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Chapter 1

General introduction

To ensure tissue homeostasis, immune cells are constantly on the move throughout
the body; as such, these cells fight infections, replace dead cells and form new cellular
networks. This busy trafficking is orchestrated by locally produced chemokines,
which interact with chemokine receptors expressed by migrating cells. Importantly,
malignant cells seem to exploit the same pathways, which ultimately lead to tumour
metastasis and accompanying angiogenesis. Furthermore, chemokine/chemokine
receptor interactions will direct cells to tissues in inflammatory processes and during
acute and chronic Graft-versus-Host (GvH) reactions occurring after transplantation.
Unrevealing the chemokines and receptors involved in these processes might,
therefore, help us to design new strategies for the treatment of (malignant) diseases
as discussed in this thesis.

Chemokine structure and function

Chemokines belong to a family of over 40 small (8-14 kDa) proteins, which can be
divided into 4 subgroups according to the number and spacing of cysteines (C): C,
CC, CXC and CX3C. These chemo-attractants are important for a wide range of
biological events, including embryogenesis, wound healing, angiogenesis, B- and
T cell development, leukocyte homeostasis, lymphoid organ development, pro-
and anti-tumour responses and inflammatory processes’. Functionally, they can
be separated into constitutively expressed or inducible chemokines. Constitutively
expressed chemokines coordinate the development of B- and T cells as well as
homeostatic leukocyte travelling, both necessary for optimal immune surveillance.
Inducible chemokine expression is elicited by locally released stimuli like inflammatory
mediators (i.e. IFN-y and TNF-a), microbial products or trauma?. The expression of
these chemokines is of short duration and disappears upon resolution of the inducing
trigger®4.

One particular chemokine can act through different receptors. Likewise, one
chemokine receptor can have several ligands. This elaborate network of chemokines
and their receptors relies on the complex regulation of chemokine receptor
expression. An overview of all chemokines and their receptors is given in Table 1.
Chemokines produced by pathogen-infected cells present in peripheral tissues such
as skin or gut, diffuse to the surface of underlying vascular endothelial cells where
they bind to glycosaminoglycan (GAG) sugar residues. This leads to accumulation
of chemokines at the luminal side of the blood vessel. Passing cells, expressing
the appropriate chemokine receptor, will roll over the endothelial wall, a selectin-
mediated process known as tethering, which will reduce their speed. Chemokine/
chemokine receptor binding will subsequently result in firm adhesion of the cells to
the endothelial wall and finally to extravasation into the underlying tissue as depicted
in Figure 14.
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Chemokine  Expression Corresponding receptor(s) Tissue specificity (if applicable)

CCL1 Inducible CCR8

CX3CL1 Membrane bound CX3CR1

Table 1. Overview of all known chemokines and their corresponding receptors.
This table is constructed based on published data®®.

Chemokines exert their effect by binding to their corresponding seven-transmem-
brane G-protein coupled chemokine receptors (Figure 2). Upon binding, the G-pro-
tein becomes activated and dissociates into Ga, G and Gy subunits. Depending
on the type of G-protein in question, several a-subunits can be involved, leading
to different signal transduction cascades® (which are still incompletely understood),
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Figure 1. Migration of cells in response to chemokines produced in infected tissue.

Chemokines produced by cells present in peripheral tissues, diffuse to the surface of underlying vascular
endothelial cells, leading to their accumulation. Tethering cells, expressing the appropriate chemokine
receptor, will reduce their speed and chemokine/chemokine receptor binding will subsequently result in
firm adhesion of the cells to the endothelial wall and finally to extravasation into the underlying tissue.

all involved in different stages of cell movement. Together with the a-subunits, the
B- and y-subunits can activate the phospholipase C (PLC) pathway, resulting in
intracellular calcium mobilisation and the production of diacylglycerol (DAG). This
activates Rap1 guanine nucleotide-nucleotide exchange factor (calDAG-GEF) and
triggers the Rap1 enzyme to mediate rapid integrin activation and subsequent cell
polarisation®8,

Another, ill defined, cascade that leads to integrin activation, is that of phosphati-
dylinositol 3-kinase (PI3K). PI3K activation induces phosphatidylinositol-3,4,5-tri-
phosphate which, in turn, binds cytohesin-1 resulting in firm adhesion by activated
integrins.

Movement of cells requires cell polarisation, the formation of a wide pseudopod at
the leading edge and a tail-like structure (uropod) at the end®°. The extension of the
pseudopod requires F-actin formation. This is initiated by the activation of DOCK2
(dedicator of cytokinesis 2) which, in turn, induces RAC (RAS-related C3 botulinum
substrate) to form F-actin. The precise mechanism of the shortening of the uropod is
still unknown but might be induced by the stimulation of RHO-A (RAS homologue A)
by the a12 or a13 subunit. RHO-H, in turn, is described to have the opposite effect:
it negatively regulates integrin avidity.
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Chemokine

Plasma

Chemokine receptor
membrane

Figure 2. Schematic overview of the different intracellular signalling pathways which may be
activated upon chemokine binding to its receptor expressed at the cell surface.
(Adapted from: Kinashi, Nat Rev Immunol 2005; 5: 546-59)
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Cell homing in Leukaemia

Besides playing an active role in immune surveillance, chemokines and their
receptors are also involved in a large number of pathological conditions including
auto-immune disorders, cancer and cancer metastasis, pulmonary disease, vascular
disease and Graft-versus-Host Disease (GvHD) in the setting of haematopoietic
stem cell transplantation (HSCT)3. Some of these conditions are discussed in the
following paragraphs.

Acute leukaemia

Acute leukaemia is the most common cancer in children™ and can be divided into
two forms: acute lymphoblastic leukaemia (ALL) and acute myeloid leukaemia
(AML). It is caused by a malignant transformation of haematopoietic progenitor cells
(either lymphoid or myeloid) which results in indefinite expansion of this otherwise
infrequently proliferating cell'?. Due to this expansion, normal haematopoiesis is dis-
turbed which either can lead to diminished counts of unaffected cells or an abnormal
distribution of blood cells. Such bone marrow failure leads to the following clinical
symptoms: anaemia (manifesting as fatigue and paleness), chronic infections and
haemorrhages.

Due to improved treatment strategies, current overall survival of paediatric ALL is
approximately 75%'*'. In the Netherlands, children diagnosed with ALL are nowa-
days treated according to the ALL-10 protocol. Over the years, several risk factors
for a poor prognosis have been identified including: cytogenetic abnormalities, poor
response to initial therapy or induction failure after 4-6 weeks of chemotherapy.
Recently, a prospective study has shown that PCR-determined levels of Minimal
Residual Disease (MRD) were also clinically relevant. Based on these MRD levels
detected on two time points after induction therapy (day 33 and 79), patients could
be divided into three groups: standard risk (SR), intermediate risk (MR) and high
risk (HR)™. The aim of the ALL-10 protocol is to investigate whether therapy can
be tapered for SR patients to reduce side effects while keeping the high cure rate,
and whether intensification of therapy can improve the outcome for the MR and HR
patients. For the HR patients, this intensive chemotherapy is very often followed by
an allogeneic HSCT, providing the availability of a suitable stem cell donor?.
Although treatment innovations have significantly improved the overall survival of
ALL in the past decades, the expected cure rate for AML in children is still only
60%'6. Whereas treatment strategies for ALL patients are quite clear, randomised
trials are currently undertaken to define the best treatment protocol for each risk
group in AML. In the AML-15 protocol, 3 risk groups are defined based on genetic
analysis performed at diagnosis and proportion of malignant cells in the bone
marrow after the first course of chemotherapy: good risk (GR), standard risk (SR)
and poor risk (PR). About 20% of the patients belong to the GR group. They have
favourable genetic abnormalities, irrespective of bone marrow status after the first
course of chemotherapy. The SR group comprises about 50% of the patients, who
have neither favourable nor adverse genetic abnormalities, and not more than 15%
leukaemic blasts in the bone marrow after the first course of chemotherapy. Finally,
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the PR group consists of about 20% of the AML patients, who have either more than
15% blasts in the bone marrow after the first course of chemotherapy, or adverse
genetic abnormalities in the absence of favourable ones. Only children in the PR
group are eligible for allogeneic HSCT.

Both in ALL and AML, bone marrow relapse is the major cause of treatment failure;
the majority of patients who show such a relapse eventually die''"'8, Comparison
of leukaemic cells detectable at diagnosis, remission or early relapse shows that the
clone present in samples taken after relapse was often already present at diagnosis,
albeit at very low levels. At diagnosis, several phenotypically different leukaemic
clones exist to a various extent. Chemotherapy targets the most abundantly present
clone(s) at diagnosis. The chemotherapy-resistant clones will survive, although in
very low, almost undetectable, levels at the time of clinical remission. However, these
clones will expand, eventually leading to an early relapse. Late relapses probably
occur due to the de novo development of a second leukaemia from the same pre-
malignant clone'” (Figure 3). Several studies have shown that peripheral blood (PB)-
and bone marrow (BM)-derived ALL cells harvested at diagnosis and cultured in
vitro, are significantly less resistant to a large number of drugs than AML cells'"'9-21,
This could be an explanation for the difference in outcome between paediatric ALL
and AML.

Besides residing in the bone marrow, extramedullary sites may also be affected at
diagnosis or at relapse of the leukaemia. Extramedullary disease has been reported
in 30-50% of the children with ALL?2 and in 10-40% of the paediatric AML patients
at diagnosis?®*%, and is thought to correlate with poor prognosis. Extramedullary
leukaemia (EML) is defined as leukaemic cell infiliration in soft tissues, such as

Mutation
[ Initiating

[ Tranforming ) Resistance emerges:
. Acute leukaemia MRD persists Early relapse
E Transforming

O Treatment resistance
© Normal lymphoid
progenitor cell
Therapy Selection

Pre-leukaemic No resistance:
clones Acute leukaemia leukaemia cured Late relapse

% MUtatiO%Therapy % S
mutation

Figure 3. Potential mechanisms of relapse.
(adapted from: Bailey LC, Lange BJ, Rheingold SR, Bunin NJ. Bone-marrow relapse in paediatric acute
lymphoblastic leukaemia. Lancet Oncol. 2008;9:873-883).
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skin, muscles, bone, gingival tissue or brain. Whereas central nervous system (CNS)
involvement is the most common location of EML in ALL, the skin is one of the main
extramedullary sites in AML?%27,

Chemokine-quided migration of leukaemic cells to extramedullary sites.

An increasing number of studies have provided evidence that the mechanisms of
tumour cell migration resemble the mechanisms exploited by normal lymphocytes.
Thus, chemokines and their receptors facilitate the distribution of leukaemic as
well as non-malignant cells throughout the body. To date, only a few studies have
focussed on the relation between specific homing characteristics and the occurrence
of EML (either at diagnosis or at relapse); these studies mainly focussed on the
interaction of CXCL12 and its receptor CXCR4. Variable expression of CXCR4 is
seen on primary ALL blasts in the bone marrow, with significantly higher expression
in the patients suffering from EML?. We set out to determine whether additional
chemokines and chemokine receptors could play a role in determining the site of
leukaemia relapse. We have a case in which expression of gut-homing molecules on
PB-derived leukaemic blasts, at the time of diagnosis, was found to predict relapse
of malignant disease in the gut later on (Figure 4)%.
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Figure 4. Unique expression of CCR9 and CD103 on the leukemic cells of patient 7125.

Multicolour flow cytometry was carried out on a peripheral blood sample obtained at diagnosis using a
panel of chemokine receptor— and homing molecule—specific antibodies in combination with markers for
T cells. (A) The unique expression of CCR9 and CD103 on the blast cells from patient 7125 is shown (top
panel). The bottom panel shows a representative result for expression of these same receptors as found
on T cells of 10 other T-ALL patients. Open histograms indicate level of control staining; red histograms,
specific staining. Brackets and percentages denote the fraction of antibody-positive cells. (B) Immunohis-
tochemistry was performed on the tumour cell infiltrate in the ileum of patient 7125. Using an anti-CCR9
polyclonal antibody and DAB detection (brown) there was clear positivity of the tumor cells for CCR9. The
specificity of the CCR9 staining was confirmed by omitting the CCR9 antibody as a negative control. Fur-
thermore, immunohistochemical staining using an anti-CCL25/TECK monoclonal antibody and NovaRed
detection revealed a high expression of this CCR9 ligand in the tumour mass. The lower right picture
shows haematoxylin and eosin (HE) staining of the same area of the affected ileum at relapse. Original
magnification, 250X.
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In AML, contradictive reports exist on the level of CXCR4 expression and extramed-
ullary localisation of CXCR4* blast cells. It is thought that CXCR4/CXCL12 interac-
tions play a role in the retention of AML blasts in the bone marrow, because bone
marrow residing stromal cells are the main producers of CXCL123%'. However, high
expression of CXCR4 on AML blasts has been described to have a poor prognostic
effect given the reported migration of CXCR4* blasts to extramedullary sites®. In
order to shed more light on the role of chemokines and their receptors in paediatric
AML patients suffering from EML, we investigated their expression patterns on PB-
and BM-derived AML blasts as well as in situ on leukaemic blasts present in skin
biopsies collected from patients with EML in the skin. The results of this study are
described in Chapter 2.

Chemokine-guided T cell migration in immune disorders: Omenn Syndrome

Given that chemokines and their receptors play an important role in normal
immunological processes, it is not surprising that they also appear to be involved
in immune disorders. Omenn Syndrome (OS) is an inherited immunodeficiency
characterised by lymphadenopathy, hepatosplenomegaly, chronic diarrhoea,
exfoliative erythroderma and massively increased IgE levels®¥34. Unlike severe
combined immunodeficiency (SCID) patients, OS patients can have normal or even
high lymphocyte counts. However, the in vitro proliferative capacity of T cells to
respond to antigens is severely decreased.

In both OS and SCID patients, mutations in the RAG1, RAG2 and Artemis genes
each affect T- or B cell development at an early stage by impairing recombination
of V(D)J gene segments encoding the variable part of T cell receptor (TCR) and
immunoglobulin molecules, respectively. Consequently, such patients display an
abnormal B- and T cell development and a corresponding limited T cell repertoire
(Figure 5). Although mature B cells are often completely absent, rearrangement of
multiple TCR V{3 segments is, however, still possible, albeit that the resulting TCR
repertoire of T cells is strongly reduced. Peripheral expansion of a limited number
of T cell clones in response to infections® combined with an increased antigen
exposure due to a defect in antigen clearance, may result in oligoclonal T cells in the
circulation which appear to be chronically activated.

A hallmark of OS is the peculiar tissue distribution of T cells; the T cells typically ac-
cumulate in skin, gut and liver®. Although the underlying genetic abnormality of OS
has been clarified®, the underlying cause of skin, gut and liver homing of these T
cells remains unclear. To provide some explanation of the remarkable clinical fea-
tures of this disease, we investigated the chemokine receptor expression pattern by
PB-derived T cells as well as local chemokine production in affected skin before and
after application of the immunosuppressive drug Tacrolimus. This study is described
in Chapter 3.

16
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Figure 5. Schematic overview of lymphopoiesis. Red lines indicate the different stages where RAG
and Artemis mutations block further differentiation. HSC = haematopoietic stem cell; CLP = common
lymphocyte progenitor. Adapted from De Villartay JP, Fischer A, Durandy A. The mechanisms of immune
diversification and their disorders. Nat.Rev.Immunol. 2003;3:962-972.

Stem cell transplantation

The only effective treatment option for OS patients is allogeneic HSCT, whereby
the genetically aberrant precursor cells committed to the affected cell lineage(s)
are replaced by healthy precursor cells. This will lead to normal B- and T cell
maturation processes and, hence, diverse B- and T cell repertoires. Allogeneic
HSCT is a well established, effective and commonly applied therapy for various
haematological malignancies, benign haematological diseases, metabolic disorders
and immunodeficiencies. After myeloablative conditioning and stem cell (SC)
infusion, the patient’s complete haematopoietic system, including cells repopulating
the immune system, is replaced by that of the non-affected haematopoietic SC
donor. A schematic overview of the general HSCT procedure in children, showing the
possible conditioning variables and post HSCT complications, is given in Figure 6.

17
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Figure 6. Schematic overview of the clinical HSCT protocol applied in children and possible post
HSCT complications.

Complications associated with allogeneic haematopoietic stem cell transplantation

The two major, potentially life-threatening, complications seen shortly after
allogeneic HSCT are graft rejection and Graft-versus-Host Disease (GvHD). Graft
rejection is caused by remaining circulating T cells of host origin that have survived
the pre-conditioning regimen. These patient-derived T cells recognise mismatched
alloantigens expressed by the infused donor cells; this allorecognition leads to
elimination of the infused graft. GvHD, on the other hand, is caused by T cells of
donor origin which are transferred, along with the haematopoietic stem cells, into
the immuno-compromised recipient. In this situation, donor T cells will be activated
by mismatched human leukocyte antigens (HLA) and/or minor histocompatibility
antigens (mHags) expressed by the recipient and not by the donor.

To minimise the risk of graft rejection or GvHD, the patient and donor should be , in
the ideal situation, completely HLA matched. However, even when an HLA identical
sibling is used as donor, rejection and GvHD can still occur; immune reactions in
the latter setting are evoked by mHags. These antigens may differ between related
donor and patient pairs. mHags are immunogenic peptides derived from intracellular

Next page: Table 2. Known minor antigens with their HLA restriction and distribution.

Adapted from: Spierings E, Goulmy E. Minor Histocompatibility antigens in biology and medicine. In:
Mehra N, editor. HLA in medicine and biology, 2010. Tissue distribution from: http://www.lumc.nl/dbminor.
Broad tissue distribution is considered expression by haematopoietic cells and non-haematopoietic cells
such as fibroblasts and keratinocytes.
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proteins, which are encoded by polymorphic genes on autosomes and allosomes
(sex chromosomes). These peptides are expressed at the cell membrane in the
context of HLA molecules. These HLA/mHag peptide complexes are recognised by
allo-reactive CD4* and CD8* T cells. Amino acid polymorphisms in these genes may
result in 2 allelic counterparts. Generally, only the immunogenic peptide variant is
capable of eliciting an allo-immune T cell response. Mismatches in mHags between
patient and donor may result in immune reactions in Graft-versus-Host as well as
Host-versus-Graft direction as discussed below?'.

The impact of mHags on the development of GvHD depends on their population
frequencies® and tissue distribution®. With respect to the latter, two distinct
patterns of expression have been described, i.e.: haematopoietic system-restricted
expression or ubiquitous expression (Table 2). mHags with an ubiquitous or ‘broad’
expression pattern, i.e. the male chromosome-encoded mHag HY, are particularly
relevant for the induction of GvHD. In contrast, mHags such as the autosomally
encoded mHag HA-1, which are solely expressed by normal haematopoietic cells or
leukaemic cells, are unlikely to cause GvHD. Evidence in support of this assumption
has come from in vitro studies, in which HLA and mHag genotyped skin biopsies
were incubated in vitro with HY or HA-1 specific CD8* Cytotoxic T Lymphocytes
(CTL)*. While incubation with HY-specific CTL induced severe GvHD-like damage
to skin cells, HA-1 CTLs induced no or only very mild skin destruction.

Various clinical studies have addressed the impact of mHag mismatching on the
incidence of GvHD. Indeed, gender mismatching has been identified as a significant
risk factor for the development of acute GvHD and transplant related mortality in
male recipients of female stem cells*'. In support of these epidemiological findings,
elevated numbers of HY-specific T cells have been demonstrated in peripheral blood
samples collected from male SCT patients who developed GvHD after receiving
a bone marrow graft from a female sibling donor*?. Whether these HY-specific T
cells also infiltrate GvHD target tissues such as skin, gut or liver has not yet been
investigated in human transplant patients. In Chapter 4, we describe how a newly
available in situ staining technique enabled us to address this question in gender
mismatched paediatric patient/donor combinations.

Acute GvHD

Acute GvHD is defined as a moderate to severe inflammatory response leading to
tissue destruction mediated by alloreactive T cells post HSCT. This potentially lethal
complication of allogeneic HSCT can be graded following the Glucksberg criteria
listed in Tables 3 and 4%.

The pathophysiology of acute GvHD can be divided into three different phases as
depicted in Figure 6. The main events are: 1) activation of resident host antigen
presenting cells (APCs), 2) activation and migration of donor T cells to target
tissues and 3) tissue destruction by activated donor T cells. In the first phase, the
conditioning regimen (chemotherapy and/or total body irradiation) leads to damage
of host tissues. This tissue damage stimulates the secretion of pro-inflammatory
cytokines, like IL-1 and TNF-a. These macrophage-derived cytokines induce or
up regulate the expression of HLA and a variety of adhesion molecules on blood

20
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with bullous formation and/
or desquamation

any two of the four criteria
for stage 3 severity

Stage Skin Gl tract Liver
0 No rash due to GvHD None Bilirubin <35 pmol/l
1 Maculopapular rash <25% Diarrhea 500-1000 ml/day; Bilirubin 35-50 ymol/l
of body surface area nausea and/or vomiting
2 Maculopapular rash Diarrhea 1000-1500 ml/ Bilirubin 51-102 pmol/l
25-50% body surface area  day
3 Generalised erythroderma  Diarrhea >1500 ml/day Bilirubin 103-225 pmol/l
Or cramps, or blood, or
ileus
4 Generalised erythroderma Simultaneous presence of Bilirubin >225 pmol/l

Table 3. Organ staging of aGvHD.

Grade Skin (stage) Gl tract (stage) Liver (stage)

Table 4. Overall clinical grading of aGvHD.
Both tables are adapted from: Przepiorka D, Weisdorf D, Martin P et al. 1994 Consensus conference on
acute GvHD grading. Bone Marrow Transplant 1995. 15: 825-828.

vessels present in host tissues. This, in turn, enhances the recognition of HLA and
mHags expressed on host APC by infiltrating donor T cells. In phase 2, donor T cells
become activated and start to proliferate, thereby secreting IL-2 and IFN-y. These
cytokines further induce T cell expansion, CTL and natural killer (NK) cell responses,
and activate mononuclear phagocytes. During the third and last phase, more tissue
is damaged by inflammatory mediators released by infiltrating leukocytes, such as
perforin, granzyme B, FasL, and TNF-a. This ultimately results in an amplification of
the tissue damage and clinical manifestation of GvHD symptoms*.

