Cover Page

Universiteit Leiden

The handle <u>http://hdl.handle.net/1887/20908</u> holds various files of this Leiden University dissertation.

Author: Kok, Philippe Jacques Robert Title: Islands in the sky : species diversity, evolutionary history, and patterns of endemism of the Pantepui Herpetofauna Issue Date: 2013-05-28

10

LOW GENETIC DIVERSITY IN TEPUI SUMMIT VERTEBRATES

P. J. R. Kok, R. D. MACCULLOCH, D. B. MEANS, K. ROELANTS, I. VAN BOCXLAER & F. BOSSUYT

Article first published in *Current Biology*, 22(15), R589–R590 (2012)

Text, figures and format remain unchanged, except for some adaptations in the format to fit the thesis layout

Photo courtesy of C. Brewer-Carías

MAIN TEXT

The Pantepui region of South America, located in southern Venezuela, northern Brazil, and western Guyana, is characterized by table mountains (tepuis) made of Proterozoic (> 1.5 billion years old) sandstone-the highest reaching nearly 3 km-that are isolated from their surroundings by up to 1000 m vertical cliffs (Fig. 1A). Tepuis are among the most inaccessible places on earth (Supplemental information), and the majority of their summits have been less visited than the moon. Due to its ancient age and topography [1, 2], this region has been assumed to be an ideal nursery of speciation and a potential inland counterpart to oceanic archipelagos [3, 4]. High endemism has been reported for the flora (25% in vascular plants) and fauna (68.5% in amphibians and reptiles) of single tepuis [5, 6], and an ancient origin has been postulated for some of these organisms. But, it has also been suggested that a few taxa living in habitats extending from lowlands to summits (e.g., savannah) invaded some of the more accessible tepuis only recently [6-8]. Taken at face value, the overall timing and extent of biotic interchange between tepui summits has remained unstudied. Here, we show that recent faunal interchange among currently isolated tepui summits has been extensive, and affected even taxa living in some of the most tepuispecific habitats and on the most inaccessible summits.

We used a comprehensive sampling of five Pantepui amphibian genera (Anomaloglossus, Oreophrynella, Pristimantis, Stefania and Tepuihyla) and one reptile family (Gymnophthalmidae)-the most conspicuous vertebrates on tepui summits-from 17 tepuis in the Eastern Pantepui region and surrounding uplands. If individual tepui summits were indeed reservoirs of ancient endemism, phylogenetic analyses of these taxa would identify genetically distinct populations on each tepui without close relatives elsewhere. Instead, analyses of two mitochondrial gene fragments evolving at different rates (16S rDNA and ND1 mtDNA; see Supplemental information) indicate that populations of a given species on individual summits are often closely related to those on other summits (e.g., Oreophrynella), or to those from the surrounding uplands (e.g., Tepuihyla). Uncorrected pairwise distances in both genes indicate unexpectedly low genetic divergence-as low as zero-among multiple tepui summit species or populations in five of the six groups (Stefania being the only exception), as well as among some summit species or populations and uplands populations described as distinct species (Fig. 1B, Supplemental information). Some of the lowest genetic distances are observed for populations that are currently recognized as distinct species and show striking phenotypic differences. For instance, the inconspicuously black ventral coloration in the toad Oreophrynella nigra (Yuruani-tepui and Kukenan-tepui) differs markedly from the potentially aposematic yellow-orange-black color contrasts in O. quelchii (Mt. Roraima and Wei Assipu-tepui), despite pairwise distances of 0.63–0.95% in ND1 and zero in 16S between both taxa.

The absence of genetic uniqueness suggests that the majority of these summit populations were only recently isolated. To provide an approximate estimate of the timing of their isolation, we used a nonlinear regression analysis that corrects for substitutional saturation and the systematic underestimation of evolutionary rates in recent divergences (Supplemental information). Our analyses suggest that 10 of the 11 most inaccessible tepuis studied show evidence for one or multiple instances of gene flow with other summits or with surrounding areas as recent as the late Pleistocene-Holocene (< 1.8 myr; Fig. 1B).

If the tepuis are indeed as ancient as often stated, the young age of extant summit fauna can only be explained by active dispersal among summits with subsequent extinction in the intervening uplands, e.g., during ice ages, or by passive dispersal, e.g., by birds or storms. The highly specific ecological niche preferences of some taxa restricted to tepui summits are likely to have limited active dispersal. Most *Oreophrynella* species for example exclusively occupy rocky habitats with extremely impoverished flora, which are absent in the intervening areas. Time estimates for the isolation of individual tepuis range from the Cretaceous [7, 8] to the Quaternary [2, 9]. The youngest estimates, although widely neglected in biological studies, could be compatible with the low genetic diversity and leave vicariance as a possible mechanism for speciation.

Regardless of the mechanism, our study shows that, even in small vertebrates restricted to summit-specific habitats, gene flow has been maintained until recently, making single-tepui endemism an exception rather than a rule. Nevertheless, as several of the taxa studied here (e.g., *Oreophrynella* and *Stefania*; Supplemental information) represent phylogenetically distinct lineages restricted to the Pantepui region, this area as a whole may still act as a reservoir of high-level endemism.

Figure 1. (A) Mount Roraima, an emblematic tepui. (B) Map showing part of the Eastern Pantepui region, highlighting the highest and most isolated tepuis sampled in this study (numbered from 1 to 11), and table indicating estimates of divergence time among these tepuis, or between these tepuis and the surrounding uplands, based on genetic divergences in ND1 [see Supplemental Information for details].

REFERENCES

- SIMPSON, B.B. (1979) Quaternary Biogeography of the High Montane Regions of South America. *In*: Duellman, W.E. (Ed.), *The South American Herpetofauna: Its Origin, Evolution and Dispersal*, Museum of Natural History, University of Kansas, Monograph 7, pp. 157–188.
- 2. SCHUBERT, C. & BRICEÑO, H.O. (1987) Origen de la topografía tepuyana: una hipótesis. *Pantepui*, 2, 11–14.
- 3. RULL, V. (2005) Biotic diversification in the Guayana Highlands: a proposal. *Journal of Biogeography*, 32, 921–927.
- MCCORMACK, J.E., HUANG, H. & KNOWLES, L.L. (2009) Sky Islands. *In*: Gillespie, R.G. & Clague, D.A. (Eds.) *Encyclopedia of Islands*, University of California Press, Berkeley, pp. 839–843.
- 5. BERRY, P.E. & RIINA, R. (2005) Insights into the diversity of the Pantepui Flora and the biogeographic complexity of the Guayana Shield. *Biologiske Skrifter*, 55, 145–167.
- MCDIARMID, R.W. & DONNELLY, M.A. (2005) The herpetofauna of the Guayana Highlands: amphibians and reptiles of the Lost World. *In*: Donnelly, M.A., Crother, B.I., Guyer, C., Wake, M.H. & White, M.E. (Eds.), *Ecology and Evolution in the Tropics: A Herpetological Perspective*, University of Chicago Press, Chicago, Illinois, pp. 461–560.
- SALERNO, P.E., RON, S.R., SEÑARIS, J.C., ROJAS-RUNJAIC, F.J.M., NOONAN, B.P. & CANNATELLA, D. (2012). Ancient tepui summits harbor young rather than old lineages of endemic frogs. *Evolution*, doi: 10.1111/j.1558-5646.2012.01666.x.
- GIVNISH, T.J., SYTSMA, K.J., SMITH, J.F., HAHN, W.J., BENZING, D.H. & BURKHARDT, E.M. (1997) Molecular evolution and adaptative radiation in *Brocchinia* (Bromeliaceae: Pitcairnioideae) atop tepuis of the Guayana Shield. *In*: Givnish, T.J. & Sytsma, K.J. (Eds.), *Molecular evolution and adaptive radiation*, Cambridge University Press, New York, pp. 259–311.
- 9. KUBITZKI, K. (1989) Amazon lowland and Guayana highland. Historical and ecological aspects of their floristic development. *Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales*, 17, 271–276.

ACKNOWLEDGEMENTS

We thank the financial support of the Belgian Directorate-General of Development Cooperation, the King Léopold III Fund for Nature Exploration and Conservation, and the Percy Sladen Memorial Fund. The Fonds voor Wetenschappelijk Onderzoek (FWO-Vlaanderen) granted postdoctoral fellowships to K.R. and I.V.B. F.B. is supported by grant 204509 (project TAPAS) from the European Research Council.

SUPPLEMENTAL INFORMATION

Supplemental Materials and Methods

Area of study and taxon sampling. Many tepui summit taxa are apparently rare, or at least difficult to collect, and many summit species are known only from very few specimens, often only the type series. Technical (most of these flat-topped mountains are only reachable by helicopter) and financial aspects have always seriously hindered extensive sampling for detailed and in-depth phylogenetic analyses of large datasets.

Over the past years, we managed to visit a total of 17 tepui summits/massifs and numerous uplands/lowlands localities in the Eastern Pantepui region and in other areas within the Guiana Shield, and obtained specimens and tissue samples of a considerable number of tepui taxa of almost all families represented on tepui tops. Some additional material was obtained from colleagues (see Acknowledgments). All specimens collected during our field surveys are housed in the collections of the Royal Belgian Institute of Natural Sciences, Belgium, the Royal Ontario Museum, Canada, and the National Museum of Natural History, USA. Tissue samples were deposited in the Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel and in the Royal Ontario Museum. Additionally, we included useful sequences from GenBank in our phylogenetic analyses. A list of taxa and GenBank accession numbers is given in Supplemental Table 1.

