
 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/20191 holds various files of this Leiden University 
dissertation. 
 
Author: Witteveen, Janneke Egbertine 
Title: Primary hyperparathyroidism : challenges and pitfalls in management 
Issue Date: 2012-11-27 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/20191
https://openaccess.leidenuniv.nl/handle/1887/1�


Increased circulating levels of FGF23: an adaptive 

response in primary hyperparathyroidism? 
 

Janneke E. Witteveen, Antoon H. van Lierop, Socrates E. Papapoulos, 

Neveen A.T. Hamdy 
 

European Journal of Endocrinology, 2012 Jan;166(1):55-60 

 
 





FGF23 in PHPT  /  149

ABSTRACT

Introduction: Fibroblast growth factor 23 (FGF23) and parathyroid hormone 

(PTH) are major players in the bone-parathyroid-kidney axis controlling phosphate 

homeostasis. In patients with primary hyperparathyroidism (PHPT) data on the 

relationship between PTH and FGF23 are scarce and not always concordant. 

Objective: The aim of our study was to evaluate the relationship between PTH and 

FGF23 in patients with PHPT and in euparathyroid patients cured after successful 

parathyroidectomy (PTx).

Patients & Methods: Twenty-one patients with PHPT and 24 patients in long-term 

cure after successful PTx (EuPTH) were studied. All patients underwent 

biochemical evaluation of renal function, parathyroid status, vitamin D status, bone 

turnover markers, and serum intact FGF23 levels.

Results: Mean serum FGF23 concentration was significantly higher in PHPT than 

in EuPTH patients (50.8 ± 6.1 pg/mL vs. 33.1 ± 2.6 pg/mL, P=0.01). FGF23 levels 

significantly correlated with PTH levels (r=0.361, P=0.02), also after correction for 

1,25(OH)2D levels (r=0.419, P=0.01). FGF23 levels showed a significant negative 

correlation with 1,25(OH)2D, which was more pronounced in PHPT than in EuPTH 

patients (r= −0.674, P=0.001, vs. r= −0.509, P=0.01). 

Conclusion: Our findings suggest that in PHPT, FGF23 levels are increased 

independent of 1,25(OH)2D levels. The more pronounced negative relationship 

between FGF23 and 1,25(OH)2D in the presence of high circulating PTH levels 

suggest that the increase in FGF23 levels may be an adaptive mechanism to 

counteract the PTH-induced increase in 1,25(OH)2D levels, although not 

completely overriding it. 
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INTRODUCTION

Parathyroid hormone (PTH) and the active metabolite of vitamin D (1,25(OH)2D) 

are prime regulators of calcium homeostasis but also have significant effects on 

phosphate homeostasis by respectively downregulating or upregulating the sodium 

phosphate co-transporters in the proximal tubules of the kidneys and in enterocytes 

of the intestinal tract (1-8). However, the major player of the bone-kidney axis 

controlling phosphate homeostasis has been shown to be fibroblast growth factor 23 

(FGF23). FGF23 acts as a phosphaturic factor by the same mechanism of action as 

PTH, downregulating the cotransporters NaPi2a and NaPi2c in the kidney after 

binding to its receptor, FGFR-1, in the presence of Klotho (9-11). FGF23 also 

decreases 1,25(OH)2D synthesis in the proximal tubules by direct inhibition of the 

1α-hydroxylase enzyme (9,10,12).

FGF23 is predominantly produced and secreted by osteocytes in bone (9,10).

This process is positively regulated by 1,25(OH)2D, via a vitamin D response 

element (VDRE) in the fgf23 promoter (9,13-15). The process is also regulated by 

serum phosphate, although the exact mechanism by which this is achieved remains 

unclear. Extracellular phosphate does not appear to directly stimulate FGF23

mRNA levels or fgf23 promoter activity in osteoblastic cultures (9,14). Data on the 

effect of changes in phosphate intake on FGF23 concentrations are inconsistent, 

with different responses observed with short-term or long-term alterations in 

phosphate intake (16-20). It has also been shown that early and rapid changes in 

renal phosphate excretion occur following a high-phosphorus meal, independent of 

FGF23, PTH, secreted frizzled-related protein (sFRP-4), or 1,25(OH)2D, 

suggesting the presence of an intestinal “phosphate sensor”, although its exact 

biochemical nature is not known (21-25).