In order to exert their damaging effect, activated alloreactive T cells must first
migrate to particular tissue site(s). It is likely that these T cells are attracted by the
same molecules as immune cells that fight pathogens invading peripheral tissues,
i.e. locally produced chemokines interacting with their specific receptors on these T
cells. To date, most of the work investigating the involvement of chemokines in GvHD
has been carried out in experimental murine models. The production of various
pro-inflammatory chemokines (CCL2, CCL3, CCL4, CCL5, CXCL9 and CXCL10)
has been demonstrated in GvHD target organs, but true organ specificity of GVHD
tissue-infiltrating T cells has not clearly been demonstrated.

During the onset of GvHD, manifestations of skin rash usually precedes the clinical
manifestation of intestinal or liver GVHD, although acute GvHD also may remain
limited to the skin. T cell migration pathways to the skin have been reasonably
well characterised. Skin-homing T cells express cutaneous lymphocyte-associated
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antigen (CLA) that, together with E-selectin, causes tethering of the cells along the
endothelial wall (Figure 1). Subsequent activation and diapedesis of the T cells is
driven by CCL17/CCR4 and CCL27/CCR10 interactions. Further recruitment of
lymphocytes into the dermis appears to be mediated via CCR4/CCL17 interactions,
whereas the CCL27/CCR10 pathway ultimately guides the cells towards the
epidermal/dermal junction. In Chapter 5, we investigated the potential role of CCR10
and its ligand CCL27 in the migration of CD4* T cells to the skin. To this end, we
analysed peripheral blood and skin tissues obtained from transplanted children who
suffered from acute GvHD.

TBIl &
Chemotherapy

Tissue
damage

IL-1 & TNF-a Migration

APC activation Effector phase

HLA-DR T-cell proliferation
Adhesion molecules CTL & NK cell responses

Phagocyte activation

T-cell activation
IL-2 & IFN-y

Figure 6. Pathophysiology of acute GvHD.
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Chronic GvHD

Chronic GvHD (cGvHD) is a major long-term complication of allogeneic HSCT and a
common cause of late death. It has a median time to onset of 4-6 months post HSCT,
but can be diagnosed as late as one year after HSCT. The most common anatomical
locations involved in the initial diagnosis of cGvHD are: skin, mouth, liver and
eye*4¢ Until a few years ago, the distinguishing factor between acute and chronic
GvHD was the time point of clinical manifestation, i.e. whether tissue inflammation
occurred before or after the first 100 days post-HSCT. However, consensus has
been reached about a more explicit clinical definition of cGvHD; these criteria include
the following clinical features: sclerosis, lichen-planus-like lesions, poikiloderma,
oesophageal webs, bronchiolitis obliterans and fasciitis*’. Fasciitis is characterised
by a symmetrical inflammatory swelling of the extremities*®. When accompanied by
myalgia, this can cause severe functional impairment of the extremities.

Compared to aGvHD, the pathophysiology of cGvHD, and fasciitis in particular, is
still poorly understood. It has been hypothesised that cGvHD results from a loss of
peripheral immune tolerance towards self-antigens as reflected by the autoimmune-
like clinical symptoms*¢. Histopathological findings include a diffuse lymphocyte
infiltration of the oedematous fascia, which often extends to the muscle interstitium,
and an increase of collagen fibres**°. CD8* T cells are predominantly seen in these
lymphocytic infiltrates.

CD8* cytotoxic T cells are, therefore, thought to be the main effector cells, which are
likely activated locally by donor-derived helper T cells. This immune response may
occur in situations where regulatory T cell numbers are low, i.e. after myeloabbla-
tive HSCT. Confirmatively, experimental GvHD models showed that the absence of
Tregs resulted in uncontrolled expansion of T,1 and T 17 cells, leading to cytokine
release and subsequent tissue damage®'. In human cGvHD patients a significant
decrease of the number of T ___in peripheral blood was seen; their levels returned to
normal after resolution of the disease®>%*. It remains, however, unclear whether the
Treg number in peripheral blood is representative of their numbers and corresponding
suppressive activity in secondary lymphoid organs and cGvHD target tissues.
Besides the involvement of different T cell subsets, the observation of a wide variety
of (auto) antibodies in the serum of cGvHD patients also suggest a role for (donor)
B cells in the induction or perpetuation of cGvHD®%°, Several studies have shown
a significantly higher occurrence of auto antibodies in patients with cGvHD as
compared to those without>®*2, Additionally, antibodies to Y chromosome-encoded
minor Histocompatibilty antigens have been found in male recipients of female
haematopoietic stem cell grafts, correlating with the occurrence of cGvHD®.

In order to exert their local damaging effect, lymphocytes have to migrate from
the circulation into the fascia. Chemokines and their receptors generally play an
important role in cellular trafficking to inflamed tissues. In contrast to our findings
in aGVHD of the skin (Chapter 6), information on the role of chemokines and their
receptors in cGvHD is currently unavailable. In a first attempt to address this complex
issue, we have studied tissue biopsies derived from three cGvHD patients in whom
fasciitis manifested as the main clinical feature of late HSCT-related complications.
Chapter 6 describes which type of immune cells have infiltrated the fascia and which
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chemokine/receptor combination(s) might have facilitated the migration of the cells
to the fascia.
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Chapter 2

Abstract

Chemokine receptor/ligand interactions orchestrate the migration of cells to periph-
eral tissues such as the skin. We analysed chemokine receptor expression by acute
myeloid leukemic (AML) cells present in peripheral blood (n=7), bone marrow (n=6)
or skin (n=11) obtained from 15 paediatric AML patients with skin involvement and
in 10 AML patients without skin involvement. High percentages of circulating CCR2*
AML cells were only detected in patients with extramedullary disease. Skin-residing
AML cells displayed a different set of receptors in situ, namely: CCR5, CXCR4,
CXCR7 and CX3CR1. These results suggest the involvement of different chemok-
ine/chemokine receptor interactions in homing and retention of AML blasts in the
skin.

Introduction

AML is characterised by uncontrolled proliferation of bone-marrow (BM)-residing
myeloid progenitor cells, which are arrested in their maturation process'. The prog-
nosis of childhood AML has significantly improved, given that approximately 60% of
the patients experiences long-term survival to date?. Extramedullary disease (EML),
defined as the presence of leukaemic blasts in skin, muscle, bone, gingival tissue or
brain, may manifest in 10-40% of paediatric AML patients at diagnosis. EML seems
to correlate with poor prognosis in some, but not all, studies®“.

Chemokines play an important role in tumour cell migration and infiltration of distant
organ sites. This multi-step process requires the sequential engagement of adhesion
molecules and activation through chemokine receptors®®. To date, most studies
addressing the involvement of chemokines and their receptors in the tropism of
leukaemic cells have concentrated on the interaction of CXCL12 and its receptor
CXCRA4. Given that BM stromal cells are major producers of CXCL12” and CXCR4
expression is thought to be higher on BM-residing blasts than on circulating blasts,
CXCR4/CXCL12 interactions likely facilitate the retention of AML blasts in the BM&.
Consequently, high CXCR4 expression by AML cells is considered as an independent
risk factor for relapse and poor overall survival®. Contradictory, this seems to be
associated with extramedullary involvement'®'", CXCR4 has long been considered
the sole receptor for CXCL12. Recently, CXCL12 was also reported to be the ligand
of a novel chemokine receptor, CXCR7"'2. Unlike other chemokine receptors, CXCR7
lacks the ability to mediate chemotaxis and calcium mobilisation after ligand binding.
Instead, CXCRY7 is thought to regulate tumour cell survival, clustering and growth™s.
Given the paucity of data regarding the role of specific chemokine receptors and
their ligands in the migration of myeloid blasts to extramedullary sites, we investi-
gated their expression on leukaemic blasts derived from peripheral blood (PB) and
BM as well as their in situ expression profile in AML affected skin biopsies.
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Table 1: Patient characteristics at diagnosis.

Abbreviations: UPN: Unique Patient Number; BM: Bone Marrow; PB: Peripheral Blood; CNS: Central
Nervous System; LN: Lymph Node; Chloroma: granulocytic sarcoma mostly beneath the periosteum of
the skull, spine or ribs; FC: Flow Cytometry; IHC: Immunohistochemistry.

Materials & Methods
Patients

Fifteen paediatric AML patients with confirmed skin involvement at diagnosis and 10
control patients without EML were enrolled in the study. Patient characteristics are
described in Table 1. Formalin fixed, paraffin embedded and tumour cells containing
skin biopsies were obtained from 11 out of 15 AML patients with skin involvement.
Cryopreserved peripheral blood mononuclear cells (PBMC) and/or BM mononuclear
cells (BMMC) were available for flow cytometric analysis (n=20). Patient materials,
collected at diagnosis, were obtained from several Dutch paediatric oncology cen-
tres via the Dutch Childhood Oncology Group (DCOG, The Hague, the Netherlands;

32



Chapter 2

protocol: OC-2001-013) or from the Women’s and Children’s Hospital (Adelaide,
Australia). In line with the Helsinki guidelines, approval was obtained from the In-
stitutional Review Board to use leftover biological material routinely obtained for
diagnostic purposes for related research.

Flow Cytometric analysis

Chemokine receptor expression was analysed by flow cytometric analysis on a
FACS Calibur (Becton Dickinson Immunocytometry Systems, San Jose, CA, USA).
Selection of AML cells was based on their FSC/SCC pattern combined with specific
markers such as CD7, CD13, CD14, CD33, CD34, CD56 and HLA-DR). The per-
centage of positive cells was analysed using Cellquest software.

Immunohistochemical analyses

Combined immunofluorescent (IF) staining of tumour cell-specific markers and
chemokine receptors was performed in cases where antibodies to the tumour spe-
cific markers were available. Enzymatic immunohistochemical (IHC) staining was
performed in all other cases, as well as for analysing chemokine ligand expression,
4 um paraffin sections were pre-treated as described before'. Subsequently, the
slides were incubated overnight with the primary unconjugated antibodies followed
by the relevant isotype-specific, Alexa Fluor 488 or 594 labelled, secondary antibod-
ies (Invitrogen). Results were analysed by confocal microscopy (LSM 510 confocal
microscope, Carl Zeiss Microlmaging, Inc., Thornwood, NY, USA). For IHC staining,
positive cell were visualised using Envision or LSAB+ (Dako, Heverlee, Belgium)
and DAB detection. Replacement of the primary antibodies by PBS/BSA 1% was
used as a negative control for both staining methods. Enzymatic staining was scored
as previously described'. In short, the intensity was graded as: 0, absent; 1, weak;
2, moderate and 3, intense and the percentage of positive tumour cells as: 0 =
absent; 1 = 1%-10%; 2 = 10%-25%; 3= 25%-50%; 4 = 50%-75% and 5 = >75% posi-
tive tumour cells. Sections were considered positive when a combined score was
higher than three. Immunofluorescent slides were scored positive when >50% of the
tumour cells expressed the relevant chemokine receptor.

Statistical Analysis
Flow cytometric data are presented as median and interquartile range (Tukey) of the

percentage of positive blasts. Differences in expression between AML patients with
and without skin involvement were assessed using a Mann—Whitney test.

33



Chapter 2

A

CCR1 CCR2 CCRS CX3CR1 CXCR4 CXCRA4i CXCR7 CXCR7i

100- 5
80-

60- °

% ’ : % %) ; PB

I | 1= | I I = = ém oM

B

Patient CCR1 CCR2 CCL2 CCR5 CCL3 CCL5 CXCR4 CXCL12 CXCR7 CXCL11 CX3CR1 CX3CL1

.
~
)
'
=
*
&
.
=
S
©
©
.
=
S}
.
w
&
©
.
=
©
'
=
*
&

111 6/7 0/8 10/11 8/11

0/11 0/11 5/11 3/10

Figure 1: Ex vivo and in situ chemokine and chemokine receptor expression by AML cells.

(A) Flow cytometric results are given as median percentage of positive cells within the blast population
with their interquartile range. Outliers are indicated with an open circle. The upper row shows chemokine
receptor expression on AML blasts from PB; the lower graphs display the expression by BM-derived AML
blasts. CXCR4i and CXCRYi indicate intracellular staining. Chemokine receptor expression by blasts of
AML patients without extramedullary involvement is represented by the open boxes (PB: n=3-9, BM: n=7-
9). Hatched boxes represent chemokine receptor expression by blasts of AML patients with skin involve-
ment (PB: n=6-7, BM: n=6). Significant differences between the groups are indicated with an asterisk.
(B) The table shows immunohistochemical staining results. Numbers in brackets represent the combined
score for intensity and percentage positive tumour cells as described in the Materials & Methods section.
The numbers in the lower row represent the total number of positive cases out of the number of evaluable
biopsies.

(C, next page) Representative pictures of immunohistochemical stainings. (a) Double immunofluorescent
staining on a skin biopsy of a representative patient identified a large infiltrate of CD43° tumour cells
(green) with, in this case, intracellular localisation of CXCR4 (red). (b) A cropped image of this picture.
Single enzymatic stainings (visualised by the red/brown colour) showing CXCR7 (c) and CXCL12 (e).
Omission of the primary antibodies was used as negative control (d and f). (a-f) Magnification: 250x.
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Results and Discussion

Given that extramedullary leukaemia occurs in about 25% of paediatric AML patients,
understanding the migration process of AML blasts to peripheral tissues is neces-
sary for further improvement of currently available treatment options. We performed
the first comprehensive analysis of chemokine receptor/ligand expression patterns
expressed by AML cells in blood, BM and affected skin of paediatric AML patients.
Due to scarcity of tissue, we could, however, not test the complete set of available
antibodies on each biopsy.

Traditional skin homing receptors and adhesion molecules like CCR4, CCR10' and
CLA were expressed at very low levels on PB- and BM-derived AML blasts (data not
shown). No statistically significant differences between patients with or without skin
involvement were observed for CCR1, CCR5, CX3CR1, CXCR4(i) and CXCR7(i)
expressed by blasts cells (Fig. 1A). In contrast, significantly (P=0.009) increased
percentages of CCR2* AML blasts were observed in AML patients with EML. The
percentages of blast cells in the blood of these patients ranged from 8.8 to 75.0%
(median 18.6%); in patients without EML these percentages ranged from 0.3 to
15.1% (median 0.9%) (Fig. 1). These results are in line with a study of Cignetti et al.
reporting a correlation between co-expression of CCR2/CCL2 and extramedullary
involvement in adult AML patients'”. Furthermore, CCR2* tumour cells could also
be visualised in the majority (63.4%) of skin biopsies (Figure 1B). Surprisingly, and
in contrast to the Cignetti study'’, one of the ligands for CCR2, CCL2, was only
observed in two of these biopsies. This observation implies that CCR2 expressing
AML cells exploit another ligand (i.e. CCL7, CCL8, CCL13 or CCL16'®) for skin-
homing.

Analysis of BM-derived blasts demonstrated substantial inter-patient variation (Figure
1). No statistically significant differences were observed in the expression of the
chemokine receptors CCR2, CX3CR1 and CXCRY7i between the 2 patient groups.
In addition, CCR1, CCR5, CXCR4, CXCR4i and CXCR7 were only occasionally
expressed on BM-derived AML blasts. Although age, gender and FAB classification
were evenly distributed between the two groups, we cannot exclude that these data
are affected by a certain degree of heterogeneity in both study groups. A major
difference in chemokine receptor expression by PB- or BM-derived AML blasts
between the different FAB classifications was, however, not observed.

In line with the low levels of CCR1* AML cells detected in PB and BM samples, skin-
infiltrating leukaemic cells did not express CCR1 (Figure 1B). CX3CR1 and CX3CLA1
were expressed by 45.5% and 30% of the biopsies, respectively. Additionally, no
difference was seen in CX3CR1 expression by PB- or BM-derived blasts obtained
from patients with or without EML. Thus, CX3CR1/CX3CL1 interactions probably do
not play a major role in the migration of AML blasts to the skin.

Akey observation in our study is the expression of CCR5 in all skin biopsies analysed
(n=11). We additionally studied 2 of the 5 chemokines that bind to this receptor’s, i.e.
CCL5 and CCL3. While CCL5 could not be detected in any of 8 biopsies studied,
CCL3 could be visualised in 85.7% of the biopsies. Given that CCR5 was not
expressed by leukaemic blasts in either PB or BM, we speculate that CCL3 might be
involved in retention of AML blasts in the skin rather than in skin-homing.
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The expression of CXCR4 was mainly intracellular (Figure 1C, picture a,b), and
present in almost all evaluable cases (90.9%). Interestingly, CXCR7, associated
with tumour cell growth and survival, was expressed in the skin of the same
patients (Figure 1C, picture c). CXCL12, the ligand of both CXCR4 and CXCR7,
was expressed in 72.7% of the biopsies (Figure 1C, picture €). Skin expression of
CXCL11, the alternative ligand for CXCR7, could not be demonstrated (0/11). FACS
analysis did not show a significant difference between patients with and without EML
regarding CXCR4 or CXCRY7 expression by either PB- or BM-derived AML blasts
(Figure 1A). Although the AML blasts in the skin clearly expressed CXCR4, CXCR7
and CXCL12, the relatively low expression in PB and BM renders the role of these
receptors in skin-homing of leukaemic blasts unlikely. A role for both CXCR4 and
CXCRY7 in tumour cell survival has been described™ . In a pilot experiment, we
observed that the viability of primary AML cells was more reduced when cultured in
the presence of blocking anti-CXCR7 antibody prior to CXCL12 exposure than after
CXCR4 blockade with AMD3100 (data not shown). Together with earlier reported
data®, these preliminary observations point to a role for CXCR7/CXCL12 in the
survival of AML blasts.

Based on our ex vivo and in situ observations, we hypothesise that CCR2 expression
by circulating AML blasts facilitates homing to the skin in response to an as yet
unidentified locally produced chemokine. Subsequently, CCR5/CCL3 and CXCR4/
CXCL12 interactions facilitate the retention of AML cells in the skin, where CXCR7/
CXCL12 interactions subsequently prolong their survival.
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Abstract

Omenn syndrome (OS) is a rare form of severe combined immunodeficiency,
often characterised by an early onset of generalised erythrodermia caused by a
massive infiltrate of the skin by auto-reactive T cells. We describe the case of an OS
patient in which we observed a high percentage of skin-homing, circulating CD4*
and CD8*CCR10* T cells. Treatment of the erythrodermia with topical tacrolimus
resulted in a significant clinical improvement of the skin, which was associated with
normalisation of intradermal CCL27 expression. This coincided with both a reduced
cutaneous T cell infiltrate as well as a specific decrease in circulating CCR10* T cells.
Thus, topical tacrolimus treatment appears to reduce CCL27 expression, thereby
specifically inhibiting infiltration of skin-specific T cells.

Introduction

Omenn syndrome (OS) is an inherited immunodeficiency disorder with autoimmune-
like manifestations. No or very few circulating mature B cells are found in these
patients in contrast to normal or even elevated numbers of poorly functional,
activated, T cells in the blood. These T cells infiltrate the skin, gut, liver and spleen
resembling graft-versus-host disease’.

Lymphocyte expression of surface adhesion and chemokine receptors is required for
appropriate tissue and microenvironmental localisation. This tissue-specific homing
is particularly well illustrated by the distinct mechanisms used by lymphocytes in
homing to the skin?. Effector/memory T cells with skin-tropism are easily identified
by their expression of the cutaneous lymphocyte antigen (CLA). In addition, CLA*
T cells selectively express two chemokine receptors, CCR4 and CCR10, whose
ligands CCL17 and CCL27 are expressed on the luminal surface of cutaneous post-
capillary venules. These skin-homing T cells have clearly been shown to play a role
in many inflammatory skin diseases®.

One way to down-regulate or modulate T cell activity is by the use of immunosup-
pressive drugs belonging to the group of calcineurin inhibitors. Besides their primary
effect, the inhibition of the synthesis of T cell growth factors, there is now also some
evidence that these drugs down-modulate chemokine receptor expression, thus in-
terfering with migration of T cells to the inflammatory site*. In the present study we
describe a unique skin homing profile on the peripheral blood CD4* and CD8* T cells
of an OS patient and the effect of topical tacrolimus treatment on this T cell popula-
tion.

Clinical Course and Results
The patient is the second child of consanguineous parents born at term after an
uncomplicated pregnancy. His five year old sister is healthy and the family history is

negative forimmunodeficiencies but positive for atopy. In the first week he presented
with erythematous skin lesions, initially diagnosed as congenital eczema and treated
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Figure 1. Increased percentages of both CD4* and CD8* T cells expressing the skin-homing recep-
tor CCR10 in the peripheral blood of Omenn syndrome patient (0S1).

(A) Flow cytometric analysis showing an increased percentage of both CD4* and CD8* CCR10* T cells
amongst peripheral blood lymphocytes of a patient with Omenn syndrome (OS1) compared to a repre-
sentative healthy paediatric control donor. Tacrolimus treatment resulted in a substantial decrease in the
percentage of both circulating CD4* and CD8* CCR10* T cells. The numbers in the FACS plots represent
the percentage of CCR10* cells within the CD4* or CD8* T cells.

This decrease is also true for the absolute numbers as depicted in (B).
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with topical steroids. During the first two months he developed food intolerance
and low-grade enteritis. Hypo allergic formula only resulted in limited and unstable
improvement. At 2.5 months he presented with rhinitis, fever (38-39°C) and dyspnoea
which improved after treatment with amoxicillin but the erythrodermia persisted and
he developed generalised lymphadenopathy, conjunctivitis and otitis externa. Blood
examination demonstrated a leukocytosis (27x 109/L) with a marked eosinophilia
of 20-30%. An immunodeficiency was suspected and at three months the child was
referred to our hospital for further evaluation.

