in the same basis
(chapter 2), and thus there is no sense of “independent” sectors.

Insisting on the separate Kähler invariance of (eq. 1.54), the two-sector action
(eq. 1.33) reads

S = M2
Pl

∫
d4x
√

g

[
1
2

R − gµν(G(1)
i ̄ ∂µLi∂νL̄

̄ + G(2)
αβ̄
∂µHα∂νH̄

β̄) − V M2
Pl

]
, (1.59)

with
V(L, L̄,H, H̄) = eG(1)+G(2) (

G(1)
i G(1)i + G(2)

α G(2)α − 3
)
. (1.60)
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We will allow ourselves to drop the sector label from G in the remainder, since G(1)
L =

GL and similarly for H.

Non-decoupling in effective theories

After defining gravitational strength couplings we can continue the discussion on
integrating out degrees of freedom in general field theories. As discussed in chapter
2, the requirement for truncating a degree of freedom is

δŜ
δL

∣∣∣∣∣
H0

=
δŜ |H0

δL
=
δS
δL

, (1.61)

where L and H point to a visible and hidden sector. Furthermore, Ŝ refers to the full
action for both the L and H sector, while S is the effective action for the L sector only.

Due to gravity, in any effective theory the gravitational force will couple every-
thing to everything. This leads to Planck-suppressed corrections that are usually not
relevant due to the huge scale difference between everyday physics and the Planck
mass. Yet, in case of inflation there is a difference. On the one hand, the scale of
the problem is much closer to the Planck scale. On the other hand, fields will move
considerable distances in field space, also probing Planckian corrections. As shown
in chapters 4 and 5 gravitational size couplings in non-linear sigma models can lead
to corrections on the light degree of freedom. These corrections will manifest them-
selves as a reduced speed of sound for the light perturbations, leading to features in
the power spectrum and nongaussianities.

In the context of supergravity, chapter 3 focuses on a model with a Kähler function
of the form (eq. 1.54), where one of the sectors is in its supersymmetric minimum.
This meets the requirement for consistent decoupling as derived in chapter 2. In fact,
due to the separable Kähler function the field space manifold is actually a product
manifold, making it possible to consistently decouple the heavy sector globally, thus
consistently truncating the heavy physics (Groot Nibbelink and van Holten, 2000).
However, instead of focusing on the supersymmetry broken sector, we focus on the
supersymmetric sector, that will receive corrections from the supersymmetry broken
sector. The reason is that the supersymmetry broken sector can provide an uplifting
term, allowing de Sitter models in supergravity. Yet, we show that the coupling of the
supersymmetry broken sector destabilises uplifted local minima after some amount of
uplifting. In contrast, local maxima, that are actually stable in anti-de Sitter space due
to the Breitenlohner-Freedman bound (Breitenlohner and Freedman, 1982), become
stable when uplifted to Minkowski or de Sitter space.

22