Choice of markers. The mitochondrial 16S rDNA gene was first selected because it is reported as performing well for DNA barcoding in amphibians and to detect candidate species [S2, S3, S4, S5]. Because genetic divergences were surprisingly low among summit species/populations and among summit/uplands species/populations we also sequenced a faster protein-coding gene. Protein-coding genes are powerful markers for inferring evolutionary history in lower taxonomic categories such as families, genera and species [S6] and the subunit 1 of the NADH gene, shown to evolve at least 4 times faster than 16S, was therefore convenient for our purpose.

DNA extraction, PCR, sequencing and sequence alignment. Tissue samples (thigh muscle or liver) were taken in the field and stored in 95% ethanol. Total genomic DNA was extracted and purified using the Qiagen DNeasy® Tissue Kit following manufacturer's instructions. Fragments of the mitochondrial ribosomal gene 16S (ca. 550 bp) and of the protein-coding gene NADH subunit 1 (ND1, ca. 650-730 bp) were amplified and sequenced using the primers listed in Supplemental Table 2 under previously described PCR conditions [S7]. PCR products were checked on a 1% agarose gel and purified with the Qiagen PCR purification kit following manufacturer's instructions. PCR fragments were sequenced on both strands using the BigDye cycle sequencing kit (Applied Biosystems) on an ABI 3100 automated sequencer. Chromatograms were read using the Staden package [S8] and a consensus sequence was assembled from the forward and reverse primer sequences. ClustalX 2.0.11 [S9] was used to perform preliminary alignment using default parameters. Minor alignment corrections were made using MacClade 4.06 [S10] and the protein-coding gene ND1 was translated into amino-acid sequences to check for unexpected stop codons that would indicate the presence of pseudogenes. When present, ambiguous regions were excluded from subsequent analyses.

Phylogenetic Analyses. Uncorrected pairwise distances were estimated using PAUP* 4.0b10 [S11] (Supplemental Tables 3–10). For each of the six taxa studied, their closest known relatives according to previous phylogenetic studies were selected as outgroup taxa: Rheobates and Dendrobates for Anomaloglossus [S12], Atelopus for Oreophrynella [S7], Eleutherodactylus and Stefania for Pristimantis [S13], Pristimantis and Gastrotheca for Stefania [S14], Osteocephalus for Tepuihyla [S15], and Ameiva for the Gymnophthalmidae [S16]. Maximum Parsimony (MP) analyses of the concatenated 16S+ND1 dataset were performed in PAUP* as a heuristic search with TBR branch swapping and 1,000 random addition sequence replicates; bootstrap support was estimated with full heuristic search and 10,000 replicates. Maximum Likelihood (ML) analyses were conducted in PAUP* for the 16S+ND1 dataset under the model of nucleotide substitution selected by jModelTest 0.1.1 [S17]; bootstrap support was estimated with "fast" stepwise-addition and 500 replicates. Clade credibility was also estimated by Bayesian posterior probabilities (BPP) in MrBayes 3.2.1 [S18]. The Bayesian analyses implemented a mixed general time-reversible model (GTR + G + I) partitioned over the different gene fragments, flat Dirichlet priors for base frequencies and substitution rate matrices and uniform priors for among-site rate parameters. Two parallel Markov chain Monte Carlo (MCMC) runs of four incrementally heated (temperature parameter = 0.2) chains were performed, with a length of 6,000,000 generations, a sampling frequency of 1 per 1,000 generations, and a burn-in corresponding to the first 1,000,000 generations. Convergence of the parallel runs was confirmed by split frequency SDs (<0.01) and potential scale reduction factors (~1.0) for all model parameters, as reported by MrBayes. Adequate posterior sampling was verified using Tracer 1.4 [S19] if the runs had reached effective sampling sizes >200 for all model parameters. MrBayes trees are provided in Supplemental Figure 2.

Estimation of divergence times. Recent phylogenetic studies have indicated that some taxa endemic to the Pantepui region originated in the Tertiary [e.g. S7, S20, S21]. However, the dynamics of faunal interchange among tepui summits has never been studied with molecular data. Molecular clock estimation of recent divergence times poses certain problems that are not addressed by the dating methods implemented in any of the frequently used computer programs like R8s [S22], Multidivtime [S23], and BEAST [S24]. Mitochondrial gene fragments that are commonly used to estimate divergence ages for ancient nodes may fail to provide accurate age estimates for very recent divergences due to an apparent time-dependency of evolutionary rates [S25-S27]. Moreover, fast-evolving genes are likely to show substitutional saturation towards the past [S28], resulting in a nonlinear relationship between sequence divergence and the actual time since divergence. The likelihood models implemented in the commonly used molecular clock methods [S22-24] are supposed to partially correct for substitutional saturation (by being capable to detect more "hidden" homoplasy than e.g. the maximum parsimony method). However, in the absence of recent calibration points, these molecular clock methods may still lead to considerable overestimation of recent divergence times as a result of saturation [S29].

The lack of a linear correlation between sequence divergence and time since divergence can be corrected by using correction curves [e.g. S25]. We used a saturation curve to correct substitutional saturation in the NADH-subunit 1 (ND1) fragment. This curve is described by the following function: $d(t) = D_{sat} \times (1 - e^{-t/T})$, where *d* is the uncorrected genetic distance between a pair of sequences, *t* is the divergence time between these sequences, D_{sat} is the sequence divergence at substitutional saturation (i.e. the maximum expected divergence between two DNA sequences), and *T* is the time required to reach a sequence divergence of $D_{sat} \times (1 - e^{-t}) = 63.2\%$ of D_{sat} . In other words, the shape of the saturation curve is determined by a parameter describing the expected sequence divergence at saturation (D_{sat}) and a parameter determining the rate at which the curve approaches saturation through time (*T*). This is analogous to saturation curves used in e.g. Michaelis-Menten enzyme kinetics. A saturation function allows us to obtain divergence time estimates for very recent nodes based on a fast-evolving gene by using divergence time estimates for older nodes that were based on slowly evolving genes. We proceeded through the following steps to obtain divergence times:

First, we plotted uncorrected pairwise distances for the ND1 gene fragment of 260 Hyloidea representatives (in this case bufonid taxa) against their divergence times inferred from relaxed clock analyses of two nuclear and nine mitochondrial genes in a previous study [S7]. The resulting scatter plot clearly indicates substitutional saturation in the ND1 gene, with genetic distances levelling out at approximately 20% divergence (Supplemental Figure 3).

Second, we used nonlinear regression based on the abovementioned function to estimate the best-fitting saturation curve through this scatter plot. This was done by searching the optimal values for D_{sat} and T using the Solver add-in in MS Excel (Microsoft, 2008). The best fitting saturation curve ($R^2 = 0.641$) corresponds to $D_{sat} = 19.67\%$ and T = 7.732 myr. Because the abovementioned time dependency of mitochondrial evolutionary rates may have also affected most recent divergence times in Van Bocxlaer *et al.* [S7] we additionally estimated a saturation curve on a scatter plot excluding all bufonid sequence divergences below 10%. Although this resulted in a reduced fit ($R^2 = 0.256$), the resulting curve was nearly identical to the original one, with $D_{sat} = 19.71\%$ and T = 7.867 myr.

Third, we used the obtained saturation curve and optimized parameters to convert uncorrected pairwise distances between two sequences from different tepui summits (we selected the highest and most isolated ones from which we have samples) and between a sequence from a tepui summit and the nearest sequence from upland into approximate divergence times. For each of the observed distances, the approximate divergence time using our saturation function corresponds to: $t = T \times -\ln[1-(d/D_{sat})]$.

SUPPLEMENTAL ACKNOWLEDGMENTS

We are indebted to C. Brewer-Carías, O. Fuentes, L. Minter, and J. Mesa for providing critical additional tissue samples and to C. Brewer-Carías for the photograph of Mount Roraima used in the main text. Research and export permits were issued by the Guyana Environmental Protection Agency.

SUPPLEMENTAL REFERENCES

S1. MCPHERSON, S. (2008) Lost Worlds of the Guiana Highlands. Redfern Natural History Productions, Poole, Dorset, England, 385 pp.