Lymphocyte subset analysis showed that virtually all CD3* cells were T cell
receptor a/B and CD45R0O" and there was a lack of circulating B cells. Chimerism
analysis revealed that all lymphocytes were of patient origin, excluding transferred
maternal T-lymphocytes. Therefore the patient was diagnosed as severe combined
immunodeficiency with an OS presentation. Genetic analysis revealed a homozygous
deletion (c.591delT) in the RAG1 gene, resulting in a frame shift and a premature
termination at amino acid position 20

Due to the fact that this patient, indicated as OS1, presented with a generalised skin
rash, skin-homing T cells were investigated in the peripheral blood. Flow cytometric
analysis revealed high percentages of both CD4* (57.7%) and CD8* (66.6%) T
cells that expressed the skin-homing receptor CCR10, compared to the paediatric
healthy donor (Figure 1). These T cells all had a memory phenotype (CD45R0O*)
and co-expressed the activation marker HLA-DR (51.5% CD4*CCR10* and 61.1%
CD8*CCR10*) and the skin-homing adhesion molecule CLA (88.4% CD4*CCR10*
and 93.2% CD8*CCR10*) (data not shown). Furthermore, a significant percentage
of the CCR10* T cells also expressed homing receptors for secondary lymphoid
organs (CD62L: 44.8% CD4*CCR10* and 59.9% CD8*CCR10*; and CCR7: 31.7%
CD4*CCR10* and 42.8% CD8*CCR10*; data not shown). High percentages of
CD4*CCR10* and CD8*CCR10* T cells were also observed in the blood of an
unrelated other OS patient (0S2) with similar cutaneous manifestations, with
62.7% of the CD4* T cells and 73.9% of the CD8* T cells expressing CCR10 (data
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Figure 2. Intracellular cytokine staining reveals a pro-inflammatory profile of the circulating
CCR10* T cells from an Omenn syndrome patient (OS1), which is reduced upon topical Tacrolimus
treatment.

Intracellular staining of cytokines (IFN-y, TNF-a, IL-2, IL-4 and IL-5) produced by CD4* and CD8* CCR10*
peripheral blood T cells upon PMA/lonomycin stimulation in vitro of PBMC from a patient with Omenn

syndrome (OS1) before and during treatment with topical tacrolimus.
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not shown). Heteroduplex PCR analysis of the T cell receptor A profile of sorted
CCR10* T cells (both CD4* and CD8*) showed a polyclonal profile (data not shown).
This indicates that there is no specific clonal expansion within the CD4* CCR10* and
CD8*CCR10* T cells.

Topical tacrolimus (Astellas Pharma Europe Ltd, Staines, UK) resulted in significant
cutaneous improvement within 48h. During 7 weeks of treatment, tacrolimus blood
levels between 1.9 and 12.8 ng/ml were observed, accompanied by a further
reduction in erythrodermia even in non-treated skin areas. We investigated whether
this treatment had an effect on peripheral blood skin-homing T cells. Figure 1 depicts
a substantial decrease in the percentage of both circulating CD4* and CD8*CCR10*
T cells 49 days after the start of treatment, coinciding with a decrease in CLA*
peripheral blood T cells (data not shown). A considerable reduction is also seen in
the absolute numbers of CD4*CCR10* (17.4 times lower) and CD8*CCR10* (224.5
times lower) T cells. This decrease is much greater than that of the total CD4* (5.1
times lower) and CD8* (7.7 times lower) T cell populations, indicating the specificity
of the decline (data not shown).

Similarly, Figure 3 shows that during tacrolimus treatment, the pre-existing dense
infilirate of both CD4* and CD8* T cells was significantly reduced whereas the
number of CD1a* Langerhans cells increased in the epidermis after treatment, in
keeping with a previous report®. Immunohistochemical analysis also revealed that
elevated expression of the CCR10 ligand, CCL27, in the epidermis of the affected
skin (Figure 3) was reduced to that of healthy control skin following tacrolimus (data
not shown). Previous reports on the T 1/T 2 profile of T cells from OS patients
have given conflicting results®’. Here, pre-treatment, the CCR10* T cells from OS1
clearly produced the pro-inflammatory cytokines TNF-a (CD4*: 63.5% and CD8":
70.4%) and IL-2 (CD4*: 54.4% and CD8*: 92.2%) but only marginally produced
the anti-inflammatory cytokines IL-4, and IL-5 upon in vitro stimulation with PMA/
lonomycin (Figure 2). However, during treatment the TNF-a and IL-2 production
by the CCR10*CD4* and CCR10*CD8"* T cells was significantly diminished (Figure
2). This holds also true for the CCR10" T cells. When we determined the potential
inhibitory effect of tacrolimus on cytokine production by the CCR10* T cells in vitro,
tacrolimus addition to cultures of PBMC resulted in clear suppression of TNF-a and
IL-2 production in keeping with the clinical response (data not shown).

Figure 3 (previous page). Photographs and immunohistochemical analysis showing the modifica-
tion of histological features during treatment with tacrolimus.

The patient presented with erythematous skin lesions, which upon topical tacrolimus treatment resulted in
significant cutaneous improvement. Informed consent from the parents was given for photograph usage.
Before treatment a skin biopsy showed a markedly active lesion with prominent epidermal hyperplasia
(as displayed by the haematoxylin and eosin, H&E, stain), a large infiltrate of both CD4*(green colour
depicting absence of CD8 on CD3 T cells) and CD8* T cells (yellow due to co-localisation of CD3, green
and CD8, red), a reduced epidermal expression of CD1a cells (red) and a diffuse and strong expression
of CCL27 (single enzymatic staining detected by the brown colour) in the epidermis. During treatment,
normal skin histology was restored with an increased number of epidermal CD1a cells, only small groups
of infiltrating T cells and basal expression of CCL27. The dotted white line represents the epidermal/
dermal border.

47



Chapter 3

Discussion

We have described the case of an OS patient, OS1, displaying typical OS immuno-
logical features and presenting with early onset erythrodermia. One striking feature
of the peripheral blood T cells of OS1 and OS2, was the high percentage of both
CD4 and CD8 T cells expressing CCR10. Although CCR10 has been clearly associ-
ated with the homing of CD4* T cells to the skin®°, few reports show any involve-
ment on CD8* T cells™. To date, studies analysing the T cell infiltrates in other skin
diseases such as psoriasis and atopic dermatitis indicated that CCR10 is selectively
expressed on CD4* T cells™2. Thus, this is the first report showing the presence of
such a large percentage of CD8*CCR10* T cells in an inflammatory skin disorder.
Further geno- and phenotyping of both the CD4* and CD8*CCR10* T cells showed
that these polyclonal T cells were all CD45R0O", mainly HLA-DR* and co-expressed
CLA, confirming their activated state and skin-tropism.

Tacrolimus is an immunosuppressive drug that is effective in the treatment of various
skin diseases such as psoriasis and atopic dermatitis’®. Although its inhibition of
intracellular signalling pathways resulting in a lack of cytokine gene expression
and T cell activation is well documented'#, emerging evidence indicates that
immunosuppressive drugs can down-modulate chemokine or chemokine receptor
expression, preventing migration of T cells to the inflammatory site'>"". Treatment of
0S1 with topical tacrolimus not only resulted in clear clinical improvement of his skin
but also in a large decrease in the percentage and absolute numbers of circulating
CD4*CCR10* and CD8"*CCR10* T cells. This seems to contrast with a previous
report where administration of oral tacrolimus failed to control the erythrodermia in a
child with OS". Whilst achieving similar blood levels of tacrolimus (between 1.8 and
4.4 ng/mlin this reported case compared to between 1.9 and 12.8 ng/ml in OS1) the
main difference seems to be the route of administration of tacrolimus leading to the
highest concentration in the skin when topically applied. The clinical improvement in
the skin and substantial decrease in skin-homing T cells in the peripheral blood of
0S1 following treatment, was reflected by a clear reduction of activated T cells in the
affected skin as well as a marked decrease in the expression of the CCR10 ligand,
CCL27. As would be expected, treatment with tacrolimus was also associated with
a reduced production of the inflammatory cytokines TNF-a and IL-2 by peripheral
blood T cells. Therefore, reduction in dermal T cell numbers could be explained by
several observations from OS1. Firstly, TNF-a is known to stimulate the production
of CCL27 by keratinocytes'®'®. Thus, the reduction of TNF-a expression may have
caused the decline of CCL27 expression in the skin leading to a subsequently
diminished recruitment of T cells. It is also possible, that tacrolimus has a direct effect
on CCR10 expression by T cells, as has been shown for other immunosuppressive
drugs. However due to limited patient material we were unable to test this.

In summary, our findings illustrate that topical treatment with tacrolimus has the
potential to reduce a CD4/CD8 T cell mediated skin inflammatory process by
a mechanism which involves down-regulation of skin specific chemokines and
chemokine receptors.
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Material and Methods
Flow Cytometry and intracellular cytokine staining

PBMC were stained for flow cytometry using an unlabeled anti-CCR10 primary
antibody (clone 36; DNAX Research Inc, Palo Alto, CA) visualised with either a
goat anti-mouse IgG1-PE or -FITC conjugated secondary antibody (Southern
Biotechnology Associates Inc. Birmingham, Alabama). The cells were also stained
with peridinin chlorophyll protein-cyanin 5.5 (PerCP-Cy5.5)-conjugated anti-CD4 (BD
Biosciences, San Diego, CA, USA), allophycocyanin (APC)-conjugated anti-CD8
(Immunotech, Marseille, France) and FITC-conjugated CD45R0O (DAKO, Glostrup,
Denmark), FITC-conjugated HLA-DR and CLA (BD Pharmingen, San Diego, CA).
Staining for intracellular cytokines was performed as described previously®. After
using the Fix and Perm permeabilisation kit (Caltag, Burlingame, CA) cells were
stained with PE-conjugated cytokines: anti-IFN-y, anti-TNF-a, anti-IL-2, anti-IL-4,
or anti-IL-5 (BD Biosciences). Flow cytometry was performed on a FACSCalibur
(Becton Dickinson Immunocytometry Systems, San Jose, CA) and data analysis
using CellQuest software.

Immunohistochemistry

Immunohistochemical analysis of tissues sections was performed as described
previously®. Double stainings with cell-specific markers (CD1a; mouse IgG1, CD4;
mouse 1gG2a; Neomarkers (Fremont, CA, USA), CD8; mouse IgG2b; Novocastra
(Newcastle upon Tyne, UK), CD3; rabbit IgG; DAKO) were detected by fluorescence
using the relevant secondary goat anti-mouse or goat anti-rabbit isotype specific
Alexa Fluor 488, Alexa Fluor 647 or Alexa Fluor 546 secondary antibodies (Invitrogen,
Carlsbad, CA, USA). Results were analysed by confocal microscopy using a Carl
Zeiss Microlmaging, Inc. LSM 510 confocal microscope. In the case of the single
enzymatic stains, CCL27 (mouse IgG2a; R&D Systems, Abingdon, UK) was detected
using a goat anti-mouse-biotin labeled secondary antibody (DAKO) followed by
StreptABComplex/horseradish peroxidase (DAKO) and finally diaminobenzidine
(DAB) detection. For all stainings replacement of the primary antibodies by PBS/
BSA 1% was used as a negative control. Under these conditions no specific staining
was identified.

Conflict of Interest
The authors state no conflict of interest.
Informed consent was obtained from the parents regarding the use of photographs.

Institutional approval is provided to use left over biological material obtained for
diagnostic purposes for related research in line with the Helsinki guidelines.
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Abstract

Graft-versus-host disease (GvHD) is a serious complication of allogeneic stem cell
transplantation (SCT) affecting the skin, gut and liver. The involvement of distinct
organs suggests a role for tissue-specific chemokines and their receptors in directing
activated donor T cells to these sites. In this study the potential involvement of the
skin-specific CCL27/CTACK-CCR10 interaction was investigated in 15 paediatric
SCT patients with skin GvHD. During the course of skin GvHD, peripheral blood T
cells from these patients contained a high proportion of CD4*CCR10* T cells that
disappeared after the GvHD was resolved. These cells were CD45R0O", expressed
additional skin homing markers (cutaneous lymphocyte-associated antigen and
CCR4), and produced the T cell helper type 1-cytokines tumour necrosis factor-a
and interleukin-2. The increase in CD4*CCR10* T cells was absent in SCT patients
without GvHD. Immunohistochemical investigations showed CD4*CCR10* T cells in
the GvHD skin biopsies of the same patients, but not in the gut biopsies of patients
also suffering from gut GvHD. The infiltration of CD4*CCR10* T cells in the GvHD-
affected skin correlated with an enhanced epidermal expression of CCL27/CTACK,
the ligand for CCR10. These findings support the involvement of CCL27/CTACK-
CCR10 interaction in recruiting CD4* T cells to the skin, thus contributing to the
pathogenesis of acute GvHD.

Introduction

Allogeneic stem cell transplantation (SCT) is a well established and effective
therapy for various haematological malignancies and inherited disorders'. However,
the success of SCT is hampered by the occurrence of lifethreatening graft-versus-
host disease (GvHD), which manifests as progressive immune destruction of skin,
intestines and liver?. Matching patient and donor for human leucocyte antigens
(HLA) significantly reduces the risk for GvHD. Nonetheless, despite T cell depletion
and pharmacological GvHD prophylaxis, GvHD remains a frequently occurring
complication?.

Acute GvHD is due to the recognition by alloreactive donor T cells of major
histocompatibility complex (MHC) disparities or of minor histocompatibility antigens
presented by host MHC proteins®. In order to induce GvHD, alloreactive donor T cells
must first migrate to a particular tissue site where they exert their effector function.
As migration of immune cells is regulated by chemokines and their receptors®, it
is likely that these molecules also control the selective migration of activated
alloreactive T cells to distinct organs in GvHD. To date, all the work investigating the
involvement of chemokines in GvHD has been carried out in experimental murine
models. Although the elevated expression of various proinflammatory chemokines,
such as CCL2/MCP-1, CCL3/MIP-1-a, CCL4/MIP-1-b, CCL5/RANTES, CXCL9/MIG
and CXCL10/IP-10 has been demonstrated in the target organs of GvHD®?%, further
investigations into the exact relevance of these chemokines during GvHD are limited.
In one study, blockade of T cell migration into the liver, using an anti-CCRS5 antibody,
downmodulated GvHD activity at this tissue site, thus illustrating that the specific
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expression of particular chemokine receptors and production of their corresponding
ligands in GvHD target organs does indeed appear to be important in the recruitment
of alloreactive T cells®®,

Despite the fact that the skin is an early target of GvHD and usually precedes
intestine and liver involvement, until now there has been little data to show the
involvement of chemokines and their receptors in the pathogenesis of skin GvHD.
The mechanisms mediating memory T cell recruitment to the skin have now
been fairly well characterised®. T cells homing to the skin express the cutaneous
lymphocyte-associated antigen (CLA) that allows them to interact with E-selectin
on endothelial cells''?. Although CLA mediates specific tethering of the T cells,
the activation and subsequent diapedesis is due to specific chemokines™. Several
chemokines and their receptors are associated with skin-homing CD4* T cells,
namely CCR4 and its ligands CCL17/TARC and CCL22/MDC, and CCR10 together
with its ligand CCL27/CTACK. CCL17/TARC has been shown to be constitutively
expressed and hyperinducible on cutaneous venules', while CCL27/CTACK is
produced by keratinocytes™. It is thought that the CCL17/TARC-CCR4 pathway
recruits lymphocytes into the dermis, whereas the CCL27/CTACK-CCR10 pathway
may guide them all the way up to the epidermis, thus suggesting that at least one
of these chemokine-mediated pathways must be functional to effectively recruit
T cells to inflammatory skin''". There is now considerable evidence showing the
involvement of these chemokines and their receptors in various inflammatory skin
diseases, including atopic dermatitis, psoriasis and atopic eczema'®18-20,

To date, no definitive roles have yet been identified for specific chemokine/receptor
interactions in the recruitment of activated donor T cells to the skin during acute
GvHD. Thus, in the present study, the potential role of CCR10 and its ligand CCL27/
CTACK was investigated in paediatric patients suffering from skin GvHD. The
finding of a significant population of CD4*CCR10* T cells not only in the peripheral
blood of these patients but also within the skin GvHD sites, along with an enhanced
expression of CCL27/CTACK, supports the involvement of CCL27/CTACK-CCR10
interactions in the development and pathogenesis of skin GvHD.

Materials and methods
Patients

After obtaining informed consent, sequential blood samples were obtained from 23
paediatric patients who had received an allogeneic SCT for the treatment of a variety
of haematological malignancies. Fifteen of these patients suffered an acute GvHD
involving the skin. Eight of these patients also suffered from gut GvHD involvement.
Another eight patients did not experience acute GvHD at all. A combination of
ciclosporin A (2 mg/kg/d intravenously) and a short course of methotrexate (10 mg/
m2, at days +1, +3 and +6 after SCT) was used as GvHD prophylaxis in all patients.
Acute GvHD was diagnosed and graded in all patients according to the standard
Glucksberg criteria?'. Systemic treatment of acute GvHD consisted of continuation of
ciclosporin A (2 mg/kg/d intravenously or 6 mg/kg/d orally) and methylprednisolone (2
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mg/kg/d initial dose). Medication was tapered following clinical improvement. Table
| outlines the transplantation-related details of the patients involved in this study.
Skin and gut biopsies were taken from the affected sites when GvHD was suspected
based on clinical criteria?', just before treatment was started. The biopsies were then
frozen in TissueTeck and stored at -80°C or paraffin embedded.

For chimaerism analyses, mononuclear cells and granulocytes were isolated from the
bone marrow and peripheral blood at regular intervals post-transplant. Percentages
of donor-host chimaerism for recipients of sex-mismatched SCT were evaluated by
fluorescent in situ hybridisation for X and Y chromosomes, while for recipients of sex-
matched SCT, fluorescent-based multiplex polymerase chain reaction amplification
of short-tandem repeat sequences discriminative of donors and hosts was used. All
patients investigated in this study displayed full donor chimaerism post-transplant.
This study was approved by the Review Board of the LUMC for medical ethics.

Flow cytometry

Primary antibodies used for flow cytometry were as follows: anti-CCR1, CCR2,
phycoerythrin (PE)-conjugated anti-CCR3, CCR5, CCR6, CCR9, CXCR4, CXCR5
and CXCR6 (R&D Systems, Minneapolis, MN, USA); anti-CCR4, CCR7, CXCR3
and fluorescein isothiocyanate (FITC)-conjugated anti-CLA (BD Pharmingen, San
Diego, CA, USA); CD103-FITC, CD62L-FITC and CD45RO-FITC (Dako, Glostrup,
Denmark); CCR8 (Alexis Biochemicals, San Diego, CA, USA); CCR10 (clone 37;
DNAX Research Institute, Palo Alto, CA, USA); CD25-FITC, HLA-DR-FITC, CD69-
FITC and CDS57-FITC (BD Biosciences, San Jose, CA, USA). For detection of
the unlabelled primary antibodies, the cells were stained with the relevant PE- or
FITC-conjugated isotype-specific secondary antibody (Southern Biotechnology
Associates Inc., Birmingham, AL, USA). For phenotypic determination, the cells
were then stained with peridinin chlorophyll protein-cyanin 5.5 (PerCP-Cy5.5)-
conjugated anti-CD4 (BD Biosciences) and allophycocyanin (APC)-conjugated anti-
CD8 (Immunotech, Marseille, France). Intracellular detection of perforin expression
was analysed on CCR10* cells by first staining for CCR10 followed by a PE-
conjugated mouse 1gG1. The cells were then permeabilised using the Fix and Perm
permeabilisation kit (Caltag, Burlingame, CA, USA) and stained with the following
directly conjugated antibodies: perforin-FITC (Holzel Diagnostika, Koln, Germany),
CD4-PerCP-Cy5.5 (BD Biosciences) and CD8-APC (Immunotech). Four-colour flow
cytometry was performed on a fluorescence-activated cell sorting (FACS) Calibur
(Becton Dickinson Immunocytometry Systems, San Jose, CA, USA) using cellquest
software.

Immunohistochemistry

Four micrometer cryosections of skin or gut biopsies were fixed in cold acetone,
dried at room temperature for 5 min, and then rehydrated for 5 min in phosphate-
buffered saline (PBS). Tissues were then blocked with 10% normal goat serum
(Dako) for 30 min before incubation with primary unconjugated antibodies for 2—-3 h
at 4°C. Double stains with primary anti-chemokine receptors (CCR10; clone 1908;
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DNAX), in combination with cell-specific markers, CD4 (mouse IgG2a; Neomarkers,
Fremont, CA, USA), CD8 (mouse IgG2b; Novocastra, Newcastle upon Tyne, UK),
CDa3 (rabbit IgG; DAKO), CD45R0O (mouse IgG2a; Dako), Ki67 (mouse IgG1; Dako)
were detected fluorescently using the relevant secondary goat anti-mouse or goat
anti-rabbit isotype-specific Alexa Fluor 488 or Alexa Fluor 546 secondary antibodies
(Molecular Probes, Leiden, the Netherlands). Replacement of the primary antibodies
by PBS/bovine serum albumin 1% was used as a negative control. Results were
analysed by confocal microscopy using LSM 510 confocal microscope (Carl Zeiss
Microlmaging, Inc., Thornwood, NY, USA).

In the case of single enzymatic stains, CCL27/CTACK (goat I1gG; R&D Systems)
was incubated overnight at room temperature on paraffin sections that had been
subjected to heat-mediated antigen retrieval in a microwave using citrate buffer (10
mmol/l, pH 6.0). CCL17/TARC (rabbit IgG; Peprotech, London, UK) was incubated
overnight on cryosections at 4°C. The bound primary antibodies were detected using
a rabbit anti-goat-biotin or a swine anti-rabbit-biotin labelled secondary antibody
(Dako), respectively, followed by StreptABComplex/horseradish peroxidase (Dako)
and finally VECTOR NovaRed (Vector Laboratories, Burlingame, CA, USA) detection.
To test the specificity of immunostaining, the primary antibody was omitted. Under
this condition no staining was identified.

