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Many cell types take part in the immunological processes contributing to the synovial 
and systemic inflammation present in patients with rheumatoid arthritis (RA), 
including T cells and B cells. They exert their own functions and interact with each 
other, resulting in the chronic inflammation observed in RA. The research presented in 
this thesis focused on the identification of several risk factors and specific T cell 
responses that are thought to play a role in the pathogenesis of RA. 
Four major topics were studied. Firstly, we showed that “DERAA”-containing HLA-
DRB1 alleles are less frequently present in RA patients as compared to controls both 
when these alleles are inherited directly as well as when they are acquired as non-
inherited maternal antigen (NIMA) (Chapter 2 and 3). Secondly, two naturally 
processed epitopes derived from the human citrullinated vimentin protein were 
identified in mice transgenic for the most frequent SE-containing HLA-DRB1 allele in 
Caucasians, HLA-DRB1*0401. IFN�-production by CD4+ T cells against these 
peptides could be observed in RA patients (Chapter 4). These T cells could be 
involved in providing help to ACPA-producing B cells. Furthermore, we showed in 
Chapter 5 that the C1858T polymorphism of the PTPN22 gene is not informative for 
the prediction of RA development in UA patients in addition to ACPA status, but does 
seem to affect ACPA-levels of RA patients. In Chapter 6, we observed that a newly 
identified risk factor for RA, CD40, also influences the severity of the disease as 
measured by radiological damage. 
 
Regarding these findings, the following topics will be discussed in further detail in the 
different sections of this chapter: 

1. “DERAA”-containing HLA-DRB1 alleles 
a. The possible mechanism of the observed protection 
b. Maternal michrochimerism as mechanism of the observed NIMA effect 
c. Associations of these HLA-DRB1 alleles with other diseases 

2. PTPN22 and ACPA 
3. The role of CD40 on ACPA production and RA development 
4. Directions for further research 

1a. Possible mechanism of DERAA protection 
It has been shown by several groups that the frequency of “DERAA”-containing HLA-
DRB1 alleles is reduced in RA patients as compared to healthy controls (1-4). We have 
described in Chapter 2 and 3 of this thesis that this protective effect is present both 
when these HLA-DRB1 alleles are inherited, as well as when the gene products are 
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acquired as a non-inherited maternal antigen (NIMA). Although it is becoming 
increasingly clear that some HLA-DRB1 alleles confer protection to RA (5;6), it is 
unclear whether the entire “DERAA”-motif is essential for protection or whether only 
certain amino acids of this motif may confer the same effect. In contrast to several 
reports showing the protective effects by “DERAA”-containing HLA-DRB1 alleles on 
the development and severity of RA (1-4), other reports conclude that the amino acids 
“RAA” at position 72-74 in the third hypervariable region influence the susceptibility 
to RA development whereas the amino acids at position 70 and 71 modulate this effect 
(7;8). In these articles it is indicated that not only HLA-DRB1  alleles expressing the 
71ERAA74 sequence but also alleles that only contain the Aspartic acid (D) at position 
70 have a lower frequency in RA patients as compared to healthy controls. The 
hypothesis that protection is mainly associated with the Aspartic acid (D) at position 70 
is supported by Ruiz-Morales et al. (9) and Mattey et al (10). A meta-analysis 
including large group sizes and different study populations has to be performed to 
elucidate which of the amino acids are essential for the observed protective effect. In 
the section below it is assumed that the “DERAA”-motif is responsible for the 
observed protection. 
 