- S2. VENCES, M. THOMAS, M., BONETT, R.M. & VIEITES, D.R. (2005) Deciphering amphibian diversity through DNA barcoding: chances and challenges. *Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences*, 360, 1859–1868.
- S3. VENCES, M., THOMAS, M., VAN DER MEIJDEN, A., CHIARI, Y. & VIEITES, D.R. (2005) Comparative performance of the 16S rRNA gene in DNA barcoding of amphibians. *Frontiers in Zoology*, 2, 5.
- S4. FOUQUET, A., GILLES, A., VENCES, M., MARTY, C., BLANC, M. & GEMMELL, N.J. (2007) Underestimation of species richness in Neotropical frogs revealed by mtDNA analyses. *PLoS One*, 2, e1109.
- S5. GLAW, F., KÖHLER, J., DE LA RIVA, I., VIEITES, D.R. & VENCES, M. (2010) Integrative taxonomy of Malagasy treefrogs: combination of molecular genetics, bioacoustics and comparative morphology reveals twelve additional species of *Boophis. Zootaxa*, 2383, 1–82.
- S6. WAN, Q.-H., WU, H., FUJIHARA, T. & FANG, S.-G. (2004) Which genetic marker for which conservation genetics issue? *Electrophoresis*, 25, 2165–2176.
- S7. VAN BOCXLAER, I., LOADER, S.P., ROELANTS, K., BIJU, S.D., MENEGON, M. & BOSSUYT, F. (2010) Gradual adaptation toward a range-expansion phenotype initiated the global radiation of toads. *Science*, 327, 679–682.
- S8. BONFIELD, J.K., SMITH, K.F. & STADEN, R. (1995). A new DNA sequence assembly program. *Nucleic Acids Research*, 23, 4992–4999.
- S9. THOMPSON, J.D., GIBSON, T.J., PLEWNIAK, F., JEANMOUGIN, F. & HIGGINS, D.G. (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. *Nucleic Acids Research*, 24, 4876–4882.
- S10. MADDISON, D.R. & MADDISON, W.P. (2000) MacClade version 4: Analysis of phylogeny and character evolution. Sinauer Associates, Sunderland, Massachusetts.
- S11. SWOFFORD, D.L. (2002) PAUP* 4.0 Phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, Sunderland, Massachusetts.
- S12. GRANT, T., FROST, D.R., CALDWELL, J.P., GAGLIARDO, R., HADDAD, C.F.B., KOK, P.J.R., MEANS, D.B., NOONAN, B.P., SCHARGEL, W.E. & WHEELER, W.C. (2006) Phylogenetic systematics of dart-poison frogs and their relatives (Amphibia: Athesphatanura: Dendrobatidae). Bulletin of the American Museum of Natural History, 299, 1–262.
- S13. WIENS, J.J., KUCZYNSKI, C.A., DUELLMAN, W.E. & REEDER, T.W. (2007) Loss and re-evolution of complex life cycles in marsupial frogs: Does ancestral trait reconstruction mislead? *Evolution*, 61, 1886–1899.
- S14. HEDGES, S.B., DUELLMAN, W.E. & HEINICKE, M.P. (2008) New World directdeveloping frogs (Anura: Terrarana): Molecular phylogeny, classification, biogeography, and conservation. *Zootaxa*, 1737, 1–182.
- S15. FAIVOVICH, J., HADDAD, C.F.B., GARCIA, P.C.A., FROST, D.R., CAMPBELL, J.A. & WHEELER, W.C. (2005) Systematic review of the frog family Hylidae, with special reference to Hylinae: phylogenetic analysis and taxonomic revision. *Bulletin of the American Museum of Natural History*, 294, 1–240.
- S16. PELLEGRINO, K.C.M., RODRIGUES, M.T., YONENAGA-YASSUDA, Y. & SITES JR., J.W.

(2001) A molecular perspective on the evolution of microteiid lizards (Squamata, Gymnophthalmidae), and a new classification for the family. *Biological Journal of the Linnean Society*, 74, 315–338.

- S17. POSADA, D. (2008) jModelTest: phylogenetic model averaging. *Molecular Biology* and Evolution, 25, 1253–1256.
- S18. RONQUIST, F. & HUELSENBECK, J.P. (2003) MrBayes version 3.0: Bayesian phylogenetic inference under mixed models. *Bioinformatics*, 19, 1572–1574.
- S19. RAMBAUT, A. & DRUMMOND, A.J. (2007) Tracer version 1.4, available at http://beast.bio.ed.ac.uk/Tracer.
- S20. GIVNISH, T.J., MILLAM, K.C., EVANS, T.M., HALL, J.C., PIRES, J.C., BERRY, P.E. & SYTSMA, K.J. (2004) Ancient vicariance or recent long-dispersal? Inferences about phylogeny and South American-African disjunctions in Rapateaceae and Bromeliaceae based on ndhF sequence data. *International Journal of Plant Sciences*, 165, S35–S54.
- S21. HEINICKE, M.P., DUELLMAN, W.E., TRUEB, L., MEANS, D.B., MACCULLOCH, R.D. & HEDGES, B. (2009) A new frog family (Anura: Terrarana) from South America and an expanded direct-developing clade revealed by molecular phylogeny. *Zootaxa*, 2211, 1–35.
- S22. SANDERSON, M.J. (2003) r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. *Bioinformatics*, 19, 301–302.
- S23. THORNE, J.L. & KISHINO, H. (2002) Divergence time estimation and rate evolution with multilocus data sets. *Systematic Biology*, 51, 689–702.
- S24. DRUMMOND, A.J., HO, S.Y.W., PHILLIPS, M.J. & RAMBAUT, A. (2006) Relaxed phylogenetics and dating with confidence. *PLoS Biology*, 4, e88.
- S25. HO, S.Y.W., PHILLIPS, M.J., COOPER, A. & DRUMMOND, A.J. (2005). Time dependency of molecular rate estimates and systematic overestimation of recent divergence times. *Molecular Biology and Evolution*, 22, 1561–1568.
- S26. SUBRAMANIAN, S., DENVER, D.R., MILLAR, C.D., HEUPINK, T., ASCHRAFI, A., EMSLIE, S.D., BARONI, C. & LAMBERT, D.M. (2009) High mitogenomic evolutionary rates and time dependency. *Trends in Genetics*, 25, 482–486.
- S27. HO, S.Y.W., LANFEAR, R., BROMHAM, L., PHILLIPS, M.J., SOUBRIER, J., RODRIGO, A.G. & COOPER, A. (2011) Time-dependent rates of molecular evolution. *Molecular Ecology*, 20, 3087–3101.
- S28. ROKAS, A. & CARROLL, S.B. (2006) Bushes in the Tree of Life. *PLoS Biology*, 4, e352.
- S29. ZHENG, Y., PENG, R., KURO-O, M. & ZENG, X. (2011) Exploring patterns and extent of bias in estimating divergence time from mitochondrial DNA sequence data in a particular lineage: a case study of salamanders (Order Caudata). *Molecular Biology* and Evolution, 28, 2521–2535.

Next 5 pages: Supplemental Table 1. List of taxa used in this study and GenBank accession numbers. Sequences newly generated are in **boldface**. * These taxa are swapped in the GenBank database.