Intracellular cytokine staining

Flow cytometry analysis for intracellular cytokines was performed by stimulating
peripheral blood mononuclear cells (PBMC) with a combination of 200 ng/ml phorbol
myristate acetate (PMA) and 500 ng/ml of lonomycin (Sigma-Aldrich, St Louis, MO,
USA) for 1 h. Control PBMC were left unstimulated. Stimulated and non-stimulated
cells were then cultured for 16 h at 37°C and 5% CO, in the presence of 5 Ip/ml
Brefeldin A (Sigma-Aldrich). Cells were then aliquoted and stained with anti-CCR10
(DNAX), followed by mligG-APC (BD Pharmingen) and then directly labelled with
anti-CD3-PerCP-Cy5.5 and CD4-FITC. After washing, the cells were permeabilised
using the Fix and Perm permeabilisation kit (Caltag) and stained with the following
PE-conjugated cytokines: anti-interferon (IFN)-y, anti-tumour necrosis factor (TNF)-a,
anti-interleukin (IL)-2, anti-IL4, anti-IL-5, anti-IL- 10, anti-IL-12 (BD Biosciences) and
anti-transforming growth factor (TGF)- (IQ Products, Groningen, the Netherlands).
Four-colour flow cytometry was performed on a FACS Calibur using cellquest™
software (Becton Dickinson).

Table | (previous page). Overview of all SCT patients and their transplantation-related details.
IRD, Identical Related Donor; MUD, Matched Unrelated Donor; ORD, Other Related Donor; CB, Cord
Blood; MSC, Mesenchymal Stem Cells; ALL, Acute Lymphoblastic Leukaemia; AML, Acute Myeloid
Leukaemia; OP, Osteopetrosis; SAA, Severe Aplastic Anaemia; OS, Omenn Syndrome; aCML, atypi-
cal Chronic Myeloid Leukaemia; MDS RAEBt, Myelodysplastic Syndrome; CHS, Chediak-Higashi; WAS,
Wiskott-Aldrich Syndrome; Thal, Homozygote B Thalassaemia; ANLL, Acute Non Lymphocytic Leukae-
mia; TCD, T cell depletion; Cy, cyclophosphamide; VP16, Etoposide; TBI, Total Body Irradiation; ATG,
Antithymocyte Globulin; OKT3, muromonoab-CD3; MMF, Mycophenolate Mofetil; Bu, Busulphan; Mel,
Melphalan; Flu, Fludarabin; MTX, Methotrexate; CsA, Cyclosporine A; MP, Methylprednisolone. Absolute
numbers are in counts per pl.
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Statistical analysis

Flow cytometric data on CCR10 expression are expressed as median and range.
Differences in CCR10 expression between healthy controls, SCT patients without
GvHD and GvHD patients were first assessed using the Kruskal-Wallis test. When
significant (P < 0.05), pair-wise comparisons were performed using the Mann-
Whitney test. The Mann-Whitney test was also performed to analyse the absolute
CD4 and CCR10 numbers in the peripheral blood of SCT patients with and without
GvHD.

Results
Identification of peripheral blood CD4* CCR10* T cells in skin GvHD patients

In order to identify the tissue-homing capability of T cells involved in acute GvHD, the
expression of chemokine receptors and adhesion molecules was studied on T cells
in peripheral blood taken from 23 paediatric patients at regular intervals following
allogeneic SCT. Due to the fact that all the 15 GvHD patients included in this study
suffered from skin GvHD, particular attention was paid to the previously described
skin-associated homing markers, namely CLA and CCR10. Interestingly, there was
no significant increase of any of these skin-homing markers on the peripheral blood
CD8* T cells of all the GvHD patients studied. In contrast, however, this analysis
revealed a significant increase in the percentage of CD4*CCR10* T cells in the
peripheral blood of all patients (15/15) who had been diagnosed with GvHD of the
skin. At the peak of this response, i.e. 0-27 weeks after GvHD onset, the percentage
of CD4"* T cells that expressed CCR10 ranged from 14.4% to 46.3% (median: 21.7%)
in the 15 skin GvHD patients studied (Table I). Figure 1A shows the increase in
CD4*CCR10* T cells in a representative skin GvHD patient (patient 3 in Table I). This
increase in CCR10 expression on CD4+ T cells was statistically significant (Kruskal-
Wallis: P < 0.05, Mann-Whitney: P < 0.001) compared with that seen on the CD4* T
cells of SCT patients without GvHD during the same period after transplant (median:
7%; range from 3.3% to 14%; n = 8 studied) and healthy paediatric donors (median:
2.8%; range from 0.6% to 6.5%; n = 13 studied, Figures 1A and D).

The relative increase in CD4*CCR10* T cells in skin GvHD patients also coincided
with an increase in the percentage of CD4*CLA* T cells (Figure 1B), although the
kinetics of CCR10 and CLA disappearance were not completely similar in all patients.
Indeed, multicolour flow cytometry showed that >50% of the CD4*CCR10* T cells co-
expressed CLA (Figure 1C).

The absolute numbers at or near the peak of CCR10 expression are given in Table
| for those patients for whom this data were available. The median of the absolute
CD4 numbers in the SCT patients without GvHD was significantly higher (Mann-
Whitney: P < 0.05) than in the GvHD patients. However, there was no significant
difference between the absolute CD4*CCR10* numbers of these two patient groups.
The expression of CCR10 by CD4* peripheral blood T cells appeared to correlate with
the duration of skin activity in the patients with skin GvHD. For the majority of GvHD
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patients studied (10/15), skin GvHD activity resolved very rapidly following systemic
steroid treatment and this was reflected by increased percentages of peripheral blood
CD4*CCR10* T cells for only a short period of time (mean: 14 weeks). Figure 2A
shows an example of the typical kinetics of the CD4*CCR10*T cell population from
a representative patient (patient 4 in Table I). In contrast, in the case of a skin GvHD
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Figure 1. Increased percentages of CD4* T cells expressing the skin-homing markers CCR10
and cutaneous lymphocyte-associated antigen (CLA) in a representative patient with skin graft-
versus-host disease (GvHD).

(A) Fluorescence-activated cell sorting (FACS) analysis showing an increased percentage of CD4*CCR10*
T cells amongst peripheral blood lymphocytes of a representative patient with skin GvHD (patient 3 in Table
1, 6 weeks post-stem cell transplantation (SCT)])compared with a SCT patient without GVHD (patient 17 in
Table |, 7 weeks post-SCT) and a healthy control (normal healthy donor). The percentage of CD4*CCR10*
T cells remained high in the peripheral blood of the skin GvHD patient for several months following the
initial diagnosis of skin GvHD. (B) The increased percentage of CD4*CCR10* T cells also coincided with
an increase in CD4*CLA* T cells in the same patient. (C) Multicolour FACS analysis showed that the
CD4*CCR10" T cells highly expressed CLA. In contrast, there was negligible expression of CCR10 and
CLA on the CD8* T cells of the same skin GvHD patient. The numbers in the FACS plots represent the
percentage of CCR10 (A) or CLA (B) positive cells within the CD4* T cells (top right quadrant) and CD4)
T cells (bottom right quadrant) respectively; (C) percentage of CLA positive cells in CCR10* (top right
quadrant) and CCR10) T cells (bottom right quadrant). (D) Median and range of CD4*CCR10* T cells
at the peak of expression of all healthy paediatric donors (n = 12), SCT patients without GvHD (n = 8)
and GvHD patients (n = 15). Two outliers from the GvHD group are shown as closed circles. Differences
between the groups were statistically analysed using the Kruskall-Wallis and Mann-Whitney test and were
significantly different (P < 0.001) as indicated by the asterisk.

61



Chapter 4

patient who did not respond immediately to systemic steroid treatment and showed
protracted skin activity (patient 8 in Table I), increased percentages of peripheral
blood CD4*CCR10* T cells were observed for a much longer period of time (26
weeks, Figure 2B). The specificity of the increased percentages of CD4*CCR10* T
cells to the disease activity was further demonstrated by the fact that SCT patients
without skin GvHD showed no increase in peripheral blood CD4*CCR10* T cells
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Figure 2. Increased percentages of CD4*CCR10* peripheral blood T cells correlate with duration
of disease activity in the skin.

(A) Fluorescence-activated cell sorting (FACS) analysis showing a rapid increase and decrease in the
percentage of CD4*CCR10* peripheral blood T cells in a stem cell transplantation (SCT) patient whose
skin graft-versus-host disease (GvHD) responded rapidly to treatment (patient 4 in Table I). (B) In contrast,
another skin GvHD patient who did not respond immediately to steroid treatment and showed protracted
skin activity (patient 8 in Table 1), had increased percentages of peripheral blood CD4*CCR10* T cells for
a prolonged period of time. (C) Representative FACS analysis of a SCT patient without any skin GvHD
activity (patient 16 in Table I) shows no increase in the percentage of peripheral blood CD4*CCR10* T
cells following transplantation.
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following transplantation. A representative patient is shown in Figure 2C (patient 16
in Table I).

Additional phenotypical analysis of the CD4*CCR10* T cells (Figure 3) showed that
this population stained positive for the memory T cell marker, CD45R0O* (mean: 96
1 2.4%). These CD4*CCR10* T cells clearly displayed a profile of surface markers
indicating preferential homing to the skin, as evidenced by their low expression of
the lymphoid homing marker CCR7 and gut-associated homing integrin CD103, and
high expression of the skin homing receptors CLA (mean: 74.4 + 23.8%) and CCR4
(mean: 88.9 £ 6.6%). Indeed, the CD4*CCR10* T cells expressed significantly higher
levels of these skin homing molecules than the CD4*CCR10- population. Analysis of
other chemokine receptors whose ligands have previously been found in inflamed
skin showed that the CD4*CCR10* T cells displayed fairly high levels of CXCR3
(mean: 25.5 £ 17.0%), although still lower than the CD4*CCR10- T cells (mean: 48 +
17.0%), and very low levels of CCR6 (mean: 1.4 + 1.3%). Stains were also performed
to elucidate the activation state and possible function of the CD4*CCR10* T cells.
Analysis of the expression of the activation markers CD25 and HLA-DR showed
that the CD4*CCR10* T cells displayed a higher expression of these markers when
compared with the CD4*CCR10- T cell population.
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Figure 3. Comparison of the phenotype of CD4*CCR10* and CD4*CCR10" T cells in patients with
skin graft-versus-host disease (GvHD).

Multicolour fluorescence-activated cell sorting analysis of the CD4*CCR10* and CD4*CCR10- T cell
populations at the peak of the CCR10 expression showed a significantly increased expression of the skin-
homing markers cutaneous lymphocyte-associated antigen and CCR4 and the activation markers CD25
and human leucocyte antigen-DR on the CD4*CCR10* T cell population compared with the CD4*CCR10-
T cell population. The data are expressed as mean + SD of results obtained from n = 8 patients with skin
GvHD.
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CD4*CCR10* T cells infiltrate skin but not gut GVHD sites

To determine whether the CD4*CCR10* T cells were also present in the skin of
patients with acute GvHD, biopsies were taken from the affected skin sites of these
patients early after the first clinical signs of GvHD. Multicolour immunofluorescent
staining was performed on cryosections from four GvHD patients using antibodies
specific for T cell markers in combination with either CCR10 or other phenotypic
markers (Figure 4A-E). These results showed that there was a mixture of CD4* and
CD8* T cells infiltrating GvHD skin, but only the CD4* T cells expressed CCR10
whereas the CD8* T cells did not, reflecting what was seen in the peripheral blood.
Analysis of normal skin and skin from a transplant patient that did not suffer from
GvHD showed that there was no significant T cell infiltrate in either biopsy (data
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Figure 4. Immunohistochemical analysis of T cells infiltrating sites affected by graft-versus-host
disease (GvHD).

(A) Double immunofluorescent staining on a skin GvHD biopsy of a representative patient affected by skin
and gut GvHD, identified a mixture of both CD4* (red) and CD8* (green) T cells infiltrating skin GvHD sites.
(B) The CD4* T cells expressed CCR10 as evidenced by the yellow colour produced due to co-localisation
of CD4 in red and CCR10 in green. (C) In contrast, the CD8* T cells (green) did not express CCR10 (red).
(D) The majority of the T cells in the skin GvHD site were CD45R0O* (yellow) but none of them expressed
the proliferative marker Ki67 (green) (E). There was, however, Ki67 expression by the epidermal cells
in the basal layer of the skin. The dotted white line denotes the epidermal—-dermal junction. (F) Analysis
of CD3* T cells (red) and CCR10 (green) in the gut GvHD biopsy from the same patient showed no co-
localisation of these markers. Magnification, 250x.
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Figure 5. Expression of the skin-specific chemokine CCL27/CTACK and CCL17/TARC in normal
versus graft-versus-host disease (GvHD) affected skin biopsies.

Single enzymatic staining for CCL27/CTACK and CCL17/TARC (detected by the red/brown colour)
showed an enhanced expression of these chemokines in representative GvHD skin compared with
skin of a healthy control and of a stem cell transplantation patient who did not suffer from GvHD. The
CCL27/CTACK was clearly enhanced in the epidermis of the GvHD skin and both CCL27/CTACK and
CCL17/TARC were expressed by the cellular infiltrate in the dermis and epidermal junction of GvHD skin.
Omission of the primary antibody was used to show the specificity of the staining (negative controls). The
dotted line represents the epidermal-dermal junction. Magnification, 600x.

not shown). Further analysis of the T cells infiltrating GvHD skin confirmed that the
majority were indeed CD45R0O* and none of the T cells expressed the proliferative
marker Ki67. The only expression of Ki67 was due to epidermal cells within the basal
layer. To further demonstrate the specificity of the CD4*CCR10* T cells for the skin
GvHD sites, gut biopsies from four of the skin GvHD patients who also suffered from
a gut GvHD were investigated for the presence of CD3*CCR10* T cells. All four gut
GvHD biopsies consistently showed no co-localisation of CD3 and CCR10, thus
confirming that CCR10 is only involved in the homing of T cells to skin and not gut
GvHD sites (Figure 4F).

The selective presence of CD4*CCR10* T cells in the skin GvHD biopsies of patients
with skin and gut GvHD strongly supported preferential migration of these T cells to
the skin. Therefore, expression of both the CCR10 ligand, CCL27/CTACK, and the
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CCR4 skin-associated ligand, CCL17/TARC, was also investigated in skin GvHD
biopsies. Single enzymatic staining for these chemokines was also performed on
normal skin from healthy donors and from SCT patients without GvHD (Figure 5). As
previously reported'>'®, CCL27/CTACK was only weakly expressed by keratinocytes
in the epidermis of unaffected skin whereas CCL17/TARC was expressed by
a subset of dermal vessels and cells just below the epidermal-dermal junction?.
In the skin of SCT patients who did not suffer from GvHD, the expression of both
CCL27/CTACK and CCL17/TARC was only slightly increased, whereas in the skin of
GvHD patients, the expression of both these ligands was clearly enhanced. CCL27/
CTACK expression was greatly upregulated within the epidermis and there was also
expression of both CCL27/CTACK and CCL17/TARC by infiltrating lymphocytes.

Intracellular cytokine staining reveals the production of TNF-a and IL-2 but not IFN-y
by CD4*CCR10* T cells in GvHD patients

To try and elucidate the possible function of the CD4*CCR10* T cells, the produc-
tion of cytokines with or without stimulation of the cells with PMA/ionomycin was
investigated at the peak of CCR10 expression (mean: 16.5 weeks post-SCT) in the
GvHD patients for whom enough material was available (n = 4, patients 1, 3, 8 and
10 in Table I). In these patients, the CD4*CCR10* T cells were shown to consistently
produce TNF-a (range, 5.1-35.2%; mean, 18.1 £ 13.1%) and IL-2 (range, 4.6-27.2%);
mean 13.7 £ 10.8%) upon stimulation (Figures 6A and C). In the SCT patients with-
out GvHD (n = 5, patients 16, 17, 19, 21 and 23 in Table I; mean: 23 weeks post-
SCT), the CD4*CCR10* T cells produced TNF-a (range 39.6-71.2%; mean 55.8%
14.9%), IL-2 (range, 37.7-58.5%; mean 49.7 £ 9.9%) and interestingly, IFN-y (range,
6.3-36.4%; mean 25.1 + 12.4%, Figures 6B and D). In contrast, in the GvHD patients
IFN-y was only produced by the CD4*CCR10- T cells, as shown in the FACS plots of
a representative patient in Figure 6C. The overall production of cytokines by CD4* T
cells (both CCR10* and CCR10) of SCT patients without GvHD was higher than in
the GvHD patients (Figures 6A and B). This may be explained by the prednisolone
treatment received by all GvHD patients (n = 4). In one patient (patient 8 in Table
), sufficient cells were available to study cytokine expression at the time of GvHD
before prednisolone treatment was started. In this case, the percentages were 2.5
times higher than those during treatment but the same expression pattern was seen,
i.e. only TNF-a and IL-2 were expressed and not IFN-y (data not shown). Neither
CD4*CCR10* nor CD4*CCR10" T cell populations of both SCT patients with and
without GvHD produced any of the T cell helper type 2 (Th2) cytokines IL-4 and IL-5
or the suppressive cytokines IL-10 and TGF-§ upon stimulation (data not shown).
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Fig 6. Intracellular cytokine staining reveals production of TNF-a and IL-2 but not IFN-y by the
CD4*CCR10* T cells.

(A) Mean intracellular staining of cytokines by CD4*CCR10* T cells at the peak of the CCR10 expres-
sion [mean: 16.5 weeks post-stem cell transplantation (SCT)] of n = 4 graft-versus-host disease (GvHD)
patients (patients number 1, 3, 8 and 10 in Table I) and (B) of n = 5 SCT patients without GvHD (patients
numbers 16, 17, 19, 21 and 23 in Table |, mean: 23 weeks post-SCT), with (+) and without (-) PMA/iono-
mycin stimulation in vitro. (C) Representative FACS analysis of the cytokine production by CD4*CCR10*
peripheral blood T cells from a patient with skin GvHD (patient number 1 in Table 1) and (D) a SCT patient
who did not suffer from GvHD (patient number 17 in Table I). The numbers represent the percentage of
CD4*CCR10* (top right quadrant) or CD4*CCR10- (bottom right quadrant) T cells that express a particular
cytokine.

Discussion

Acute GvHD is a major complication of allogeneic SCT resulting in morbidity and
mortality. Thus, investigating the mechanisms behind the migration of alloreactive
T cells to the sites of GvHD is fundamental in understanding the pathogenesis and
course of GvHD. While chemokines and their receptors have been studied extensively
in murine GvHD models, this is the first study to report on their involvement in human
GvHD. As skin is an early target of GvHD, we focused on the skin-homing chemokine
receptor CCR10 and its ligand CCL27/CTACK.

In this study, analysis of chemokine receptor expression by the peripheral blood T
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cells of paediatric skin GvHD patients showed a clear increase in the percentage
of CD4* T cells expressing CCR10. This relative increase in CD4*CCR10* T cells
was clearly specific for the skin GvHD patients, as the SCT patients without GvHD
did not show such an increase in this population of T cells. This was independent
of any transplantation-related factors as both groups with and without GvHD were
similarly heterogeneous in their treatment protocol. Furthermore, the appearance of
CD4* CCR10* T cells in the circulation was independent of the presence or absence
of gut GvHD and the duration of the increased percentages of this population in the
peripheral blood of skin GvHD patients appeared to correlate with the disease activity
in the skin. Analysis of the absolute numbers of lymphocytes revealed that the CD4*
T cell population was dramatically affected by the prednisolone treatment, causing
lymphopenia in all the GvHD patients compared with the non-GvHD patients. In this
manner the proportion of CD4*CCR10* T cells in the circulation of GvHD patients
increased although the absolute numbers did not change significantly. This greater
proportion of CD4*CCR10* T cells in the circulation of the GvHD patients, together
with the upregulated expression of the ligand for CCR10, CCL27, in the skin of these
patients, results in the infiltration of this population in the skin. Further characterisation
of the CD4*CCR10* T cell population in the peripheral blood of skin GvHD patients
showed that they also highly expressed other skin-homing associated markers, such
as CLA and CCRA4. Interestingly, CD4*CCR10* T cells lack expression of CCR6,
which was recently reported to be involved in the development of GvHD across an
MHC class Il barrier in mice?®. Thus, this phenotype of CD4*CCR10* T cells clearly
indicated a preferential migration of these cells to the skin. This was confirmed by
immunohistochemical investigations showing the presence of CD4*CCR10* T cells
in the skin but not in gut GvHD biopsies of the same patients. Furthermore, there
was clearly an enhanced expression of the ligand for CCR10, CCL27/CTACK in the
epidermis of GvHD-affected skin compared to skin of SCT patients without GvHD
and of healthy controls. Interestingly, the lymphocytic infiltrate in the skin biopsies
also stained positive for CCL27/CTACK, raising the possibility that the infiltrating
cells themselves may contribute to the further recruitment and retention of CCR10*
T cells.

Direct evidence for the role of CCR10-CCL27/CTACK in T cell recruitment to the skin
has already been shown in lesional skin biopsies taken from patients suffering from
skin disorders, such as atopic dermatitis, psoriasis and nickel contact allergy. A strong
CCR10 expression was observed on skin-infilirating dermal leucocytes and intra-
epidermal lymphocytes, providing evidence for a role of CCR10 expressing T cells
in these diseases'''°, In all these diseases, the CCR10-expressing T cells were
CD4* and no CD8*CCR10* T cells could be detected. This is in keeping with a study
by Hudak et al?*, who showed that bloodderived CCR10* T cells are predominantly
within the CD4* T cell subset whereas CD8* T cells only have negligible expression
of CCR10. We also found the same in patients with skin GvHD after allogeneic SCT,
with CCR10 only being expressed at significant levels by the CD4* T cells in both the
peripheral blood and GvHD skin. Thus, the CD8" T cells must use other chemokine
receptor/ligand interactions to home to and enter the skin. Indeed, unpublished
work from our laboratory showed that the majority of T cells infiltrating GvHD skin,
both CD4* and CD8*, also expressed CXCR3, the ligands of which (CXCL9/MIG,
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CXCL10/IP-10 and CXCL11/I-TAC) have previously been shown to play a role in
attracting activated T cells to inflamed skin?°. The expression of CCL27/CTACK has
previously been reported to be increased in inflammatory conditions, such as atopic
dermatitis, psoriasis and contact dermatitis®'®. Our finding - that this is also true for
GvHD skin lesions, is in keeping with the fact that CCL27/CTACK has been shown
to be induced by IL-1 and TNF-a and, to a lesser extent, by IFN-y'5, all cytokines
associated with the initial inflammatory response in acute GvHD. In addition to
the presence of inflammatory cytokines, CCL17/TARC (the ligand for CCR4), was
reported to be significantly upregulated during the first week post-transplant in a
murine model of GvHD?. The present study in human skin GvHD also showed a
significant increase in the expression of this ligand in affected skin. This chemokine
was recently shown to augment the CCL27/CTACK production in keratinocytes that
have been prestimulated with TNF-a?’. This in turn would lead to an enhanced skin-
specific attraction of CCR10* T cells through CCL27/CTACK.