The PTH/PTHrP receptor (PTHR1) is present on osteocytes (26) and 

constitutive activation of this receptor has been shown to upregulate FGF23

mRNA expression in vitro (27,28). Administration of PTH (1-34) in mice and in 

healthy individuals is associated with an increase in 1,25(OH)2D and in serum 

FGF23 levels and with a decrease in serum phosphate levels (13,28,29). In 

contrast, although intermittent administration of PTH to postmenopausal women 
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with osteoporosis induced an increase in 1,25(OH)2D and in FGF23 levels, this 

was not associated with a decrease in serum phosphate levels (30). Taken together, 

these data suggest that PTH is a regulator of FGF23 synthesis and that this is likely 

to be independent of serum phosphate concentrations. 

In patients with primary hyperparathyroidism (PHPT), data on the relationship 

between PTH and FGF23 are scarce and not always concordant. Compared to 

healthy controls, circulating FGF23 levels have been found to be elevated in 

patients with PHPT before parathyroidectomy (31,32) and to decrease immediately 

post-operatively (32), supporting the notion that PTH stimulates FGF23 secretion. 

However, this post-operative normalization of FGF23 levels was not observed in all 

studies (31,33), or was observed only transiently post-parathyroidectomy, with 

FGF23 levels returning to the originally high pre-operative values 7 days after 

surgery (32). The latter data suggest a possible alteration in FGF23 regulation, 

independent of PTH levels, in patients with PHPT. The aim of our study was to 

address the relationship between PTH and FGF23 in patients with primary 

hyperparathyroidism and in those with this disorder after cure following successful 

parathyroidectomy. 

PATIENTS AND METHODS

Study population

Twenty-one consecutive patients with primary hyperparathyroidism, which was 

untreated, persistent or recurrent after PTx, and 24 consecutive euparathyroid 

patients who had a successful PTx for sporadic PHPT at the Leiden University 

Medical Center (LUMC) were invited and agreed to take part in the study of a 18 

months period. All patients were under regular follow-up at the Outpatient Clinic of 

the Department of Endocrinology and Metabolic Diseases of the LUMC, with 

patients with persistent hyperparathyroidism being followed more closely than 

those cured after PTx, who were mostly seen at 1- or 2-year intervals.

The diagnosis of PHPT was established on the basis of a serum PTH 

concentration above the upper limit of the normal laboratory reference range (>8

pmol/L) in the presence of a high or inappropriately normal serum calcium 
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concentration (>2.55 mmol/L). Eight of these latter patients had PTH 

concentrations of 13.6 ± 2.2 pmol/L, (range 8.4-27.4 pmol/L) in the presence of a 

normal serum calcium (serum calcium 2.46 ±  0.02, range 2.38-2.52 mmol/L), in 

the absence of vitamin D deficiency (25(OH)D3 55.6 ± 7.2, range 35-93 nmol/L). 

Four of these eight patients had a genetically confirmed MEN-1 mutation, the other 

four patients had evidence for a parathyroid adenoma on localization studies and 

became hypercalcemic under vitamin D supplementation.  

A diagnosis of cure was based on sustained normal serum calcium and PTH 

concentrations more than 6 months after PTx. 

All patients and controls had to have a creatinine clearance >60 ml/min to be 

included in the study to preclude the confounding effect of renal impairment on 

FGF23 levels. All patients and controls had a 25(OH) vitamin D3 level of >30 

nmol/L except for 5 patients who had levels between 25 and 28 nmol/L. These five

patients were, however, hypercalcaemic (2.72 ± 0.02, range 2.67-2.80 mmol/L) 

with increased PTH levels (serum PTH 23.5 ± 9.0, range 8.6-54.3 pmol/L) and high 

normal 1,25(OH)D2 levels (serum 1,25(OH)D2 142 ± 20, range 87-205 pmol/L), 

which was the reason to withhold the vitamin D supplementation.