 
 
 
 
 
 

 
The mechanism by which the “DERAA”-containing HLA-DRB1 alleles influence the 
susceptibility to and the severity of RA is unknown, but it has been proposed that it is 
mediated by T cells recognizing peptides containing the “DERAA”-sequence presented 
by HLA-DQ molecules (11). As it is well-known that many peptides presented by 
HLA-class II molecules are derived from other HLA-molecules (12-18), it is 
hypothesized that the T cell repertoire of individuals carrying the “DERAA”-
containing HLA-DRB1 alleles, in contrast to “DERAA”-negative individuals, is 
tolerized for “DERAA”-containing antigens. The “DERAA”-sequence has been 

 Table 1. Human proteins containing the amino acid sequence DERAA. The sequences are  
 depicted as peptides with “DERAA” in the centre and 7 flanking residues on each side. 

Protein name Sequence 
Vinculin     PNREEVFDERAANFENHSG 
MHC QKDI(L/F)LEDERAAVDTYCRH 
Parkin     TTQAYRVDERAAEQARWEA 
PER1 (period circadian protein)     SCLFQDVDERAAPLLGYLP 
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described to be only present in four human proteins (19): i.e. parkin, PER1, the 
“DERAA”-containing HLA-DRB1 molecules and vinculin (Table 1). Parkin and PER1 
are both brain-specific proteins and are therefore probably not involved in the 
protection against RA. It has been shown that vinculin, a cytoskeletal protein, can be 
found under certain conditions (e.g. during apoptosis) on the cell surface, and that 
cross-priming to vinculin-specific cytotoxic T lymphocytes can occur (20;21). These 
findings indicate that vinculin-specific T cells can exist and thus are not tolerized in the 
thymus, despite the fact that vinculin is an abundantly expressed self-protein present in 
the cytoskeleton of every cell in the body. We have observed that PBMC from 
“DERAA”-negative individuals can respond with significantly more IFN� to the 
“DERAA”-containing peptide derived from vinculin than those of “DERAA”-positive 
individuals (data not shown). It is hypothesized that the vinculin peptide is recognized 
as self in “DERAA”-positive individuals since the “DERAA”-containing HLA-DRB1 
peptide is presented by another HLA molecule to the immune system, therefore 
resulting either in deletion of vinculin-reactive T cells or skewing of the cytokine 
profile to a suppressive profile without IFN�. 
Since it is not likely that IFN�-producing T cells reactive against self-proteins are 
induced by such self-proteins, giving rise to autoimmunity, these vinculin-reactive T 
cells possibly result from e.g. an infection. Indeed, the phenomenon that molecular 
mimicry from a pathogen to a self-protein can lead to autoimmunity has been reviewed 
and observed several times (22-28). Many pathogens, such as Influenza, Measles, 
Bordetella Pertussis and Salmonella, can express proteins containing the “DERAA”-
sequence. We therefore hypothesize that “DERAA”-directed T cells stimulated by a 
pathogen-derived “DERAA”-containing peptide accidentally can cross-react with 
human self-proteins, e.g. vinculin. Therefore, they aggravate an ongoing inflammation 
in the joints and play a role in the development of RA (Figure 1). These “DERAA”-
(cross)reactive T cells only exist in “DERAA”-negative individuals (Figure 1A) in 
contrast to “DERAA”-positive individuals (Figure 1B) who are tolerant to the 
“DERAA”-sequence. 
 