The T cells infiltrating skin GvHD sites were all confirmed to be memory T cells, as
evidenced by their expression of CD45R0O. However, none of these T cells expressed
the proliferative marker Ki67 in the skin GvHD site. This finding strongly suggests that
the T cells involved in GvHD do not arise from donor cell expansion in target organs,
such as the skin, but are in fact activated and expanded within the draining lymphoid
tissues before migrating to the skin. This is supported by experiments that have
used green fluorescent protein transgenic donor cells to track their migration during
the first week post-transplant in a fully MHC-mismatched murine allo-bone marrow
transplantation model?®. This study showed that, within hours of transplantation,
donor T cells partitioned to lymphoid tissues where the allogeneic T cells expanded
within 2-3 days. Following this period, allogeneic T cell numbers increased in GvHD
target organs?®.

In GvHD, the presentation of alloantigens of host origin induces the activation of
donor T cells and the subsequent production of cytokines. The T 1 cytokines are
preferentially produced and have been implicated in the pathophysiology of acute
GvHD?. In the present study, in vitro stimulation of the CD4*CCR10* T cell population
found in the peripheral blood of skin GvHD patients indeed resulted in production of
the T 1-cytokines TNF-a and IL-2 but not IFN-y. The production of TNF-a and IL-2
was reduced when compared with the CD4*CCR10* T cells of the SCT patients who
did not suffer from GvHD, probably due to the prednisolone treatment received by the
GvHD patients. In one patient, for whom material was available at the time of GvHD
before prednisolone treatment, the same expression pattern was seen; however, the
percentages were higher than during treatment. This suggests that prednisolone had
an effect on the level of cytokine production by these T cells but the lack of IFN-y
production was not due to the treatment. Considerable production of IFN-y was,
however, observed for the CD4*CCR10" T cells in SCT patients, irrespective of the
occurrence of GvHD, and for the CD4*CCR10* T cells of SCT patients without GvHD.
This is in keeping with the fact that high levels of IFN-y can prevent the occurrence
of GvHD?*. There was no expression by either the CD4*CCR10* or CD4*CCR10- T
cell population of IL-4, IL-5, IL-10 or TGF-3. Although the CD4*CCR10* T cells were
found to be perforin negative (data not shown), the fact that they produce TNF-a and
IL-2 upon activation could still suggest a potentially detrimental role for these cells
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in the pathophysiology of GvHD. Both TNF-a and IL-2 have been shown to have a
pivotal role in controlling and amplifying the immune response against alloantigens.
However, further in vitro work is needed to elucidate any, e.g. effector or regulatory,
function of the CD4*CCR10* T cell population during skin GvHD. The appearance of
this population after the onset of clinically apparent skin GvHD makes the possibility
of a regulatory role of these T cells attractive. In addition, more evidence for this role
lies in the fact that the CCR10 percentage remains high after clinical resolvement of
GvHD.

In summary, the present study has shown a role for the CCL27/CTACK-CCR10
interaction in the recruitment of activated donor CD4* T cells to sites of human skin
GvHD. Although this is probably not the only chemokine/chemokine receptor pair to
be involved in skin GvHD, as evidenced by the high expression of CCL17/TARC in
skin GvHD biopsies, identification of such specific chemokine/receptor interactions
involved in tissue-specific targeting of T cells to GvHD organs may become potential
targets for the development of novel strategies to prevent the occurrence of GvHD.
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Abstract

HY-specific T cells are presumed to play a role in acute graft-versus-host disease
(aGvHD) after female-to-male stem cell transplantation (SCT). However, infiltrates of
these T cells in aGvHD-affected tissues have not yet been reported. We evaluated the
application of HLA-A2/HY dextramers for the in situ detection of HY-specific T cells
in cryopreserved skin biopsy specimens. We applied the HLA-A2/HY dextramers on
cryopreserved skin biopsy specimens from seven male HLA-A2* paediatric patients
who underwent stem cell transplantation with confirmed aGvHD involving the skin.
The dextramers demonstrated the presence of HY-specific T cells. In skin biopsy
specimens of three male recipients of female grafts, 68% to 78% of all skin-infiltrating
CD8* T cells were HY-specific, whereas these cells were absent in biopsy specimens
collected from sex-matched patient-donor pairs. Although this study involved a small
and heterogeneous patient group, our results strongly support the hypothesis that
HY-specific T cells are actively involved in the pathophysiology of aGvHD after sex-
mismatched stem cell transplantation.

Introduction

Acute graft-versus-host disease (aGvHD) is a life-threatening complication of
allogeneic stem cell transplantation (SCT) mainly affecting the stem cell recipient’s
skin, liver, and/or gastrointestinal tract'. Matching the stem cell donor and recipient
for HLA significantly reduces the risk for aGvHD and chronic GvHD?. In the HLA-
matched SCT setting, the development of GvHD is caused by donor T cells specific
for ubiquitously expressed minor histocompatibility antigens®, such as the Y
chromosome-encoded HY antigens. Clinical results indicate that male recipients of
female stem cells are at the greatest risk for GvHD*.

Previous reports on the presence of HY-specific CD8* T cells in peripheral blood
samples of adult male patients who developed aGvHD after sex-mismatched
SCT?®*® suggest the involvement of these cells in the pathophysiology of GvHD. This
assumption is supported by results from in vitro studies using an ex vivo in situ skin
explant model in which HY-specific cytotoxic T lymphocytes (T, ) cause GvHD-like
tissue destruction when added to male skin tissues expressing the relevant HY-
presenting HLA class | molecules’. However, whether the presence of circulating
HY-specific CD8* T cells detected before and after the onset of aGvHD reflects an
active contribution of these cells to tissue destruction has remained unclear. We
applied a dextramer-based staining technique to retrospectively analyse the in
situ presence of HLA-A2/HY—specific CD8* T cells in archived cryopreserved skin
biopsy specimens from 7 HLA-A2* male paediatric patients who developed aGvHD
of the skin after undergoing allogeneic HLA-matched unrelated SCT with a male or
a female donor.
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Methods
Study participants

All skin biopsy samples analysed in this study were derived from HLA-A2* male
individuals and were collected after written informed consent was obtained in
accordance with the Declaration of Helsinki. Skin samples were collected from five
healthy adult volunteer donors and from seven paediatric patients who underwent
allogeneic SCT for the treatment of various hematologic and nonhematologic
disorders (Table 1). Patient selection was based on the expression of HLA-A2 by
patient and donor, the development of histologically confirmed aGvHD? involving the
skin and the availability of a cryopreserved skin biopsy specimen collected before
the initiation of first-line treatment with corticosteroids. All but two patients (UPN 567
and UPN 577) received a 10/10-matched (HLA-A, -B, -C, -DQ, and -DR) stem cell
graft from an unrelated donor. Three of the seven male patients (UPN 567, UPN 473,
and UPN 463) received a stem cell graft from a female donor. The use of peripheral
blood mononuclear cells (PBMCs) and skin samples for the underlying study was
approved by Leiden University Medical Centre’s Medical Ethics Committee.

Multimeric HLA class | /peptide complexes

Conventionalallophycocyanin (APC)-conjugated HLA-A2 tetramers and phycoerythrin
(PE)-conjugated HLA-A2 dextramers (Immudex, Copenhagen, Denmark), both
containing the HLA-A2-restricted HY peptide FIDSYICQV (designated as HLA-A2/
HY tetramers or HLA-A2/HY dextramers), as well as control PE-conjugated HLA-A2
dextramers containing the influenza peptide GILGFVFTL (HLA-A2/flu dextramers)
were prepared as previously described®®'™°. The specificity and sensitivity of these
HLA-A2/peptide multimers were routinely determined by fluorescent activation cell-
sorting analysis (Supplementary Figure S1), as described previously®®.

Immunofiuorescent staining and confocal laser scanning microscopy analysis of
cryopreserved skin explant tissue and aGvHD-affected skin tissue

Before cryopreservation, skin explant assays were performed with freshly obtained
healthy male skin biopsy specimens that were coincubated in vitro for 72 hours at
37°C and 5% CO2 with 1x10° HY-specific T, as described in detail elsewhere” .
Control skin biopsy specimens, prepared from the same healthy donors, were
incubated with HLA-A2/HA-1-specific T .., . Of note, the latter T cells infiltrate human
skin in the presence of HA-1* dendritic cells™, but unlike the HY-specific T, HA-
1-specific T, do not cause GvHD-like tissue destruction”'2. Cryosections (6 mm)
were prepared from both snapfrozen skin explant tissue and cryopreserved aGvHD-
affected skin biopsy specimens. After acetone fixation, the sections were stained at
4°C with PE-conjugated HLA-A2/HY dextramers or control PE-conjugated HLA-A2/
Flu dextramers, followed by appropriately diluted rabbit anti-PE antibody (Biogenesis,
Poole, United Kingdom) and cyanin 3-labeled goat anti-rabbitF(ab)2 antibody
(JacksonimmunoResearch Laboratories,West Grove, PA). All cryosections analysed

78



Chapter 5

in this study (from volunteer donors and from SCT patients) were simultaneously
stained with FITC-conjugated CD8 antibody (BeckmanCoulter, Woerden, the
Netherlands)". Combined immunofluorescent staining using antibodies specific
for CD3 (Dako, Glostrup, Denmark), CD4 (Neomarkers via Immunologic, Duiven,
the Netherlands), CD8 (Novocastra via Leica Microsystems B.V., Rijswijk, the
Netherlands) or CD8 (Beckman Coulter)/CD45RO (Dako)/granzyme B (Sanquin,
Amsterdam, the Netherlands) was performed as described previously' 3. All
sections were mounted with vectashield (Vector Laboratories, via Reactolab SA,
Servion, Switserland) and analysed on a Leica TCS SP confocal laser scanning
system (Leica Microsystems B.V).

Images were collected sequentially using a 40x numerical aperture 1.4 objective.
Color photographs were generated as electronic overlays. For each patient except
UPN 520, between four and 18 consecutive cryosections were scored for the
presence of CD8* HLA-A2/HY dextramer-negative and CD8* HLA-A2/HY dextramer-
positive T cells. A single section prepared from a biopsy specimen from UPN 520
was scored in a similar way. Each section consisted of five to seven confocal images
of 512 mm x 512 mm x 6 mm (W x L x H) each, covering the complete section.
All positively staining cells were individually analysed while scanning in the z-axis
direction to obtain a threedimensional confocal image window, to exclude inclusion
of noncellular structures in the total number of positive cells counted in nearly the
complete biopsy.

Statistical analysis

In each patient, the mean number of HLA-A2/HY dextramer-positive CD8* T cells per
cryosection was calculated. Differences between the mean values observed in the
biopsy specimens of sex-matched and sex-mismatched recipients were analysed by
a two-tailed unpaired t-test using GraphPad Prism version 5.00 for Windows (Graph-
Pad Software, La Jolla, CA).

Results
Onset of aGvHD coincides with an increase in peripheral blood lymphocytes

All patients exhibited the first clinical symptoms of aGvHD in the skin between 12
and 35 days after SCT (Table 1). Results on post-SCT peripheral blood lymphocyte
recovery were available in six of the seven patients (Supplementary Figure S2).
The missing data for UPN 577 were due to early death, at day +15 after SCT.
Although total peripheral blood lymphocyte counts were not in the range of those
obtained before SCT (2745 £ 809/mL), all six patients displayed an increase in
absolute numbers of lymphocytes at or shortly after the day of skin biopsy collection
(range, 80-1073/mL). CD4* and CD8* T cell subset analysis was performed on blood
samples collected shortly before and after onset of aGvHD from UPN 567, UPN 574,
UPN 501, and UPN 520. In line with data on total lymphocyte counts measured in
parallel, both CD4* and CD8* T cell counts were increased after the onset of aGvHD.
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Supplementary figure S1. Validation of the tetrameric and dextrameric HLA/peptide complexes.
Specificity and sensitivity of the HLA-A2/HY dextramers was evaluated by fluorescent activation cell-
sorting (FACS) analysis. (A) A2/HY-specific T-cell clone 21-17 was incubated with A2/HY dextramer or
tetramers in serial dilutions (ranging from 1/6 to 1/480) of the dextrameric and tetrameric stocks in com-
bination with CD8 antibodies. Additionally, the 1/6 dilution (red) was used to stain in the absence of CD8
antibodies, in order to investigate the potential influence of CD8 staining on the dextramer avidity. (B)
To address the specificity of the staining, control stainings were performed using the A2/HA-1 tetramer
(green) and the A2/FLU dextramer (black). (C) To compare the results from the serial tetramer (black) and
dextramer (green) dilutions, MFI were plotted per dilution. (D) Allo-specific HLA-A2-restricted T, A24
was stained with A2/HY dextramer (green) and with A2/Flu dextramer (red), both in a 1/6 dilution. In all
analyses, median fluorescence intensities were recorded.
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Supplementary figure S2. The onset of aGVHD in the skin coincides with an increase in the number
of circulating lymphocytes.

The absolute number per microliter (ml) blood of total lymphocytes, CD3 co-expressing CD4* T cells and
CD8" T cells was evaluated in peripheral blood samples collected up to 6 weeks after gender-mismatched
(UPN 567, left plot) or gender-matched (UPN 574, right plot) allogeneic SCT.

Figure 1. In situ staining of skin-infiltrating CD8* T cells reveals the presence of both granzyme
B* and HLA-A2/HY dextramer* cells in aGvHD-affected skin tissue obtained after female-to-male
SCT (next page).

Skin explant tissue derived from healthy male HLA-A2* volunteer donors was used to validate the sensi-
tivity and specificity of HLA-A2/HY dextramers (red) for combined in situ labeling of skin-infiltrating CD8* T
cells (green). These skin segments were incubated with either HY-specific T, (A and B) or control HA-1-
specific T, (C) before cryopreservation and immunofluorescent labeling. Double-labeled cells, which are
HY-specific CD8* T cells, become yellow in the overlay illustrations, as depicted by the representative cell
in the lower right overlay insert of (A). Single-labeled cells (ie, CD8* cells) remain green in the overlay
pictures, as depicted by the representative cells in the lower right insert of (B) and (C). (D and E) Com-
bined immunofluorescent staining of cryosections prepared from aGvHD-affected skin biopsy specimens
obtained from two male recipients of a female graft (D, UPN 473; E, UPN 567). The cryosections were
incubated with HLA-A2/HY dextramers (red) and CD8 antibodies (green). Yellow arrows indicate co-
localisation of HLA-A2/HY dextramers and CD8 antibodies on the same cell. (F) Combined CD8 (green),
CD45RO (dark blue), and granzyme B (red) staining in a cryosection prepared from the same individual
as shown in (E). (G and H) The identical staining procedure as described in (D) and (E) but applied to
cryosections obtained from two male recipients of a male graft (G, UPN 501; H, UPN 574). Green arrows
indicate CD8* cells not expressing the T cell receptor that specifically binds HLA-A2/HY dextramers.
The higher magnification of a representative single-labeled cell in (E) depicts a CD8" T, that is not HY-
specific. Note that keratinocytes located at the dermal—epidermal junction may display some nonspecific
red staining when incubated with dextramer preparations. (I) Combined CD8 (green), CD45RO (dark
blue), and granzyme B (red) staining in a cryosection prepared from the same individual shown in (E).
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Sufficient numbers of PBMCs from UPN 567 and UPN 473 (both male recipients of
a female stem cell graft) were available for additional HLA-A2/HY tetramer analysis
performed at 2 and 4 weeks (UPN 567) or 4 and 5 weeks (UPN 473) after SCT. The
numbers of HY-specific T cells in CD8* cell fractions were below the detection limitin
all four PBMC samples analysed (data not shown). Chimerism analyses performed
on PBMC samples collected 21 to 28 days after SCT revealed complete donor origin
in four (UPN 473, UPN 574, UPN 501, and UPN 520) of six patients (Table 1).

Validation of HLA-A2/HY Dextramers for in Situ Detection of HY-Specific T Cells in
Cryopreserved Skin Explant Tissue

Failure to detect circulating HY-specific CD8* T cells after the onset of aGvHD in
lymphopenic sex-mismatched recipients does not exclude their possible presence in
aGvHD-affected tissues. Thus, we analysed archived frozen skin biopsy specimens
from our patient cohort. Because the conventional HY tetramers do not stain
frozen biopsy specimens'', we first validated HLA-A2/HY dextramers on frozen
sections prepared from ex vivo in situ skin explant tissue for their selective staining
capacities”"". To this end, HLA-A2/HY—specific T, or control HLA-A2/HA-1-specific
T., were added exogenously to fresh skin tissue derived from HLA-A2* healthy
male volunteer donors. Similar to conventional HLA-A2/HY tetramers™, HLA-A2/
HY dextramers stained skin-infiltrating HY-specific T_,, when applied to viable skin
explant tissue that was snap frozen after the addition of either staining reagent
(data not shown). However, in the clinical setting of paediatric SCT, obtaining fresh
tissue biopsy specimens for such experiments is difficult. Therefore, we analysed
the capacity of HLA-A2/HY dextramers to stain HY-specific T, when applied to
already cryopreserved tissue. HLA-A2/HY dextramers, in contrast to HLA-A2/HY
tetramers, were able to stain HY-specific T, when applied to cryosections prepared
from snap-frozen skin explant tissue (Figure 1A). Control HLA-A2/Flu dextramers
did not label skin-infiltrating HY-specific T, (Figure 1B). Furthermore, HLA-A2/HY
dextramers did not stain cryosections preincubated with HA-1-specific T, (Figure
1C). Collectively, these results show the specificity and applicability of HLA- A2/
HY dextramers to visualise HY-specific CD8" T cells in cryopreserved skin tissue
collected for clinical evaluation.

Presence of HY-specific CD8" T cells in aGvHD-affected skin collected from Male
Recipients of Female Stem Cell Grafts

Historically collected cryopreserved skin biopsy specimens from seven paediatric
patients with confirmed aGvHD of the skin were available for this analysis. The
validated HLA-A2/HY dextramers were used to analyse these cryosections.
The presence of HY-specific T, visualised by HLA-A2/HY dextramer and CD8
costaining cells, was found in two of the three male recipients of a female stem cell
graft (Figures 1D and E). Higher-magnification images of two double-positive cells
are shown in the insert at the bottom of Figure 1E. Of note, skin-infiltrating HY-specific
T cells were observed in biopsy specimens collected as early as 12 to 13 days after
sex-mismatched SCT (UPN 463 and UPN 567). These T cells accumulated at the
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Figure 2. Acute GvHD after female-to-male SCT is associated with significantly higher numbers of
skin-infiltrating CD8* T cells containing a high percentage of cells specific for HY.

(A) Total numbers of CD8* cells (left) and HLA-A2/HY dextramer* CD8* cells (right) were counted in
1-18 serial cryosections prepared from the same cryopreserved skin biopsy specimen collected shortly
after clinical onset of aGvHD and before the start of first-line treatment. All positively staining cells were
individually analysed while scanning in the Z-axis direction to obtain a 3-dimensional confocal image
window, to avoid inclusion of noncellular structures in the total number of positive cells counted in nearly
the complete biopsy specimen. For each individual patient, the box-and-whisker plot shows the mean
number = SD of cells counted per section as indicated on the Y-axis. The upper and lower ends of the
boxes represent the upper and lower quartiles, respectively. Whiskers represent the lowest and highest
observations. The solid line represents the median; *p<0.05. the y-axis. The solid line represents the
median. (B) Percentage of HLA- A2/HY-specific T cells within the CD8* population in the three female-to-
male SCT recipients.

same location as HY-specific CTL clones applied in the skin explant assay’, that is in
the dermis as well as just below the dermal-epidermal junction (Figures 1D and E).
At the same location, granzyme B-coexpressing CD8* cells were visualised (Figure
1F), illustrating that aGvHD skin-infiltrating CD8* T cells are “licensed to kill” and are
not innocent bystanders. Unfortunately, the only available HLA-A2/HY dextramers
and the granzyme B-specific antibody were both conjugated with PE, hindering the
analysis of coexpression of these two markers by the same CD8* T cell.

CD8* HLA-A2/HY dextramer-positive T cells were not detected in any of the biopsy
specimens obtained from male recipients of a male stem cell graft (Figures 1G and
H). These cryosections contained only a few CD8" T cells, as exemplified by the
enlarged single positive green cell shown at the bottom of Figure 1H. But these CD8*
cells were not HY-specific and did not express granzyme B, in sharp contrast to the
skin-infiltrating CD8* cells shown in Figure 1F. Control staining of serial sections
with HLA-A2/Flu dextramers revealed no positive signal in any of the biopsy tissues
tested (data not shown).

Quantification of the CD8* T cell infiltrates was performed on skin biopsy specimens
from all seven patients (Figure 2). Significantly higher numbers of CD8* HY-specific
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T cells infilirated the skin after sex-mismatched SCT than after sex-matched SCT
(P<.05) (Figure 2A). In contrast to the biopsy specimens obtained after sex-matched
SCT, high proportions (68%-78%) of aGvHD skin-infiltrating CD8* cells in the male
recipients of a female graft were HY-specific (Figure 2B).

Discussion

HY-specific T cells may contribute to the development of GvHD in male recipients of
female haematopoietic stem cell grafts'. Although numerous clinical studies have
shown the influence of sex mismatching on SCT outcome, the in situ presence of
HY-specific T cells in GvHD-affected tissues has not been shown until now. The
available tetrameric HLA-HY peptide complexes do not stain infiltrated T cells in
cryopreserved tissues.

In this study, we first validated the use of dextrameric HLA-A2/HY peptide complexes
using an ex vivo skin explant model” with cryopreserved skin tissues of healthy
male individuals. The newly developed dextrameric HLA-A2/HY peptide complexes
allowed staining and analysis of infiltrating T cells in cryopreserved tissues. These
results thus allowed us to perform a retrospective analysis of earlier stored clinical
GvHD samples.