Tissue sample n°	Museum n ^o	16S	ND1	Order	Genus	Species	Locality	Country	Coordinates	Elevation (m)
VUB3321	IRSNB15863	JQ742236	JQ742403	Amphibia	"Hyla"	warreni	Maringma Tepui	Guyana	N 5°12'15" W 60°34'38"	1376
VUB3735	Uncatalogued	JO742102	J0742283	Amphibia	Anomaloglossus	"verbeeksnyderorum"	Tobogán de la Selva	Venezuela	N 5°23' W 67°34'	56
VUB3568	IRSNB15849	J0742125	J0742302	Amphibia	Anomaloglossus	aff. degranvillei	Kaw Mountain	French Guiana	N 4°32'41" W 52°09'09"	221
VUB3570	IRSNB15848	JO742126	JO742303	Amphibia	Anomaloglossus	baeobatrachus	Angoulême	French Guiana	N 5°24'38" W 53°39'23"	22
VUB3730	IRSNB13741	JQ742107	#####	Amphibia	Anomaloglossus	beebei	Kajeteur National Park	Guyana	N 5°10' W 59°29'	440
VUB3731	IRSNB13752	JQ742108	#####	Amphibia	Anomaloglossus	beebei	Kaieteur National Park	Guyana	N 5°08' W 59°24'	580
VUB3732	ROM39635	JQ742109	JQ742287	Amphibia	Anomaloglossus	beebei	Mt Ayanganna	Guyana	N 5°24' W 59°57'	1490-1550
VUB3054	IRSNB14454	JQ742110	#####	Amphibia	Anomaloglossus	kaiei	Kaieteur National Park	Guyana	N 5°08' W 59°24'	580
VUB3106	ROM43327	JQ742116	JQ742293	Amphibia	Anomaloglossus	kaiei	Wokomung Massif	Guyana	N 5°06'35" W 59°48'37"	700
VUB3107	ROM43333	JQ742117	JQ742294	Amphibia	Anomaloglossus	kaiei	Wokomung Massif	Guyana	N 5°06'35" W 59°48'37"	700
VUB3530	ROM44102	JQ742123	JQ742300	Amphibia	Anomaloglossus	kaiei	Meamu River	Guyana	N 6°16'21" W 60°29'59"	664
VUB3531	ROM44104	JQ742124	JQ742301	Amphibia	Anomaloglossus	kaiei	Meamu River	Guyana	N 6°11'44" W 60°28'48"	781
VUB3055	IRSNB1986	#####	JQ742285	Amphibia	Anomaloglossus	megacephalus	Maringma Tepui	Guyana	N 5°12'37" W 60°33'59"	1060
VUB3056	IRSNB14410	#####	JQ742286	Amphibia	Anomaloglossus	praderioi	Maringma Tepui	Guyana	N 5°12'16" W 60°34'39"	1376
Genbank	CPI10198	DQ502255	#####	Amphibia	Anomaloglossus	praderioi	Roraima Tepui	Guyana	N 5°16'30" W 60°43'00"	1310
Genbank	CP110208	DQ502256	#####	Amphibia	Anomaloglossus	praderioi	Roraima Tepui	Guyana	N 5°16'30" W 60°43'00"	1310
VUB3057	IRSNB15864	#####	JQ742288	Amphibia	Anomaloglossus	roraima	Maringma Tepui	Guyana	N 5°12'59" W 60°35'05"	2147
VUB3086	IRSNB15865	#####	JQ742289	Amphibia	Anomaloglossus	roraima	Wei Assipu Tepui	Guyana	N 5°12'58" W 60°42'16"	2216
VUB3087	IRSNB15851	#####	JQ742290	Amphibia	Anomaloglossus	roraima	Wei Assipu Tepui	Guyana	N 5°12'58" W 60°42'16"	2216
Genbank	CP110216	DQ502258	#####	Amphibia	Anomaloglossus	roraima	Roraima Tepui	Guyana	N 5°15'30" W 60°43'30"	1860-2350
Genbank	CPI10217	DQ502259	#####	Amphibia	Anomaloglossus	roraima	Roraima Tepui	Guyana	N 5°15'30" W 60°43'30"	1860-2350
Genbank	Untagged tadpoles	DQ502260	#####	Amphibia	Anomaloglossus	roraima	Roraima Tepui	Guyana	N 5°15'30" W 60°43'30"	1860-2350
VUB3733	Uncatalogued	JQ742101	#####	Amphibia	Anomaloglossus	rufulus	Churi Tepui	Venezuela	N 5°16' W 62°00'	ca. 2325
GenBank	UTAA56469	DQ502249	#####	Amphibia	Anomaloglossus	sp "Brownsberg"	Brownsberg	Suriname	N 5°04' W 54°58'	80
GenBank	UTAA56710	DQ502254	#####	Amphibia	Anomaloglossus	sp "Tomasing"	Mt Tomasing	Guyana	N 5°44'22" W 60°17'51"	550
VUB3128	ROM43892	JQ742119	JQ742296	Amphibia	Anomaloglossus	sp A	Wokomung Massif	Guyana	N 5°06'35" W 59°48'37"	700
VUB3126	ROM43902	JQ742118	JQ742295	Amphibia	Anomaloglossus	sp A	Wokomung Massif	Guyana	N 5°05'33" W 59°50'35"	1411
VUB3092	ROM43320	#####	JQ742291	Amphibia	Anomaloglossus	sp B	Wokomung Massif	Guyana	N 5°07'46" W 59°49'16"	1234
VUB3093	ROM43323	JQ742115	JQ742292	Amphibia	Anomaloglossus	sp B	Wokomung Massif	Guyana	N 5°05'33" W 59°50'35"	1400
VUB3527	ROM44110	JQ742122	JQ742299	Amphibia	Anomaloglossus	sp C	Seroun River	Guyana	N 6°08'11" W 60°22'46"	695
VUB3525	ROM44112	JQ742120	JQ742297	Amphibia	Anomaloglossus	sp C	Merume Mountain	Guyana	N 5°56'03" W 60°09'24"	950
VUB3526	ROM44113	JQ742121	JQ742298	Amphibia	Anomaloglossus	sp C	Meamu River	Guyana	N 6°11'44" W 60°28'48"	781
GenBank	MJH3950	DQ502108	#####	Amphibia	Anomaloglossus	stepheni	Manaus	Brazil	S 2°57' W 59°55'	100
VUB3734	Uncatalogued	JQ742104	#####	Amphibia	Anomaloglossus	tepuyensis	Auyantepui	Venezuela	N 5°46' W 62°33'	ca. 2100
VUB3736	Uncatalogued	JQ742103	JQ742284	Amphibia	Anomaloglossus	wothuja	Cerro Sipapo	Venezuela	N 5°05' W 67°27'	150
VUB3737	IRSNB15781	JQ742148	JQ742324	Amphibia	Atelopus	aff. <i>hoogmoedi</i>	Iwokrama Forest	Guyana	N 4°19'60" W 58°48'00"	67
VUB3573	PK3306	JQ742150	#####	Amphibia	Atelopus	franciscus	Angoulême	French Guiana	N 5°24'38" W 53°39'23"	22
VUB3132	IRSNB14477	JQ742149	#####	Amphibia	Atelopus	hoogmoedi	Kaieteur National Park	Guyana	N 5°08' W 59°24'	580
GenBank	TNHC64416	HQ290991	HQ290991	Amphibia	Dendrobates	tinctorius	Sipaliwini	Suriname	N 2°00' W 56°04'	300
VUB1624	Uncatalogued	FJ882750	FJ882750	Amphibia	Eleutherodactylus	coqui	El Verde	Puerto Rico	no data	350
VUB1036	Uncatalogued	FJ882745	FJ882745	Amphibia	Eleutherodactylus	marnockii	no data	USA	no data	no data
Genbank	JLG09	AY843592	#####	Amphibia	Gastrotheca	fissipes	Guarapari, ES	Brazil	N 20°39' W 40°30'	24