Since it was shown that the “DERAA”-containing peptide derived from the HLA-
DRB1*0402 molecule can be presented by HLA-DQ8 (11), evidence supporting the 
hypothesis formulated above was obtained by analyzing T cell reactivity against the 
“DERAA”-containing peptide derived from Influenza A in DQ8-transgenic mice. Our 
preliminary data indicate that T cells specific for the “DERAA”-containing peptide 
derived from vinculin can be observed after immunization with this peptide, but not  
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Figure 1. Proposed mechanism for the effect of “DERAA”-containing HLA-DRB1 molecules on 
RA. An individual is infected with a “DERAA”-containing pathogen. Depending on whether it is a 
“DERAA”-negative (A) or a “DERAA”-positive (B) individual T cells reactive with the “DERAA”-
containing peptide processed from the pathogen are triggered or not. These T cells, which are only 
present in “DERAA”-negative individuals (A) can lead together with RA-specific T cells to the 
aggravation of the inflammation leading to the diagnosis of RA. 
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Figure 2. Crossreactivity to vinculin in DQ8-transgenic mice. Mice were immunized with the 
“DERAA”-containing peptide derived from Influenza (Influenza) or PBS in adjuvant (Adjuvant). 
Spleen cells were cultured for 4 weeks with the immunizing flu peptide and tested afterwards in a 
proliferation assay with 10,000 cells/well. No (open bars) or anti-HLA-DQ antibodies (hatched 
bars) were added to the wells without stimulation (white bars) or stimulated with the “DERAA”-
containing peptide derived from vinculin (grey bars). Bars represent the mean amount of counts 
after addition of 3[H]-Thymidine overnight measured in triplicate with the SEM. 
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in mice immunized with a control peptide (data not shown). T cells triggered against 
the “DERAA”-peptide derived from Influenza A and cross-reactive with the vinculin-
derived “DERAA”-peptide were HLA-DQ restricted (Figure 2, left part). These T cells 
are absent in mice immunized with adjuvant only (Figure 2, right). Together, these data 
suggest that T cells can show reactivity to the vinculin peptide after initial triggering 
against the “DERAA”-peptide derived from a pathogen, e.g. Influenza A. 
 
When the decreased frequency of “DERAA”-containing HLA-DRB1 alleles in RA 
patients is studied in more detail, several articles showed that “DERAA”-containing 
HLA-DRB1 alleles protect against the development of ACPA+ RA (1;6). Since it has 
been shown that SE-containing HLA-DRB1 alleles associate with the production of 
ACPA and the so-called SE is located at the same position in the HLA-DRB1 molecule 
as the amino acids “DERAA”, this association has to be corrected for the presence of 
SE-containing HLA-DRB1 alleles. Lundstrom et al. showed that also after 
stratification for SE-containing HLA-DRB1 alleles, the frequency of HLA-DRB1*13 
alleles (most frequent “DERAA”-containing HLA-DRB1 alleles) is significantly 
decreased in ACPA+ compared to ACPA- RA patients (29), indicating that the 
“DERAA”-containing HLA-DRB1*13 alleles can  protect against the development of 
ACPA. In a meta-analysis with RA patients and controls from four different countries 
(including our own EAC and BEST cohort) it was shown that HLA-DRB1*1301 
alleles protect against the development of ACPA+ RA in contrast to ACPA- RA after 
stratification for SE-containing HLA-DRB1 alleles. Since the HLA-DRB1*13 alleles 
account for 78-93% of the “DERAA”-containing HLA-DRB1 alleles present in the 
studied patients, the meta-analysis was still underpowered to prove or exclude HLA-
DRB1*0103 and *0402 for the protective effect on ACPA+ RA (30). Therefore, future 
studies have to clarify which HLA-DRB1 alleles confer protection to ACPA. 