For the first time, using dextrameric HLA-A2/HY peptide complexes, we visualised
HY-specific CD8* T cells in aGvHD-affected tissue obtained from male recipients
of female stem cell grafts. Application of the PE-labeled dextrameric HLA-A2/HY
complexes combined with CD8-specific antibodies showed skin-infiltrating HY-
specific T cells in cryopreserved skin biopsy specimens obtained shortly after clinical
manifestation of aGvHD in three male paediatric recipients of a female stem cell
graft. Despite the first signs of lymphocyte recovery in the circulation, HY-specific
T cells were not detected in peripheral blood samples collected from two of these
three SCT recipients (UPN 567 and UPN 473) at 2 to 5 weeks after SCT. In previous
work, we reported the presence of HY-specific T cells in the peripheral blood of adult
male SCT recipients who developed aGvHD after receiving a non-T cell-depleted
bone marrow graft from a female donor®. These seemingly contradictory results
might be related to the significant differences in applied SCT protocols between
paediatric and adult patients, such as composition of the applied stem cell grafts
and the pre- and post-SCT applied immune suppression regimens. Of note, severe
lymphopenia in the first few weeks after SCT, in combination with the limited volume
of peripheral blood routinely collected from paediatric SCT patients, has hampered
reliable HLA-A2/HY tetramer analyses in PBMCs. Thus, our analysis was limited, as
two of the three paediatric male recipients of female grafts could be analysed. Note,
however, that we found a relatively high number of HY-specific T cells migrating to
the skin during the early stage of aGvHD. Whether or not this clarifies the absence
of minor HY-specific T cells in the peripheral blood is a subject for extensive future
analysis.

Given that TCR stimulation-induced cell cycle progression is required for the
induction of granzyme B-containing cytolytic granules in both naive and antigen-
experienced T._ 'S, the presence of highly granzyme B*/CD8* in aGvHD-affected

CcTL ?
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skin suggests that these presumably cytolytic T cells are activated. As shown in
Figure 1F, activated T, ultimately release their cytolytic granules in the dermis or at
the dermal—epidermal junction. At the same location, GvHD-like tissue destruction
occurs in vitro when HY-specific T, clones are applied in the skin explant assay’. We
previously demonstrated that HLA-A2/HY-specific T, clones lyse IFN-y-activated
HLA-A2* epidermal keratinocytes in vitro'™. In vivo, IFN-y may be derived from the
activated T, themselves and/or from activated, that is, CD45RO expressing CD4*
T cells present in the same dermal infiltrates (Figure 1F).

The early appearance of HY-specific CD8* Tcells in aGvHD-affected skin raises the
question whether these T cells arise from naive or memory T cells, both of which
are likely cotransferred along with the female haematopoietic stem cell graft into
the male patient. Although we were not able to analyse pre-SCT collected female
donor PBMCs in the present study, it should be noted that pregnancy can induce
the generation and long-term persistence of minor histocompatibility antigen-specific
T including T cells specific for HY''%. It is possible that such memory-type minor
histocompatibility antigen-specific T cells are also present in haematopoietic stem
cell products prepared from parous female donors. On re-encountering the relevant
minor histocompatibility antigen in the stem cell recipient, these T cells may contribute
to the development of aGvHD. Prospective analyses of the presence of cytolytic
type T cells specific for ubiquitously expressed minor histocompatibility antigens in
female stem cell products may identify SCT patient-donor pairs at risk for aGvHD.
In conclusion, the present study provides the first indication that HY-specific T cells
are actively involved in the development of aGvHD after sex-mismatched SCT.
The size of our study population was small and the patient population relatively
heterogeneous, therefore, further studies on larger and more homogeneously
treated patients are needed to evaluate the clinical significance of our observations.
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Abstract

The clinical and pathological features of chronic and acute Graft-versus-Host Disease
(GvHD) differ considerably. Fasciitis is a classical and often severe morbidity-causing
feature of cGvHD. In this study, we set out to determine which type of immune cells
had infiltrated the inflamed fasciae of 3 paediatric patients who developed fasciitis
after HLA identical hematopoietic stem cell transplantation (HSCT). Tissue sections
prepared from Skin-Muscle-Fascia biopsies of these patients showed infiltrates
of activated, mainly CD8 co expressing, CD3* T cells, which were found in close
contact with CD14*CD163* dermal macrophages. The infiltrates did not contain
other additional professional antigen-presenting cell types. Chimerism analysis
performed on blood samples collected shortly before the onset of fasciitis showed
100% donor chimerism in distinct myeloid cell types. In contrast, significant numbers
of host cells could be detected in situ in areas enriched for CD163* macrophages.
Although this study population is too small to draw any conclusion, these preliminary
observations suggest that residual host-derived dermal macrophages and infiltrating
donor-derived CD8* T cells are involved in the pathogenesis of cGvHD-associated
fasciitis.

Introduction

Chronic Graft-versus-Host Disease (cGvHD) is a long-term complication of allogeneic
haematopoietic stem cell transplantation (HSCT) and a common cause of late post-
transplant morbidity and mortality. It occurs in approximately 25% of paediatric
patients undergoing HSCT' and mainly involves the skin, mouth, liver and/or eyes.
Traditionally, the distinction between acute (aGvHD) and chronic GvHD (cGvHD)
used to be based on the observation whether tissue inflammation occurred before
or after the first 100 days post-transplant. Since 2004, consensus has been reached
about a more explicit clinical definition of cGvHD; these criteria include the following
clinical features: sclerosis, lichen-planus-like lesions, poikiloderma, oesophageal
webs, bronchiolitis obliterans and fasciitis>. The symmetrical inflammatory swelling
typically associated with fasciitis, may cause severe functional impairment of the
extremities®. Histopathological analysis of fasciitis-affected biopsies typically displays
a diffuse CD8* dominated lymphocytic infiltration of the oedematous fascia, often
extending to the muscle interstitium, and an increased deposit of collagen fibres*s.
This inflammatory reaction seems to be directed against local micro lesions in the
fascia.

The pathogenesis of cGvHD in general, and fasciitis in particular, is still poorly
understood. In contrast to aGvHD, in which apoptosis and necrosis of affected tissues
is commonly seen, in cGvHD the affected tissues typically display inflammatory and
fibrotic processes. It is thought that loss of peripheral tolerance to self-antigens form
the basis of the auto-immune-like clinical symptoms of cGvHD®. Several cell types
have been suggested to be involved in cGvHD. Donor CD8"* cytotoxic T cells, the
supposed main effector cells, are likely activated locally by donor-derived helper T
cells. This immune response may occur in situations where regulatory T cell numbers
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are low, i.e. after myeloabblative HSCT?, although cGvHD also occurs in patients
that received reduced intensity conditioning. A high variety of (auto) antibodies
detectable in serum samples collected from cGvHD patients also suggest a role for
donor B cells in the induction or perpetuation of chronic inflammation®*3.

In order to exert their local damaging effect, activated donor type CD8* T cells have
to migrate from the circulation into GvHD-affected sites; here they must reencounter
their specific alloantigen in order to become ‘licenced to kill'"*. Chemokines and
their receptors generally play an important role in lymphocyte trafficking to inflamed
tissues. In contrast to data on aGVHD"'7, information on the role of chemokines and
their receptors in cGvHD is non-existing. In a first attempt to address the various types
of immune cells putatively involved in the pathogenesis of fasciitis, we have studied
tissue biopsies derived from three cGvHD patients in whom fasciitis manifested as
the main clinical feature of late HSCT-related complications. We set out to determine
which type of immune cells, besides CD8* T cells, had infiltrated the fascia and which
chemokine/receptor combination(s) might be involved.

Patients & Methods
Patients

Three paediatric patients, all diagnosed with acute leukaemia (n=2 AML, n=1 ALL,
Table 1, median age 15 years) received a bone marrow (BM) graft from an HLA-
identical sibling donor. Ciclosporin A (CsA) was tapered 30 days after HSCT. One
of the patients (UPN 581) suffered from aGvHD of the skin (grade 2/3) for which
he was successfully treated with Prednisone (1 mg/kg, intermittently for 7 months).
Starting at 22-39 weeks post HSCT, all three patients presented with fasciitis as the
sole manifestation of cGvHD; their clinical symptoms were characterised by swollen
limbs, muscle ache and severe moving impairment. A skin-muscle-fascia biopsy
confirmed the presence of active chronic fasciitis, where after first line systemic
treatment with steroids was initiated (except for UPN 581, who already started
steroid treatment 4 weeks earlier). Two of the 3 patients are still in remission and
off immunosuppressive therapy. UPN 612 was only treated with steroids; UPN 619
was treated with prednisone and CsA, which did not lead to sufficient improvement.
CsA was tapered and sirolimus was started, resulting in a progressive cytopenia.
Sirolimus treatment was stopped and Rituximab (RTX) was given. Fasciitis symptoms
decreased and prednisone could be tapered. The third patient (UPN 581) received
prednisone. Later Cellcept was added. This patient eventually died from steroid
refractory cGvHD 2.4 years post HSCT. Control patients (n=13) were selected based
on comparability of underlying disease (acute leukaemia), HSCT and donor type
(HLA-identical sibling donor), and absence of acute (> grade 1) and/or chronic GvHD
(n=10). The final 3 patients in the control group did have cGvHD but without fasciitis.
For ethical reasons, it was not possible to obtain skin-muscle-fascia biopsies from
any of these control patients. All patients are described in Table 1 and all but UPN
716 received TBI (2 x 6 Gy at days -1 and 0) as part of their conditioning regimen.
All patients received CsA (2 mg/kg from day -1) and methotrexate (MTX, 10 mg/m2
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Antibody Clone Manufacturer Isotype Technique

CCR1 53504 R&D Systems mlgG2b FACS

HLA DRa

Ki67 - SantaCruz polyclonal rabbit IgG

Table 2. Antibodies used for flow cytometry and immunohistochemistry.
All isotypes are mouse (m) unless indicated otherwise.
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at days +1, +3 and +6) as GvHD prophylaxis. Diagnosis of acute and chronic GvHD
was assessed according to consensus criteria'®'®. Peripheral blood mononuclear
cells (PBMC) of healthy donors (n=12), both children >12 years of age and adults
between 24 and 46 years old, were used to analyse base-line chemokine receptor
expression patterns by lymphocytes with flow cytometry.

Flow cytometry

Table 2 lists the primary antibodies that were used for flow cytometric analysis of pe-
ripheral blood-derived T cell subsets, B cells and the expression of chemokine recep-
tors. For visualisation of bound unlabelled primary antibodies, PBMC were stained
with the relevant FITC-conjugated isotype-specific secondary antibody (Southern
Biotechnology Associates Inc., Birmingham, AL, USA). PBMC solely stained with
secondary antibodies served as negative controls. Cells were fixed directly after
staining using 4% paraformaldehyde. The T cells were further characterised us-
ing the following marker combinations: naive (CD4/CD8, CCR7*CD45RA"), central
memory (CD4/CD8, CCR7*CD45RA"), effector memory (CD4/CD8, CCR7-CD45RA"),
CD45RA expressing effector memory (T,.,: CD4/CD8, CCR7"CD45RA")*, T _
(CD4*CD25"CD127-FoxP3*) and T,17 (CD4*CD161*CCR4*CCRG6*)*'. The intracel-
lular FoxP3 staining was performed according to the supplier’s manual (eBioscienc-
es, San Diego, CA, USA). The percentage of positive cells was measured on a fluo-
rescence-activated cell sorter (FACS) Calibur (Becton Dickinson Immunocytometry
Systems, San Jose, CA, USA) and data were analysed using Cellquest software.

Monocyte numbers were obtained via standard cell count and differentiation methods
using a haematology automated analyser (Sysmex, Etten-Leur, the Netherlands).

Immunofluorescent and enzymatic staining of biopsied tissues

Paraffin-embedded skin-muscle-fascia biopsies were obtained at disease onset and
before initiation of first line immunosuppressive treatment (except UPN 581, who
already started steroid treatment 4 weeks earlier). The antibodies that were used
for immunohistochemistry are also listed in Table 2. Four um paraffin sections were
deparaffinised and subjected to heat-mediated antigen retrieval in a microwave us-
ing citrate buffer (10 mmol, pH 6.0) or EDTA buffer (10 mmol, pH 9.0). Non-specific
staining was blocked by incubating the slides with normal goat and/or mouse serum
for 30 min followed by overnight incubation at room temperature with primary non-
conjugated antibodies. For multicolour stainings, primary antibodies were detected
by fluorescence using the relevant isotype-specific, Alexa Fluor 488, Alexa Fluor
594 or Alexa Fluor 647 labelled, secondary antibodies (Molecular Probes, Leiden,
the Netherlands). Replacement of the primary antibodies by PBS/1% bovine serum
albumin (BSA) 1% served as a negative control. Staining results were analysed by
confocal laser scanning microscopy using a LSM 510 confocal microscope (Carl
Zeiss Microlmaging, Inc., Thornwood, NY, USA).

In case of enzymatic immunohistochemical staining, bound primary antibodies were
detected using Envision (Dako, Heverlee, Belgium) followed by 3,3’-Diamino-benzi-
dine-tetrahydrochloride (DAB) as earlier described?.
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Figure 1. The fascia infiltrates in cGvHD patients are characterised by a gross amount of (acti-
vated) T cells

(A) Representative picture of H&E staining of a skin-muscle-fascia biopsy (UPN 619) showing a large
infiltrate in the fascia around the muscle. (B) Combined immunofluorescent staining of CD3 (red), CD4
(green) and CD8 (blue) present in the same biopsy. Whereas rare CD4+ T cells are depicted in yellow,
abundantly present CD8+ T cells are depicted in pink. (C) Combined immunofluorescent staining of the
same biopsy of CD3 (red), HLA-DR (green) and CD8 (blue), indicating that the majority of fascia-infiltrat-
ing CD8+ T cells display an activated phenotype as depicted by white parts of the membrane.
Magnification: 250x

Detection of Y chromosome bearing cells by in situ hybridisation (ISH)

Y-chromosome ISH, performed as described previously?®, was used to investigate
the number of residual male host cells in fasciitis-affected tissue obtained from the
two gender mismatched HSCT pairs. In short, paraffin sections were deparaffinised
and subjected to heat-mediated antigen retrieval using citrate buffer (10 mmol, pH
6.0). After digestion with 0.3% pepsin and dehydration, the sections were hybridised
with digoxigenin (DIG) labelled Y-chromosome probe o/n at 37°C. In order to
visualise bound probes, slides were subsequently incubated with mouse-a-DIG,
rabbit-a-mouse and HRP-labelled swine-a-rabbit, respectively, followed by Novared.

Results & Discussion

In order to obtain more insight in the cellular events which take place around the
onset of fasciitis as a classical symptom of cGvHD in allogeneic HSCT recipients,
peripheral blood and diagnostic skin-muscle-fascia biopsies of 3 fasciitis patients
were investigated in parallel. Enzymatic and fluorescent staining was performed
to investigate the various cell types present in the fasciae of these patients. A
representative picture of the localisation of an infiltrate is depicted in Figure 1A; the
infiltrates were characterised by a large number of activated, i.e. HLA-DR*, CD3
expressing T cells; the majority of these cells co-expressed CD8* (Figures 1C and
1B) which is in concordance with previous studies*?.

In order to investigate the distribution kinetics of immune cells in the peripheral
blood, flow cytometric analysis was performed on PBMC of these patients collected
before and during fasciitis. As shown in Figure 2, CD4* (A) or CD8* (B) T cell counts
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in the 3 fasciitis patients were generally lower as compared to control HSCT patients
without GvHD or to cGvHD patients who did not display fasciitis as their main clinical
symptom. Further characterisation of these T cell subsets, as depicted in Figure 3,
demonstrated low to normal percentages of CD4* naive and central memory (CM)
type T cells (Figure 3A and 3B, respectively) in all cGvHD patients. CD4* effector
memory (EM) T cell percentages were normal to high in all cGvHD patients (Figure
3C) and percentages of T, ., cells were increased in 2 out of 3 cGvHD patients with-
out fasciitis (Figure 3D). For the CD8* naive T cell subset, normal to high percent-
ages were seen in 2 out of 3 fasciitis patients, whereas decreased levels were seen
in 3 cGvHD patients without fasciitis (Figure 3E). This observation held also true for
the CD8* CM T cell subset (Figure 3F). Normal levels of CD8" EM T cells were seen
in all cGvHD patients, except for the latest time points in 2 out of 3 fasciitis patients
(Figure 3G). Finally, increased levels of CD8" T, ., cells were only seen in the 3
cGvHD patients without fasciitis. The increased percentages of naive CD8* T cells
(Figure 3E) and decreased percentages of CD8* effector memory T cells (Figure
3G) in 2 of the fasciitis patients (UPN 581 and UPN 619) were likely the result of the
extensive (steroid) treatment both patients received®*.

T... are thought to regulate the expansion of, amongst others, cytolytic type T cells
and T 17 cells’. Published data have reported a significant reduction of T___in the
peripheral blood of cGvHD patients’?>28, resulting in an inverse correlation between
Tregs and T,,17 numbers”?. This is in contrast to our findings: compared to HSCT
patients without cGvHD, HSCT patients with cGvHD (with and without fasciitis)
showed similar percentages of Tregs (Figure 3l) and, irrespective of occurrence of
fasciitis, the T,17 percentages were increased in 3 out of 6 cGvHD patients (Figure
3J). Although the cGvHD patients in our study did not show decreased levels of
Tregs, increasing this number could still have a beneficial effect on the clinical
symptoms. Koreth et al. recently showed that daily subcutaneous administration of
low-dose IL-2, which is critical for T development expansion, activity and survival,
dramatically increased Treg numbers in steroid refractory cGvHD patients, resulting
in reduced clinical symptoms®.

Before any of the above described T cell subsets can exert their effect, they must
first encounter professional antigen presenting cells (APC’s). Several types of APC
can reside in the skin, i.e., epidermal Langerhans cells (LC), CD14*CD1aCD163*
macrophages, CD1a*CD14- and CD1a*CD14* dermal dendritic cells (DC) in the
deeper layers of the skin®', but also CD20* B cells. Given that some studies suggest
the involvement of B cells in cGvHD®'%':32_ their presence in the peripheral blood and
fasciae was investigated. B cell numbers in the peripheral blood of all cGvHD patients
(with and without fasciitis) appeared to be low to normal (Figure 2C). Despite their
presence in peripheral blood, enzymatic staining of the biopsies showed complete
absence of CD20 expressing B cells in inflamed fasciae (data not shown). Additional
staining of the fasciitis-affected biopsies revealed that dermal macrophages were
not only abundantly present in all biopsies, but also in close proximity of T cells
(Figure 4A). Only a few single CD14" cells, either type 1 macrophages or infiltrating
monocytes, were additionally observed. Monocyte numbers in the peripheral blood
of cGvHD patients were normal to high (Figure 1D). Furthermore, CD1a* cells
were clearly found in the unaffected epidermis and not in the cellular infilirates

99



Chapter 6

A B
800+ CD3+CD4+ 3200 CD3+CD8+
1 e

400 6004

400
2004 *——— o *“\*
200 \

24 36 48 24 36 48

counts/pl
counts/pl

1000+ B cells

Monocytes

750+

1000

Controls
UPN 581
UPN 612
UPN 619
UPN 708
UPN 716
UPN 722

500+

counts/pl
counts/pl

*-—9 500
250+

Ooor *e

24 36 48 24 36 48
Weeks post HSCT Weeks post HSCT

Figure 2. Post-HSCT reconstitution of immune cells in paediatric HSCT patients

Flow cytometric analysis was used to investigate the reconstitution of circulating immune cells within
the peripheral blood mononuclear cells (PBMC). This analysis reveals decreased numbers of CD4* (A)
and CD8" (B) T cells in the three fasciitis patients (closed black symbols) as compared to three cGvHD
patients without fasciitis (open symbols) and ten HSCT patients without cGvHD (median: grey diamonds
and 5-95% ClI: bars), and low to normal levels of B cells (C) in cGvHD patients (with and without fasciitis)
as compared to HSCT patients without cGvHD. (D) Monocyte numbers are comparable between the three
groups with the exception of UPN 581, with intractable cGvHD and fasciitis, and UPN 722, with resolved
cGvHD without fasciitis.

present in the deeper layers of the skin (data not shown). Additionally, when H&E
staining (Figure 4B) was compared to single enzymatic CD163 staining the same
macrophage-like cells could be visualised in the same area of the sections (Figure
4C). Haniffa et al. observed that residual CD163* dermal macrophages are able to
promote donor-derived CD8* T cell proliferation and cytokine release when tested in
an allogeneic set-up®. Additionally, evidence exists that tissue DC may reside from
a distinct monocyte subset (expressing CD14, CD16 and CX3CR1)%*¥%, The single
CD14" cells found in the fasciae of our patients could, therefore, be the precursors
of donor-derived APC.

Two of the 3 fasciitis patients were males transplanted with a stem cell graft derived
from a female sibling donor. Using in situ hybridisation (ISH) to specifically detect the
presence of Y-chromosome bearing cells, male cells could be visualised in the fascia
infiltrates of both patients (Figure 4F). While these infiltrates obviously comprised
stromal cells of host origin (i.e. fibroblasts and endothelial cells), these cells may be
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accompanied by infiltrating female donor-derived monocytes and T cells. Routinely
performed chimerism analysis (Powerplex 16) was used to analyse the level of donor
chimerism in total PBMC collected before or at the same time when the patients
were biopsied. Furthermore, chimerism analysis was performed on fractionated
blood cells collected prior to the onset of fasciitis. To this end, two cell populations
were separated by FACS sorting, i.e. CD11¢*/CD14*/CD20/CD3- (monocytes)
and CD11¢*/CD14-/CD20-/CD3- (myeloid DC). As also observed for unfractionated
PBMC, these sorted populations showed full donor chimerism. However, when the
CD163 staining results where compared to the Y-specific ISH data (Figure 4D-F),
the Y-probe was clearly visible in the same region of the infiltrates as the abundantly
present CD163"* cells. Due to technical limitations, we were unfortunately not able to
combine these two separate staining techniques. Nonetheless, as shown by Haniffa
et aP', dermal macrophages have a slow turnover after HSCT as indicated by a
mean survival of host-derived cells of 100 days post HSCT. Given that we analysed
our patients in between 70 and 364 days post-HSCT, we speculate that at least part
of the CD163" cells present in the inflamed fascia must be of host origin. Additionally,
mouse models of GvHD have shown that donor APC are required for maximal CD8-
mediated GvHD. Donor APC were not necessary for the initiation but did intensify

Chemokine receptors

60 *
Healthy donors
e UPN 581
2 404 * * UPNG612
& H g% 4 UPNG619
8 ¥k . A UPN 589
$ 20- s Ay s v UPN 592

0 T T L]
CD4'CCR4" CD4'CCR5" CDS8'CCR5"

Figure 5. Chemokine receptor expression in peripheral blood T cells.