	seum n°	16S	NDI	Order	Genus	Species	Locality	Country	Coordinates	Elevation (m)
ooned AY94874	A Y 94874	4	A Y 948744	Amnhihia	Melanonhrvniscus	stelzneri	no data (net trade)	"South America"	no data	no data
5870 JO742239	J0742239		JO742406	Amphibia	Mversiohvla	kanaima	Maringma Tepui	Guvana	N 5°12'37" W 60°33'59"	1060
651 JO742139	JO742139		JO742316	Amphibia	Oreophrynella	"dendronastes"	Mt Avanganna	Guyana	N 5°21' W 59°57'	1490
402 JO742140	JQ742140		JQ742317	Amphibia	Oreophrynella	macconnelli	Wokomung Massif	Guyana	N 5°06' W 59°51'	1400
4364 JO742141	J0742141		#####	Amphibia	Oreophrynella	macconnelli	Roraima Tepui	Guyana	N 5°15'30" W 60°43'30"	1830
4366 JQ742142	JQ742142		JQ742318	Amphibia	Oreophrynella	macconnelli	Mt Kopinang	Guyana	N 5°00'08" W 59°52'47"	1524
4334 JQ742143	JQ742143		JQ742319	Amphibia	Oreophrynella	macconnelli	Maringma Tepui	Guyana	N 5°12'16" W 60°34'39"	1376
405 JQ742144	JQ742144		JQ742320	Amphibia	Oreophrynella	macconnelli	Wokomung Massif	Guyana	N 5°05' W 59°50'	1700
413 JQ742145	JQ742145		JQ742321	Amphibia	Oreophrynella	macconnelli	Wokomung Massif	Guyana	N 5°08' W 59°49'	1234
429 JQ742147	JQ742147		JQ742323	Amphibia	Oreophrynella	macconnelli	Merume Mountain	Guyana	N 5°56' W 60°09'	950
432 JQ742146	JQ742146		JQ742322	Amphibia	Oreophrynella	macconnelli	Wokomung Massif	Guyana	N 6°19' W 60°32'	700
J4 JQ742135	JQ742135		JQ742312	Amphibia	Oreophrynella	"nigra"	Kukenan Tepui	Venezuela	N 5°13'28" W 60°49'43"	2600
4389 JQ742136	JQ742136		JQ742313	Amphibia	Oreophrynella	"nigra"	Kukenan Tepui	Venezuela	N 5°13'28" W 60°49'43"	2600
5704 JQ742137	JQ742137		JQ742314	Amphibia	Oreophrynella	"nigra"	Yuruani Tepui	Venezuela	N 5°18'50" W 60°51'50"	2303
5732 JQ742138	JQ742138		JQ742315	Amphibia	Oreophrynella	"nigra"	Yuruani Tepui	Venezuela	N 5°18'50" W 60°51'50"	2303
4347 JQ742133	JQ742133		JQ742310	Amphibia	Oreophrynella	quelchii	Roraima Tepui	Guyana	N 5°12'00" W 60°44'00"	2590
5866 JQ742134	JQ742134		JQ742311	Amphibia	Oreophrynella	quelchii	Wei Assipu Tepui	Guyana	N 5°13'03" W 60°42'23"	2207
.979 JQ742132	JQ742132		JQ742309	Amphibia	Oreophrynella	seegobini	Maringma Tepui	Guyana	N 5°12'59" W 60°35'05"	2088
980 JQ742131	JQ742131		JQ742308	Amphibia	Oreophrynella	seegobini	Maringma Tepui	Guyana	N 5°12'59" W 60°35'05"	2088
4398 JQ742130	JQ742130		JQ742307	Amphibia	Oreophrynella	vasquezi	Ilu Tepui	Venezuela	N 5°24'20" W 61°00'23"	2680
5760 JQ742128	JQ742128		JQ742305	Amphibia	Oreophrynella	vasquezi	Tramen Tepui	Venezuela	N 5°26'40" W 61°01'20"	2371
5761 JQ742129	JQ742129	•	JQ742306	Amphibia	Oreophrynella	vasquezi	Tramen Tepui	Venezuela	N 5°26'40" W 61°01'20"	2371
JQ742127 J	JQ742127 J	-	IQ742304	Amphibia	Oreophrynella	vasquezi	Ilu Tepui	Venezuela	N 5°24' W 61°00'	ca. 2600
4673 JQ742235	JQ742235	•	JQ742402	Amphibia	"Osteocephalus"	exophthalmus	Kaieteur National Park	Guyana	N 5°10' W 59°30'	430
4656 JQ742237	JQ742237		JQ742404	Amphibia	Osteocephalus	leprieurii	Kaieteur National Park	Guyana	N 5°10' W 59°30'	430
4657 JQ742238	JQ742238		JQ742405	Amphibia	Osteocephalus	oophagus	Kaieteur National Park	Guyana	N 5°08' W 59°25'	540
5634 JQ742165	JQ742165		#####	Amphibia	Pristimantis	aff. pulvinatus	La Escalera	Venezuela	N 5°54'57" W 61°26'05"	1416
5786 JQ742164	JQ742164		JQ742338	Amphibia	Pristimantis	aff. pulvinatus	Iwokrama Forest	Guyana	N 4°20'11" W 58°46'54"	950
.4471 JQ742166	JQ742166		#####	Amphibia	Pristimantis	aff. <i>pulvinatus</i>	Kaieteur National Park	Guyana	N 5°08' W 59°24'	580
2862 JQ742167	JQ742167		JQ742339	Amphibia	Pristimantis	aff. <i>pulvinatus</i>	Maringma Tepui	Guyana	N 5°12'15" W 60°34'38"	1376
.5643 JQ742151	JQ742151		JQ742325	Amphibia	Pristimantis	aureoventris	Roraima Tepui	Guyana	N 5°15' W 60°43'	2305
5820 JQ742153	JQ742153		JQ742327	Amphibia	Pristimantis	aureoventris	Wei Assipu Tepui	Guyana	N 5°13'04" W 60°42'21"	2196
5821 JQ742158	JQ742158		JQ742332	Amphibia	Pristimantis	aureoventris	Wei Assipu Tepui	Guyana	N 5°13'03" W 60°42'21"	2219
5824 JQ742155	JQ742155		JQ742329	Amphibia	Pristimantis	aureoventris	Wei Assipu Tepui	Guyana	N 5°13'04" W 60°42'21"	2196
5825 JQ742156	JQ742156		JQ742330	Amphibia	Pristimantis	aureoventris	Wei Assipu Tepui	Guyana	N 5°13'04" W 60°42'21"	2196
+152 JQ742157	JQ742157		JQ742331	Amphibia	Pristimantis	aureoventris	Wei Assipu Tepui	Guyana	N 5°13'05" W 60°42'15"	2210
H53 JQ742159	JQ742159		JQ742333	Amphibia	Pristimantis	aureoventris	Wei Assipu Tepui	Guyana	N 5°13'05" W 60°42'15"	2210
+154 JQ742154	JQ742154		JQ742328	Amphibia	Pristimantis	aureoventris	Wei Assipu Tepui	Guyana	N 5°13'04" W 60°42'21"	2196
ogued (egg) JQ742152	JQ742152		JQ742326	Amphibia	Pristimantis	aureoventris	Wei Assipu Tepui	Guyana	N 5°13'04" W 60°42'21"	2196
ogued JQ742170	JQ742170	_	JQ742342	Amphibia	Pristimantis	cf. marmoratus	Cacao Mountain	French Guiana	N 4°33'42" W 52°27'09"	107
.5867 JQ742169	JQ742169		JQ742341	Amphibia	Pristimantis	jester	Maringma Tepui	Guyana	N 5°12'16" W 60°34'39"	1376
015 EU186723	EU186723		#####	Amphibia	Pristimantis	pulvinatus	La Escalera	Venezuela	N 5°59' W 61°24'	1250
2859 JQ742168	JQ742168		JQ742340	Amphibia	Pristimantis	saltissimus	Maringma Tepui	Guyana	N 5°12'38" W 60°33'60"	1060

Chapter 10 – Low Genetic Diversity in Tepui Summit Vertebrates 259

Tissue sample n°	Museum n ^o	16S	ND1	Order	Genus	Species	Locality	Country	Coordinates	Elevation (m)
VUB3749	IRSNB15868	J0742162	J0742336	Amphibia	Pristimantis	sp "Abakapa"	Abakapa Tepui	Venezuela	N 5°11'21" W 62°17'40"	2160
VUB3750	IRSNB15869	JO742163	J0742337	Amphibia	Pristimantis	sp "Angasima"	Angasima Tepui	Venezuela	N 5°02'35" W 62°04'51"	2121
GenBank	SBH268110	EU186721	#####	Amphibia	Pristimantis	sp "Aprada"	Aprada Tepui	Venezuela	N 5°24' W 62°26'	2540
VUB3717	IRSNB15640	JO742160	J0742334	Amphibia	Pristimantis	vuruaniensis	Yuruani Tepui	Venezuela	N 5°18'50" W 60°51'50"	2303
VUB3720	IRSNB15641	J0742161	J0742335	Amphibia	Pristimantis	vuruaniensis	Yuruani Tepui	Venezuela	N 5°18'50" W 60°51'50"	2303
VUB3624	IRSNB15850	JQ742171	#####	Amphibia	Pristimantis	zeuctotylus	Cacao Mountain	French Guiana	N 4°33'42" W 52°27'09"	107
GenBank	TNHCFS4955	HQ290967	HQ290967	Amphibia	Rheobates	palmatus	Boyaca	Colombia	N 5°38'16" W 73°32'08"	2118
VUB3538	ROM39475	JQ742208	JQ742376	Amphibia	Stefania	"ackawaio"	Mt Ayanganna	Guyana	N 5°21' W 59°57'	1490
VUB3539	ROM42811	JQ742209	JQ742377	Amphibia	Stefania	"ackawaio"	Wokomung Massif	Guyana	N 5°08' W 59°49'	1234
VUB3558	ROM39470	JQ742190	JQ742361	Amphibia	Stefania	"scalae"	Mt Ayanganna	Guyana	N 5°21' W 59°57'	1550
VUB3299	PK1846	JQ742194	JQ742365	Amphibia	Stefania	aff. evansi	Wayalayeng	Guyana	N 5°14'11" W 60°31'04"	678
VUB3555	ROM44254	JQ742195	JQ742366	Amphibia	Stefania	aff. evansi	Kurupung River	Guyana	N 6°02' W 60°16'	614
VUB3557	ROM44264	#####	JQ742367	Amphibia	Stefania	aff. <i>evansi</i>	Merume Mountain	Guyana	N 5°56' W 60°09'	950
VUB3302	IRSNB15871	JQ742199	JQ742371	Amphibia	Stefania	aff. <i>evansi</i>	Maringma Tepui	Guyana	N 5°12'37" W 60°33'59"	1060
VUB3540	ROM39640	JQ742210	JQ742378	Amphibia	Stefania	ayangannae	Mt Ayanganna	Guyana	N 5°21' W 59°57'	1490
VUB3542	ROM42906	JQ742212	JQ742380	Amphibia	Stefania	ayangannae	Wokomung Massif	Guyana	N 5°06' W 59°51'	1400
VUB3541	ROM42925	JQ742211	JQ742379	Amphibia	Stefania	ayangannae	Wokomung Massif	Guyana	N 5°05' W 59°50'	1700
VUB3543	ROM39478	JQ742179	JQ742350	Amphibia	Stefania	coxi	Mt Ayanganna	Guyana	N 5°21' W 59°57'	1490
VUB3544	ROM42856	JQ742180	JQ742351	Amphibia	Stefania	coxi	Wokomung Massif	Guyana	N 5°05' W 59°50'	1700
VUB3277	IRSNB14588	JQ742192	JQ742363	Amphibia	Stefania	evansi	Kaieteur National Park	Guyana	N 5°10' W 59°29'	440
VUB3294	IRSNB14595	JQ742193	JQ742364	Amphibia	Stefania	evansi	Kaieteur National Park	Guyana	N 5°08' W 59°25'	530
VUB3551	ROM39450	JQ742196	JQ742368	Amphibia	Stefania	evansi	Mt Ayanganna	Guyana	N 5°25' W 59°58'	870
VUB3553	ROM42862	JQ742198	JQ742370	Amphibia	Stefania	evansi	Mt Ayanganna	Guyana	N 5°18' W 59°50'	676
VUB3552	ROM42882	JQ742197	JQ742369	Amphibia	Stefania	evansi	Wokomung Massif	Guyana	N 5°07' W 59°49'	700
VUB3752	PK3566	JQ742173	JQ742344	Amphibia	Stefania	ginesi	Abakapa Tepui	Venezuela	N 5°11'23" W 62°17'52"	2137
VUB3753	PK3580	JQ742174	JQ742345	Amphibia	Stefania	ginesi	Abakapa Tepui	Venezuela	N 5°11'07" W 62°17'21"	2209
VUB3754	Uncatalogued	JQ742172	JQ742343	Amphibia	Stefania	riae	Sarisarinama Tepui	Venezuela	N 4°41' W 64°13'	ca. 1100
VUB3697	IRSNB15703	JQ742177	JQ742348	Amphibia	Stefania	riveroi	Yuruani Tepui	Venezuela	N 5°18'50" W 60°51'50"	2303
VUB3705	IRSNB15716	JQ742178	JQ742349	Amphibia	Stefania	riveroi	Yuruani Tepui	Venezuela	N 5°18'50" W 60°51'50"	2303
VUB3545	ROM39469	JQ742213	JQ742381	Amphibia	Stefania	roraimae	Mt Ayanganna	Guyana	N 5°21' W 59°57'	1490
VUB3546	ROM42843	JQ742214	JQ742276	Amphibia	Stefania	roraimae	Wokomung Massif	Guyana	N 5°08' W 59°49'	1234
VUB3309	IRSNB15872	JQ742203	JQ742372	Amphibia	Stefania	roraimae	Maringma Tepui	Guyana	N 5°12'15" W 60°34'38"	1376
VUB3310	IRSNB15873	JQ742204	JQ742373	Amphibia	Stefania	roraimae	Maringma Tepui	Guyana	N 5°12'15" W 60°34'38"	1376
VUB3311	IRSNB15874	JQ742205	JQ742374	Amphibia	Stefania	roraimae	Maringma Tepui	Guyana	N 5°12'15" W 60°34'38"	1376
VUB3312	IRSNB15875	JQ742206	JQ742375	Amphibia	Stefania	roraimae	Maringma Tepui	Guyana	N 5°12'15" W 60°34'38"	1376
VUB3315	IRSNB15876	JQ742207	JQ742275	Amphibia	Stefania	roraimae	Maringma Tepui	Guyana	N 5°12'15" W 60°34'38"	1376
VUB3549	ROM44271	JQ742202	JQ742274	Amphibia	Stefania	roraimae	Seroun River	Guyana	N 6°08' W 60°23'	700
VUB3633	ROM44277	JQ742200	JQ742272	Amphibia	Stefania	roraimae	Partang	Guyana	N 5°49'07" W 60°13'26"	728
VUB3548	ROM44279	JQ742201	JQ742273	Amphibia	Stefania	roraimae	Apakai River	Guyana	N 5°54' W 60°07'	984
VUB3755	IRSNB15839	JQ742175	JQ742346	Amphibia	Stefania	satelles	Angasima Tepui	Venezuela	N 5°02'36" W 62°04'51"	2122
VUB3756	IRSNB15844	JQ742176	JQ742347	Amphibia	Stefania	satelles	Angasima Tepui	Venezuela	N 5°02'36" W 62°04'51"	2122
VUB3280	PK2060V	JQ742191	JQ742362	Amphibia	Stefania	scalae	El Danto	Venezuela	N 5°57'52" W 61°23'31"	1208
Genbank	MNHN2002.692	AY843768	#####	Amphibia	Stefania	schuberti	Auyantepui	Venezuela	N 5°46' W 62°33'	2325