1b. Maternal microchimerism as mechanism of the observed NIMA effect 
When the protection induced by both inherited and non-inherited “DERAA”-
containing HLA-DRB1 alleles on RA is working via molecular mimicry, it also could 
explain the mechanism of the NIMA effect. 
In Chapter 2 and 3 of this thesis we hypothesize that the observed NIMA effect of 
“DERAA”-containing HLA-DRB1 alleles is caused by maternal microchimerism. It 
has been shown in humans that there is long-term persistence of microchimerism (31) 
and that these microchimeric cells can differentiate into different tissue-specific cell 
types (32;33). It can be hypothesized that due to the presence of “DERAA”-containing 
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HLA-molecules on the surface of microchimeric maternal cells the child will recognize 
“DERAA”-containing antigens as self and therefore the observed T cell responses will 
resemble the reactivity of a “DERAA”-positive individual. This will result either in 
regulatory T cells or deletion of “DERAA”-reactive T cells, as occurs with the 
inherited effect of “DERAA”-containing HLA-DRB1 molecules. 
It has been shown that in utero there is a much higher percentage of regulatory T cells 
in the fetus compared to after birth. T cell tolerance to alloantigens (e.g. NIMA) 
present in utero may, in some cases, be maintained after birth through the 
establishment of long-lived regulatory T cells (34). Following this scenario, the 
acquirement of “DERAA”-containing antigens in utero might result in the lifelong 
absence of pro-inflammatory “DERAA”-reactive T cells. 
Another possibility is that the maternal microchimeric cells end up in the thymus 
serving as antigen presenting cell (APC), thereby inducing regulatory T cells or 
deletion of T cells, e.g. against “DERAA”-containing antigens. It is also hypothesized 
by Dutta and Burlingham that it is not the microchimeric APC themselves, but 
maternal antigen acquisition by host APC from these few microchimeric cells that 
drives the balance of T effector and regulatory T cells in favor of the latter (35). 

1c. Effects of “DERAA”-containing HLA-DRB1 alleles in other diseases 
Thus far we have focused on the association of “DERAA”-containing HLA-DRB1 
alleles with RA. We wondered however whether the “DERAA”-containing HLA-
DRB1 alleles might also be associated with other (immunological) disorders. Therefore 
a preliminary literature search was performed to analyze this. The most common 
“DERAA”-containing HLA-DRB1 alleles, HLA-DRB1*13 (from which approximately 
97% will be “DERAA”-containing HLA-DRB1*13 alleles in the Caucasian population 
(36;37)), are associated with Hepatitis B (38-44) and –C infections (45-48), cervical 
cancer (49-54), HIV(55-57)  and systemic lupus erythematosus (58-61). In all these 
different diseases, carriership of HLA-DRB1*13 protects either for the development of 
the disease or chronicity/ complications of the disease. Therefore, “DERAA”-
associated protection does not seem to be specific for RA. It is unknown whether the 
“DERAA”-sequence of the HLA-DR13 molecules is directly involved in the observed 
protection. When future research indicates that these effects can be attributed to the 
presence of “DERAA” in the HLA-molecule, these observations can help to elucidate 
the mechanism by which these “DERAA”-containing HLA-DRB1 alleles can influence 
the immune response. 
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2. PTPN22 and ACPA 
The most studied SNP of the PTPN22 gene is the C1858T polymorphism. This single 
nucleotide change results in an amino acid substitution from Arginine to Tryptophan in 
the Lyp protein transcribed from the PTPN22 gene. This substitution is located in a 
binding domain important for the function of Lyp, which acts as a Tyrosine 
phosphatase (62). The function of Lyp is the negative regulation of T cell receptor 
signaling, either direct or indirect, by influencing the phosphorylation status of 
different molecules involved in the signaling cascade that leads to T cell activation (63-
69). The functional consequences of the amino acid change resulting from the C1858T 
polymorphism are not entirely clear as it has not only been shown that it leads to more 
T cell activation since there is less inhibition of the activation signal by Lyp (70), but 
also that cells from carriers of the T variant produce less cytokine (71). In mice it has 
been shown that a knock-out of Pep, the mouse ortholog of the Lyp protein, displays a 
hyperreactive T cell response (72). Lyp is expressed in different cell types and 
probably exerts different functions in e.g. T and B cells. 
In chapter 5 of this thesis, the predictive value of the C1858T polymorphism was 
studied next to ACPA status. Our study demonstrated an independent association of 
ACPA but not of the PTPN22 C1858T polymorphism with progression to RA among 
patients presenting with UA, although the presence of this SNP is associated with an 
increased level of ACPA in ACPA+ patients. This finding was confirmed by another 
study (73). In many articles, it has been shown that the odds to be a carrier of the T 
variant of the C1858T polymorphism is about two times increased in ACPA+ compared 
to ACPA- individuals, indicating that carriership of the T variant of the C1858T 
polymorphism is associated with ACPA production (74-77). The production of ACPA 
is also associated with the SE-containing HLA-DRB1 alleles. Intriguingly the 
association of PTPN22 with RA is also present only in SE-positive individuals and not 
in SE-negative individuals (76), indicating that SE and the PTPN22 allele are in the 
same biological pathway. As both genetic risk factors associate with ACPA+ disease, 
the contribution of PTPN22 is probably found in setting the balance for ACPA 
production. It is therefore conceivable that PTPN22 associates with ACPA production 
because it has a direct impact on the activity of the B cell receptor as it has been found 
that the T-variant of the C1858T polymorphism results in less B cell receptor signaling 
(78;79). More extensive studies have to show how these data relate to each other. 
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Thus, pathophysiologically both the SE-containing HLA-DRB1 alleles, ACPA and 
PTPN22 are players in the same pathway (see Figure 3), and by measuring ACPA the 
effect of the PTPN22 1858T-allele when present, is already included. 
 