CD4* T cells in the peripheral blood of cGvHD patients at the time of fasciitis express higher levels of
CCR4 and CCRS5 as compared to healthy control HSCT donors (median: grey diamonds and 5-95% ClI:
bars) and two HSCT patients without acute or chronic GvHD (UPN 589 and 592, open triangles). The only
difference in chemokine receptor expression on CD8* T cells between fasciitis patients and controls is an
increased expression of CCR5 in UPN 612. The expression of other chemokine receptors, i.e., CCR1-3,
CCR6-10, CXCR1-7) on both CD4* and CD8"* T cells of the fasciitis patients is not different as compared
to healthy control HSCT donors or the two HSCT patients without GvHD (data not shown).
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the GvHD reaction®. It is, therefore, not surprising that we observed Y* cells in the
fascia infiltrates.

The infiltration of peripheral tissues by T cells is thought to be mediated by local
production of chemokines and the expression of their corresponding receptors on
infilirating T cells. We set out to determine which chemokine/chemokine receptor
interaction could be involved in the migration of T cells to the fasciae. Given that
chemokine receptors may be rapidly up- or downregulated upon entry of peripheral
tissues, we first investigated the chemokine receptor expression by circulating T
cells. Flow cytometric analysis of PBMC revealed an increased expression of CCR4
and CCR5 by CD4* T cells of all 3 patients at the time of fasciitis as compared
to 2 control HSCT patients without cGvHD (UPN 589 and UPN 592) and a group
of healthy donors (Figure 5). The CD8* T cells only showed increased expression
of CCR5 in one fasciitis patient (Figure 5). All other chemokine receptors studied
(CCR1-3, CCR6-10, CXCR1-7) were not differently expressed between patient and
control samples (data not shown).

Subsequent immunohistochemical staining of the skin-muscle-fascia biopsies for
CCR4 and CCRS5 only revealed some in situ expression of CCR5 in 1 patient (UPN
612), which is the same patient with the observed high expression of CCR5 on CD8*
T cells. Unexpectedly, this receptor was not expressed by fascia-infiltrating T cells
(data not shown). Due to scarcity of biopsied tissue we were not able to investigate
additional chemokine receptor expression in the biopsies.

In summary, this study confirms the presence of mainly activated CD8* T cells in the
fasciae of HSCT patients who developed fasciitis as the main symptom of chronic
GvHD. We additionally report co-localisation of these activated CD8* T cells with,
presumably host-derived CD14*CD163* dermal macrophages and CD14*CD163"
monocytes or type 1 macrophages. Further studies on the origin of these myeloid
cell types and their alloantigen-presenting capacity are needed to further clarify their
role in the onset of fasciitis.
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Chapter 7

Summary

The homing of both immune cells and their malignant counterparts is, amongst
others, determined by the interaction between locally produced chemokines and their
corresponding receptors expressed by blood-borne cells. The majority of studies
described in this thesis have addressed the involvement of distinct chemokine/
chemokine receptor combinations in directing this cellular trafficking.

Acute leukaemia in children is often associated with extramedullary infiltration
of leukaemic cells leading to relapses at other sites than the bone marrow. In a
previous study (Annels et al. Blood 2004;103(7):2806-8) we set out to determine
whether chemokines and their receptors play a role in determining the site of
leukaemia relapse. To this end, chemokine receptor expression by leukaemic blasts
in peripheral blood and/or bone marrow aspirates was investigated at the time of
diagnosis in 11 T-ALL patients. In one patient, in whom a gut relapse manifested 18
months after diagnosis, malignant cells present in the peripheral blood showed high
expression of the gut-homing molecules CCR9 and CD103. The leukaemic cells
which entered the gut also expressed CCR9 in situ; CCR9 expression was found
to co-localise with its specific ligand (CCL25). All other patients showed the same
chemokine receptor expression pattern on their leukaemic blasts as compared to
normal circulating T cells in age-matched controls. None of these patients presented
with a relapse of their leukaemia. These results suggest that screening of leukaemic
blasts for chemokine receptor expression at the time of diagnosis may predict the
extramedullary leukaemia (EML) risk and location.

To investigate the role of chemokines and their receptors in extramedullary AML,
peripheral blood samples, bone marrow aspirates and skin biopsies of 15 paediatric
AML patients with proven skin involvement were investigated. As presented in
Chapter 2, AML blasts detected in the blood of patients who developed EML in
the skin, showed a significantly higher expression of CCR2 as compared to control
patients. The leukaemic blasts in the skin of these patients were also found to express
CCR2. Besides CCR2, these skin-residing blasts also expressed CCR5, CXCR4
and CXCRY7 as well as the corresponding ligands CCL3 and CXCL12, respectively.
Based on these findings, we hypothesised that circulating blasts are directed to the
skin mediated by CCR2, which interacts with an as yet unidentified locally produced
chemokine. Subsequent interaction of CCR5/CCL3 and CXCR4/CXCL12 facilitates
the retention of the blasts in the skin, whereas, CXCR7/CXCL12 interaction may
prolong the extramedullary survival of leukaemic cells.

Omenn syndrome (OS) is an inherited immunodeficiency, characterised by abnormal
B and T cell development and a corresponding limited T cell repertoire. These patients
display generalised erythrodermia of the skin caused by a massive auto-reactive T
cell infiltrate. The main characteristic of OS is the unusual tissue distribution of T
cells in skin, gut and liver, which is similar to that of acute Graft-versus-Host Disease
(aGvHD) patients (see next paragraph). In Chapter 3 we investigated the homing
of T cells in an OS patient with severe skin involvement. Not only circulating CD4*
but also CD8* T cells were found to express high levels of the skin-homing molecule
CCR10. Additionally, both T cell subsets were clearly present in skin biopsies
collected from the patient; these biopsies also displayed abundant expression of
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CCL27, one of the two thus far known ligands for CCR10. Topical treatment with
Tacrolimus resulted in a significant improvement of the skin problems, followed by
a major decline of CCR10* T cells in the circulation, normalised CCL27 expression
and T cell disappearance from the skin. These results suggest an important role for
CCR10/CCL27 interactions in the migration of activated CD4* and CD8" T cells to
the skin in OS patients.

Allogeneic haematopoietic stem cell transplantation (HSCT) is the treatment of
choice for the haematological and immunological disorders studied in Chapters 2-3.
One of the major drawbacks of this treatment is the occurrence of GvHD. This trans-
plantation-related complication results from homing of activated donor T cells to the
skin, liver and gut where these cells induce inflammation and eventually life threat-
ening tissue destruction. In order to investigate whether CCR10/CCL27 interactions
also facilitate the homing of donor T cells to GvHD-affected skin, we analysed pe-
ripheral blood and skin biopsies of 15 paediatric patients who displayed acute GvHD
early after HSCT (Chapter 4). Indeed, CCR10 was highly expressed by circulating
CD4* T cells and appeared to correlate with duration of GvHD activity in the skin.
CD4*CCR10* T cells were clearly present in biopsies of affected sites in the skin, but
not in the gut biopsies of the patients that also suffered from intestinal GvHD. The
infiltration of CD4*CCR10* T cells correlated with an enhanced CCL27 expression
in the epidermis of these skin biopsies. These results suggest that, in aGvHD of the
skin, particularly CD4* T cells are recruited through CCR10/CCL27 interactions.
Depending on the degree of HLA matching between donor and recipient, aGvHD
may be caused by activated donor T cells recognising mismatched major (HLA)
and/or minor histocompatibility antigens (mHags) expressed by the recipient and
not by the donor. The involvement of mHag-specific T cells in the onset of aGvHD
after gender mismatched HSCT was studied in Chapter 5. To this end, we validated
a multivalent staining reagent and visualised, for the first time, the presence of
HY-specific T cells, in situ, in skin biopsies derived from male recipients of female
haematopoietic stem cells. Only limited numbers of these cells could be detected
in peripheral blood mononuclear cells (PBMC) of these patients. mRNA analysis
of total CD8* cells in the PBMC revealed expression of the chemokine receptor
CX3CR1 (unpublished observations). Unfortunately, we were technically not able to
combine HY multimer staining with an antibody specifically binding to this chemokine
receptor. The skin-homing mechanism exploited by HY-specific T cells remains,
therefore, to be elucidated.

Chemokine receptor expression by T cells in chronic GvHD (cGvHD), another more
long-term complication of allogeneic HSCT, was studied in Chapter 6. PBMC as
well as tissue-infiltrating cells were analysed in 3 patients who presented with fas-
ciitis as the main clinical feature of cGvHD. The fascia infiltrates were characterised
by a high percentage of both activated CD8* T cells and CD163* cells, most likely
dermal macrophages. Although we were not able to identify the precise chemokine/
chemokine receptor pair(s) responsible for the migration of the CD8* T cells to the
fasciae, we demonstrated that CCR5 was expressed in these infiltrates albeit this
expression did not co-localise with CD8* T cells. Hence, further studies are required
for elucidation of the chemokine(s) and chemokine receptor(s) involved in the attrac-
tion of CD8* T cells to inflamed fasciae.
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General Discussion and Future Directions

Extramedullary infiltration of leukaemic cells and local relapses are major complica-
tions of acute leukaemia as often observed in affected children. Site directed traf-
ficking of cells is, however, not only relevant in local recurrences of malignancies
but also in immunological disorders with characteristic local manifestations such
as Omenn syndrome (OS) and transplant-related diseases like Graft-versus-Host
Disease (GvHD). Despite advances in the general treatment of haematological and
immunological disorders and GvHD, cellular trafficking still causes severe problems.
Malignant cells escape treatment by homing to more immune-privileged sites and in
immunological reactions and GvHD the overt tissue-specific inflammatory reactions
are of great concern. Understanding chemokine receptor/ligand interactions involved
in migration of (malignant) immune cells is expected to lead to new approaches for
specific interference in these unwanted processes and, hence, improvement of cur-
rently existing treatment modalities. The major overall conclusion from the studies
described in this thesis, is that tissue-specific cellular trafficking is a complex process
which is not directed by a single chemokine receptor/chemokine pair alone.

One of the best studied and described examples of chemokine-mediated metastasis
of malignant cells is CXCR4-dependent relapse of breast cancer as described by
Muller et al. This study clearly showed high expression of active (responsive to its
ligand) CXCR4 on human breast cancer cells and distinct expression of the ligand
for CXCR4, CXCL12, in the organs affected by metastasis (lymph nodes, lung, liver
and bone marrow). Additionally, when mice were injected with a human breast carci-
noma cell line and subsequently treated with either anti-human CXCR4 monoclonal
antibody or an isotype control antibody, a significant decrease in lung metastasis
was seen in the anti-CXCR4-treated mice. These results strongly support the con-
cept that CXCR4/CXCL12 interactions play an important role in directing the location
of the metastasis of breast cancer’. This study was the starting point for numerous
studies investigating the role of chemokines in cancer metastasis?, including our
own.

From the results of our study on the migration patterns of T-ALL cells®, we indeed
concluded that chemokine receptors should be considered as important diagnostic
or prognostic markers for predicting extramedullary relapse risk. FACS analysis
was used in this study to screen the leukaemic blasts for their chemokine receptor
expression profile. Currently, mRNA analysis of leukaemic blasts by PCR or micro-
array is being used to identify genes that may be involved in relapse of leukaemia,
resulting in a better upfront stratification of patients*. This elegant approach could
also be used to predict the location of relapse®. Importantly, such studies should
not only focus on chemokine receptors and their ligands, but also on adhesion
molecules involved in cell-cell contact and trans-endothelial migration. Collectively,
such analyses are expected to provide a more informative and easily applicable
method of diagnostic screening in this respect.

The situation might, however, be less clear in the case of extramedullary leukaemia.
Chapter 2 describes data obtained from AML patients who presented with extramed-
ullary leukaemia in the skin. Given that CCR10 and CCR4 are well known skin-
homing receptors (Chapters 3 and 4), we expected circulating leukaemic blasts to
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express the same receptors. Unexpectedly, we rather found that CCR2 is involved in
the homing of AML cells to the skin. Once migrated to this site, different chemokine
receptors seemed to be involved in retention of the cells (i.e., CCR5 and CXCR4)
and their survival (i.e., CXCR4 and CXCRY7). These results indicate that chemokines
and their receptors play a more complex role in cancer than merely directing the
trafficking of cells.

Indeed, evidence exists that, besides involvement of chemokines and their receptors
in metastasis of the tumour®, these interactions are also operational in growth and
survival of malignancies. CXCR4 and CXCRY7 have been described to be involved
in tumour cell survival. Besides CXCR4, CXCR?7 is also expressed by a range of
primary tumours, many tumour cell lines and activated endothelial cells, but is rarely
expressed by non-transformed cells’. Unlike other chemokine receptors, CXCR7
lacks the ability to mediate chemotaxis and calcium mobilisation after ligand binding.
Yet, CXCRY is thought to regulate several important biological processes including
cell survival, cell clustering and tumour development as shown for prostate, lung and
breast cancer cells®®. In gallbladder cancer, cytoplasmic and nuclear expression of
CXCR4 was observed, whereas, CXCR7 was only expressed in the cytoplasm of the
tumour cells. Nuclear expression of CXCR4 correlated with lymph node metastases,
however, cytoplasmic expression of both chemokine receptors was not associated
with metastases but separately associated with an advanced tumour stage™. Upon
binding to its ligand, chemokine receptors are internalised into the cytoplasm and
signal transduction pathways are activated leading to cell proliferation and migration.
Translocation of the chemokine receptor to the nucleus may serve as a transcriptional
regulatory signal, increasing transcription of genes and resulting in increased cell
proliferation. In our study described in Chapter 2, we also observed intracellular
expression of CXCR4. Further research is needed in order to clarify the roles of
extracellular, cytoplasmic and nuclear expression of these different chemokine
receptors in survival and migration of tumour cells.

Besides using chemokine receptor/ligand interactions for metastasis, retention and
survival of tumour cells, the secretion of chemokines by these tumour cells can facilitate
the attraction of immune cells, which not necessarily leads to tumour cell damage but,
in contrast, may support tumour cell viability. Macrophages, for instance, produce
factors that promote angiogenesis and impair immune responses''. The recruitment
of dendritic cells (DC) into the tumour microenvironment causes immune paralysis'?,
whilst attracted regulatory T cells inhibit anti-tumour responses’®'4, correlating with
poor prognosis. These observations emphasise the clear and multi-level involvement
of chemokine receptor/ligand interactions in tumour pathophysiology.

In the last decade, it has become clear that CXCR4 is the chemokine receptor most
abundantly expressed by tumour cells, given that its presence is demonstrated in
over 23 different human malignancies'. Given that its ligand, CXCL12, is expressed
at the most common sites where metastases have thus far been found, CXCR4/
CXCL12 interaction is considered one of the most important drivers of tumour cell
metastasis?. It is, therefore, of great interest to explore the therapeutic potential of
CXCR4 inhibiting agents. The CXCR4 antagonist AMD3100 (Plerixafor) has been
successfully used in animal models to inhibit growth of breast cancer'® and of a
number of haematological malignancies including non-Hodgkin lymphoma'” and
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AML™, Currently, various clinical trials using CXCR4-targetting strategies are being
evaluated in ovarian cancer, osteogenic sarcoma, ALL and AML?"92°, Furthermore,
AMD3100 is already used as a stem cell mobilisation agent to provoke haematopoietic
stem cells to leave the bone marrow and enter the circulation in order to collect
them for HSCT procedures via apheresis. This approach to release cells from the
bone marrow might also be useful in the treatment of leukaemia. It is known that
some leukaemic cells can escape chemotherapy whilst lingering in the bone marrow
stromal environment??'-23, CXCR4 antagonists like AMD3100 would drive these cells
out of the bone marrow into the circulation, where they might be more susceptible to
(chemo) therapy. Although short-term use of AMD3100 may be safe, caution should
be taken when applied for prolonged periods. Chemokine receptor antagonists
might interfere with essential chemokine receptor/ligand interactions, which are
responsible for immune surveillance e.g. B- and T cell development and leukocyte
travelling, rendering severe adverse effects. In case of CXCR4 antagonists like
AMD3100, the sustained dislocation of the stem cell reserve from the bone marrow
may potentially lead to bone marrow aplasia and subsequent haematological and/or
immunological complications.

Although CXCR4 antagonists are currently most intensively studied, other chemokine
receptors would also provide promising therapeutic targets. Currently, a patent is
pending for a CCR10 antagonist, which would be useful in numerous skin diseases
including OS and skin GvHD. Furthermore, a CCR5 antagonist (Maraviroc) is now
being applied for the treatment of HIV-1 infection, in which CCR5 is used as a co-
receptor to enter its target cells. Although its use is safe and well-tolerated, long
term risks (>5 years) are yet unknown?. Successful pre-clinical tests have been
performed with an orally active CCR2 antagonist, preventing glomerulosclerosis
and renal failure in type 2 diabetes?®. These are just a few examples of the current
research to develop chemokine receptor antagonists as therapeutic tools.

Another way of interfering with the interaction of chemokines and their receptors
for therapeutic purposes could be through the application of signalling pathway
inhibitors. In Chapter 3, we observed down regulation of CCL27 and/or CCR10 after
topical administration of Tacrolimus in an OS patient suffering from a GvHD-like
inflammatory skin reaction with involvement of infiltrating T cells. Tacrolimus belongs
to a group of pharmacological agents known as calcineurin inhibitors. These drugs
prevent the transcription of several cytokine genes (IL-2, IL-3, IL-4, IL-5, TNF-a and
IFN-y in T cells by inhibiting the translocation of nuclear factor of activated T cells
(NFAT)?. TNF-a is known to stimulate the production of CCL27 by keratinocytes?’%,
The TNF-a inhibition by Tacrolimus might decrease CCL27 production and, thereby,
reduces the influx of dermal CCR10* T cells. The reduction of T cells in the skin is not
the sole reason for the major decrease in CCR10 expression at this site. It has also
been shown that Tacrolimus has a direct effect on chemokine receptor expression
by the inhibition of NFAT?°. The DNA promoter sites of chemokine receptors,
however, contain binding sites for multiple transcription factors. The expression of
chemokine receptors can, therefore, be regulated by different signalling pathways.
Indeed, Tacrolimus has been shown to have an effect on CCR2 and CXCR3, but
not on CCR7, expression®-*2, Besides the hypothesised regulation of CCR10 by
Tacrolimus, other ways to intervene with chemokine receptor signalling pathways
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need to be investigated further.

Therapeutic measures that interfere with the chemokine (receptor) system in one
way or the other, remain difficult to apply in a safe way. To circumvent the adverse
effects of chemokine receptor antagonists, the chemokine system could also be
used to promote anti-tumour immune responses. Local injection of chemokine(s)
at the tumour site can facilitate recruitment of CTLs, NK cells or immature DC,
initiating a tumour-specific immune response without interfering with normal
homeostatic interactions®. In short, chemokine receptor/ligand interactions offer a
attractive therapeutic option for numerous diseases including cancer, but should be
investigated more extensively to prevent adverse effects of therapy.

Chemokines and their receptors are not only interesting for their therapeutic
implications, but can also help us to understand the pathophysiology of diseases.
Especially the migration of lymphocytes in immunological disorders such as OS, will
help us to discover underlying mechanisms. A hallmark of OS is the peculiar tissue
distribution of T cells; the T cells typically accumulate in skin and gut as seen in
aGvHD?. One of the underlying genetic defects in OS is a hypomorphic mutation in
one of the RAG genes, which severely impairs the function of the gene productsin DNA
recombination processes, resulting in maturation and expansion of only a restricted
number of T cell clones®®. A near absence of T cells in the thymus of OS patients
affects maturation of thymic epithelial cells and dendritic cells. Consequently, auto-
reactive T cells are not eliminated and generation of central tolerance is impaired.
Together with increased antigen exposure and a defect in antigen clearance, as
described for immunodeficient patients, this may result in the proliferation of auto-
reactive T cells. Skin and gut belong to the first line of defence against pathogens
and immune surveillance in these organs is, therefore, crucial. Auto-antigens derived
from these organs are normally highly represented in the thymus to induce T cell-
tolerance towards these organs. Consequently, it is not surprising that these organs
are affected by auto-reactive T cells in OS. The same holds true for GvHD patients
given that T cell-tolerance in the donor is essentially different from central tolerance
in the recipient, even in the case of HLA identical sibling donors. This will result in
the recognition of recipient-specific antigens by donor T cells. Again, skin and gut are
mainly involved due to the abovementioned reason. Skin-specific homing of T cells
is known to be facilitated by, amongst others, CCR10/CCL27 interaction. Indeed, we
observed a correlation between CCR10 expression on T cells (in peripheral blood
and skin) and disease activity in both acute GvHD and OS.

In contrast to the expression of CCR10 on both CD4* and CD8* T cells in OS, only
CD4* T cells express CCR10 in aGvHD of the skin, as described in Chapter 4.
Peripheral CD8* T cells also did not express other known skin-homing molecules
such as Cutaneous Lymphocyte Antigen (CLA) and CCR4. As only a few of the
CD8" T cells detected in the affected skin co-express CCR10, the remaining CD8*
T cells apparently use a skin homing mechanism different from CD4* T cells in this
setting. Increasing evidence emerges that CXCR3 expression plays an important
role in aGvHD. Murine models have shown that CXCR3 expressing CD8* T cells are
responsible for tissue damage in aGvHD®. In the human setting, Piper et al. have
observed CXCR3 expressing T cells in the affected skin of GvHD patients, although
expression of this chemokine receptor was absent on peripheral blood T cells®. In
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our experimental approach, the chemokine receptor expression pattern on PBMC
isolated from the blood of GvHD patients was investigated, followed by staining of
the skin biopsies for the thus defined chemokine receptors. With this approach, we
might have missed some of the chemokine receptors that were present in the skin,
but to a lesser extent in the peripheral blood of aGvHD patients. Confirmatively, we
have observed that the majority of T cells infiltrating GvHD (both CD4*and CD8*)
also expressed CXCR3 (unpublished data).