Elevation (m)	2216 2216 52216 520 580 1060 1060 205 2044 22244 22244 22244 22144 22244 2216 22244 1242 22142 1242 2172 2172 2172 21
Coordinates	N 5°12'58" W 60°42'16" N 5°12'58" W 60°42'16" N 5°12'58" W 60°42'16" N 5°08' W 59°24 N 5°08' W 59°24'9 N 5°12'77" W 60°33'59" N 5°12'75" W 60°33'59" N 5°12'75" W 60°42'16" N 5°12'75" W 60°42'13" N 5°13'05" W 60°42'13" N 5°13'05" W 60°42'23" N 5°13'05" W 60°42'33" N 5°13'05" W 60°42'33" N 5°13'05" W 60°42'33" N 5°11'01" W 60°36'50" N 5°11'24" W 60°36'50" N 5°12'0" W 50°2'42" N 5°11'24" W 60°36'50" N 5°12'0" W 50°2'42" N 5°12'0" W 50°2'42" N 5°12'0" W 50°2'42" N 5°12'0" W 50°2'42" N 5°12'0" W 5°2'42" N 5°12'0" W 50°2'42" N 5°12'0" W 50°2'42" N 5°12'0" W 50°2'42" N 5°12'0" W 50°2'42" N 5°12'0" W 5°2'42" N 5°12'14" W 50°2'42" N 5°12'14" N 5°12'1
Country	Guyama Guyama Guyama Guyama Guyama Guyama Guyama Guyama Guyama Guyama Guyama Guyama Guyama Guyama Guyama Cuyama Guyama Cuyama Guyama Cuyama Cuyama Cuyama Cuyama Guyama Cuyama Cuyama Cuyama Cuyama Guyama Brazil
Locality	Wei Assipu Tepui Wei Assipu Tepui Wei Assipu Tepui Maringma Tepui Maringma Tepui Maringma Tepui Matingma Tepui Mt Ayanganna Wei Assipu Tepui Wei Assipu Tepui Wei Assipu Tepui Wei Assipu Tepui Wei Assipu Tepui Uei Tepui Uei Tepui Uei Tepui Uei Tepui Uei Tepui Uei Tepui Mei Assipa Tepui Guadacapiapu Tepui Guadacapiapu Tepui Abakapa Tepui
Species	sp "Wei-Assipu" sp "Wei-Assipu" woodleyi woodleyi woodleyi woodleyi "galam" "g
Genus	Stefania Stefania Stefania Stefania Stefania Stefania Stefania Stefania Stefania Stefania Stefania Stefania Tepuibyla Arthrosaura Arthrosaura Arthrosaura
Order	Amphibia Amp
ND1	JQ742355 JQ742355 JQ742355 JQ742355 JQ742355 JQ742355 JQ742385 JQ742385 JQ742385 JQ742388 JQ742389 JQ742399 JQ742399 JQ742399 JQ742399 JQ742399 JQ742399 JQ742395 JQ742399 JQ742395 JQ742395 JQ742395 JQ742395 JQ742395 JQ742395 JQ742395 JQ742395 JQ742395 JQ742395 JQ742395 JQ742395 JQ742395 JQ742395 JQ742395 JQ742395 JQ742395 JQ742239 JQ742239 JQ742239 JQ742239 JQ742239 JQ742239 JQ742239 JQ742239 JQ742239 JQ742239 JQ742239 JQ742239
16S	JQ742181 JQ742185 JQ742185 JQ742185 JQ742186 JQ742186 JQ742184 JQ742218 JQ742219 JQ742215 JQ742215 JQ742225 JQ742225 JQ742235 JQ742235 JQ742235 JQ742231 JQ742230 JQ742230 JQ742230 JQ742230 JQ742230 JQ742230 JQ742230 JQ742260 JQ74260 JQ74260 JQ74260 JQ74260 JQ74260 JQ74260 JQ74200 JQ74200 JQ74200 JQ74200 JQ74200 JQ74200 JQ7420
Museum n°	IRSNB15853 IRSNB15855 IRSNB13799 IRSNB13799 IRSNB15877 IRSNB15877 IRSNB15878 ROM20570 IRSNB15876 IRSNB15866 IRSNB15866 IRSNB15866 IRSNB15769 IRSNB15769 IRSNB15769 IRSNB15769 IRSNB15769 IRSNB15769 IRSNB15769 IRSNB15769 IRSNB15769 IRSNB15769 IRSNB15769 IRSNB15769 IRSNB15769 IRSNB15769 IRSNB15769 IRSNB15769 IRSNB15769 IRSNB15769 IRSNB15769 IRSNB15655 IRSNB2565 IRSNB2565 IRSNB2655 IRSNB2655 IRSNB2655 IRSNB2655 IRSNB2655 IRSNB2655 IRSNB2655 IRSNB2655 IRSNB2655 IRSNB2655 IRSNB2655 IRSNB2655 IRSNB2565 IRSNB2565 IRSNB2655 IRSNB2655 IRSNB2565 IRSNB2655 IRSNB2655 IRSNB2655 IRSNB2655 IRSNB2655 IRSNB2655 IRSNB2565 IRSNB2565 IRSNB2655 IRSNB2655 IRSNB2565 IRSNB
Tissue sample n°	VUB3266 VUB3269 VUB3282 VUB3282 VUB3306 VUB33307 VUB3547 VUB3550 VUB3550 VUB3550 VUB3405 VUB3405 VUB3405 VUB3405 VUB3405 VUB3405 VUB3405 VUB3405 VUB3760 VUB3760 VUB3769 VUB3651 VUB3769 VUB3651 VUB3651 VUB3651 VUB3651 VUB3651 VUB3651 VUB3651 VUB3651 VUB3651 VUB3651 VUB3651 VUB3651 VUB3651 VUB3764 GenBank GenBank GenBank GenBank CUB3222 VUB3224 VUB3226 VUB3226 VUB3226 VUB3226 VUB3226 VUB3220 VUB3226 VUB3220 VUB3226 VUB3220 VUB3226 VUB3220 VUB3226 VUB3220 VUB3220 VUB3220 VUB3220 VUB3220 VUB3220 VUB3220 VUB3220 VUB3220 VUB3220 VUB3220 VUB3220 VUB3220 VUB3220 VUB3220 VUB3250 VUB3550 VUB35