 

3. The role of CD40 on ACPA production and RA development 
Recently, a SNP located in the intron of the gene encoding for CD40 was identified to 
associate with RA in a genome wide association study (GWAS) (80). The 
susceptibility allele of this SNP associates with less severity or progression of RA, as 
described in chapter 6 of this thesis. CD40 is a well-known molecule expressed on B 
cells and other antigen presenting cells required for optimal cell activation by T cells. 
Its ligand, CD40L, is expressed on activated CD4+ T cells. Triggering of CD40 is 
involved in B cell proliferation, antibody production, class-switching and B cell 
memory formation. It is unknown what functional consequences the SNP has on the 
expression of CD40 protein, but the effect can be either on the B cell or other 
professional APC such as dendritic cells. Moreover, CD40 is also reported to be 
expressed on synovial fibroblasts. 
Regarding the contribution of CD40 to the process of disease development of RA, it 
can either influence the production of ACPA and thereby the susceptibility and severity 
of RA or play an independent role on the pathogenesis of RA (Figure 3). There is only 
one article on the influence of CD40 on the production of ACPA. In this article it is 

Figure 3. Schematic representation of the risk factors for RA that were studied and 
discussed in this thesis. The arrows indicate the direction of the putative interactions. 
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shown that B cells from the peripheral blood (both from RA patients and healthy 
controls), synovial fluid and bone marrow all start to produce ACPA in response to 
CD40 triggering. Although B cells from ACPA-positive individuals already produce 
ACPA without in vitro stimulation, the ACPA production is increased after CD40 
stimulation (81). For rheumatoid factor (which are autoantibodies specific for the Fc 
portion of IgG) it has been shown that CD40 signaling plays a major role in the 
survival of rheumatoid factor producing B cells and therefore in the rheumatoid factor 
production (82). 
CD40 signaling into the antigen presenting cell is mediated by the (de)phosphorylation 
of the Tyrosine kinases (83) on which Lyp also exerts its function. Therefore the CD40 
signaling pathway and the effect of the PTPN22 SNP in B cells can probably influence 
each other, and it would by intriguing to know whether a similar relationship between 
CD40 and PTPN22 and/or SE-containing HLA-DRB1 alleles can be formed as 
described for the PTPN22-HLA-SE interaction.  
On the T cell site CD40-CD40L interaction plays an important role in the amplification 
of the T cell response by a positive feedback loop for the production of co-stimulatory 
molecules on dendritic cells (84). 
The role of CD40-CD40L interaction in arthritis has also been studied in different 
mouse models. It has been shown that blocking of the CD40L molecule results in 
prevention of collagen-induced arthritis (CIA), both measured in clinical scoring and in 
the absence of anti-collagen antibodies (85). The inhibition or prevention of arthritis in 
both the K/BxN model and DBA1 mice by prevention of the CD40-CD40L interaction 
has also been shown, but this does not affect established arthritis indicating that the 
CD40-CD40L interaction plays a role in the initiation rather than in the exacerbation 
phase of the arthritis (86-88). 
CD40 is not only expressed on B cells but also on other antigen presenting cells. 
Therefore the influence of CD40 on RA may also be attributable to induction of 
fibroblast proliferation (89), the induction of TNF� production by synovial cells (90-
92), chondrocytes (93) or osteoclasts (94). 
 