Serum Biochemistry 

Serum concentrations of calcium (reference range 2.15-2.55 mmol/L), albumin 

(reference range 34-48 g/L), phosphate (reference range 0.90-1.50 mmol/L), and 

creatinine (reference range 44-80 μmol/l) were measured using semi-automated 

techniques. Creatinine clearance was calculated using Modification of Diet in Renal 

Disease (MDRD) formula. Serum alkaline phosphatase (ALP; reference range 40-

120 U/L) was measured using a fully automated P800 modulator system (Roche 

BV). Serum P1NP (a marker of bone formation) and β-CTX (a marker of bone 

resorption) were determined using the E-170 system (Roche BV). Serum 

concentrations of intact PTH (reference range 1.5-8 pmol/L) were measured using 

the Immulite 2500 (Siemens diagnostics, Breda, Holland). Serum 25-

hydroxycholecalciferol (25(OH)D3; reference range 30-120 nmol/L) was measured 

using the LIAISON® 25-OH Vitamin D TOTAL assay (DiaSorin S.A./N.V., 

Bruxelles, Belgium) and 1,25(OH)2 vitamin D was measured using LIAISON® 
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1,25-OH2 Vitamin D TOTAL assay (DiaSorin S.A./N.V.). .Serum intact FGF23 

(reference range 18-50 pg/mL (34)) was measured using an immunometric assay 

(Kainos Laboratories, Inc., Tokyo, Japan; intra-assay coefficient of variation (CV) 

6% and inter-assay CV 10%). 

Statistical analysis

Statistical analysis was performed using the SPSS 16.0 software (SPSS, Inc., 

Chicago, IL, USA). Results are expressed as mean ± S.E.M. unless otherwise 

stated. Chi-square test and Student’s t-test were used as appropriate for categorical 

variables and continuous variables. Pearson correlation coefficients were calculated 

to assess correlations between FGF23, PTH, 1,25(OH)2D, creatinine clearance, 

phosphate and calcium. Serum PTH, FGF23, and 1,25(OH)2D levels are shown in 

Table 1 in absolute values, but were log transformed before statistical correlation 

and regression analysis to correct for skewness. The relationship between several 

biochemical variables and FGF23 was investigated by backward regression 

analysis. A probability level of random difference of P<0.05 was considered 

significant. 

The study was approved by the local ethics committee and informed consent 

was obtained from all patients prior to inclusion in the study.

RESULTS

Patients with PHPT did not differ significantly in age, gender, weight, body mass 

index (BMI) and renal function from those in long-term cure after successful PTx 

(EuPTH; Table 1).  

Mean serum calcium and PTH concentrations were significantly higher and 

mean serum phosphate and 25(OH) vitamin D3 concentrations were significantly 

lower in the PHPT group compared with the EuPTH group. However, serum 

1,25(OH)2D concentrations and the bone turnover markers, ALP, P1NP and CTX, 

were significantly increased in the PHPT group compared with the EuPTH group 

(Table 1). 
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Figure 1: Relationship between serum FGF23 and PTH levels (Pearson’s correlation). PTH 
and FGF23 levels were log transformed because of skewness. 

 
 

Mean serum FGF23 concentration was significantly higher in patients with 

PHPT than in EuPTH patients (50.8 ± 6.1 pg/mL vs. 33.1 ± 2.6 pg/mL, P=0.01; 

Table 1). There was a significant positive relationship between PTH and FGF23 

levels when PHPT and EuPTH were analyzed together (r=0.361, P=0.02; Figure 1), 

and this relationship was sustained and more pronounced after correction for 

1,25(OH)2D levels (r=0.419, P=0.01). There was no significant relationship 

between PTH and FGF23 when PHPT and EuPTH patients were analyzed 

separately (r=0.187, P=0.4, vs. r=0.114, P=0.6, respectively).   