 $Chapter \ 10-Low \ Genetic \ Diversity \ in \ Tepui \ Summit \ Vertebrates \qquad 261$

Museum n ⁶	0	16S	NDI	Order	Genus	Species	Locality	Country	Coordinates	Elevation (m)
PK2068V JQ742260 JQ742424	JQ742260 JQ742424	JQ742424		Reptilia	Arthrosaura	sp "Chimanta"	Churi Tepui	Venezuela	N 5°16' W 62°00'	ca. 2300
PK3261 JQ742271 JQ742282 R	JQ742271 JQ742282 R	JQ742282 R	×	eptilia	Bachia	flavescens	Kaw Mountain	French Guiana	N 4°32'41" W 52°09'09"	221
ROM28532 JQ742264 JQ742426 Rep	JQ742264 JQ742426 Rep	JQ742426 Rep	Rep	otilia	Cercosaura	ocellata	Paramakatoi	Guyana	N 4°43'00" W 59°42'00"	970
ROM22892 AF206584 ##### Rept	AF206584 ##### Rept	##### Rept	Rept	ilia	Echinosaura	sulcarostrum	Baramita	Guyana	N 7°22' W 60°29'	100
LG1356 AF420738 ##### Rept	AF420738 ##### Rept	##### Rept	Rept	ilia	Ecpleopus	gaudichaudii	Boissucanga	Brazil	no data	no data
LSUMZH12697 AF101370 ##### Rept	AF101370 ##### Rept	##### Rept	Rept	ilia	Iphisa	elegans	RPF Cuyabeno	Ecuador	S 0°0' W 76°10'	250
IRSNB17322 JQ742265 JQ742281 Rep	JQ742265 JQ742281 Rep	JQ742281 Rep	Rep	tilia	Kaieteurosaurus	hindsi	Kaieteur National Park	Guyana	N 5°11' W 59°28'	480
PK3264 JQ742269 JQ742430 Rep	JQ742269 JQ742430 Rep	JQ742430 Rep	Rep	tilia	Leposoma	guianensis	Kaw Mountain	French Guiana	N 4°32'41" W 52°09'09"	221
PK2065V JQ742270 JQ742431 Rep	JQ742270 JQ742431 Rep	JQ742431 Rep	Rep	tilia	Leposoma	hexalepis	Puerto Ayacucho	Venezuela	N 5°37' W 67°28'	200
MRT977435 AF420723 ##### Rept	AF420723 ##### Rept	##### Rept	Rept	ilia	Leposoma	oswaldoi	Aripuana	Brazil	no data	no data
IRSNB17840 JQ742267 JQ742428 Repti	JQ742267 JQ742428 Repti	JQ742428 Repti	Repti	ilia	Leposoma	percarinatum	Kaieteur National Park	Guyana	N 5°11' W 59°28'	480
IRSNB17853 JQ742268 JQ742429 Repti	JQ742268 JQ742429 Repti	JQ742429 Repti	Repti	lia	Leposoma	percarinatum	Kaieteur National Park	Guyana	N 5°08' W 59°25'	530
USNM531665 AF420735 ##### Repti	AF420735 ##### Repti	##### Repti	Repti	lia	Leposoma	percarinatum	Iwokrama Forest	Guyana	no data	no data
LG1409 AY217954 ##### Reptil	AY217954 ##### Reptil	##### Reptil	Reptil	lia	Leposoma	scincoides	Una	Brazil	no data	no data
IRSNB17344 JQ742242 JQ742409 Reptil	JQ742242 JQ742409 Reptil	JQ742409 Repti	Reptil	lia	Neusticurus	aff. rudis	Kaieteur National Park	Guyana	N 5°08'44" W 59°25'31"	515
IRSNB17345 JQ742243 ##### Reptil	JQ742243 ##### Reptil	##### Reptil	Reptil	ia	Neusticurus	aff. rudis	Kaieteur National Park	Guyana	N 5°08' W 59°24'	580
IRSNB18146 JQ742244 JQ742410 Reptili	JQ742244 JQ742410 Reptili	JQ742410 Reptili	Reptili	a	Neusticurus	aff. rudis	Maringma Tepui	Guyana	N 5°12'37" W 60°33'59"	1060
IRSNB18147 JQ742245 JQ742411 Reptil	JQ742245 JQ742411 Reptil	JQ742411 Reptil	Reptil	ia	Neusticurus	aff. rudis	Maringma Tepui	Guyana	N 5°12'16" W 60°34'39"	1376
PK2058V JQ742246 JQ742412 Reptil	JQ742246 JQ742412 Reptil	JQ742412 Reptil	Reptil	ia	Neusticurus	aff. rudis	Chivaton	Venezuela	N 5°35'15" W 61°40'50"	1400
IRSNB18149 JQ742250 JQ742278 Reptil:	JQ742250 JQ742278 Reptil:	JQ742278 Reptil	Reptil	la	Neusticurus	aff. rudis	Kaw Mountain	French Guiana	N 4°32'41" W 52°09'09"	221
ROM20514 JQ742247 JQ742277 Reptil	JQ742247 JQ742277 Reptil	JQ742277 Reptil	Reptil	ia	Neusticurus	aff. rudis	Tukeit, KNP	Guyana	N 5°12' W 59°27'	205
ROM39498 JQ742248 JQ742413 Reptil:	JQ742248 JQ742413 Reptil:	JQ742413 Reptil	Reptil	la.	Neusticurus	aff. rudis	Mt Ayanganna	Guyana	N 5°21'06" W 59°57'24"	1490
ROM42644 JQ742249 JQ742414 Reptil	JQ742249 JQ742414 Reptil	JQ742414 Reptil	Reptil	ia	Neusticurus	aff. rudis	Wokomung Massif	Guyana	N 5°07'46" W 59°49'16"	1234
IRSNB18109 JQ742251 JQ742415 Repti	JQ742251 JQ742415 Repti	JQ742415 Repti	Repti	lia	Neusticurus	aff. rudis	El Danto	Venezuela	N 5°57'52" W 61°23'31"	1208
IRSNB18110 JQ742252 JQ742416 Rept	JQ742252 JQ742416 Rept	JQ742416 Rept	Rept	ilia	Neusticurus	aff. rudis	La Escalera	Venezuela	N 5°57' W 61°23'	1100
IRSNB18111 JQ742253 JQ742417 Rept	JQ742253 JQ742417 Rept	JQ742417 Rept	Rept	ilia	Neusticurus	aff. rudis	La Escalera	Venezuela	N 5°57' W 61°23'	1100
MRT926008 AF420709 ##### Repti	AF420709 ##### Repti	##### Repti	Repti	ilia	Neusticurus	aff. rudis	Serra do Navio	Brazil	no data	no data
IRSNB18150 JQ742240 JQ742407 Repti	JQ742240 JQ742407 Repti	JQ742407 Repti	Repti	lia	Neusticurus	aff. rudis	Abakapa Tepui	Venezuela	N 5°11'06" W 62°17'28"	2156
IRSNB18151 JQ742241 JQ742408 Repti	JQ742241 JQ742408 Repti	JQ742408 Repti	Repti	lia	Neusticurus	aff. rudis	Angasima Tepui	Venezuela	N 5°02'30" W 62°04'54"	2162
MRT968462 AF420708 ##### Repti	AF420708 ##### Repti	##### Repti	Repti	ilia	Neusticurus	bicarinatus	Apiacas	Brazil	no data	no data
IRSNB2650 JQ742266 JQ742427 Repti	JQ742266 JQ742427 Repti	JQ742427 Repti	Repti	lia	Pantepuisaurus	rodriguesi	Maringma Tepui	Guyana	N 5°12'57" W 60°35'07"	2080
LG1006 AF420734 ##### Repti	AF420734 ##### Repti	##### Repti	Repti	lia	Placosoma	cordylinum	Teresopolis	Brazil	no data	no data
MRT0472 AF420748 ##### Reptili	AF420748 ##### Reptili	##### Reptili	Reptili	a	Potamites	ecpleopus	Apiacas	Brazil	no data	no data
LSUMZH13823 AF420757* ##### Reptil:	AF420757* ##### Reptil:	##### Reptil	Reptil	la	Potamites	juruazensis	Porto Walter	Brazil	no data	no data
KU21677 AY507866 ##### Repti	AY507866 ##### Repti	##### Repti	Repti	lia	Potamites	strangulatus	no data	no data	no data	no data
LSUMZH13603 AF420758* ##### Re	AF420758* ##### Re	##### Re	Re	ptilia	Ptychoglossus	brevifrontalis	Porto Walter	Brazil	no data	no data
MRT887336 AF420737 ##### Re	AF420737 ##### Re	##### Re	Re	ptilia	Rachisaurus	brachylepis	Serra do Cipo	Brazil	no data	no data
IRSNB18152 JQ742256 JQ742420 Re	JQ742256 JQ742420 Re	JQ742420 Re	Re	ptilia	Riolama	leucosticta	Maringma Tepui	Guyana	N 5°12'39" W 60°35'30"	1942
IRSNB18153 JQ742255 JQ742419 Rep	JQ742255 JQ742419 Rep	JQ742419 Rep	Rep	tilia	Riolama	leucosticta	Wei Assipu Tepui	Guyana	N 5°13'03" W 60°42'21"	2219
Uncatalogued JO742254 JO742418 Reptil	J0742254 J0742418 Reptil	JO742418 Reptil	Reptil	ia	Riolama	leucosticta	Yuruani Tepui	Venezuela	N 5°18'54" W 60°51'44"	2346