A sheme showing the relationship of the risk factors studied in this thesis to RA is 
shown in figure 3. 
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4. Directions for further research 
As already indicated in several parts of the discussion, future research has to be 
performed to elucidate the phenomena observed and studied in this thesis. Here I will 
indicate future directions that could be followed and that are not mentioned in the 
previous sections. 
“DERAA”-containing HLA-DRB1 alleles protect against the development and severity 
of RA, both when they are inherited and when they are acquired as a NIMA. We 
observed that the effect of the “DERAA”-containing HLA-DRB1 alleles is of a similar 
strength when they are inherited compared to acquired as a NIMA. The underlying 
mechanism of the effect of “DERAA”-containing HLA-DRB1 alleles has been 
discussed in the previous sections but certainly is not proven up to now. The T cell 
reactivity observed against the peptide derived from the human cytoskeletal protein 
vinculin needs to be shown also for naturally processed peptides from the whole 
protein. The possibility of cross-reactivity of T cells triggered against a pathogen-
derived peptide containing the “DERAA”-sequence, i.e. from Influenza A, with the 
“DERAA”-containing peptide derived from vinculin is demonstrated in DQ8-
transgenic mice. It is important to know whether “DERAA”-specific T cells are 
triggered when a mouse or individual is infected with a “DERAA”-containing strain of 
the Influenza A virus. Furthermore, extensive studies for cross-reactivity of other 
pathogen-derived “DERAA”-containing peptides with the vinculin-peptide have to be 
performed both in mice and in humans. An extensive meta-analysis for the effect of 
“DERAA”-containing HLA-DRB1 alleles in other diseases and infections can probably 
help to elucidate the underlying mechanism. 
An extensive family study in which individuals from three generations can be studied 
possibly will give more insight in the mechanism underlying the observed effect of 
“DERAA”-containing HLA-DRB1 alleles as a NIMA. It is important to know in which 
immunological status the acquirement of “DERAA”-containing antigens can still lead 
to a protective effect; is it necessary to acquire this NIMA in a fetal stage or is 
induction of the effect still possible when acquired in adulthood? The latter would have 
implications to treat “DERAA”-negative individuals with “DERAA”-containing 
molecules (e.g. by means of transfusing cells expressing the “DERAA”-containing 
HLA-DRB1 molecules) to induce protection against the development of RA in 
individuals who are at risk or ameliorate existing disease in “DERAA”-negative 
patients. 
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When more is known about the fine-specificity of ACPA, the interplay between T cells 
and their help to ACPA-producing B cells can be studied in more detail. This both 
accounts for “citrulline”-specific T cells and for T cells specific for a connected protein 
(e.g. vinculin) helping an ACPA-producing B cell. Since these studies rely on a 
delicate choice of at least HLA-type, ACPA-status and ACPA-specificity, large cohorts 
are necessary to perform these studies. 
Both for the C1858T polymorphism of the PTPN22 gene and the CD40 SNP, 
functional studies are necessary to study what the precise effects are of the nucleotide 
change and whether the already studied SNPs are the most informative or whether they 
are in linkage disequilibrium with another SNP that is the causative SNP for the 
functional effect. After this, the cell type important for the observed effect has to be 
defined. 
 
In conclusion, several different aspects playing a role in the pathogenesis of RA were 
studied in this thesis. Answers were found, opening new perspectives for further 
research, but also raising many new questions, waiting to be answered.  
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