The fact that the cellular composition in peripheral blood and tissue can be different
is further supported by results described in Chapter 5; focussing on CD8* T cells in
the skin of male aGvHD patients transplanted with a female graft, which are specific
for Y chromosome-encoded minor histocompatibility antigens (HY antigens). The
peripheral blood of these patients hardly contained HY-specific T cells, whereas they
were present in the skin of these patients. PCR analysis of mRNA isolated from the
CD8* T cells sorted from PBMC, showed an increased expression of CCR1, CCR2,
CCR3 and CX3CR1 mRNA (data not shown). However, this expression was not
observed on the HY-specific CD8* T cells. CX3CR1 seems to play a role in inflam-
matory skin disorders like AD and psoriasis. The percentage of CX3CR1 expressing
CD8* T cells was decreased in the peripheral blood of AD and psoriasis patients, but
was increased in the skin of these patients®, suggesting that CX3CR1 is responsible
for the homing of CD8* T cells to psoriatic skin. As samples sizes and precursor
frequencies might be too small to allow for substantial analysis, combined staining
of tetramers and chemokine receptors might provide us with a better understanding
of the migration of specific subsets of CD8* T cells to the skin.

Due to limited patient material it was not possible to investigate the expression of all
thus far known chemokine receptors in the skin of these aGvHD patients. This would
have shed more light on the molecules involved in CD8* T cell migration to the skin.
Ex vivo analysis on fresh biopsies would be ideal as these biopsies could be used
for enrichment of the cell population of interest by FACS sorting followed by mRNA
array analysis of the whole spectrum of chemokines and their ligands. Candidate
receptors could be subsequently stained on a formalin-fixed paraffin-embedded
biopsy collected in parallel for histopathological evaluation. Immunofluorescent
staining of aGvHD skin biopsies of the patients in this particular study, did reveal
CX3CR1 expression, but no evidence was obtained for co-localisation of CX3CR1
and CD8 staining (data not shown).

CX3CRH1 is known to be expressed by CD16* NK cells and CD45RA expressing
effector memory CD8* T cells (T,,.,)*. Some evidence exists that CD14* monocytes
use CX3CR1 for migration to the skin in cGvHD patients*?. Additionally, tissue
DC may originate from a distinct monocyte subset, expressing CD14, CD16 and
CX3CR14%42, Consequently, the CX3CR1 expressing cells observed in the skin of
aGvHD patients might in fact represent monocytes attracted from the peripheral
blood into the tissues. Here, these precursor cells will replace resident tissue DC-
like dermal macrophages. Investigation of these CX3CR1* monocytes with regard to
recipient or donor origin and their interaction with T cells is needed to further clarify
their role in GvHD.

Another disease in which CD8* T cells play an important role is chronic GvHD, which
still displays a poorly understood pathophysiology as compared to aGvHD. One of
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the clinical features of cGvHD can be fasciitis of the extremities. As discussed in
Chapter 6, the lymphocytic infiltrates in the skin of these fasciitis patients mainly
contained CD8* T cells. Flow cytometric analysis of chemokine receptor expression
of CD8" T cells in the peripheral blood of these patients did not give an obvious clue
for the mechanism of migration of these cells to the fasciae. Multicolour staining
of the biopsies could have indicated the chemokine receptors involved in CD8*
T cell-specific homing, however, this was hampered by limited patient material.
Again, a technical approach as described in the previous section might be helpful in
overcoming this problem.

The question which remains is why the same type of immune cells, i.e. CD8" T
cells, uses different ways to reach the same location in the body in different clinical
situations. One possible reason is that up regulation of chemokine receptors is
influenced by different locally produced triggers. The microenvironment, including
the cellular constituents (such as the various types of antigen presenting cells) and
the cytokine milieus, in which T cells are activated is, at least partly, responsible for
the chemokine receptor expression pattern of cells upon activation. For instance, the
activation requirements differ between the CD4* and CD8* T cell subsets. Additionally,
constitutive chemokine receptor expression differs between the different types of T
cells, suggesting that different chemokine/chemokine receptor interactions can be
involved in homing to the same location. It is important to note that most studies,
including our own, focus on expression of separate receptors and their ligands. This
is an oversimplification of the in vivo situation in which site-directed migration most
probably is orchestrated by simultaneous and sequential involvement of various
chemokine receptors and adhesion molecules. This is exemplified in the next section.
Besides the expression of CCR10 by skin-infiltrating T cells in aGvHD and OS, these
cells also expressed CLA. This is a skin-specific adhesion molecule that together
with E-selectin, causes tethering of the cells along the endothelial wall. Although
we focussed on skin GvHD, the clinical manifestation of acute GvHD of the gut
can be more severe, and is more often refractory to steroid treatment. The homing
mechanism of T cells to the gut is less clear than that to the skin. Unpublished
data from our group shows that, compared to HSCT recipients without GvHD, the
peripheral blood of patients displaying gut GvHD contains higher percentages
CD103 expressing T cells; this integrin is specific for T cell homing to the gut**. These
CD103* T cells (both CD4* and CD8*) also expressed high levels of the chemokine
receptor CCR3 and multicolour staining of gut biopsies showed that CCR3 was
also expressed by T cells in the gut of these GvHD patients. Together with the high
expression of CCL28, the ligand for CCR3, in the biopsies, these data suggest that
CD103 and CCR3/CCL28 interaction are involved in the homing of T cells to the gut.
However, these results were only found in a few patients and should be confirmed in
an extended patient cohort.

In retrospect, our observation regarding the correlation between the presence of
CCR10* T cells in the peripheral blood of patients with acute skin GvHD at the same
time as their appearance in the skin should be considered as a unique set of data.
Most likely, we have been extremely lucky that the patients in question were sampled
at the right time points, as skin-homing T cells may only be present in the circulation
for a very limited amount of time. Overall, our results indicate that the expression of
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chemokine receptors in the peripheral blood does not necessarily represent their
expression pattern on cells present in inflamed tissue. Acute GvHD mainly occurs
within 100 days post transplant, when immune reconstitution is generally far from
complete. In this lymphopenic setting, it is much easier to find deviations than when
reconstitution is (nearly) complete, as is the case in most patients who manifest with
cGvHD. In OS, the highly restricted T cell receptor repertoire mimics a lymphopenic
setting, which may explain our finding of skin-homing CCR10* T cells amongst the T
cells present in PBMC collected from this patient. As mentioned before, a promising
approach to obtain a better understanding of the homing processes in GvHD would
be by multicolour staining or mMRNA analysis of tissue infiltrating T cells instead of
looking at surface expression levels in peripheral blood cells of these patients.

In order to fully unravel the pathophysiology of GvHD, not only the effector cells
should be investigated but also the antigen presenting cells (APC) involved in ac-
tivation of these cells. Some types of APC such as DC are actively on the move
which allows them to patrol the body, whereas other APC such as macrophages are
sessile in tissues. The kinetics of APC turnover from recipient to donor origin after
HSCT probably plays a decisive role in the pathophysiology and tissue specificity
of GvHD. In Chapter 6 we describe the “per exclusionem” finding that host-derived
dermal macrophages are major constituents of the fasciae infiltrates. As described
before*, recipient dermal macrophages can persist for a long time post transplant.
These cells are probably not involved in the initiation of GvHD but could sustain the
response of previously activated allo-reactive T cells. In the epidermis, Langerhans
cells (LCs) self-renew and are only replaced by bone marrow-derived precursors
upon inflammation*, which might also hold true for dermal macrophages. APC in
other organs than the ones affected in GvHD, might have faster turnover rates and,
therefore, these organs are not affected by donor T cells.

In contrast to Haniffa et al., we attempted to investigate the kinetics of LCs in the skin
in situ, using XY-FISH in combination with fluorescent labelling of CD3 and CD1a.
However, we found contradictory results comparing frozen and paraffin embedded
biopsies (unpublished data). A larger study, looking at different organs, applying
better sampling schemes, using fresh material and another way to combine LC
markers with techniques to discriminate between donor and recipient, could provide
a better understanding of LC turnover kinetics and the impact on the initiation and
persistence of GvHD.

The role of chemokines and their receptors in the pathophysiology of GvHD remains
to be elucidated. Recently, CCR6 has been described as an important chemokine
receptor in cGvHD. Disparities in SNP’s in the CCR6 gene between donor and
recipient may result in a cGvHD protective genotype*. It is hypothesised that
the protective genotype is a result of low CCR6 expression levels by donor cells.
The explanation for this is two-fold. First, immature DC express, amongst others,
CCR®6 to enable recruitment of DC to inflammatory sites*’. Interestingly, the sole
ligand for CCR6, CCL20, is constitutively expressed in skin, gut, liver, colon and
lung*®, corresponding with the GvHD target organs. Impaired homing of immature
DC may thus result in reduced allo-reactive T cell responses. Second, T 17 cells
are characterised by expression of CD4*CD161*CCR4*CCR6"*. As T,17 cells are
involved in the occurrence of GYHD*, low levels of CCR6 on these cells would impair
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their homing to GvHD target tissues.

Recently, a distinct CD8* T cell subset has been described, expressing CD161.
These cells also express CCR6 and can produce IFN-y and IL-17, which are GvHD-
associated cytokines. Reconstitution of these cells after HSCT is rapid, probably due
to their unresponsiveness to CsA, which is used as GvHD prophylaxis. Decreased
levels of this subset in the PBMC of HSCT patients correlated with the occurrence
of GvHD. These results suggest that CD8*CD161*CCR6* T cells specifically migrate
to the CCL20 expressing GvHD target organs (Figure 1) and indicate a role in
GvHD pathophysiology (A.G.S. van Halteren, personal communication). It would be
worthwhile to investigate the expression of CD161 and CCR6 on the CD8" T cells
observed in fasciitis and by the HY-specific CD8* T cells described in Chapters 5 and
6 of this thesis, to see whether they belong to this specific CD8* T cell subset. If so,
the expression of CCL20 would also be of interested in the affected lesions .
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Figure 1. CCL20 expression in the skin of an acute GvHD patient.

Single enzymatic staining for CCL20 (detected by the red/brown colour, B) showed clear expression of
this chemokine in a representative GvHD skin biopsy. Omission of the primary antibody was used to show
the specificity of the staining in a foreskin biopsy (A).

Based on these data, the model for the pathophysiology of GvHD as depicted in
Figure 7, Chapter 1, can be extended (Figure 2). TBI and chemotherapy induce
tissue damage, resulting in the secretion of IL-1 and TNF-a. Besides their effect
on HLA expression and the expression of adhesion molecules, they also induce
the up-regulation of CCL20 by host tissues as skin (keratinocytes)®'®? and gut
(epithelial cells)%?%3, This increased expression of CCL20 induces the recruitment of
immature DC (iDC), T 17 cells and CD8*CD161*CCR6* T cells. Other donor T cell
subsets become activated and their influx is facilitated by tissue-specific chemokine/
chemokine receptor interactions e.g. CCR10/CCL27.

Altogether, the major drawback that the investigations described this thesis have in
common, is the limited availability of fresh patient material. This could be overcome
by better sampling schemes and compliance to these schemes. As described in
this thesis, cellular trafficking in haematological and immunological disorders is
complicated and, apart from involvement of additional interaction pathways, the
chemokine/chemokine receptor system in itself is too heterogeneous to apply
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as a single diagnostic or therapeutic tool. However, in diseases like leukaemia,
it is still worthwhile to screen for chemokine receptors at diagnosis, and further
investigation of migration mechanisms will certainly be instrumental in unravelling
the pathophysiology of haematological and immunological disorders.

TBI &
Chemotherapy

Migration

Lol mediated by tissue-specific

chemokine-chemokine receptor
interactions e.g. CCR10-CCL27

APC activation Effector phase
HLA-DR T cell proliferation
Adhesion molecules CTL & NK cell responses

& Phagocyte activation

Upregulation of CCL20 T cell activation

by host tissues IL-2 & IFN-y
(skin & gut) &

Recruitment of iDC,
TH17 cells &CD8*CD161+CCR6+
T cells

Figure 2. Extended model for the pathophysiology of acute GvHD.

TBI and chemotherapy induce tissue damage, resulting in the secretion of IL-1 and TNF-a. Besides their
effect on HLA expression and the expression of adhesion molecules, they also induce the up-regulation
of CCL20 by host tissues as skin (keratinocytes) and gut (epithelial cells). This increased expression of
CCL20 induces the recruitment of immature DC (iDC), T,,17 cells and CD8*CD161*CCR6" T cells. Other
donor T cell subsets become activated and their influx is facilitated by tissue-specific chemokine/chemok-
ine receptor interactions e.g. CCR10/CCL27
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De migratie van cellen van het afweersysteem en hun kwaadaardige tegenhangers,
leukemische cellen, van en naar de verschillende weefsels en organen wordt o.a.
bepaald door de interactie van locaal geproduceerde chemokinen (kleine eiwitten)
met receptoren die op deze cellen tot expressie komen en de chemokinen specifiek
herkennen. Het merendeel van het in dit proefschrift beschreven onderzoek heeft
zich gericht op de betrokkenheid van specifieke chemokine/chemokine receptor
combinaties in het sturen van dit cellulaire verkeer.

Acute leukemie bij kinderen gaat vaak gepaard met infiltratie van leukemische cellen,
die ontstaan in het beenmerg, in weefsels buiten het beenmerg (extramedullair).
Na behandeling kan dit leiden tot het locaal terugkomen van de leukemie (locaal
recidief). In een eerdere studie (Annels et al. Blood 2004; 103(7):2806-8) hebben we
onderzocht of chemokinen en hun receptoren een rol spelen bij het bepalen van de
uiteindelijke locatie van het recidief. Hiervoor werd de chemokine receptor expressie
op leukemische cellen in het perifere bloed en/of beenmerg van 11 patiénten met een
acute T-cel leukemie (T-ALL) onderzocht ten tijde van diagnose. In één patiént, die
18 maanden na diagnose een recidief in de darm kreeg, vertoonden de leukemische
cellen in het bloed bij diagnose al een hoge expressie van de darm-specifieke
chemokine receptor CCR9 en adhesiemolecuul CD103. De leukemische cellen
bij het latere recidief in de darm brachten inderdaad CCR9 tot expressie, samen
met CCL25, het chemokine dat door CCR9 wordt herkend. De andere 10 patiénten
brachten dezelfde chemokine receptoren tot expressie als de normale T cellen van
gezonde kinderen van dezelfde leeftijd. Geen van deze patiénten presenteerde zich
later met een (locaal) recidief van de leukemie. Deze resultaten suggereren dat
stelselmatig onderzoek van leukemische cellen bij diagnose van de leukemie voor
afwijkende expressie van chemokine receptoren de mogelijke relaps locatie kan
voorspellen.

Om de rol van chemokinen en hun receptoren in extramedullaire acute myeloide
leukemie (AML) te onderzoeken werden perifeer bloed, beenmerg en huid biopten
van 15 kinderen met AML cellen in het beenmerg en de huid onderzocht. Dit is be-
schreven in Hoofdstuk 2. AML cellen uit het bloed van de patiénten met extramedul-
laire leukemie (EML) in de huid vertoonden, vergeleken met AML cellen uit het bloed
van patiénten zonder leukemische cellen in de huid, een hogere expressie van de
chemokine receptor CCR2. De leukemische cellen in de huid van deze patiénten
brachten ook CCR2 tot expressie. Behalve CCR2, hadden deze cellen niet alleen
de chemokine receptoren CCR5, CXCR4 en CXCR7 op hun celmembraan, maar
expresseerden deze AML cellen ook de chemokinen CCL3 en CXCL12 die specifiek
door deze receptoren worden herkend. Gebaseerd op deze bevindingen denken we
dat AML cellen in de circulatie door CCR2 en een nog niet geidentificeerd chemok-
ine gedirigeerd worden naar de huid. Interacties tussen CCR5/CCL3 en CXCR4/
CXCL12 zorgen hierna voor het vasthouden van de leukemische cellen in de huid,
waarna CXCR7/CXCL12 interacties zorgen voor de verlenging van de overleving-
skansen van de leukemische cellen.

Omenn syndroom (OS) is een erfelijke stoornis van de immunologische afweer
(immuundeficiéntie) die wordt gekarakteriseerd door abnormale ontwikkeling van

127



Nederlandse samenvatting

B en T cellen. De T cellen hebben bovendien een beperkt repertoire van antigeen-
specifieke receptoren. Deze patiénten vertonen een rode verkleuring van de huid
(erytrodermie) veroorzaakt door een enorm infiltraat van auto-reactieve T cellen.
Het voornaamste symptoom van OS is de uitzonderlijke aanwezigheid van T cellen
in de huid, darmen en lever, zoals ook gezien wordt bij patiénten met acute Graft-
versus-Host ziekte (aGvHD, zie volgende paragraaf). In Hoofdstuk 3 hebben we
de migratie van T cellen onderzocht in een OS patiént met ernstige huidproblemen.
De huid-specifieke chemokine receptor CCR10 werd niet alleen in hoge mate tot ex-
pressie gebracht op CD4* en CD8" T cellen in de circulatie, maar beide T cel popula-
ties waren ook duidelijk aantoonbaar in huidbiopten, kleine stukjes weefsel van de
aangedane huid, van de patiént. In deze biopten was bovendien erg veel CCL27
aanwezig, een van de twee chemokinen die door CCR10 herkend worden. Locale
behandeling van de huid met het middel Tacrolimus resulteerde in een significante
verbetering van de huidproblemen, gevolgd door een enorme afname van CCR10*
T cellen in de circulatie en een vermindering van CCL27 expressie en T cel infiltratie
in de huid. Deze resultaten suggereren dat CCR10/CCL27 interactie een belangrijke
rol speelt in de migratie van geactiveerde CD4* en CD8"* T cellen naar de huid van
OS patiénten.

Hematopoétische stamcel transplantatie (HSCT) is een vaak gebruikte behande-
ling voor hematologische en immunologische aandoeningen zoals besproken in de
hoofdstukken 2-3. Een van de grootste nadelen van deze behandeling is het op-
treden van “Graft-versus Host Disease” (GvHD). Hierbij reageren T cellen afkomstig
uit het stamcel transplantaat van de donor tegen de huid, darmen en lever van de
ontvanger van het transplantaat, met als gevolg beschadiging van deze weefsels.
Om te onderzoeken of CCR10/CCL27 interactie, zoals in hoofdstuk 3 gevonden is
bij een patiént met Omenn syndroom en huidproblemen, ook van belang is voor de
migratie van donor T cellen naar de huid bij patiénten met GvHD, hebben we het
perifere bloed en huidbiopten van 15 kinderen met acute GvHD vroeg na HSCT
onderzocht (Hoofdstuk 4). CCR10 werd inderdaad hoog tot expressie gebracht op
CD4* T cellen in het bloed en dit leek te correleren met de duur van de huidproble-
men. CD4*CCR10* T cellen waren duidelijk aanwezig in de huidbiopten maar niet
in de darmbiopten van de patiénten die ook last hadden van GvHD in de darm. De
aanwezigheid van CD4*CCR10* T cellen in de huid correleerde met een verhoogde
expressie van het chemokine CCL27 in de epidermis van deze huidbiopten. Deze
resultaten suggereren dat in GvHD voornamelijk de CD4* T cellen naar de huid
migreren door het optreden van CCR10/CCL27 interacties.

GvHD wordt veroorzaakt door de activatie van donor T cellen die de verschillende
humane leukocyten antigenen (HLA) en/of minor HLA (mHags) moleculen herkennen
die wel door de ontvanger maar niet door de donor tot expressie gebracht worden.
HLA en mHAgs moleculen worden door (een gedeelte van) de kernhoudende cel-
len tot expressie gebracht. In Hoofdstuk 5 werd de betrokkenheid van T cellen, die
specifiek een bepaald mHAg molecuul (namelijk HY dat door mannelijk cellen tot
expressie kan worden gebracht) herkennen, bij het ontstaan van aGvHD na HSCT
tussen twee mensen van een verschillend geslacht onderzocht. Hiervoor hebben
we een speciaal reagens op zijn bruikbaarheid getest. Door gebruik van dit reagens
hebben we, voor de eerste keer, in door GvHD aangedane huidbiopten van manneli-
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jke ontvangers van vrouwelijke hematopoétische stamcellen de aanwezigheid van
HY-specifieke T cellen zichtbaar kunnen maken. Hoewel maar een beperkt aantal
van deze cellen gedetecteerd kon worden in de perifere bloed mononucleaire cellen
(PBMC) van deze patiénten, bracht analyse van deze cellen de expressie van de
chemokine receptor CX3CR1 aan het licht. Helaas was het technisch niet mogelijk
om de HY kleuring van cellen in de huid the combineren met een aankleuring voor
chemokine receptoren. Hierdoor blijft het mechanisme waarmee HY-specifieke T
cellen naar de huid migreren nog onduidelijk.

In Hoofdstuk 6 werd de rol van T cellen in chronische GvHD (cGvHD) onderzocht;
chronische GvHD is een lange-termijn complicatie van HSCT en een bekende oor-
zaak van morbiditeit en mortaliteit na transplantatie. Bij 3 patiénten met een ontstek-
ing van het bindweefsel (fasciitis) als voornaamste symptoom van cGvHD werden
PBMC en weefsels geanalyseerd. De cellen die te vinden zijn in de fascia (het
bindweefsel) bevatten relatief veel geactiveerde CD8* T cellen en CD163* cellen,
mogelijk dermale (huid) macrofagen. Hoewel we de chemokine/chemokine receptor
paren verantwoordelijk voor de migratie van CD8* T cellen niet konden identificeren,
konden we wel aantonen dat de chemokine receptor CCR5 aanwezig was op de
plaatsen waar cellen de fascia waren binnengedrongen, maar dat deze expressie
niet samenviel met de exacte locatie van de CD8* T cellen.
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