262 Islands in the Sky: Species Diversity, Evolutionary History, and Patterns of Endemism of the Pantepui Herpetofauna

Supplemental Table 2. Primers used in this study
--

Name	Gene	Sequence 5'-3'	Reference
16S-A	16S	CGCCTGTTTAYCAAAAACAT	Simon <i>et al.</i> (1994)
16S-B	16S	CCGGTYTGAACTCAGATCAYGT	Simon <i>et al.</i> (1994)
NDH-AA	ND1	TACATACAACTACGNAARGGYCC	This study
NDH-AB	ND1	AAGGTGTATTAGTTGRTCRTANCG	This study
NDH-J	ND1	TTTACGACCTCGATGTTGGA	Roelants & Bossuyt (2005)
NDH-L	ND1	AAACTATTTAYYAAAGARCC	Roelants & Bossuyt (2005)
NDH-M	ND1	GGGTATGANGCTCGNACTCA	Roelants & Bossuyt (2005)
NDH-Q	ND1	TAAAACTATTCATNAARGAACC	Roelants & Bossuyt (2005)
NDH-R	ND1	TAAAACTATTCATNAARGAGCC	Roelants & Bossuyt (2005)
NDH-S	ND1	GGGTATGANGCTCGNATCCA	Roelants & Bossuyt (2005)
NDH-W	ND1	GGGTATGANGCTCGNATTCA	Roelants & Bossuyt (2005)

Supplemental Table **3.** Lowest uncorrected pairwise distances in 16S (below diagonal) and in ND1 (above diagonal) between *Oreophrynella* species/populations from tepui summits and uplands in the Eastern Pantepui Region.

	Maringma	Wei Assipu	Roraima	Kukenan	Yuruani	Ilu	Tramen	Uplands
Maringma		0.1054	0.1054	0.1054	0.1054	0.1134	0.1134	0.1615
Wei Assipu	0.0250		0.0000	0.0063	0.0095	0.0649	0.0649	0.1472
Roraima	0.0250	0.0000		0.0063	0.0095	0.0649	0.0649	0.1472
Kukenan	0.0250	0.0000	0.0000		0.0032	0.0665	0.0665	0.1487
Yuruani	0.0250	0.0000	0.0000	0.0000		0.0665	0.0665	0.1519
Ilu	0.0192	0.0153	0.0153	0.0153	0.0153		0.000	0.1424
Tramen	0.0196	0.0156	0.0156	0.0156	0.0156	0.0000		0.1424
Uplands	0.0556	0.0421	0.0421	0.0421	0.0421	0.0487	0.0487	

Supplemental Table **4.** Lowest uncorrected pairwise distances in 16S (below diagonal) and in ND1 (above diagonal) between *Tepuihyla* species/populations from tepui summits and uplands in the Eastern Pantepui Region; n.d. = no data.

	Wei Assipu	Uei	Auyantepui	Abakapa	Uplands
Wei Assipu		0.0000	n.d.	0.0491	0.0000
Uei	0.0018		n.d.	0.0506	0.0000
Auyantepui	0.0089	0.0125		n.d.	n.d.
Abakapa	0.0054	0.0089	0.0071		0.0459
Uplands	0.0000	0.0018	0.0106	0.0071	

Supplemental Table 5. Lowest uncorrected pairwise distances in 16S (below diagonal) and in ND1 (above diagonal) between *Pristimantis* species/populations from tepui summits and uplands in the Eastern Pantepui Region; n.d. = no data.

	Wei Assipu	Yuruani	Aprada	Abakapa	Angasima	Uplands
Wei Assipu		0.0812	n.d.	0.1204	0.1189	0.0114
Yuruani	0.0082		n.d.	0.1402	0.1386	0.1202
Aprada	0.0329	0.0329		n.d.	n.d.	n.d.
Abakapa	0.0309	0.0350	0.0165		0.0016	0.1315
Angasima	0.0288	0.0463	0.0144	0.0062		0.1300
Uplands	0.0036	0.0268	0.0498	0.0391	0.0517	

Supplemental Table 6. Lowest uncorrected pairwise distances in 16S (below diagonal) and in ND1 (above diagonal) between *Stefania* species/populations from tepui summits and uplands in the Eastern Pantepui Region; n.d. = no data.

	Wei Assipu	Yuruani	Auyantepui	Abakapa	Angasima	Uplands
Wei Assipu		0.1669	n.d.	0.2422	0.2163	0.1434
Yuruani	0.0409		n.d.	0.2532	0.2159	0.1645
Auyantepui	0.0702	0.0682		n.d.	n.d.	n.d.
Abakapa	0.0916	0.0955	0.0682		0.1833	0.2305
Angasima	0.0838	0.0838	0.0663	0.0721		0.2021
Uplands	0.0391	0.0234	0.0604	0.0858	0.0731	

Supplemental Table 7. Lowest uncorrected pairwise distances in 16S (below diagonal) and in ND1 (above diagonal) between *Anomaloglossus* species/populations from tepui summits and uplands in the Eastern Pantepui Region; n.d. = no data.

	Maringma	Wei Assipu	Auyantepui	Churi	Uplands
Maringma		0.0079	n.d.	n.d.	n.d.
Wei Assipu	0.0019		n.d.	n.d.	n.d.
Auyantepui	0.0478	0.0459		n.d.	n.d.
Churi	0.0344	0.0325	0.0363		n.d.
Uplands	0.0019	0.00000	n.d.	n.d.	

Supplemental Table 8. Lowest uncorrected pairwise distances in 16S (below diagonal) and in ND1 (above diagonal) between *Riolama* species/populations from tepui summits in the Eastern Pantepui Region.

	Maringma	Wei Assipu	Yuruani
Maringma		0.0075	0.1045
Wei Assipu	0.0000		0.1003
Yuruani	0.0096	0.0096	

Supplemental Table 9. Lowest uncorrected pairwise distances in 16S (below diagonal) and in ND1 (above diagonal) between *Arthrosaura* species/populations from tepui summits and uplands in the Eastern Pantepui Region.

	Maringma	Churi	Uplands
Maringma		0.1024	0.0057
Churi	0.0120		0.0953
Uplands	0.0000	0.0416	

Supplemental Table **10.** Lowest uncorrected pairwise distances in 16S (below diagonal) and in ND1 (above diagonal) between *Neusticurus* species/populations from tepui summits and uplands in the Eastern Pantepui Region.

	Abakapa	Angasima	Uplands
Abakapa		0.0469	0.0129
Angasima	0.0162		0.0433
Uplands	0.0022	0.0198	

Supplemental Figure 1. [Next page] Typical tepui landscapes showing vertical cliffs and tepui summit isolation. Numbers above tepuis correspond to those provided in Fig. 1B (main text). A: Mount Roraima, photographed from Wei Assipu-tepui (photo by PJR Kok). B: Spectacular vertical cliffs of Mount Roraima, photographed from the air (photo by DB Means). C: Kukenan-tepui, Yuruani-tepui and Ilu-tepui, photographed from the air flying over Mount Roraima (photo by DB Means). D: Ilu-tepui and Tramen-tepui, photographed from the air (photo by DB Means). E: Aprada-tepui above the clouds, photographed from the air (photo by PJR Kok). F: Angasima-tepui (left) and Akopan-tepui (right), photographed from Upuigma-tepui (photo by PJR Kok). G. Part of the Eastern Tepui Chain rising above the Gran Sabana, photographed from the air (photo by PJR Kok). H: Upuigma-tepui, photographed from Angasima-tepui (photo by PJR Kok).

266 Islands in the Sky: Species Diversity, Evolutionary History, and Patterns of Endemism of the Pantepui Herpetofauna

Supplemental Figure **2.** Phylogenetic relationships among tepui summit populations and their upland-lowland relatives in six typical Pantepui taxa. Taxa labelled by colored blocks represent summit populations, with differently colored blocks indicating different tepuis, as listed in the legend. Taxa without labels represent upland/lowland populations. The trees represent Bayesian consensus phylograms based on the analysis of the concatenated data set of 16S and ND1. Numbers above branches are Bayesian posterior probabilities. Internal nodes labelled by red dots represent divergences between tepui populations and their closest sampled relatives (either from another tepui or from the upland/lowland) for which approximate divergence times were inferred (see supplemental text). Outgroups (see supplemental text) were removed for presentation purposes.

Chapter 10 – Low Genetic Diversity in Tepui Summit Vertebrates 267

Supplemental Figure **3.** Saturation curve (red line) obtained by nonlinear regression to estimate approximate divergence times based on observed pairwise sequence divergences in the ND1 fragment (dotted lines). The curve is based on a scatter plot (grey circles) of ND1 sequence divergences against reported divergence ages in the toad family Bufonidae [S7]. See supplemental text for full details.