There was also no significant relationship between PTH and 1,25(OH)2D levels 

in either PHPT patients (r= −0.269, P=0.3) or EuPTH patients (r=0.016, P=0.9) or 

when both groups were analyzed together (r=0.061, P=0.7). 

In patients with PHPT, there was a significant negative correlation between 

FGF23 and 1,25(OH)2D levels (r= −0.674, P=0.001; Figure 2). This relationship 

remained significant, albeit less marked, in EuPTH patients (r= −0.509, P=0.01; 

Figure 2). The  negative  relationship  between  FGF23  and  1,25(OH)2D remained 
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significant when all patients were pooled together (r= −0.393, P<0.01). Using 

backward stepwise regression analysis, we also demonstrate that FGF23 levels 

exhibit significant and independent associations with PTH and 1,25(OH)2D levels 

(β=0.372, P=0.015, and β= −0.429, P=0.003 respectively; Table 2).

Table 1. Demographic and laboratory data in 21 patients with PHPT and 24 

patients in sustained cure after successful parathyroidectomy.

PHPT (n=21) EuPTH (n=24) Ref. range
P

value
Gender (men:women) 6:15 8:16 0.738
Age (years) 57 ± 3 63 ± 2 0.144
Height (cm) 172 ± 2 170 ± 1 0.279
Weight (kg) 79 ± 6 74 ± 2 0.425
BMI (kg/m2) 27 ± 2 26 ± 1 0.664
Serum biochemistry
      MDRD (ml/min per 1.73 m2) 90 ± 5 84 ± 3 >60 0.376
      Corrected calcium (mmol/l) 2.59 ± 0.03 2.27 ± 0.02 2.15-2.55 0.000
      Phosphate (mmol/l) 0.89 ± 0.04 1.10 ± 0.04 0.9-1.5 0.000
      PTH (pmol/l)a 15.2 ± 2.4 3.9 ± 0.3 1.5-8.0 0.000
      PTH (median (IQR)   11.7 (9.4-14.6) 3.7 (2.6-5.5) 1.5-8.0 0.000
      25(OH)D3 (nmol/L) 48 ± 4 60 ± 4 30-120 0.030
      1.25(OH)2D (pmol/l)a 163 ± 14 125 ± 7 40-140 0.020
      1,25(OH)2D (median (IQR)) 150 (119-203) 125 (95-144) 40-140 0.020
      FGF23 (pg/mL) a 50.8 ± 6.1 33.1 ± 2.6 18-50 0.012
      FGF23 (median (IQR)) 44.0 (36.1-59.6) 29.2 (24.8-40.6) 18-50 0.006
      ALP (U/l) 93 ± 5 71 ± 4 40-120 0.002
      P1NP (ng/ml) 41.4 ± 4.4 27.4 ± 2.4 16-80 0.010
      β-CTX (ng/ml) 0.31 ± 0.04 0.12 ± 0.01 0.01-0.66 0.000

PHPT: primary hyperparathyroidism, EuPTH: euprathyroid controls, MDRD: glomerular filtration rate,
IQR: interquartile ranger, a Log transformedbefore correlation analysis

There was no significant relationship between FGF23 concentrations and 

creatinine clearance or serum phosphate concentrations in either PHPT patients 

(r=0.085, P=0.7, and r=0.349, P=0.09, respectively) or EuPTH patients (r= −0.398, 

P=0.06 and r= −0.247, P=0.3, respectively). Also using backward stepwise 

regression analysis, creatinine clearance and serum phosphate levels failed to 

emerge as significant modulating factors for FGF23 levels in this model (β=

−0.033, P=0.811 and β= −0.068, P=0.642 respectively; Table 2).
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There was also no significant relationship between FGF23 levels and all three 

markers of bone turnover, serum ALP activity, P1NP, or CTX concentrations, in 

either PHPT or EuPTH patients after correction for PTH and 1,25(OH)2D levels. 

Table 2. Result of multiple regression analysis, demonstrating a significant 

association between FGF23, PTH and 1,25(OH)2D

Predictor B S.E.M. β t P value

PTH 0.895 0.353 0.372 2.534 0.015
1.25(OH)2D −0.192 0.061 −0.429 −3.124 0.003
Phosphate −7.9595 16.996 −0.068 −0.468 0.642
MDRD −0.039 0.160 −0.033 −0.241 0.811

DISCUSSION

Data from our study show that patients with primary hyperparathyroidism have 

higher levels of FGF23 than cured controls, and that this increase is independent of  

1,25(OH)2D levels. We further demonstrate a significant negative relationship 

between FGF23 and 1,25(OH)2D levels, that is more pronounced in patients with 

PHPT, suggesting that FGF23 at least partially antagonizes the stimulatory effects 

of PTH on the 1α-hydroxylase enzyme, although not totally overriding it. 

Data on FGF23 levels in PHPT and in the euparathyroid state following 

successful PTx are scarce and not always concordant. Two studies (31,33)

demonstrated no significant difference in pre- and post-PTx FGF23 levels, but a 

further study (32) showed a return of FGF23 levels to high pre-operative levels 

several days after PTx. The authors of this latter paper (32) suggested that one of 

the reasons for these discrepant results may be the post-operative use of active 

vitamin D metabolites or analogues in their patients, which had not been taken into 

consideration in the interpretation of their results. To our knowledge, FGF23 levels 

have never been previously evaluated in long-term euparathyroid patients after 

successful PTx. Our findings from this study suggest that the increase in FGF23 

levels observed in PHPT is reversible when the euparathyroid state is achieved by 

cure after successful PTx, providing that renal function is not impaired.  
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Although the cross-sectional design of our study does not allow the definitive 

determination of a causal relationship between PTH and FGF23, our data are in 

keeping with recently published data in parathyroidectomized rats, in which a direct 

relationship between PTH and FGF23 independent of 1,25(OH)2D is demonstrated 

in the presence of high but not low levels of PTH (35). 

 

 

Figure 2: Relationship between serum FGF23 and 1,25(OH)2D levels in 21 patients with 
primary hyperparathyroidism (PHPT: white dots) and 24 patients in long-term cure after 
parathyroidectomy for PHPT (EuPTH: black dots). FGF23 and 1,25(OH)2D levels were log 
transformed because of skewness. 
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transporter expression in the intestinal tract (1,7) and NaPi2 co-transporter (NaPi3)

gene in the kidney, and by directly reducing PTH synthesis and secretion by the 

parathyroid (29).

In our study, patients with PHPT had significantly increased 1,25(OH)2D levels 

compared with euparathyroid patients, but also demonstrated significantly increased 

FGF23 levels. A new hypothesis has been recently proposed to explain the need for 

two phosphaturic hormones, PTH and FGF23, with the former repressed and the 

latter induced by 1,25(OH)2D (36). The suggested negative feedback loop includes 

FGF23-induced inhibition of 1,25(OH)2D synthesis. It has been proposed that these 

counter-regulatory effects of FGF23 on the bone-kidney axis have the physiological 

task of securing the maintenance of serum phosphate levels, thus providing 

protection against the hyperphosphatemia-related soft tissue and vascular 

calcifications (37-40). A possible explanation for the antagonizing effect of FGF23 

on 1α-hydroxylase enzyme may be the shorter half-life of PTH compared with 

longer half-life of FGF23 (41).

Our findings from this study extend our insight into the role of FGF23 in 

pathological states by showing that in primary hyperparathyroidism, FGF23 

production is increased in the presence of high circulating PTH levels and that this 

increase is reversible after the euparathyroid state is achieved following successful 

PTx. The more pronounced negative relationship between FGF23 and 1,25(OH)2

vitamin D in patients with PHPT suggests that in these patients the increase in 

FGF23 levels may be an adaptive mechanism to counteract the PTH-induced

1,25(OH)2D levels, although not completely overriding it. 
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